1
|
Li Y, Li Z, Xu T, Yang X, Zhang Y, Qi J, Wang J, Xie Q, Liu K, Tang C. The MYB-related transcription factor family in rubber dandelion (Taraxacum kok-saghyz): An insight into a latex-predominant member, TkMYBR090. Int J Biol Macromol 2025; 305:141058. [PMID: 39978497 DOI: 10.1016/j.ijbiomac.2025.141058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
MYB-related (MYBR) proteins play diverse roles in plant growth and development. However, the MYBR genes in Taraxacum kok-saghyz, a promising alternative source of natural rubber, a valuable biopolymer, remain scarcely investigated. Here, a total of 122 MYBR genes, namely TkMYBRs, were identified and classified into the groups of GARP-like, CCA1-like/R-R, and a heterogenous one in T. kok-saghyz. Collinearity analysis revealed a high similarity in MYBRs across two Taraxacum species with contrasting rubber yield. TkMYBR090 showed predominant expression in latex, the cytoplasm of rubber-producing laticifers. Transient overexpression of TkMYBR090 in tobacco and T. kok-saghyz demonstrated its localizations in nucleus and cytoplasm. Yeast two-hybrid assay revealed that the C-terminus of TkMYBR090 possessed transcriptional activation activity. DAP-seq analysis identified 18,232 TkMYBR090-targeted candidate genes, and four significantly enriched TkMYBR090 DNA-binding promoter motifs that were validated by yeast one-hybrid assay. The binding of TkMYBR090 on the promoter of an ascorbate oxidase gene was verified by yeast one-hybrid and dual luciferase activity assays, suggesting a role in ROS metabolism. Such assumption was supported by heterologous expression assays of TkMYBR090 in tobacco and yeast. This study is beneficial to further functional dissection of MYBRs in T. kok-saghyz, especially the roles in development and function of rubber-producing laticifers.
Collapse
Affiliation(s)
- Yongmei Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China
| | - Zhonghua Li
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Tiancheng Xu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China
| | - Xue Yang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Yuying Zhang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China
| | - Jiyan Qi
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Jiang Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Qingbiao Xie
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Kaiye Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China
| | - Chaorong Tang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, China; School of Tropical Agriculture and Forestry, Hainan University, Danzhou, /Sanya, China; Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Haikou, China.
| |
Collapse
|
2
|
He Z, Qin X, Jia T, Qi T, Zhou Q, Liu J, Peng Y. Genome-wide identification of 1R-MYB transcription factors family and functional characterization of TrMYB130 under drought stresses in Trifolium repens (L.). Gene 2025; 943:149247. [PMID: 39848346 DOI: 10.1016/j.gene.2025.149247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
White clover (Trifolium repens L.) is a high-quality leguminous forage, but its short rooting habit, poor transpiration tolerance, and drought tolerance, have become a key factor restricting its growth and cultivation. 1R-MYB transcription factors (TFs) are a significant subfamily of TFs in plants, playing a vital role in regulating plant responses to drought stress, however, knowledge about the role of 1R-MYB transcription factors in white clover is still limited. We identified 134 1R-MYB members, which were unevenly designated onto 16 chromosomes and divided phylogenetically into five subgroups. The members of the same subgroup had conserved motifs. Collinearity analysis revealed that segmental and tandem duplications significantly contributed to the expansion of the Tr1R-MYBs. Tr1R-MYBs promoter region enriched with potential drought cis-acting regulatory elements. The RT-qPCR results show that the five Tr1R-MYB genes (TrMYB41, TrMYB49, TrMYB94, TrMYB125, TrMYB130) have a certain degree of response under drought stress conditions but exhibited different expression profiles. Furthermore, subcellular localization analysis showed that the TrMYB130 protein is primarily located in the nucleus. Overexpression of this protein in transgenic Arabidopsis (Arabidopsis thaliana L.) was found to impair drought tolerance. Our findings will establish a basis for deeper investigation into the characteristics and functions of 1R-MYB TFs, as well as for employing genetic engineering techniques to improve white clover.
Collapse
Affiliation(s)
- Zhirui He
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China.
| | - Xiaofang Qin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China.
| | - Tong Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China.
| | - Tiangang Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China.
| | - Qinyu Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China.
| | - Jiefang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China.
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130 China.
| |
Collapse
|
3
|
Wu S, Huang X, Fu C, Wan X, Huang K, Shad MA, Hu L, Chen L, Liu G, Wang L. Identification of the regulatory role of SsMYBS25-4 in salt stress from MYB-related transcription factors in sugarcane (Saccharum spontaneum). Int J Biol Macromol 2025; 303:140566. [PMID: 39894099 DOI: 10.1016/j.ijbiomac.2025.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Sugarcane is a highly valued crop known for its significant production of sugar and biomass. MYB transcription factors (TFs) are critical regulators in plant growth and stress tolerance, but MYB-related genes, an atypical subset of the MYB family, remain less explored. In this study, we identified 119 MYB-related genes in the genome of wild sugarcane (S. spontaneum). We thoroughly investigated their phylogenetic relationships, chromosomal locations, motif compositions, and three-dimensional (3D) protein structures by bioinformatic methods. Moreover, the expression patterns of these genes demonstrated significant diversity in plant growth and under salt stress. One of the genes, SsMYBS25-4, exhibited a significantly up-regulated expression in response to salt stress and was selected for further functional elucidation. It was found that the overexpression (OE) of SsMYBS25-4 in Arabidopsis can improve the salt stress tolerance of transgenic plants. Interestingly, the expression of some marker genes related to salt stress was significantly up-regulated in OE plants compared to wide-type plants. The SsMYB25-4 protein was localized in the nucleus and was proven to be directly bound to the promoter of the AtDR29B gene. We proposed a mechanism for SsMYB25-4 that enhances salt stress tolerance, contributing to the understanding and application of MYB-related genes in sugarcane breeding.
Collapse
Affiliation(s)
- Songguo Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaojin Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Chunli Fu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xincheng Wan
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ke Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Munsif Ali Shad
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Lihua Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China
| | - Lingling Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China
| | - Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia
| | - Lingqiang Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agricultural Biological Resources, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
4
|
Kushwaha A, Singh S, Zheng BS, Tripathi DK, Gupta R, Singh VP. MpRR-MYB2 and MpRR-MYB5: New players of chloroplast biogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:884-886. [PMID: 39996581 DOI: 10.1111/jipb.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025]
Abstract
Photosynthesis is an essential biological process that occurs within chloroplasts. Recently, Frangedakis et al. (2024) reported that transcription factors- MpRR-MYB2 and MpRR-MYB5 work along with GLK, and also play a role in chloroplast development. The findings from this research could pave the way for engineering crops with enhanced photosynthetic efficiency.
Collapse
Affiliation(s)
- Ajayraj Kushwaha
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Samiksha Singh
- Department of Botany, S.N. Sen B.V. Post Graduate College, Chhatrapati ShahuJi Maharaj University, Kanpur, 208001, India
| | - Bing Song Zheng
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Ravi Gupta
- Plant Stress Physiology and Proteomics Laboratory, College of General Education, Kookmin University, Seoul, 02707, Korea
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
5
|
Liu Z, Li J, Li S, Song Q, Miao M, Fan T, Tang X. The 1R-MYB transcription factor SlMYB1L modulates drought tolerance via an ABA-dependent pathway in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109721. [PMID: 40056740 DOI: 10.1016/j.plaphy.2025.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
The MYB transcription factor family is one of the biggest transcription factors in plants, playing key roles in regulating many biological processes, including growth and development, responses to biotic and abiotic stresses and hormone signaling. In this study, we identified and characterized an 1R-MYB transcription factor, SlMYB1L, which is involved in regulating drought tolerance in tomato. SlMYB1L-RNAi transgenic plants displayed more severe dehydration phenotype with elevated malondiadehyde (MDA) and hydrogen peroxide (H2O2), as well as reduced proline content and antioxidant enzyme activities compared to wild-type under drought stress. Additionally, SlMYB1L influenced drought-induced stomatal closure and modulated endogenous ABA levels, leading to a decrease in the expression of ABA-related genes in SlMYB1L-RNAi transgenic plants. A dual-luciferase reporter assay further confirmed that SlMYB1L represses the expression of ABA catabolism gene SlCYP707A3. In conclusion, our findings suggest that SlMYB1L is a stress-responsive transcription factor that positively regulates drought tolerance and may serve as a candidate gene for developing drought-resistant crops.
Collapse
Affiliation(s)
- Zhouyuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 23009, China
| | - Jianan Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 23009, China
| | - Shuang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 23009, China
| | - Qianqian Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 23009, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 23009, China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 23009, China
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 23009, China.
| |
Collapse
|
6
|
de Pontes FCF, Machado IP, Silveira MVDS, Lobo ALA, Sabadin F, Fritsche-Neto R, DoVale JC. Combining genotyping approaches improves resolution for association mapping: a case study in tropical maize under water stress conditions. FRONTIERS IN PLANT SCIENCE 2025; 15:1442008. [PMID: 39917602 PMCID: PMC11798985 DOI: 10.3389/fpls.2024.1442008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
Genome-wide Association Studies (GWAS) identify genome variations related to specific phenotypes using Single Nucleotide Polymorphism (SNP) markers. Genotyping platforms like SNP-Array or sequencing-based techniques (GBS) can genotype samples with many SNPs. These approaches may bias tropical maize analyses due to reliance on the temperate line B73 as the reference genome. An alternative is a simulated genome called "Mock," adapted to the population using bioinformatics. Recent studies show SNP-Array, GBS, and Mock yield similar results for population structure, heterotic groups definition, tester selection, and genomic hybrid prediction. However, no studies have examined the results generated by these different genotyping approaches for GWAS. This study aims to test the equivalence among the three genotyping scenarios in identifying significant effect genes in GWAS. To achieve this, maize was used as the model species, where SNP-Array genotyped 360 inbred lines from a public panel via the Affymetrix platform and GBS. The GBS data were used to perform SNP calling using the temperate inbred line B73 as the reference genome (GBS-B73) and a simulated genome "Mock" obtained in-silico (GBS-Mock). The study encompassed four above-ground traits with plants grown under two levels of water supply: well-watered (WW) and water-stressed (WS). In total, 46, 34, and 31 SNP were identified in the SNP-Array, GBS-B73, and GBS-Mock scenarios, respectively, across the two water levels, associated with the evaluated traits following the comparative analysis of each genotyping method individually. Overall, the identified candidate genes varied along the various scenarios but had the same functionality. Regarding SNP-Array and GBS-B73, genes with functional similarity were identified even without coincidence in the physical position of the SNPs. These genes and regions are involved in various processes and responses with applications in plant breeding. In terms of accuracy, the combination of genotyping scenarios compared to those isolated is feasible and recommended, as it increased all traits under both water conditions. In this sense, it is worth highlighting the combination of GBS-B73 and GBS-Mock scenarios, not only due to the increase in the resolution of GWAS results but also the reduction of costs associated with genotyping and the possibility of conducting genomic breeding methods.
Collapse
Affiliation(s)
| | - Ingrid Pinheiro Machado
- Postgraduate Program of Plant Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Felipe Sabadin
- College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| | | | - Júlio César DoVale
- Postgraduate Program of Plant Science, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
7
|
Ahmad Y, Haider S, Iqbal J, Naseer S, Attia KA, Mohammed AA, Fiaz S, Mahmood T. In-silico analysis and transformation of OsMYB48 transcription factor driven by CaMV35S promoter in model plant - Nicotiana tabacum L. conferring abiotic stress tolerance. GM CROPS & FOOD 2024; 15:130-149. [PMID: 38551174 PMCID: PMC11651284 DOI: 10.1080/21645698.2024.2334476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Global crop yield has been affected by a number of abiotic stresses. Heat, salinity, and drought stress are at the top of the list as serious environmental growth-limiting factors. To enhance crop productivity, molecular approaches have been used to determine the key regulators affecting stress-related phenomena. MYB transcription factors (TF) have been reported as one of the promising defensive proteins against the unfavorable conditions that plants must face. Different roles of MYB TFs have been suggested such as regulation of cellular growth and differentiation, hormonal signaling, mediating abiotic stress responses, etc. To gain significant insights, a comprehensive in-silico analysis of OsMYB TF was carried out in comparison with 21 dicot MYB TFs and 10 monocot MYB TFs. Their chromosomal location, gene structure, protein domain, and motifs were analyzed. The phylogenetic relationship was also studied, which resulted in the classification of proteins into four basic groups: groups A, B, C, and D. The protein motif analysis identified several conserved sequences responsible for cellular activities. The gene structure analysis suggested that proteins that were present in the same class, showed similar intron-exon structures. Promoter analysis revealed major cis-acting elements that were found to be responsible for hormonal signaling and initiating a response to abiotic stress and light-induced mechanisms. The transformation of OsMYB TF into tobacco was carried out using the Agrobacterium-mediated transformation method, to further analyze the expression level of a gene in different plant parts, under stress conditions. To summarize, the current studies shed light on the evolution and role of OsMYB TF in plants. Future investigations should focus on elucidating the functional roles of MYB transcription factors in abiotic stress tolerance through targeted genetic modification and CRISPR/Cas9-mediated genome editing. The application of omics approaches and systems biology will be indispensable in delineating the regulatory networks orchestrated by MYB TFs, facilitating the development of crop genotypes with enhanced resilience to environmental stressors. Rigorous field validation of these genetically engineered or edited crops is imperative to ascertain their utility in promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Yumna Ahmad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Saqlain Haider
- Plant and AgriBiosciences Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Pakistan
| | - Sana Naseer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| |
Collapse
|
8
|
Zhu Y, Deng Y, Yao Y, Yao K, Pan X, Wu X, Liu Z, Zhang J, Su W, Liao W. Characteristics and Expression Analysis of the MYB-Related Subfamily Gene in Rosa chinensis. Int J Mol Sci 2024; 25:12854. [PMID: 39684565 DOI: 10.3390/ijms252312854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MYB-related transcription factors (TFs) subfamily is a subfamily of MYB TFs, which are mainly involved in plant secondary metabolism, growth and development, and stress response. To explore the function of MYB-related subfamily genes in Rosa chinensis, this study systematically analyzed characters of the MYB-related subfamily members in R. chinensis with bioinformatic analysis using the genomic data of R. chinensis and investigated their expression characteristics using quantitative real-time PCR (qRT-PCR). The results show that 100 MYB-related proteins were identified in R. chinensis. Proteins are mainly found in the nucleus. Chromosome localization revealed that all MYB-related genes are mapped to seven chromosomes and are distributed in clusters. Collinear analysis shows that 13 pairs of MYB-related genes had a collinear relationship, indicating R. chinensis may have evolved its MYB-related subfamily gene through fragment duplication. The analysis of motifs and conserved domains shows that Motif 3 is the most conserved motif. There are numerous ABA and MeJA response elements in MYB-related genes. ABA and MeJA treatments significantly shortened the vase life of R. chinensis, while the flower diameter on day 3 was the largest, suggesting that ABA and MeJA might induce MYB-related gene expression during cut flower senescence. The expression of MYB-related genes is tissue specific, most of which show the highest expression levels in petals. Notably, among six plant growth regulator treatments, ABA treatment significantly increased RcMYB002 expression in R. chinensis, suggesting that RcMYB002 may be a crucial gene for ABA response. This study provides a reference for further research on the function of MYB-related genes in R. chinensis.
Collapse
Affiliation(s)
- Yongjie Zhu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Kangding Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejuan Pan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jitao Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanyi Su
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Li XJ, Zhou XH, Bao AK. Genome-wide analysis of the R2R3-MYB gene family and identification of candidate genes that regulate isoflavone biosynthesis in red clover (Trifolium pratense). Int J Biol Macromol 2024; 282:137182. [PMID: 39489260 DOI: 10.1016/j.ijbiomac.2024.137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Red clover (Trifolium pratense) is a perennial legume with high feeding and medicinal value attributed to its abundant isoflavone content. Previous studies reported that R2R3-MYB transcription factors are involved in the biosynthesis of isoflavones; however, their specific role in red clover remains poorly understood. Through comprehensive genome-wide and transcriptome analyses, a total of 138 TpR2R3-MYB genes were identified and classified into 30 distinct subgroups within a phylogenetic tree. Importantly, six of these subgroups showed associations with isoflavone biosynthesis in red clover. The majority of segmental duplication events (Ka/Ks < 1) indicated that the TpR2R3-MYB gene underwent strong purifying selection during evolution. The qRT-PCR analysis demonstrated high expression levels of TpMYB79 and TpMYB53 in Minshan red clover at full flowering stage, consistent with the trend for isoflavone content determination, suggesting that TpMYB79 and TpMYB53 might be important regulators of isoflavone biosynthesis in red clover. Additionally, we observed nucleus and vacuole membrane localization of TpMYB53 and TpMYB79, with TpMYB53 primarily exerting transcriptional activation through its C-terminal activation motifs while TpMYB79 exhibited no transcriptional activity. These findings provided a foundation for the study of the biological function of R2R3-MYB transcription factors in red clover.
Collapse
Affiliation(s)
- Xiao-Jia Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xue-Hui Zhou
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Si CC, Li YB, Hai X, Bao CC, Zhao JY, Ahmad R, Li J, Wang SC, Li Y, Yang YD. Genome-Wide Identification and Expression Analysis of MYB Transcription Factor Family in Response to Various Abiotic Stresses in Coconut ( Cocos nucifera L.). Int J Mol Sci 2024; 25:10048. [PMID: 39337532 PMCID: PMC11432468 DOI: 10.3390/ijms251810048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Abiotic stresses such as nitrogen deficiency, drought, and salinity significantly impact coconut production, yet the molecular mechanisms underlying coconut's response to these stresses are poorly understood. MYB proteins, a large and diverse family of transcription factors (TF), play crucial roles in plant responses to various abiotic stresses, but their genome-wide characterization and functional roles in coconut have not been comprehensively explored. This study identified 214 CnMYB genes (39 1R-MYB, 171 R2R3-MYB, 2 3R-MYB, and 2 4R-MYB) in the coconut genome. Phylogenetic analysis revealed that these genes are unevenly distributed across the 16 chromosomes, with conserved consensus sequences, motifs, and gene structures within the same subgroups. Synteny analysis indicated that segmental duplication primarily drove CnMYB evolution in coconut, with low nonsynonymous/synonymous ratios suggesting strong purifying selection. The gene ontology (GO) annotation of protein sequences provided insights into the biological functions of the CnMYB gene family. CnMYB47/70/83/119/186 and CnMYB2/45/85/158/195 were identified as homologous genes linked to nitrogen deficiency, drought, and salinity stress through BLAST, highlighting the key role of CnMYB genes in abiotic stress tolerance. Quantitative analysis of PCR showed 10 CnMYB genes in leaves and petioles and found that the expression of CnMYB45/47/70/83/85/119/186 was higher in 3-month-old than one-year-old coconut, whereas CnMYB2/158/195 was higher in one-year-old coconut. Moreover, the expression of CnMYB70, CnMYB2, and CnMYB2/158 was high under nitrogen deficiency, drought, and salinity stress, respectively. The predicted secondary and tertiary structures of three key CnMYB proteins involved in abiotic stress revealed distinct inter-proteomic features. The predicted interaction between CnMYB2/158 and Hsp70 supports its role in coconut's drought and salinity stress responses. These results expand our understanding of the relationships between the evolution and function of MYB genes, and provide valuable insights into the MYB gene family's role in abiotic stress in coconut.
Collapse
Affiliation(s)
- Cheng-Cheng Si
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yu-Bin Li
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Xue Hai
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Ci-Ci Bao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jin-Yang Zhao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Rafiq Ahmad
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
| | - Shou-Chuang Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou 571700, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yao-Dong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571300, China; (C.-C.S.); (S.-C.W.)
| |
Collapse
|
11
|
Frangedakis E, Yelina NE, Billakurthi K, Hua L, Schreier T, Dickinson PJ, Tomaselli M, Haseloff J, Hibberd JM. MYB-related transcription factors control chloroplast biogenesis. Cell 2024; 187:4859-4876.e22. [PMID: 39047726 DOI: 10.1016/j.cell.2024.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.
Collapse
Affiliation(s)
| | - Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Kumari Billakurthi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Tina Schreier
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Patrick J Dickinson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Marta Tomaselli
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| |
Collapse
|
12
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
13
|
Ye Q, Wang H, Lin Z, Xie Q, Wang W, Chen Q. Identification of MYB Transcription Factor, a Regulator Related to Hydrolysable Tannin Synthesis in Canarium album L., and Functional Analysis of CaMYBR04. PLANTS (BASEL, SWITZERLAND) 2024; 13:1837. [PMID: 38999677 PMCID: PMC11244293 DOI: 10.3390/plants13131837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Hydrolysed tannins (HTs) are polyphenols, which are related to the astringency, flavour, colour, stability, medicinal value and other characteristics of many fruits and vegetables. The biosynthetic mechanism of the majority of HTs remains unknown, and many biosynthetic pathways of HTs are speculative conclusions that have not been confirmed. The fruit of Canarium album L. (Chinese olive), which is notable for its pharmacological and edible properties, is rich in HTs. The fruit has a distinctive bitter and astringent taste when initially consumed, which mellows to a sweet sensation upon chewing. HTs serve as the primary material basis for the formation of the Chinese olive fruit's astringent quality and pharmacological effects. In this study, the fruit of C. album Changying was utilised as the research material. The objective of this study was to provide a theoretical basis for the quality control of Chinese olive fruit and the application and development of its medicinal value. In addition, the study aimed to identify and screen related MYB transcription factors involved in the synthesis of HTs in the fruit and to clarify the mechanism of MYBs in the process of synthesis and regulation of HTs in Chinese olive fruit. The principal findings were as follows. A total of 83 differentially expressed Chinese olive MYB transcription factors (CaMYBs) were identified, including 54 1R-MYBs (MYB-related), 25 2R-MYBs (R2R3-MYBs), 3 3R-MYBs, and 1 4R-MYB. Through trend analysis and correlation analysis, it was found that CaMYBR04 (Isoform0032534) exhibited a significantly higher expression (FPKM) than the other CaMYBs. The full-length cDNA sequence of CaMYBR04 was cloned and transformed into strawberry. The results demonstrated that CaMYBR04 significantly enhanced the fruit's hydrolysable tannin content. Consequently, this study elucidated the function of CaMYBR04, a regulator of the Chinese olive fruit hydrolysable tannin synthesis pathway, and established a theoretical foundation for the synthesis and regulation of fruit HTs.
Collapse
Affiliation(s)
- Qinghua Ye
- Department of Horticulture and Landscape Architecture, Fujian Vocational College of Agriculture, Fuzhou 350303, China; (Q.Y.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huiquan Wang
- Department of Horticulture and Landscape Architecture, Fujian Vocational College of Agriculture, Fuzhou 350303, China; (Q.Y.)
| | - Zhehui Lin
- Department of Horticulture and Landscape Architecture, Fujian Vocational College of Agriculture, Fuzhou 350303, China; (Q.Y.)
| | - Qian Xie
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingxi Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
14
|
Liu L, Li S, Tang F, Li P, Liu J, Fu R, Zheng L, Zhang J, Chao N. MaMYBR30, a Novel 1R-MYB, Plays Important Roles in Plant Development and Abiotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1794. [PMID: 38999634 PMCID: PMC11244220 DOI: 10.3390/plants13131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
The V-myb myeloblastosis viral oncogene homolog (MYB) family participate in various bioprocesses including development and abiotic stress responses. In the present study, we first report a 1R SHAQKYF-class MYB, MaMYBR30, in mulberry. Subcellular localization and sequence analysis indicated MaMYBR30 is located in the nucleus and belongs to a CCA-like subgroup with a conserved SHAQKYF motif. Expression profile analysis showed that MaMYBR30 is expressed in leaves and can be induced by drought and salt stress. The down-regulation of MaMYBR30 using virus-induced gene silence (VIGS) in mulberry and the overexpression of MaMYBR30 in Arabidopsis were induced to explore the function of MaMYBR30. The functional characterization of MaMYBR30 in vivo indicated that MaMYBR30 can positively regulate the resistance of mulberry to drought while negatively regulating the resistance of mulberry to salt stress. In addition, MaMYBR30 also affects flower development and reproductive growth, especially after exposure to salt stress. Weighted gene co-expression network analysis (WGCNA) primarily revealed the possible genes and signal pathways that are regulated by MaMYBR30. Our results also imply that complex molecular mechanisms mediated by MaMYBR30, including crosstalk of ion toxicity, phytohormone signal transduction, flowering development, and epigenetic modification, need to be further explored in the future.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Shan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fengjuan Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Peijun Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jiaxin Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Rumeng Fu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Longyan Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
15
|
Menconi J, Perata P, Gonzali S. In pursuit of purple: anthocyanin biosynthesis in fruits of the tomato clade. TRENDS IN PLANT SCIENCE 2024; 29:589-604. [PMID: 38177013 DOI: 10.1016/j.tplants.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Over the past decade, progress has been made in the characterization of anthocyanin synthesis in fruits of plants belonging to the tomato clade. The genomic elements underlying the activation of the process were identified, providing the basis for understanding how the pathway works in these species. In this review we explore the genetic mechanisms that have been characterized to date, and detail the various wild relatives of the tomato, which have been crucial for recovering ancestral traits that were probably lost during evolution from green-purple to yellow and red tomatoes. This knowledge should help developing strategies to further enhance the status of the commercial tomato lines on sale, based on both genome editing and breeding techniques.
Collapse
Affiliation(s)
- Jacopo Menconi
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| | - Silvia Gonzali
- PlantLab, Center of Plant Sciences, Scuola Superiore Sant'Anna, Via Guidiccioni 10, San Giuliano Terme, 56010, Pisa, Italy.
| |
Collapse
|
16
|
Zhang F, Liu Y, Ma J, Su S, Chen L, Cheng Y, Buter S, Zhao X, Yi L, Lu Z. Analyzing the Diversity of MYB Family Response Strategies to Drought Stress in Different Flax Varieties Based on Transcriptome Data. PLANTS (BASEL, SWITZERLAND) 2024; 13:710. [PMID: 38475556 DOI: 10.3390/plants13050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The MYB transcription factor family has numerous members, and is involved in biological activities, such as ABA signaling, which plays an important role in a plant's resistance to abiotic stresses such as drought. However, the diversity of MYB members that respond to drought stress and their regulatory mechanisms in different flax varieties were unclear. In this study, we obtained 855.69 Gb of clean data from 120 flax root samples from 20 flax (Linum usitatissimum L.) varieties, assembled 92,861 transcripts, and identified 434 MYB family members in each variety. The expression profiles of the MYB transcription factor family from 20 flax varieties under drought stress were analyzed. The results indicated that there are four strategies by which the MYB family responds to drought stress in these 20 flax varieties, each of which has its own specific processes, such as development, reproduction, and localization processes. The four strategies also include common biological processes, such as stimulus responses, metabolic processes, and biological regulation. The WGCNA method was subsequently employed to identify key members of the MYB family involved in response strategies to drought stress. The results demonstrated that a 1R-MYB subfamily gene co-expression network is significantly related to the gibberellin response and cytokinin-activated signaling pathway processes in the 'Strategy 4' for MYB family response to drought, identifying core genes such as Lus.scaffold70.240. Our results showed a diversity of MYB family responses to drought stress within flax varieties, and these results contribute to deciphering the mechanisms of the MYB family regulation of drought resistance. This will promote the more accurate breeding development of flax to adapt to agricultural production under drought conditions.
Collapse
Affiliation(s)
- Fan Zhang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Ying Liu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Shaofeng Su
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liyu Chen
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Siqin Buter
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liuxi Yi
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| |
Collapse
|
17
|
Zhang F, Ma J, Liu Y, Fang J, Wei S, Xie R, Han P, Zhao X, Bo S, Lu Z. A Multi-Omics Analysis Revealed the Diversity of the MYB Transcription Factor Family's Evolution and Drought Resistance Pathways. Life (Basel) 2024; 14:141. [PMID: 38255756 PMCID: PMC10820167 DOI: 10.3390/life14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The MYB transcription factor family can regulate biological processes such as ABA signal transduction to cope with drought stress, but its evolutionary mechanism and the diverse pathways of response to drought stress in different species are rarely reported. In this study, a total of 4791 MYB family members were identified in 908,757 amino acid sequences from 12 model plants or crops using bioinformatics methods. It was observed that the number of MYB family members had a linear relationship with the chromosome ploidy of species. A phylogenetic analysis showed that the MYB family members evolved in subfamily clusters. In response to drought stress, the pathways of MYB transcription factor families exhibited species-specific diversity, with closely related species demonstrating a higher resemblance. This study provides abundant references for drought resistance research and the breeding of wheat, soybean, and other plants.
Collapse
Affiliation(s)
- Fan Zhang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Ying Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Jing Fang
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Shuli Wei
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| | - Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (F.Z.); (J.M.); (Y.L.); (J.F.); (S.W.); (R.X.); (P.H.)
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Hohhot 010031, China
- Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
- School of Life Science, Inner Mongolia University, Hohhot 010030, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, Hohhot 010030, China
| |
Collapse
|
18
|
Wu G, Cao A, Wen Y, Bao W, She F, Wu W, Zheng S, Yang N. Characteristics and Functions of MYB (v-Myb avivan myoblastsis virus oncogene homolog)-Related Genes in Arabidopsis thaliana. Genes (Basel) 2023; 14:2026. [PMID: 38002969 PMCID: PMC10671209 DOI: 10.3390/genes14112026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The MYB (v-Myb avivan myoblastsis virus oncogene homolog) transcription factor family is one of the largest families of plant transcription factors which plays a vital role in many aspects of plant growth and development. MYB-related is a subclass of the MYB family. Fifty-nine Arabidopsis thaliana MYB-related (AtMYB-related) genes have been identified. In order to understand the functions of these genes, in this review, the promoters of AtMYB-related genes were analyzed by means of bioinformatics, and the progress of research into the functions of these genes has been described. The main functions of these AtMYB-related genes are light response and circadian rhythm regulation, root hair and trichome development, telomere DNA binding, and hormone response. From an analysis of cis-acting elements, it was found that the promoters of these genes contained light-responsive elements and plant hormone response elements. Most genes contained elements related to drought, low temperature, and defense and stress responses. These analyses suggest that AtMYB-related genes may be involved in A. thaliana growth and development, and environmental adaptation through plant hormone pathways. However, the functions of many genes do not occur independently but instead interact with each other through different pathways. In the future, the study of the role of the gene in different pathways will be conducive to a comprehensive understanding of the function of the gene. Therefore, gene cloning and protein functional analyses can be subsequently used to understand the regulatory mechanisms of AtMYB-related genes in the interaction of multiple signal pathways. This review provides theoretical guidance for the follow-up study of plant MYB-related genes.
Collapse
Affiliation(s)
- Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (A.C.); (Y.W.); (W.B.); (F.S.); (W.W.); (S.Z.); (N.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu X, Tang L, Tang X, Mao Y. Genome-Wide Identification and Analysis of MYB Transcription Factors in Pyropia yezoensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3613. [PMID: 37896076 PMCID: PMC10609806 DOI: 10.3390/plants12203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
MYB transcription factors are one of the largest transcription factor families in plants, and they regulate numerous biological processes. Red algae are an important taxonomic group and have important roles in economics and research. However, no comprehensive analysis of the MYB gene family in any red algae, including Pyropia yezoensis, has been conducted. To identify the MYB gene members of Py. yezoensis, and to investigate their family structural features and expression profile characteristics, a study was conducted. In this study, 3 R2R3-MYBs and 13 MYB-related members were identified in Py. yezoensis. Phylogenetic analysis indicated that most red algae MYB genes could be clustered with green plants or Glaucophyta MYB genes, inferring their ancient origins. Synteny analysis indicated that 13 and 5 PyMYB genes were orthologous to Pyropia haitanensis and Porphyra umbilicalis, respectively. Most Bangiaceae MYB genes contain several Gly-rich motifs, which may be the result of an adaptation to carbon limitations and maintenance of important regulatory functions. An expression profile analysis showed that PyMYB genes exhibited diverse expression profiles. However, the expression patterns of different members appeared to be diverse, and PyMYB5 was upregulated in response to dehydration, low temperature, and Pythium porphyrae infection. This is the first comprehensive study of the MYB gene family in Py. Yezoensis and it provides vital insights into the functional divergence of MYB genes.
Collapse
Affiliation(s)
- Xinzi Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lei Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xianghai Tang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunxiang Mao
- MOE Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource & Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
20
|
Wang Y, Zhou H, He Y, Shen X, Lin S, Huang L. MYB transcription factors and their roles in the male reproductive development of flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111811. [PMID: 37574139 DOI: 10.1016/j.plantsci.2023.111811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
As one of the largest transcription factor families with complex functional differentiation in plants, the MYB transcription factors (MYB TFs) play important roles in the physiological and biochemical processes of plant growth and development. Male reproductive development, an essential part of sexual reproduction in flowering plants, is undoubtedly regulated by MYB TFs. In this review, we summarize the roles of the MYB TFs involved in the three stages of male reproductive development: pollen grains formation and maturation, filament elongation and anther dehiscence, and fertilization. Also, the potential downstream target genes and upstream regulators of these MYB TFs are discussed. Furthermore, we propose the underlying regulatory mechanisms of these MYB TFs: (1) A complex network of MYB TFs regulates various aspects of male reproductive development; (2) MYB homologous genes in different species may be functionally conserved or differentiated; (3) MYB TFs often form regulatory complexes with bHLH TFs.
Collapse
Affiliation(s)
- Yijie Wang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Xiuping Shen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, Zhejiang, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
21
|
Xia A, Zheng L, Wang Z, Wang Q, Lu M, Cui Z, He Y. The RHW1-ZCN4 regulatory pathway confers natural variation of husk leaf width in maize. THE NEW PHYTOLOGIST 2023; 239:2367-2381. [PMID: 37403373 DOI: 10.1111/nph.19116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Maize husk leaf - the outer leafy layers covering the ear - modulates kernel yield and quality. Despite its importance, however, the genetic controls underlying husk leaf development remain elusive. Our previous genome-wide association study identified a single nucleotide polymorphism located in the gene RHW1 (Regulator of Husk leaf Width) that is significantly associated with husk leaf-width diversity in maize. Here, we further demonstrate that a polymorphic 18-bp InDel (insertion/deletion) variant in the 3' untranslated region of RHW1 alters its protein abundance and accounts for husk leaf width variation. RHW1 encodes a putative MYB-like transcriptional repressor. Disruption of RHW1 altered cell proliferation and resulted in a narrower husk leaf, whereas RHW1 overexpression yielded a wider husk leaf. RHW1 positively regulated the expression of ZCN4, a well-known TFL1-like protein involved in maize ear development. Dysfunction of ZCN4 reduced husk leaf width even in the context of RHW1 overexpression. The InDel variant in RHW1 is subject to selection and is associated with maize husk leaf adaption from tropical to temperate regions. Overall, our results identify that RHW1-ZCN4 regulates a pathway conferring husk leaf width variation at a very early stage of husk leaf development in maize.
Collapse
Affiliation(s)
- Aiai Xia
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Leiming Zheng
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Zi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Qi Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Zhenhai Cui
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100094, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
22
|
Yu Y, Zhang S, Yu Y, Cui N, Yu G, Zhao H, Meng X, Fan H. The pivotal role of MYB transcription factors in plant disease resistance. PLANTA 2023; 258:16. [PMID: 37311886 DOI: 10.1007/s00425-023-04180-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION MYB transcription factors are essential for diverse biology processes in plants. This review has focused on the potential molecular actions of MYB transcription factors in plant immunity. Plants possess a variety of molecules to defend against disease. Transcription factors (TFs) serve as gene connections in the regulatory networks controlling plant growth and defense against various stressors. As one of the largest TF families in plants, MYB TFs coordinate molecular players that modulate plant defense resistance. However, the molecular action of MYB TFs in plant disease resistance lacks a systematic analysis and summary. Here, we describe the structure and function of the MYB family in the plant immune response. Functional characterization revealed that MYB TFs often function either as positive or negative modulators towards different biotic stressors. Moreover, the MYB TF resistance mechanisms are diverse. The potential molecular actions of MYB TFs are being analyzed to uncover functions by controlling the expression of resistance genes, lignin/flavonoids/cuticular wax biosynthesis, polysaccharide signaling, hormone defense signaling, and the hypersensitivity response. MYB TFs have a variety of regulatory modes that fulfill pivotal roles in plant immunity. MYB TFs regulate the expression of multiple defense genes and are, therefore, important for increasing plant disease resistance and promoting agricultural production.
Collapse
Affiliation(s)
- Yongbo Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Shuo Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Chemistry and Life Sciences, Anshan Normal University, Anshan, China
| | - Hongyan Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
23
|
Zhang YS, Xu Y, Xing WT, Wu B, Huang DM, Ma FN, Zhan RL, Sun PG, Xu YY, Song S. Identification of the passion fruit ( Passiflora edulis Sims) MYB family in fruit development and abiotic stress, and functional analysis of PeMYB87 in abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1124351. [PMID: 37215287 PMCID: PMC10196401 DOI: 10.3389/fpls.2023.1124351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Environmental stresses are ubiquitous in agricultural cultivation, and they affect the healthy growth and development of edible tissues in passion fruit. The study of resistance mechanisms is important in understanding the adaptation and resistance of plants to environmental stresses. In this work, two differently resistant passion fruit varieties were selected, using the expression characteristics of the transcription factor MYB, to explore the resistance mechanism of the MYB gene under various environmental stresses. A total of 174 MYB family members were identified using high-quality passion fruit genomes: 98 2R-MYB, 5 3R-MYB, and 71 1R-MYB (MYB-relate). Their family information was systematically analyzed, including subcellular localization, physicochemical properties, phylogeny at the genomic level, promoter function, encoded proteins, and reciprocal regulation. In this study, bioinformatics and transcriptome sequencing were used to identify members of the PeMYB genes in passion fruit whole-genome data, and biological techniques, such as qPCR, gene clone, and transient transformation of yeast, were used to determine the function of the passion fruit MYB genes in abiotic stress tolerance. Transcriptomic data were obtained for differential expression characteristics of two resistant and susceptible varieties, three expression patterns during pulp development, and four induced expression patterns under abiotic stress conditions. We further focused on the resistance mechanism of PeMYB87 in environmental stress, and we selected 10 representative PeMYB genes for quantitative expression verification. Most of the genes were differentially induced by four abiotic stresses, among which PeMYB87 responded significantly to high-temperature-induced expression and overexpression of the PeMYB87 gene in the yeast system. The transgenic PeMYB87 in yeast showed different degrees of stress resistance under exposure to cold, high temperatures, drought, and salt stresses. These findings lay the foundation for further analysis of the biological functions of PeMYBs involved in stress resistance in passion fruit.
Collapse
Affiliation(s)
- Yan-shu Zhang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Yi Xu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Wen-ting Xing
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Bin Wu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Dong-mei Huang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Fu-ning Ma
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Ru-lin Zhan
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Pei-guang Sun
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Yong-yan Xu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Shun Song
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
24
|
Liu Z, Zhu X, Liu W, Qi K, Xie Z, Zhang S, Wu J, Wang P. Characterization of the REVEILLE family in Rosaceae and role of PbLHY in flowering time regulation. BMC Genomics 2023; 24:49. [PMID: 36707756 PMCID: PMC9883883 DOI: 10.1186/s12864-023-09144-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.
Collapse
Affiliation(s)
- Zhe Liu
- grid.254020.10000 0004 1798 4253Department of Pharmacy, Changzhi Medical College, Changzhi, 046000 China ,grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China ,Shanxi Province Key Laboratory of Functional Food with Homologous of Medicine and Food, Changzhi, China
| | - Xiaoxuan Zhu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Weijuan Liu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kaijie Qi
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhihua Xie
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Juyou Wu
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China ,Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Peng Wang
- grid.27871.3b0000 0000 9750 7019Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
25
|
Zahra S, Shaheen T, Qasim M, Mahmood-Ur-Rahman, Hussain M, Zulfiqar S, Shaukat K, Mehboob-Ur-Rahman. Genome-wide survey of HMA gene family and its characterization in wheat ( Triticum aestivum). PeerJ 2023; 11:e14920. [PMID: 36890869 PMCID: PMC9987320 DOI: 10.7717/peerj.14920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Background Abiotic stresses, particularly drought and heavy metal toxicity, have presented a significant risk to long-term agricultural output around the world. Although the heavy-metal-associated domain (HMA) gene family has been widely explored in Arabidopsis and other plants, it has not been thoroughly studied in wheat (Triticum aestivum). This study was proposed to investigate the HMA gene family in wheat. Methods To analyze the phylogenetic relationships, gene structure, gene ontology, and conserved motifs, a comparative study of wheat HMA genes with the Arabidopsis genome was performed. Results A total of 27 T. aestivum proteins belonging to the HMA gene family were identified in this study, with amino acid counts ranging from 262 to 1,071. HMA proteins were found to be grouped into three subgroups in a phylogenetic tree, and closely related proteins in the tree showed the same expression patterns as motifs found in distinct subgroups. Gene structural study elucidated that intron and exon arrangement differed by family. Conclusion As a result, the current work offered important information regarding HMA family genes in the T. aestivum genome, which will be valuable in understanding their putative functions in other wheat species.
Collapse
Affiliation(s)
- Sadaf Zahra
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Mahmood-Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Momina Hussain
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, Pakistan
| | - Sana Zulfiqar
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| | - Kanval Shaukat
- Department of Botany, University of Balochistan, Quetta, Pakistan
| | - Mehboob-Ur-Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Punjab, Pakistan
| |
Collapse
|
26
|
Kumar A, Kanak KR, Arunachalam A, Dass RS, Lakshmi PTV. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize ( Zea mays L.) silks infected by multiple fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:985396. [PMID: 36388593 PMCID: PMC9647128 DOI: 10.3389/fpls.2022.985396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays L.) is the third most popular Poaceae crop after wheat and rice and used in feed and pharmaceutical sectors. The maize silk contains bioactive components explored by traditional Chinese herbal medicine for various pharmacological activities. However, Fusarium graminearum, Fusarium verticillioides, Trichoderma atroviride, and Ustilago maydis can infect the maize, produce mycotoxins, hamper the quantity and quality of silk production, and further harm the primary consumer's health. However, the defense mechanism is not fully understood in multiple fungal infections in the silk of Z. mays. In this study, we applied bioinformatics approaches to use the publicly available transcriptome data of Z. mays silk affected by multiple fungal flora to identify core genes involved in combatting disease response. Differentially expressed genes (DEGs) were identified among intra- and inter-transcriptome data sets of control versus infected Z. mays silks. Upon further comparison between up- and downregulated genes within the control of datasets, 4,519 upregulated and 5,125 downregulated genes were found. The DEGs have been compared with genes in the modules of weighted gene co-expression network analysis to relevant specific traits towards identifying core genes. The expression pattern of transcription factors, carbohydrate-active enzymes (CAZyme), and resistance genes was analyzed. The present investigation is supportive of our findings that the gene ontology, immunity stimulus, and resistance genes are upregulated, but physical and metabolic processes such as cell wall organizations and pectin synthesis were downregulated respectively. Our results are indicative that terpene synthase TPS6 and TPS11 are involved in the defense mechanism against fungal infections in maize silk.
Collapse
Affiliation(s)
- Amrendra Kumar
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Arunachalam
- Postgraduate and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - P. T. V. Lakshmi
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
27
|
Chen Z, Wu Z, Dong W, Liu S, Tian L, Li J, Du H. MYB Transcription Factors Becoming Mainstream in Plant Roots. Int J Mol Sci 2022; 23:ijms23169262. [PMID: 36012533 PMCID: PMC9409031 DOI: 10.3390/ijms23169262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Zexuan Wu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Wenyu Dong
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Shiying Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lulu Tian
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: ; Tel.: +86-182-2348-0008
| |
Collapse
|
28
|
Liu L, Chao N, Yidilisi K, Kang X, Cao X. Comprehensive analysis of the MYB transcription factor gene family in Morus alba. BMC PLANT BIOLOGY 2022; 22:281. [PMID: 35676625 PMCID: PMC9175366 DOI: 10.1186/s12870-022-03626-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The V-myb myeloblastosis viral oncogene homolog (MYB) family of proteins is large, containing functionally diverse transcription factors. However, MYBs in Morus are still poorly annotated and a comprehensive functional analysis of these transcription factors is lacking. RESULTS In the present study, a genome-wide identification of MYBs in Morus alba was performed. In total 166 MaMYBs were identified, including 103 R2R3-MYBs and four 3R-MaMYBs. Comprehensive analyses, including the phylogenetic analysis with putative functional annotation, motif and structure analysis, gene structure organization, promoter analysis, chromosomal localization, and syntenic relationships of R2R3-MaMYBs and 3R-MaMYBs, provided primary characterization for these MaMYBs. R2R3-MaMYBs covered the subgroups reported for R2R3-MYBs in Arabidopsis and Populus, and had two Morus-specific subgroups, indicating the high retention of MYBs in Morus. Motif analysis revealed high conservative residues at the start and end of each helix and residues consisting of the third helix in R2 and R3 repeats. Thirteen intron/exon patterns (a-m) were summarized, and the intron/exon pattern of two introns with phase numbers of 0 and 2 was the prevalent pattern for R2R3-MaMYBs. Various cis-elements in promoter regions were identified, and were mainly related to light response, development, phytohormone response, and abiotic and biotic stress response and secondary metabolite production. Expression patterns of R2R3-MaMYBs in different organs showed that MaMYBs involved in secondary cell wall components and stress responsiveness were preferentially expressed in roots or stems. R2R3-MaMYBs involved in flavonoid biosynthesis and anthocyanin accumulation were identified and characterized based on functional annotation and correlation of their expression levels with anthocyanin contents. CONCLUSION Based on a comprehensive analysis, this work provided functional annotation for R2R3-MYBs and an informative reference for further functional dissection of MYBs in Morus.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| |
Collapse
|
29
|
Liu C, Zhang Q, Dong J, Cai C, Zhu H, Li S. Genome-wide identification and characterization of mungbean CIRCADIAN CLOCK ASSOCIATED 1 like genes reveals an important role of VrCCA1L26 in flowering time regulation. BMC Genomics 2022; 23:374. [PMID: 35581536 PMCID: PMC9115955 DOI: 10.1186/s12864-022-08620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Background CIRCADIAN CLOCK ASSOCIATED 1 like (CCA1L) proteins are important components that participate in plant growth and development, and now have been characterized in multiple plant species. However, information on mungbean CCA1L genes is limited. Results In this study, we identified 27 VrCCA1L genes from the mungbean genome. VrCCA1L genes were unevenly distributed on 10 of the 11 chromosomes and showed one tandem and two interchromosomal duplication events. Two distinct kinds of conserved MYB domains, MYB 1 and MYB 2, were found, and the conserved SHAQK(Y/F) F sequence was found at the C terminus of each MYB 2 domain. The VrCCA1Ls displayed a variety of exon-intron organizations, and 24 distinct motifs were found among these genes. Based on phylogenetic analysis, VrCCA1L proteins were classified into five groups; group I contained the most members, with 11 VrCCA1Ls. VrCCA1L promoters contained different types and numbers of cis-acting elements, and VrCCA1Ls showed different expression levels in different tissues. The VrCCA1Ls also displayed distinct expression patterns under different photoperiod conditions throughout the day in leaves. VrCCA1L26 shared greatest homology to Arabidopsis CCA1 and LATE ELONGATED HYPOCOTYL (LHY). It delayed the flowering time in Arabidopsis by affecting the expression levels of CONSTANS (CO), FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Conclusion We identified and characterized 27 VrCCA1L genes from mungbean genome, and investigated their spatio-temporal expression patterns. Further analysis revealed that VrCCA1L26 delayed flowering time in transgenic Arabidopsis plants. Our results provide useful information for further functional characterization of the VrCCA1L genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08620-7.
Collapse
Affiliation(s)
- Chenyang Liu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianqian Zhang
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Dong
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
30
|
Wei Q, Liu Y, Lan K, Wei X, Hu T, Chen R, Zhao S, Yin X, Xie T. Identification and Analysis of MYB Gene Family for Discovering Potential Regulators Responding to Abiotic Stresses in Curcuma wenyujin. Front Genet 2022; 13:894928. [PMID: 35547255 PMCID: PMC9081655 DOI: 10.3389/fgene.2022.894928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
MYB superfamily is one of the most abundant families in plants, and plays critical role in plant growth, development, metabolism regulation, and stress response. Curcuma wenyujin is the main source plant of three traditional Chinese medicines, which are widely used in clinical treatment due to its diverse pharmacological activities. In present study, 88 CwMYBs were identified and analyzed in C. wenyujin, including 43 MYB-related genes, 42 R2R3-MYB genes, two 3R-MYB genes, and one 4R-MYB gene. Forty-three MYB-related proteins were classified into several types based on conserved domains and specific motifs, including CCA1-like type, R-R type, Myb-CC type, GARP-like type, and TBR-like type. The analysis of motifs in MYB DBD and no-MYB regions revealed the relevance of protein structure and function. Comparative phylogeny analysis divided 42 R2R3-MYB proteins into 19 subgroups and provided a reference for understanding the functions of some CwMYBs based on orthologs of previously characterized MYBs. Expression profile analysis of CwMYB genes revealed the differentially expressed genes responding to various abiotic stresses. Four candidate MYB genes were identified by combining the results of phylogeny analysis and expression analysis. CwMYB10, CwMYB18, CwMYB39, and CwMYB41 were significantly induced by cold, NaCl, and MeJA stress treatments. CwMYB18 and CwMYB41 were proved as regulators with activity of transcriptional activation, whereas CwMYB39 and CwMYB10 were not. They may participate in the response to abiotic stresses through different mechanisms in C. wenyujin. This study was the first step toward understanding the CwMYB family and the response to abiotic stresses in C. wenyujin.
Collapse
Affiliation(s)
- Qiuhui Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yuyang Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Kaer Lan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tianyuan Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Rong Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shujuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xiaopu Yin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
31
|
Yan X, Ding W, Wu X, Wang L, Yang X, Yue Y. Insights Into the MYB-Related Transcription Factors Involved in Regulating Floral Aroma Synthesis in Sweet Osmanthus. FRONTIERS IN PLANT SCIENCE 2022; 13:765213. [PMID: 35356120 PMCID: PMC8959829 DOI: 10.3389/fpls.2022.765213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
As an important member of the MYB transcription factor (TF) family, the MYB-related TFs play multiple roles in regulating the synthesis of secondary metabolites and developmental processes, as well as in response to numerous biotic and abiotic stressors in plants. However, little is known regarding their roles in regulating the formation of floral volatile organic compounds (VOCs). In this study, we conducted a genome-wide analysis of MYB-related proteins in sweet osmanthus; 212 OfMYB-related TFs were divided into three distinct subgroups based on the phylogenetic analysis. Additionally, we found that the expansion of the OfMYB-related genes occurred primarily through segmental duplication events, and purifying selection occurred in all duplicated gene pairs. RNA-seq data revealed that the OfMYB-related genes were widely expressed in different organs of sweet osmanthus, and some showed flower organ/development stage-preferential expression patterns. Here, three OfMYB-related genes (OfMYB1R70/114/201), which were expressed nuclearly in floral organs, were found to be significantly involved in regulating the synthesis of floral VOCs. Only, OfMYB1R201 had transcriptional activity, thus implying that this gene participates in regulating the expression of VOC synthesis related genes. Remarkably, the transient expression results suggested that OfMYB1R70, OfMYB1R114, and OfMYB1R201 are involved in the regulation of VOC synthesis; OfMYB1R114 and OfMYB1R70 are involved in accelerating β-ionone formation. In contrast, OfMYB1R201 decreases the synthesis of β-ionone. Our results deepen our knowledge of the functions of MYB-related TFs and provide critical candidate genes for the floral aroma breeding of sweet osmanthus in the future.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenjie Ding
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiuyi Wu
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
32
|
Gu BJ, Tong YK, Wang YY, Zhang ML, Ma GJ, Wu XQ, Zhang JF, Xu F, Li J, Ren F. Genome-wide evolution and expression analysis of the MYB-CC gene family in Brassica spp. PeerJ 2022; 10:e12882. [PMID: 35237467 PMCID: PMC8884064 DOI: 10.7717/peerj.12882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
The MYB-CC family is a subtype within the MYB superfamily. This family contains an MYB domain and a predicted coiled-coil (CC) domain. Several MYB-CC transcription factors are involved in the plant's adaptability to low phosphate (Pi) stress. We identified 30, 34, and 55 MYB-CC genes in Brassica rapa, Brassica oleracea, and Brassica napus, respectively. The MYB-CC genes were divided into nine groups based on phylogenetic analysis. The analysis of the chromosome distribution and gene structure revealed that most MYB-CC genes retained the same relative position on the chromosomes and had similar gene structures during allotetraploidy. Evolutionary analysis showed that the ancestral whole-genome triplication (WGT) and the recent allopolyploidy are critical for the expansion of the MYB-CC gene family. The expression patterns of MYB-CC genes were found to be diverse in different tissues of the three Brassica species. Furthermore, the gene expression analysis under low Pi stress revealed that MYB-CC genes may be related to low Pi stress responses. These results may increase our understanding of MYB-CC gene family diversification and provide the basis for further analysis of the specific functions of MYB-CC genes in Brassica species.
Collapse
Affiliation(s)
- Bin-Jie Gu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yi-Kai Tong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - You-Yi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Mei-Li Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Guang-Jing Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiao-Qin Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jian-Feng Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Fan Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
33
|
Zeng Q, Liu H, Chu X, Niu Y, Wang C, Markov GV, Teng L. Independent Evolution of the MYB Family in Brown Algae. Front Genet 2022; 12:811993. [PMID: 35186015 PMCID: PMC8854648 DOI: 10.3389/fgene.2021.811993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloblastosis (MYB) proteins represent one of the largest families of eukaryotic transcription factors and regulate important processes in growth and development. Studies on MYBs have mainly focused on animals and plants; however, comprehensive analysis across other supergroups such as SAR (stramenopiles, alveolates, and rhizarians) is lacking. This study characterized the structure, evolution, and expression of MYBs in four brown algae, which comprise the biggest multicellular lineage of SAR. Subfamily 1R-MYB comprised heterogeneous proteins, with fewer conserved motifs found outside the MYB domain. Unlike the SHAQKY subgroup of plant 1R-MYB, THAQKY comprised the largest subgroup of brown algal 1R-MYBs. Unlike the expansion of 2R-MYBs in plants, brown algae harbored more 3R-MYBs than 2R-MYBs. At least ten 2R-MYBs, fifteen 3R-MYBs, and one 6R-MYB orthologs existed in the common ancestor of brown algae. Phylogenetic analysis showed that brown algal MYBs had ancient origins and a diverged evolution. They showed strong affinity with stramenopile species, while not with red algae, green algae, or animals, suggesting that brown algal MYBs did not come from the secondary endosymbiosis of red and green plastids. Sequence comparison among all repeats of the three types of MYB subfamilies revealed that the repeat of 1R-MYBs showed higher sequence identity with the R3 of 2R-MYBs and 3R-MYBs, which supports the idea that 1R-MYB was derived from loss of the first and second repeats of the ancestor MYB. Compared with other species of SAR, brown algal MYB proteins exhibited a higher proportion of intrinsic disordered regions, which might contribute to multicellular evolution. Expression analysis showed that many MYB genes are responsive to different stress conditions and developmental stages. The evolution and expression analyses provided a comprehensive analysis of the phylogeny and functions of MYBs in brown algae.
Collapse
Affiliation(s)
| | - Hanyu Liu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Xiaonan Chu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Yonggang Niu
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Caili Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, China
| |
Collapse
|
34
|
Zhuang Y, Chen S, Lian W, Xu L, Wang D, Wang C, Meng J, Tang X, Xu H, Wang S, Du L, Zhang Y, Zhou G, Chai G. A High-Throughput Screening System for Populus Wood-Associated Transcription Factors and Its Application to Lignin Regulation. FRONTIERS IN PLANT SCIENCE 2022; 12:715809. [PMID: 35095939 PMCID: PMC8795814 DOI: 10.3389/fpls.2021.715809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Wood formation of trees is a complex and costly developmental process, whose regulatory network is involved in the protein-protein and protein-DNA interactions. To detect such interactions in wood development, we developed a high-throughput screening system with 517 Gal4-AD-wood-associated transcription factors (TFs) library from Populus alba × P. glandulosa cv "84K." This system can be used for screening the upstream regulators and interacting proteins of targets by mating-based yeast-one hybrid (Y1H) and yeast-two-hybrid (Y2H) method, respectively. Multiple regulatory modules of lignin biosynthesis were identified based on this Populus system. Five TFs interacted with the 500-bp promoter fragment of PHENYLALANINE AMMONIA-LYASE 2 (PAL2), the first rate-limiting enzyme gene in the lignin biosynthesis pathway, and 10 TFs interacted with PaMYB4/LTF1, a key regulator of lignin biosynthesis. Some of these interactions were further validated by EMSA and BiFC assays. The TF-PaPAL2 promoter interaction and TF-PaMYB4 interaction revealed a complex mechanism governing the regulation of lignin synthesis in wood cells. Our high-throughput Y1H/Y2H screening system may be an efficient tool for studying regulatory network of wood formation in tree species.
Collapse
Affiliation(s)
- Yamei Zhuang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Sihui Chen
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wenjun Lian
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Li Xu
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
| | - Dian Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Congpeng Wang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xianfeng Tang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Hua Xu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Shumin Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lin Du
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Zhang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Gongke Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, China
| |
Collapse
|
35
|
Xie YF, Zhang RX, Qin LJ, Song LL, Zhao DG, Xia ZM. Genome-wide identification and genetic characterization of the CaMYB family and its response to five types of heavy metal stress in hot pepper (Capsicum annuum cv. CM334). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:98-109. [PMID: 34863059 DOI: 10.1016/j.plaphy.2021.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
MYB proteins play a crucial role in plant growth and development and stress responses. In this study, 160 members of the MYB gene family from the pepper genome database were used to analyze gene structures, chromosome localization, collinearity, genetic affinity and expression in response to heavy metals. The results identified R2R3-MYB members and further phylogenetically classified them into 35 subgroups based on highly conserved gene structures and motifs. Collinearity analysis showed that segmental duplication events played a crucial role in the functional expansion of the CaMYB gene family by intraspecific collinearity, and at least 12 pairs of CaMYB genes existed between species prior to the differentiation between monocots and dicots. Moreover, the upstream CaMYB genes were mainly localized to the phytohormone elements ABRE and transcription factor elements MYB and MYC. Further analysis revealed that MYB transcription factors were closely associated with a variety of abiotic stress-related proteins (e.g., MAC-complex and SKIP). Under the stress of five metal ions, Cd2+, Cu2+, Pb2+, Zn2+, and Fe3+, the expression levels of some CaMYB family genes were upregulated. Of these genes, pairing homologous 1 (PH-1), PH-13, and PH-15 in the roots of Capsicum annuum were upregulated to the greatest extent, indicating that these three MYB family members are particularly sensitive to these five metals. This study provides a theoretical reference for the analysis of the molecular regulatory mechanism of MYB family genes in mediating the response to heavy metals in plants. This study reveals the mode of interaction between MYB and a variety of abiotic stress proteins and clarifies the biological functions of CaMYB family members in the regulation of heavy metal stress.
Collapse
Affiliation(s)
- Yu-Feng Xie
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, PR China
| | | | - Li-Jun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang, Guizhou Province, PR China.
| | - La-la Song
- Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - De-Gang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou Province, PR China; Guizhou Academy of Agricultural Sciences, Guiyang, 550006, PR China
| | - Zhong-Min Xia
- Guizhou Soil and Fertilizer General Station, Guiyang, 550001, PR China
| |
Collapse
|
36
|
Shan B, Wang W, Cao J, Xia S, Li R, Bian S, Li X. Soybean GmMYB133 Inhibits Hypocotyl Elongation and Confers Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:764074. [PMID: 35003158 PMCID: PMC8732865 DOI: 10.3389/fpls.2021.764074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
REVEILLE (RVE) genes generally act as core circadian oscillators to regulate multiple developmental events and stress responses in plants. It is of importance to document their roles in crops for utilizing them to improve agronomic traits. Soybean is one of the most important crops worldwide. However, the knowledge regarding the functional roles of RVEs is extremely limited in soybean. In this study, the soybean gene GmMYB133 was shown to be homologous to the RVE8 clade genes of Arabidopsis. GmMYB133 displayed a non-rhythmical but salt-inducible expression pattern. Like AtRVE8, overexpression of GmMYB133 in Arabidopsis led to developmental defects such as short hypocotyl and late flowering. Seven light-responsive or auxin-associated genes including AtPIF4 were transcriptionally depressed by GmMYB133, suggesting that GmMYB133 might negatively regulate plant growth. Noticeably, the overexpression of GmMYB133 in Arabidopsis promoted seed germination and plant growth under salt stress, and the contents of chlorophylls and malondialdehyde (MDA) were also enhanced and decreased, respectively. Consistently, the expressions of four positive regulators responsive to salt tolerance were remarkably elevated by GmMYB133 overexpression, indicating that GmMYB133 might confer salt stress tolerance. Further observation showed that GmMYB133 overexpression perturbed the clock rhythm of AtPRR5, and yeast one-hybrid assay indicated that GmMYB133 could bind to the AtPRR5 promoter. Moreover, the retrieved ChIP-Seq data showed that AtPRR5 could directly target five clients including AtPIF4. Thus, a regulatory module GmMYB133-PRR5-PIF4 was proposed to regulate plant growth and salt stress tolerance. These findings laid a foundation to further address the functional roles of GmMYB133 and its regulatory mechanisms in soybean.
Collapse
Affiliation(s)
- Binghui Shan
- College of Plant Science, Jilin University, Changchun, China
| | - Wei Wang
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
- Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Jinfeng Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
- Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Siqi Xia
- College of Plant Science, Jilin University, Changchun, China
| | - Ruihua Li
- College of Plant Science, Jilin University, Changchun, China
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
37
|
Yang X, Guo T, Li J, Chen Z, Guo B, An X. Genome-wide analysis of the MYB-related transcription factor family and associated responses to abiotic stressors in Populus. Int J Biol Macromol 2021; 191:359-376. [PMID: 34534587 DOI: 10.1016/j.ijbiomac.2021.09.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
MYB proteins are one of the most abundant transcription factor families in the plant kingdom. Evidence has increasingly revealed that MYB-related proteins function in diverse plant biological processes. However, little is known about the genome-wide characterization and functions of MYB-related proteins in Populus, an important model and commercial tree species. In this study, 152 PtrMYBRs were identified and unevenly located on 19 Populus chromosomes. A phylogenetic analysis divided them into six major subgroups, supported by conserved gene organization, consensus motifs, and protein domain architecture. Promoter assessment and gene ontology classification results indicated that the MYB-related family is likely involved in plant development and responses to various environmental stressors. The Populus MYB-related family members showed various expression patterns in different tissues and stress conditions, implying their crucial roles in the development and stress responses in Populus. Co-expression analyses revealed that Populus MYB-related genes might participate in the regulation of antioxidant defense system and various signaling pathways in response to stress. The three-dimensional structures of different subgroup of Populus MYB-related proteins further provided functional information at the proteomic level. These findings provide valuable information for a prospective functional dissection of MYB-related proteins and genetic improvement of Populus.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ting Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Zhong Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Bin Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Shanxi Academy of Forest Sciences, Taiyuan, Shanxi 030012, China
| | - Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Ding X, Zhang T, Ma L. Rapidly evolving genetic features for desert adaptations in Stipagrostis pennata. BMC Genomics 2021; 22:846. [PMID: 34814836 PMCID: PMC8609760 DOI: 10.1186/s12864-021-08124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stipagrostis pennata is distributed in the mobile and semi-mobile sand dunes which can adapt well to extreme environments such as drought and high temperature. It is a pioneer plant species with potential for stabilizing sand dunes and ecological restoration. It can settle on moving sand dunes earlier than other desert plants. It can effectively improve the stability of sand dunes and help more plants settle down and increase plant diversity. However, despite its important ecological value, the genetic resources available for this species are limited. RESULTS We used single-molecule real-time sequencing technology to obtain the complete full-length transcriptome of Stipagrostis pennata, including 90,204 unigenes with an average length of 2624 bp. In addition, the 5436 transcription factors identified in these unigenes are rich in stress resistance genes, such as MYB-related, C3H, bHLH, GRAS and HSF, etc., which may play a role in adapting to desert drought and strong wind stress. Intron retention events are abundant alternative splicing events. Stipagrostis pennata has experienced stronger positive selection, accelerating the fixation of advantageous variants. Thirty-eight genes, such as CPP/TSO1-like gene, have evolved rapidly and may play a role in material transportation, flowering and seed formation. CONCLUSIONS The present study captures the complete full-length transcriptome of Stipagrostis pennata and reveals its rapid evolution. The desert adaptation in Stipagrostis pennata is reflected in the regulation of gene expression and the adaptability of gene function. Our findings provide a wealth of knowledge for the evolutionary adaptability of desert grass species.
Collapse
Affiliation(s)
- Xixu Ding
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China
| | - Tingting Zhang
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China.
| | - Lei Ma
- College of Life Sciences, Shihezi University, Shihezi City, Xinjiang, China.
| |
Collapse
|
39
|
Li C, Wang K, Lei C, Cao S, Huang Y, Ji N, Xu F, Zheng Y. Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1250-1266. [PMID: 34410840 DOI: 10.1094/mpmi-06-21-0142-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Defense elicitors can induce fruit disease resistance to control postharvest decay but may incur quality impairment. Our present work aimed to investigate the resistance against Botrytis cinerea induced by the elicitor β-aminobutyric acid (BABA) and to elucidate the specific transcriptional mechanism implicated in defense-related metabolic regulations. The functional dissection results demonstrated that, after inoculation with the fungal necrotroph B. cinerea, a suite of critical genes encoding enzymes related to the sucrose metabolism and phenylpropanoid pathway in priming defense in grapes were transcriptionally induced by treatment with 10 mM BABA. In contrast, more UDP-glucose, a shared precursor of phenylpropanoid and sucrose metabolism, may be redirected to the phenylpropanoid pathway for the synthesis of phytoalexins, including trans-resveratrol and ɛ-viniferin, in 100 mM BABA-treated grapes, resulting in direct resistance but compromised soluble sugar contents. An R2R3-type MYB protein from Vitis vinifera, VvMYB44, was isolated and characterized. VvMYB44 expression was significantly induced upon the grapes expressed defensive reaction. Subcellular localization, yeast two-hybrid, and coimmunoprecipitation assays revealed that the nuclear-localized VvMYB44 physically interacted with the salicylic acid-responsive transcription coactivator NPR1 in vivo for defense expression. In addition, VvMYB44 directly bound to the promoter regions of sucrose and phenylpropanoid metabolism-related genes and transactivated their expression, thus tipping the balance of antifungal compound accumulation and soluble sugar maintenance. Hence, these results suggest that 2R-type VvMYB44 might be a potential positive participant in BABA-induced priming defense in grape berries that contributes to avoiding the excessive consumption of soluble sugars during the postharvest storage.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chunhong Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Kaituo Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315211, China
| | - Yixiao Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33143, U.S.A
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Feng Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| |
Collapse
|
40
|
Ahmad HM, Rahman MU, Ahmar S, Fiaz S, Azeem F, Shaheen T, Ijaz M, Anwer Bukhari S, Khan SA, Mora-Poblete F. Comparative genomic analysis of MYB transcription factors for cuticular wax biosynthesis and drought stress tolerance in Helianthus annuus L. Saudi J Biol Sci 2021; 28:5693-5703. [PMID: 34588881 PMCID: PMC8459054 DOI: 10.1016/j.sjbs.2021.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Sunflower is an important oil-seed crop in Pakistan, it is mainly cultivated in the spring season. It is severely affected by drought stress resulting in lower yield. Cuticular wax acts as the first defense line to protect plants from drought stress condition. It seals the aerial parts of plants and reduce the water loss from leaf surfaces. Various myeloblastosis (MYB) transcription factors (TFs) are involved in biosynthesis of epicuticular waxes under drought-stress. However, less information is available for MYB, TFs in drought stress and wax biosynthesis in sunflower. We used different computational tools to compare the Arabidopsis MYB, TFs involved in cuticular wax biosynthesis and drought stress tolerance with sunflower genome. We identified three putative MYB genes (MYB16, MYB94 and MYB96) in sunflower along with their seven homologs in Arabidopsis. Phylogenetic association of MYB TFs in Arabidopsis and sunflower indicated strong conservation of TFs in plant species. From gene structure analysis, it was observed that intron and exon organization was family-specific. MYB TFs were unevenly distributed on sunflower chromosomes. Evolutionary analysis indicated the segmental duplication of the MYB gene family in sunflower. Quantitative Real-Time PCR revealed the up-regulation of three MYB genes under drought stress. The gene expression of MYB16, MYB94 and MYB96 were found many folds higher in experimental plants than control. The present study provided the first insight into MYB TFs family's characterization in sunflower under drought stress conditions and wax biosynthesis TFs.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Mahmood-ur Rahman
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
- Corresponding authors.
| | - Sunny Ahmar
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca 3465548, Chile
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620 Khyber Pakhtunkhwa, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Tayyaba Shaheen
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Munazza Ijaz
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | | | - Sher Aslam Khan
- Department of Plant Breeding and Genetics, The University of Haripur, 22620 Khyber Pakhtunkhwa, Pakistan
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, Campus Talca, Universidad deTalca, Talca 3465548, Chile
- Corresponding authors.
| |
Collapse
|
41
|
Zhuang W, Shu X, Lu X, Wang T, Zhang F, Wang N, Wang Z. Genome-wide analysis and expression profiles of PdeMYB transcription factors in colored-leaf poplar (Populus deltoids). BMC PLANT BIOLOGY 2021; 21:432. [PMID: 34556053 PMCID: PMC8459500 DOI: 10.1186/s12870-021-03212-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/06/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND MYB transcription factors, comprising one of the largest transcription factor families in plants, play many roles in secondary metabolism, especially in anthocyanin biosynthesis. However, the functions of the PdeMYB transcription factor in colored-leaf poplar remain elusive. RESULTS In the present study, genome-wide characterization of the PdeMYB genes in colored-leaf poplar (Populus deltoids) was conducted. A total of 302 PdeMYB transcription factors were identified, including 183 R2R3-MYB, five R1R2R3-MYB, one 4R-MYB, and 113 1R-MYB transcription factor genes. Genomic localization and paralogs of PdeMYB genes mapped 289 genes on 19 chromosomes, with collinearity relationships among genes. The conserved domain, gene structure, and evolutionary relationships of the PdeMYB genes were also established and analyzed. The expression levels of PdeMYB genes were obtained from previous data in green leaf poplar (L2025) and colored leaf poplar (QHP) as well as our own qRT-PCR analysis data in green leaf poplar (L2025) and colored leaf poplar (CHP), which provide valuable clues for further functional characterization of PdeMYB genes. CONCLUSIONS The above results provide not only comprehensive insights into the structure and functions of PdeMYB genes but also provide candidate genes for the future improvement of leaf colorization in Populus deltoids.
Collapse
Affiliation(s)
- Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xinya Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China.
| |
Collapse
|
42
|
Basunia MA, Nonhebel HM, Backhouse D, McMillan M. Localised expression of OsIAA29 suggests a key role for auxin in regulating development of the dorsal aleurone of early rice grains. PLANTA 2021; 254:40. [PMID: 34324072 DOI: 10.1007/s00425-021-03688-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Non-canonical AUX/IAA protein, OsIAA29, and ZmMPR-1 homologues, OsMRPLs, are part of an auxin-related signalling cascade operating in the dorsal aleurone during early rice grain development. Endosperm of rice and other cereals accumulates high concentrations of the predominant in planta auxin, indole-3-acetic acid (IAA) during early grain development. However, IAA signalling and function during endosperm development are poorly understood. Here, we report that OsYUC12 (an auxin biosynthesis gene) and OsIAA29 (encoding a non-canonical AUX/IAA) are both expressed exclusively in grains, reaching a maximum 5-6 days after pollination. OsYUC12 expression is localised in the aleurone, sub-aleurone and embryo, whereas OsIAA29 expression is restricted to a narrow strip in the dorsal aleurone, directly under the vascular bundle. Although rice has been reported to lack endosperm transfer cells (ETCs), this region of the aleurone is enriched with sugar transporters and is likely to play a key role in apoplastic nutrient transfer, analogous to ETCs in other cereals. OsIAA29 has orthologues only in grass species; expression of which is also specific to early grain development. OsYUC12 and OsIAA29 are temporally co-expressed with two genes (AL1 and OsPR602) previously linked to the development of dorsal aleurone or ETCs. Also up-regulated at the same time is a cluster of MYB-related genes (designated OsMRPLs) homologous to ZmMRP-1, which regulates maize ETC development. Wheat homologues of ZmMRP-1 are similarly expressed in ETCs. Although previous work has suggested that other cereals do not have orthologues of ZmMRP-1, our work suggests OsIAA29 and OsMRPLs and their homologues in other grasses are part of an auxin-regulated, conserved signalling network involved in the differentiation of cells with ETC-like function in developing cereal grains.
Collapse
Affiliation(s)
- Mafroz A Basunia
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Heather M Nonhebel
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
| | - David Backhouse
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
43
|
Li J, Lin K, Zhang S, Wu J, Fang Y, Wang Y. Genome-Wide Analysis of Myeloblastosis-Related Genes in Brassica napus L. and Positive Modulation of Osmotic Tolerance by BnMRD107. FRONTIERS IN PLANT SCIENCE 2021; 12:678202. [PMID: 34220898 PMCID: PMC8248502 DOI: 10.3389/fpls.2021.678202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 06/01/2023]
Abstract
Myeloblastosis (MYB)-related transcription factors comprise a large subfamily of the MYB family. They play significant roles in plant development and in stress responses. However, MYB-related proteins have not been comprehensively investigated in rapeseed (Brassica napus L.). In the present study, a genome-wide analysis of MYB-related transcription factors was performed in rapeseed. We identified 251 Brassica napus MYB (BnMYB)-related members, which were divided phylogenetically into five clades. Evolutionary analysis suggested that whole genome duplication and segmental duplication events have played a significant role in the expansion of BnMYB-related gene family. Selective pressure of BnMYB-related genes was estimated using the Ka/Ks ratio, which indicated that BnMYB-related genes underwent strong purifying selection during evolution. In silico analysis showed that various development-associated, phytohormone-responsive, and stress-related cis-acting regulatory elements were enriched in the promoter regions of BnMYB-related genes. Furthermore, MYB-related genes with tissue or organ-specific, stress-responsive expression patterns were identified in B. napus based on temporospatial and abiotic stress expression profiles. Among the stress-responsive MYB-related genes, BnMRD107 was strongly induced by drought stress, and was therefore selected for functional study. Rapeseed seedlings overexpressing BnMRD107 showed improved resistance to osmotic stress. Our findings not only lay a foundation for further functional characterization of BnMYB-related genes, but also provide valuable clues to determine candidate genes for future genetic improvement of B. napus.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Keyun Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Shuai Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
44
|
Chen X, Wang P, Gu M, Lin X, Hou B, Zheng Y, Sun Y, Jin S, Ye N. R2R3-MYB transcription factor family in tea plant (Camellia sinensis): Genome-wide characterization, phylogeny, chromosome location, structure and expression patterns. Genomics 2021; 113:1565-1578. [PMID: 33819564 DOI: 10.1016/j.ygeno.2021.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022]
Abstract
MYB transcription factors play essential roles in many biological processes and environmental stimuli. However, the functions of the MYB transcription factor family in tea plants have not been elucidated. Here, a total of 122 CsR2R3-MYB genes were identified from the chromosome level genome of tea plant (Camellia sinensis). The CsR2R3-MYB genes were phylogenetically classified into 25 groups. Results from the structure analysis of the gene, conserved motifs, and chromosomal distribution supported the relative conservation of the R2R3-MYB genes family in the tea plant. Synteny analysis indicated that 122, 34, and 112 CsR2R3-MYB genes were orthologous to Arabidopsis thaliana, Oryza sativa and C. sinensis var. 'huangdan' (HD), respectively. Tissue-specific expression showed that all CsR2R3-MYB genes had different expression patterns in the tea plant tissues, indicating that these genes may perform diverse functions. The expression patterns of representative R2R3-MYB genes and the regulatory network of the main anthocyanin components were analyzed, which suggested that CsMYB17 may played a key role in the regulation of cya-3-O-gal, del-3-O-gal, cya-3-O-glu and pel-3-O-glu. Results from the qRT-PCR validation of selected genes suggested that CsR2R3-MYB genes were induced in response to drought, cold, GA, and ABA treatments. Overall, this study provides comprehensive and systematic information for research on the function of R2R3-MYB genes in tea plants.
Collapse
Affiliation(s)
- Xuejin Chen
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China
| | - Pengjie Wang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China
| | - Xinying Lin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China
| | - Binghao Hou
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China
| | - Yucheng Zheng
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China.
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China.
| |
Collapse
|
45
|
Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Comparative Analysis of R2R3 MYB Gene Family in Populus and Salix and Identification of Male Flower Bud Development-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:721558. [PMID: 34594352 PMCID: PMC8477045 DOI: 10.3389/fpls.2021.721558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 05/09/2023]
Abstract
The MYB transcription factor (TF) family is one of the largest plant transcription factor gene family playing vital roles in plant growth and development, including defense, cell differentiation, secondary metabolism, and responses to biotic and abiotic stresses. As a model tree species of woody plants, in recent years, the identification and functional prediction of certain MYB family members in the poplar genome have been reported. However, to date, the characterization of the gene family in the genome of the poplar's sister species willow has not been done, nor are the differences and similarities between the poplar and willow genomes understood. In this study, we conducted the first genome-wide investigation of the R2R3 MYB subfamily in the willow, identifying 216 R2R3 MYB gene members, and combined with the poplar R2R3 MYB genes, performed the first comparative analysis of R2R3 MYB genes between the poplar and willow. We identified 81 and 86 pairs of R2R3 MYB paralogs in the poplar and willow, respectively. There were 17 pairs of tandem repeat genes in the willow, indicating active duplication of willow R2R3 MYB genes. A further 166 pairs of poplar and willow orthologs were identified by collinear and synonymous analysis. The findings support the duplication of R2R3 MYB genes in the ancestral species, with most of the R2R3 MYB genes being retained during the evolutionary process. The phylogenetic trees of the R2R3 MYB genes of 10 different species were drawn. The functions of the poplar and willow R2R3 MYB genes were predicted using reported functional groupings and clustering by OrthoFinder. Identified 5 subgroups in general expanded in woody species, three subgroups were predicted to be related to lignin synthesis, and we further speculate that the other two subgroups also play a role in wood formation. We analyzed the expression patterns of the GAMYB gene of subgroup 18 (S18) related to pollen development in the male flower buds of poplar and willow at different developmental stages by qRT-PCR. The results showed that the GAMYB gene was specifically expressed in the male flower bud from pollen formation to maturity, and that the expression first increased and then decreased. Both the specificity of tissue expression specificity and conservation indicated that GAMYB played an important role in pollen development in both poplar and willow and was an ideal candidate gene for the analysis of male flower development-related functions of the two species.
Collapse
|
46
|
Cao Y, Jia H, Xing M, Jin R, Grierson D, Gao Z, Sun C, Chen K, Xu C, Li X. Genome-Wide Analysis of MYB Gene Family in Chinese Bayberry ( Morella rubra) and Identification of Members Regulating Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:691384. [PMID: 34249063 PMCID: PMC8264421 DOI: 10.3389/fpls.2021.691384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 05/05/2023]
Abstract
Chinese bayberry (Morella rubra), the most economically important fruit tree in the Myricaceae family, is a rich source of natural flavonoids. Recently the Chinese bayberry genome has been sequenced, and this provides an opportunity to investigate the organization and evolutionary characteristics of MrMYB genes from a whole genome view. In the present study, we performed the genome-wide analysis of MYB genes in Chinese bayberry and identified 174 MrMYB transcription factors (TFs), including 122 R2R3-MYBs, 43 1R-MYBs, two 3R-MYBs, one 4R-MYB, and six atypical MYBs. Collinearity analysis indicated that both syntenic and tandem duplications contributed to expansion of the MrMYB gene family. Analysis of transcript levels revealed the distinct expression patterns of different MrMYB genes, and those which may play important roles in leaf and flower development. Through phylogenetic analysis and correlation analyses, nine MrMYB TFs were selected as candidates regulating flavonoid biosynthesis. By using dual-luciferase assays, MrMYB12 was shown to trans-activate the MrFLS1 promoter, and MrMYB39 and MrMYB58a trans-activated the MrLAR1 promoter. In addition, overexpression of 35S:MrMYB12 caused a significant increase in flavonol contents and induced the expression of NtCHS, NtF3H, and NtFLS in transgenic tobacco leaves and flowers and significantly reduced anthocyanin accumulation, resulting in pale-pink or pure white flowers. This indicates that MrMYB12 redirected the flux away from anthocyanin biosynthesis resulting in higher flavonol content. The present study provides valuable information for understanding the classification, gene and motif structure, evolution and predicted functions of the MrMYB gene family and identifies MYBs regulating different aspects of flavonoid biosynthesis in Chinese bayberry.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Huimin Jia
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rong Jin
- Agricultural Experiment Station, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Zhongshan Gao
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Xian Li,
| |
Collapse
|
47
|
Liu Y, Zeng Y, Li Y, Liu Z, Lin-Wang K, Espley RV, Allan AC, Zhang J. Genomic survey and gene expression analysis of the MYB-related transcription factor superfamily in potato (Solanum tuberosum L.). Int J Biol Macromol 2020; 164:2450-2464. [DOI: 10.1016/j.ijbiomac.2020.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
48
|
Bian S, Jin D, Sun G, Shan B, Zhou H, Wang J, Zhai L, Li X. Characterization of the soybean R2R3-MYB transcription factor GmMYB81 and its functional roles under abiotic stresses. Gene 2020; 753:144803. [PMID: 32446917 DOI: 10.1016/j.gene.2020.144803] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022]
Abstract
R2R3-type MYBs are a key group of regulatory factors that control diverse developmental processes and stress tolerance in plants. Soybean is a major legume crop with the richness of seed protein and edible vegetable oil, and 244 R2R3-type MYBs have been identified in soybean. However, the knowledge regarding their functional roles has been greatly limited as yet. In this study, a novel R2R3-type MYB (GmMYB81) was functionally characterized in soybean, and it is closely related to two abiotic stress-associated regulators (AtMYB44 and AtMYB77). GmMYB81 transcripts not only differentially accumulated in soybean tissues and during embryo development, but also were significantly enhanced by drought, salt and cold stress. Histochemical GUS assay in Arabidopsis indicated that GmMYB81 promoter showed high activity in seedlings, rosette leaves, inflorescences, silique wall, mature anthers, roots, and germinating seeds. Further investigation indicated that over-expression of GmMYB81 in Arabidopsis caused auxin-associated phenotypes, including small flower and silique, more branch, and weakened apical dominance. Moreover, over-expression of GmMYB81 significantly elevated the rates of seed germination and green seedling under salt and drought stress, indicating that GmMYB81 might confer plant tolerance to salt and drought stress during seed germination. Additionally, protein interaction analysis showed that GmMYB81 interacts with the abiotic stress regulator GmSGF14l. Further observation indicated that they displayed similar expression patterns under drought and salt stress, suggesting GmMYB81 and GmSGF14l might cooperatively affect stress tolerance. These findings will facilitate future investigations of the regulatory mechanisms of GmMYB81 in response to plant stress tolerance, especially seed germination under abiotic stresses.
Collapse
Affiliation(s)
- Shaomin Bian
- College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Donghao Jin
- College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Guoqing Sun
- College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Binghui Shan
- College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Huina Zhou
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, Henan, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun 130062, Jilin, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
49
|
Singh V, Kumar N, Dwivedi AK, Sharma R, Sharma MK. Phylogenomic Analysis of R2R3 MYB Transcription Factors in Sorghum and their Role in Conditioning Biofuel Syndrome. Curr Genomics 2020; 21:138-154. [PMID: 32655308 PMCID: PMC7324873 DOI: 10.2174/1389202921666200326152119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/30/2022] Open
Abstract
Background Large scale cultivation of sorghum for food, feed, and biofuel requires concerted efforts for engineering multipurpose cultivars with optimised agronomic traits. Due to their vital role in regulating the biosynthesis of phenylpropanoid-derived compounds, biomass composition, biotic, and abiotic stress response, R2R3-MYB family transcription factors are ideal targets for improving environmental resilience and economic value of sorghum. Methods We used diverse computational biology tools to survey the sorghum genome to identify R2R3-MYB transcription factors followed by their structural and phylogenomic analysis. We used in-house generated as well as publicly available high throughput expression data to analyse the R2R3 expression patterns in various sorghum tissue types. Results We have identified a total of 134 R2R3-MYB genes from sorghum and developed a framework to predict gene functions. Collating information from the physical location, duplication, structural analysis, orthologous sequences, phylogeny, and expression patterns revealed the role of duplications in clade-wise expansion of the R2R3-MYB family as well as intra-clade functional diversification. Using publicly available and in-house generated RNA sequencing data, we provide MYB candidates for conditioning biofuel syndrome by engineering phenylpropanoid biosynthesis and sugar signalling pathways in sorghum. Conclusion The results presented here are pivotal to prioritize MYB genes for functional validation and optimize agronomic traits in sorghum.
Collapse
Affiliation(s)
- Vinay Singh
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Neeraj Kumar
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Anuj K Dwivedi
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Rita Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| | - Manoj K Sharma
- 1Crop Genetics & Informatics Group, School of Biotechnology, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India; 2Crop Genetics & Informatics Group, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India
| |
Collapse
|
50
|
Li P, Wen J, Chen P, Guo P, Ke Y, Wang M, Liu M, Tran LSP, Li J, Du H. MYB Superfamily in Brassica napus: Evidence for Hormone-Mediated Expression Profiles, Large Expansion, and Functions in Root Hair Development. Biomolecules 2020; 10:biom10060875. [PMID: 32517318 PMCID: PMC7356979 DOI: 10.3390/biom10060875] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/16/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
MYB proteins are involved in diverse important biological processes in plants. Herein, we obtained the MYB superfamily from the allotetraploid Brassica napus, which contains 227 MYB-related (BnMYBR/Bn1R-MYB), 429 R2R3-MYB (Bn2R-MYB), 22 R1R2R3-MYB (Bn3R-MYB), and two R1R2R2R1/2-MYB (Bn4R-MYB) genes. Phylogenetic analysis classified the Bn2R-MYBs into 43 subfamilies, and the BnMYBRs into five subfamilies. Sequence characteristics and exon/intron structures within each subfamily of the Bn2R-MYBs and BnMYBRs were highly conserved. The whole superfamily was unevenly distributed on 19 chromosomes and underwent unbalanced expansion in B. napus. Allopolyploidy between B. oleracea and B. rapa mainly contributed to the expansion in their descendent B. napus, in which B. rapa-derived genes were more retained. Comparative phylogenetic analysis of 2R-MYB proteins from nine Brassicaceae and seven non-Brassicaceae species identified five Brassicaceae-specific subfamilies and five subfamilies that are lacking from the examined Brassicaceae species, which provided an example for the adaptive evolution of the 2R-MYB gene family alongside angiosperm diversification. Ectopic expression of four Bn2R-MYBs under the control of the viral CaMV35S and/or native promoters could rescue the lesser root hair phenotype of the Arabidopsis thaliana wer mutant plants, proving the conserved negative roles of the 2R-MYBs of the S15 subfamily in root hair development. RNA-sequencing data revealed that the Bn2R-MYBs and BnMYBRs had diverse transcript profiles in roots in response to the treatments with various hormones. Our findings provide valuable information for further functional characterizations of B. napusMYB genes.
Collapse
Affiliation(s)
- Pengfeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Ping Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Pengcheng Guo
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Yunzhuo Ke
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mangmang Wang
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Correspondence: (L.-S.P.T.); or (H.D.); Tel.: +86-18223480008 (H.D.)
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400716, China; (P.L.); (J.W.); (P.C.); (P.G.); (Y.K.); (M.W.); (M.L.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Correspondence: (L.-S.P.T.); or (H.D.); Tel.: +86-18223480008 (H.D.)
| |
Collapse
|