1
|
Wang D, Wang C, Zhu G. Genomic reconstruction and features of glycosylation pathways in the apicomplexan Cryptosporidium parasites. Front Mol Biosci 2022; 9:1051072. [PMID: 36465557 PMCID: PMC9713705 DOI: 10.3389/fmolb.2022.1051072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/03/2022] [Indexed: 02/24/2024] Open
Abstract
Cryptosporidium is a genus of apicomplexan parasites infecting humans or other vertebrates. The majority of the Cryptosporidium species live in host intestines (e.g., C. parvum, C. hominis and C. ubiquitum), but there are a few gastric species (e.g., C. muris and C. andersoni). Among them, C. parvum is the most important zoonotic species, for which a number of glycoproteins have been reported for being involved in the interacting with host cells. However, little is known on the cryptosporidium glycobiology. Information on the glycosylation pathways in Cryptosporidium parasites remains sketchy and only a few studies have truly determined the glycoforms in the parasites. Here we reanalyzed the Cryptosporidium genomes and reconstructed the glycosylation pathways, including the synthesis of N- and O-linked glycans and GPI-anchors. In N-glycosylation, intestinal Cryptosporidium possesses enzymes to make a simple precursor with two terminal glucoses on the long arm (i.e., Glc2Man5GlcNAc2 vs. Glc3Man9GlcNAc2 in humans), but gastric species only makes a simpler precursor containing only the "core" structure (i.e., Man3GlcNAc2). There is an ortholog of glucosidase II (GANAB) in all Cryptosporidium species, for which the authenticity is questioned because it contains no signal peptide and exist in gastric species lacking terminal glucoses for the enzyme to act on. In O-linked glycosylation, all Cryptosporidium species may attach one-unit HexNAc (GalNAc and GlcNAc) and two-unit Fuc-type (Man-Fuc) glycans to the target proteins. Cryptosporidium lacks enzymes to further process N- and O-glycans in the Golgi. The glycosylphosphatidylinositol (GPI)-anchor in Cryptosporidium is predicted to be unbranched and unprocessed further in the Golgi. Cryptosporidium can synthesize limited nucleotide sugars, but possesses at least 12 transporters to scavenge nucleotide sugars or transport them across the ER/Golgi membranes. Overall, Cryptosporidium makes much simpler glycans than the hosts, and the N-glycoforms further differ between intestinal and gastric species. The Cryptosporidium N- and O-glycans are neutrally charged and have limited capacity to absorb water molecules in comparison to the host intestinal mucins that are negatively charged and highly expandable in waters.
Collapse
Affiliation(s)
| | | | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
2
|
Dayao DA, Jaskiewcz J, Lee S, Oliveira BC, Sheoran A, Widmer G, Tzipori S. Development of Two Mouse Models for Vaccine Evaluation against Cryptosporidiosis. Infect Immun 2022; 90:e0012722. [PMID: 35735982 PMCID: PMC9302090 DOI: 10.1128/iai.00127-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidiosis was shown a decade ago to be a major contributor to morbidity and mortality of diarrheal disease in children in low-income countries. A serious obstacle to develop and evaluate immunogens and vaccines to control this disease is the lack of well-characterized immunocompetent rodent models. Here, we optimized and compared two mouse models for the evaluation of vaccines: the Cryptosporidium tyzzeri model, which is convenient for screening large numbers of potential mixtures of immunogens, and the Cryptosporidium parvum-infected mouse pretreated with interferon gamma-neutralizing monoclonal antibody.
Collapse
Affiliation(s)
- Denise Ann Dayao
- Department of Infectious Disease and Global Health; Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Justyna Jaskiewcz
- Department of Infectious Disease and Global Health; Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, Massachusetts, USA
| | - Sangun Lee
- Department of Infectious Disease and Global Health; Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Bruno Cesar Oliveira
- Department of Infectious Disease and Global Health; Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
- União das Faculdades dos Grandes Lagos, São José do Rio Preto, Brazil
| | - Abhineet Sheoran
- Department of Infectious Disease and Global Health; Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health; Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health; Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
3
|
Gao X, Yin J, Wang D, Li X, Zhang Y, Wang C, Zhang Y, Zhu G. Discovery of New Microneme Proteins in Cryptosporidium parvum and Implication of the Roles of a Rhomboid Membrane Protein (CpROM1) in Host-Parasite Interaction. Front Vet Sci 2021; 8:778560. [PMID: 34966810 PMCID: PMC8710574 DOI: 10.3389/fvets.2021.778560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023] Open
Abstract
Apicomplexan parasites possess several unique secretory organelles, including rhoptries, micronemes, and dense granules, which play critical roles in the invasion of host cells. The molecular content of these organelles and their biological roles have been well-studied in Toxoplasma and Plasmodium, but are underappreciated in Cryptosporidium, which contains many parasites of medical and veterinary importance. Only four proteins have previously been identified or proposed to be located in micronemes, one of which, GP900, was confirmed using immunogold electron microscopy (IEM) to be present in the micronemes of intracellular merozoites. Here, we report on the discovery of four new microneme proteins (MICs) in the sporozoites of the zoonotic species C. parvum, identified using immunofluorescence assay (IFA). These proteins are encoded by cgd3_980, cgd1_3550, cgd1_3680, and cgd2_1590. The presence of the protein encoded by cgd3_980 in sporozoite micronemes was further confirmed using IEM. Cgd3_980 encodes one of the three C. parvum rhomboid peptidases (ROMs) and is, thus, designated CpROM1. IEM also confirmed the presence of CpROM1 in the micronemes of intracellular merozoites, parasitophorous vacuole membranes (PVM), and feeder organelles (FO). CpROM1 was enriched in the pellicles and concentrated at the host cell–parasite interface during the invasion of sporozoites and its subsequent transformation into trophozoites. CpROM1 transcript levels were also higher in oocysts and excysted sporozoites than in the intracellular parasite stages. These observations indicate that CpROM1, an intramembrane peptidase with membrane proteolytic activity, is involved in host–parasite interactions, including invasion and proteostasis of PVM and FO.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dongqiang Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaohui Li
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenchen Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- Electron Microscopy Core Facility, The Institute of Zoonosis, Jilin University, Changchun, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Tichkule S, Jex AR, van Oosterhout C, Sannella AR, Krumkamp R, Aldrich C, Maiga-Ascofare O, Dekker D, Lamshöft M, Mbwana J, Rakotozandrindrainy N, Borrmann S, Thye T, Schuldt K, Winter D, Kremsner PG, Oppong K, Manouana P, Mbong M, Gesase S, Minja DTR, Mueller I, Bahlo M, Nader J, May J, Rakotozandrindrain R, Adegnika AA, Lusingu JPA, Amuasi J, Eibach D, Caccio SM. Comparative genomics revealed adaptive admixture in Cryptosporidium hominis in Africa. Microb Genom 2021; 7:mgen000493. [PMID: 33355530 PMCID: PMC8115899 DOI: 10.1099/mgen.0.000493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/26/2020] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidiosis is a major cause of diarrhoeal illness among African children, and is associated with childhood mortality, malnutrition, cognitive development and growth retardation. Cryptosporidium hominis is the dominant pathogen in Africa, and genotyping at the glycoprotein 60 (gp60) gene has revealed a complex distribution of different subtypes across this continent. However, a comprehensive exploration of the metapopulation structure and evolution based on whole-genome data has yet to be performed. Here, we sequenced and analysed the genomes of 26 C. hominis isolates, representing different gp60 subtypes, collected at rural sites in Gabon, Ghana, Madagascar and Tanzania. Phylogenetic and cluster analyses based on single-nucleotide polymorphisms showed that isolates predominantly clustered by their country of origin, irrespective of their gp60 subtype. We found a significant isolation-by-distance signature that shows the importance of local transmission, but we also detected evidence of hybridization between isolates of different geographical regions. We identified 37 outlier genes with exceptionally high nucleotide diversity, and this group is significantly enriched for genes encoding extracellular proteins and signal peptides. Furthermore, these genes are found more often than expected in recombinant regions, and they show a distinct signature of positive or balancing selection. We conclude that: (1) the metapopulation structure of C. hominis can only be accurately captured by whole-genome analyses; (2) local anthroponotic transmission underpins the spread of this pathogen in Africa; (3) hybridization occurs between distinct geographical lineages; and (4) genetic introgression provides novel substrate for positive or balancing selection in genes involved in host-parasite coevolution.
Collapse
Affiliation(s)
- Swapnil Tichkule
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Aaron R. Jex
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Anna Rosa Sannella
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ralf Krumkamp
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Cassandra Aldrich
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich 80802, Germany
| | - Oumou Maiga-Ascofare
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
- Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Denise Dekker
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Maike Lamshöft
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Joyce Mbwana
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | | | - Steffen Borrmann
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
- Institut für Tropenmedizin and German Center for Infection Research, partner site Tübingen, Universitätsklinikum, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Thorsten Thye
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Kathrin Schuldt
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Doris Winter
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
- Institut für Tropenmedizin and German Center for Infection Research, partner site Tübingen, Universitätsklinikum, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Kwabena Oppong
- Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Prince Manouana
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | - Mirabeau Mbong
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
| | - Samwel Gesase
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Daniel T. R. Minja
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Melanie Bahlo
- Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Johanna Nader
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Jürgen May
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | | | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, BP 242 Lambaréné, Gabon
- Institut für Tropenmedizin and German Center for Infection Research, partner site Tübingen, Universitätsklinikum, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - John P. A. Lusingu
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - John Amuasi
- Kumasi Centre for Collaborative Research in Tropical Medicine, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Daniel Eibach
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Simone Mario Caccio
- Department of Infectious Disease, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
5
|
Ueti MW, Johnson WC, Kappmeyer LS, Herndon DR, Mousel MR, Reif KE, Taus NS, Ifeonu OO, Silva JC, Suarez CE, Brayton KA. Comparative analysis of gene expression between Babesia bovis blood stages and kinetes allowed by improved genome annotation. Int J Parasitol 2020; 51:123-136. [PMID: 33069745 DOI: 10.1016/j.ijpara.2020.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022]
Abstract
Throughout their life cycle, Babesia parasites alternate between a mammalian host, where they cause babesiosis, and the tick vector. Transition between hosts results in distinct environmental signals that influence patterns of gene expression, consistent with the morphological and functional changes operating in the parasites during their life stages. In addition, comparing differential patterns of gene expression among mammalian and tick parasite stages can provide clues for developing improved methods of control. Hereby, we upgraded the genome assembly of Babesia bovis, a bovine hemoparasite, closing a 139 kbp gap, and used RNA-Seq datasets derived from mammalian blood and tick kinete stages to update the genome annotation. Of the originally annotated genes, 1,254 required structural changes, and 326 new genes were identified, leading to a different predicted proteome compared to the original annotation. Next, the RNA-Seq data was used to identify B. bovis genes that were differentially expressed in the vertebrate and arthropod hosts. In blood stages, 28% of the genes were upregulated up to 300 fold, whereas 26% of the genes in kinetes, a tick stage, were upregulated up to >19,000 fold. We thus discovered differentially expressed genes that may play key biological roles and serve as suitable targets for the development of vaccines to control bovine babesiosis.
Collapse
Affiliation(s)
- Massaro W Ueti
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
| | | | | | - David R Herndon
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA
| | - Michelle R Mousel
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA
| | - Kathryn E Reif
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Naomi S Taus
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olukemi O Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carlos E Suarez
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington, USA; Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kelly A Brayton
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, USA.
| |
Collapse
|
6
|
Levine MM, Nasrin D, Acácio S, Bassat Q, Powell H, Tennant SM, Sow SO, Sur D, Zaidi AKM, Faruque ASG, Hossain MJ, Alonso PL, Breiman RF, O'Reilly CE, Mintz ED, Omore R, Ochieng JB, Oundo JO, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ahmed S, Qureshi S, Quadri F, Hossain A, Das SK, Antonio M, Saha D, Mandomando I, Blackwelder WC, Farag T, Wu Y, Houpt ER, Verweiij JJ, Sommerfelt H, Nataro JP, Robins-Browne RM, Kotloff KL. Diarrhoeal disease and subsequent risk of death in infants and children residing in low-income and middle-income countries: analysis of the GEMS case-control study and 12-month GEMS-1A follow-on study. LANCET GLOBAL HEALTH 2019; 8:e204-e214. [PMID: 31864916 PMCID: PMC7025325 DOI: 10.1016/s2214-109x(19)30541-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Background The Global Enteric Multicenter Study (GEMS) was a 3-year case-control study that measured the burden, aetiology, and consequences of moderate-to-severe diarrhoea (MSD) in children aged 0–59 months. GEMS-1A, a 12-month follow-on study, comprised two parallel case-control studies, one assessing MSD and the other less-severe diarrhoea (LSD). In this report, we analyse the risk of death with each diarrhoea type and the specific pathogens associated with fatal outcomes. Methods GEMS was a prospective, age-stratified, matched case-control study done at seven sites in Africa and Asia. Children aged 0–59 months with MSD seeking care at sentinel health centres were recruited along with one to three randomly selected matched community control children without diarrhoea. In the 12-month GEMS-1A follow-on study, children with LSD and matched controls, in addition to children with MSD and matched controls, were recruited at six of the seven sites; only cases of MSD and controls were enrolled at the seventh site. We compared risk of death during the period between enrolment and one follow-up household visit done about 60 days later (range 50–90 days) in children with MSD and LSD and in their respective controls. Approximately 50 pathogens were detected using, as appropriate, classic bacteriology, immunoassays, gel-based PCR and reverse transcriptase PCR, and quantitative real-time PCR (qPCR). Specimens from a subset of GEMS cases and controls were also tested by a TaqMan Array Card that compartmentalised probe-based qPCR for 32 enteropathogens. Findings 223 (2·0%) of 11 108 children with MSD and 43 (0·3%) of 16 369 matched controls died between study enrolment and the follow-up visit at about 60 days (hazard ratio [HR] 8·16, 95% CI 5·69–11·68, p<0·0001). 12 (0·4%) of 2962 children with LSD and seven (0·2%) of 4074 matched controls died during the follow-up period (HR 2·78, 95% CI 0·95–8·11, p=0·061). Risk of death was lower in children with dysenteric MSD than in children with non-dysenteric MSD (HR 0·20, 95% CI 0·05–0·87, p=0·032), and lower in children with LSD than in those with non-dysenteric MSD (HR 0·29, 0·14–0·59, p=0·0006). In children younger than 24 months with MSD, infection with typical enteropathogenic Escherichia coli, enterotoxigenic E coli encoding heat-stable toxin, enteroaggregative E coli, Shigella spp (non-dysentery cases), Aeromonas spp, Cryptosporidium spp, and Entamoeba histolytica increased risk of death. Of 61 deaths in children aged 12–59 months with non-dysenteric MSD, 31 occurred among 942 children qPCR-positive for Shigella spp and 30 deaths occurred in 1384 qPCR-negative children (HR 2·2, 95% CI 1·2–3·9, p=0·0090), showing that Shigella was strongly associated with increased risk of death. Interpretation Risk of death is increased following MSD and, to a lesser extent, LSD. Considering there are approximately three times more cases of LSD than MSD in the population, more deaths are expected among children with LSD than in those with MSD. Because the major attributable LSD-associated and MSD-associated pathogens are the same, implementing vaccines and rapid diagnosis and treatment interventions against these major pathogens are rational investments. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Myron M Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Dilruba Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sozinho Acácio
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique; Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique; ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain; Consorcio de Investigación Biomédíca en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Helen Powell
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samba O Sow
- Centre pour le Développement des Vaccins, Bamako, Mali
| | - Dipika Sur
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Anita K M Zaidi
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Abu S G Faruque
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - M Jahangir Hossain
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Pedro L Alonso
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique; ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain; Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Robert F Breiman
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; Global Disease Detection Division, Kenya Office of the US Centers for Disease Control and Prevention, Nairobi, Kenya; Global Health Institute, Emory University, Atlanta, GA, USA
| | - Ciara E O'Reilly
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Centers for Disease Control and Prevention Country Office, Addis Ababa, Ethiopia
| | - Eric D Mintz
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Omore
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - John B Ochieng
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Joseph O Oundo
- Kenya Medical Research Institute/Centers for Disease Control and Prevention, Kisumu, Kenya; London School of Hygiene and Tropical Medicine, Harar, Ethiopia
| | | | - Doh Sanogo
- Centre pour le Développement des Vaccins, Bamako, Mali
| | | | - Byomkesh Manna
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- National Institute of Cholera and Enteric Diseases, Kolkata, India; Translational Health Science and Technology Institute, Faridabad, India
| | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shahnawaz Ahmed
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | - Shahida Qureshi
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Farheen Quadri
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan; PPD, San Diego, CA, USA
| | - Anowar Hossain
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh; Square Hospitals, Mohakhali, Dhaka, Bangladesh
| | - Sumon K Das
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh; Menzies School of Health Research, Casuarina, NT, Australia
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Debasish Saha
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia; GlaxoSmithKline Vaccines, Wavre, Belgium
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça, Maputo, Mozambique; Instituto Nacional de Saúde, Ministério de Saúde, Maputo, Mozambique
| | - William C Blackwelder
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tamer Farag
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Yukun Wu
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Sanofi Pasteur, Swiftwater, PA, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jaco J Verweiij
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands; Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
| | - Halvor Sommerfelt
- Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Norwegian Institute of Public Health, Oslo, Norway
| | - James P Nataro
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Tosini F, Ludovisi A, Tonanzi D, Amati M, Cherchi S, Pozio E, Gómez-Morales MA. Delivery of SA35 and SA40 peptides in mice enhances humoral and cellular immune responses and confers protection against Cryptosporidium parvum infection. Parasit Vectors 2019; 12:233. [PMID: 31092283 PMCID: PMC6518611 DOI: 10.1186/s13071-019-3486-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/06/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Cryptosporidium parvum is a major cause of diarrhea in children and ruminants at the earliest stages of life. Maternal antibodies represent the main shield of neonate mammals for most of the infections. Two recombinant antigens (SA35 and SA40), portions of two C. parvum proteins, were tested for their ability to induce immune responses in adult mice and for protection on neonate BALB/c mice born from females immunised by mucosal delivery of both peptides. METHODS Adult BALB/c mice were intraperitoneally immunised with SA35 and SA40, separately or mixed, and their immune response was characterised. Furthermore, BALB/c pregnant mice were immunised by mucosal delivery with an SA35/40 mix, before and during pregnancy. Soon after birth, their offspring were infected with two doses (1 × 105 and 5 × 103) of C. parvum oocysts and the parasitic burden was determined at 5 and 9 days post-infection. RESULTS Intraperitoneal immunisation with SA35 and SA40 induced specific IgG and IgG1 in serum, specific IgA in the intestinal mucosa, increase of CD3+/CD4+ and CD30+ cells in splenocytes, which produced IFN-γ. Neonates born from immunised mice and infected with 1 × 105 oocysts showed a significant reduction of oocysts and intestinal forms (23 and 42%, respectively). A reduction of all parasitic forms (96%; P < 0.05) was observed when neonates were infected with 5 × 103 oocysts. CONCLUSIONS SA35 and SA40 peptides induce specific humoral and cell-mediated immune responses to C. parvum in adult mice. Moreover, mucosal administration of the SA35/40 mix in pregnant mice reduces C. parvum burden in their litters.
Collapse
Affiliation(s)
- Fabio Tosini
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Ludovisi
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Tonanzi
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Amati
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Cherchi
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
| | - Edoardo Pozio
- European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
8
|
Apollo: Democratizing genome annotation. PLoS Comput Biol 2019; 15:e1006790. [PMID: 30726205 PMCID: PMC6380598 DOI: 10.1371/journal.pcbi.1006790] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 01/10/2019] [Indexed: 12/05/2022] Open
Abstract
Genome annotation is the process of identifying the location and function of a genome's encoded features. Improving the biological accuracy of annotation is a complex and iterative process requiring researchers to review and incorporate multiple sources of information such as transcriptome alignments, predictive models based on sequence profiles, and comparisons to features found in related organisms. Because rapidly decreasing costs are enabling an ever-growing number of scientists to incorporate sequencing as a routine laboratory technique, there is widespread demand for tools that can assist in the deliberative analytical review of genomic information. To this end, we present Apollo, an open source software package that enables researchers to efficiently inspect and refine the precise structure and role of genomic features in a graphical browser-based platform. Some of Apollo’s newer user interface features include support for real-time collaboration, allowing distributed users to simultaneously edit the same encoded features while also instantly seeing the updates made by other researchers on the same region in a manner similar to Google Docs. Its technical architecture enables Apollo to be integrated into multiple existing genomic analysis pipelines and heterogeneous laboratory workflow platforms. Finally, we consider the implications that Apollo and related applications may have on how the results of genome research are published and made accessible.
Collapse
|
9
|
Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, Martini M, Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate-Inactivate-Inject") Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health 2018; 6:62. [PMID: 29556492 PMCID: PMC5845111 DOI: 10.3389/fpubh.2018.00062] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Vaccines are public health interventions aimed at preventing infections-related mortality, morbidity, and disability. While vaccines have been successfully designed for those infectious diseases preventable by preexisting neutralizing specific antibodies, for other communicable diseases, additional immunological mechanisms should be elicited to achieve a full protection. “New vaccines” are particularly urgent in the nowadays society, in which economic growth, globalization, and immigration are leading to the emergence/reemergence of old and new infectious agents at the animal–human interface. Conventional vaccinology (the so-called “vaccinology 1.0”) was officially born in 1796 thanks to the contribution of Edward Jenner. Entering the twenty-first century, vaccinology has shifted from a classical discipline in which serendipity and the Pasteurian principle of the three Is (isolate, inactivate, and inject) played a major role to a science, characterized by a rational design and plan (“vaccinology 3.0”). This shift has been possible thanks to Big Data, characterized by different dimensions, such as high volume, velocity, and variety of data. Big Data sources include new cutting-edge, high-throughput technologies, electronic registries, social media, and social networks, among others. The current mini-review aims at exploring the potential roles as well as pitfalls and challenges of Big Data in shaping the future vaccinology, moving toward a tailored and personalized vaccine design and administration.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy
| | - Vincenza Gianfredi
- Department of Experimental Medicine, Unit of Public Health, School of Specialization in Hygiene and Preventive Medicine, University of Perugia, Perugia, Italy
| | - Milena Villarini
- Unit of Public Health, Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Ahmed Nasr
- Department of Medicine and Surgery, Pathology University Milan Bicocca, San Gerardo Hospital, Monza, Italy
| | - Amr Hussein
- Medical Faculty, University of Parma, Parma, Italy
| | - Mariano Martini
- Section of History of Medicine and Ethics, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Masoud Behzadifar
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
The therapeutic efficacy of azithromycin and nitazoxanide in the acute pig model of Cryptosporidium hominis. PLoS One 2017; 12:e0185906. [PMID: 28973041 PMCID: PMC5626496 DOI: 10.1371/journal.pone.0185906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Recent reports highlighting the global significance of cryptosporidiosis among children, have renewed efforts to develop control measures. We have optimized the gnotobiotic piglet model of acute diarrhea to evaluate azithromycin (AZR), nitazoxanide (NTZ), or treatment with both against Cryptosporidium hominis, the species responsible for most human cases. Piglets, animals reproducibly clinically susceptible to C. hominis, when inoculated with 106 oocysts, developed acute diarrhea with oocyst excretion in feces within 3 days. Ten day-treatment with recommended doses for children, commencing at onset of diarrhea, showed that treatment with AZR or NTZ relieved symptoms early in the treatment compared with untreated animals. Piglets treated with AZR exhibited no reduction of oocyst excretion whereas treatment with NTZ significantly reduced oocyst shedding early, increasing however after 5 days. While treatment with AZR+NTZ led to considerable symptomatic improvement, it had a modest effect on reducing mucosal injury, and did not completely eliminate oocyst excretion. Doubling the dose of AZR and/or NTZ did not improve the clinical outcome, confirming clinical observations that NTZ is only partially effective in reducing duration of diarrhea in children. This investigation confirms the gnotobiotic piglet as a useful tool for drug evaluation for the treatment of cryptosporidiosis in children.
Collapse
|