1
|
Timpau AS, Miftode EG, Costache-Enache II, Petris AO, Miftode IL, Mitu I, Miftode RS. Integrating the Interleukins in the Biomarker Panel for the Diagnosis and Prognosis of Patients with Acute Coronary Syndromes: Unraveling a Multifaceted Conundrum. Diagnostics (Basel) 2025; 15:1211. [PMID: 40428204 DOI: 10.3390/diagnostics15101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Background and Objectives: Despite the latest advancements in interventional procedures and pharmacological therapy, the incidence of heart failure and death rate following an acute myocardial remain unacceptably high. This study was designed in response to the limited and conflicting literature data regarding the diagnostic and prognostic role of modern inflammatory biomarkers in patients with coronary artery disease. Materials and Methods: We conducted a case-control, prospective observational study. A total of 145 patients were analyzed, of whom 105 patients had an acute coronary syndrome diagnosis and represented the study group, while 40 patients with a chronic coronary syndrome diagnosis represented the control group. This study investigates the diagnostic and prognostic role of the interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 10 (IL-10), Growth differentiation factor 15 (GDF-15), and classic biomarkers in patients with ischemic coronary heart disease. Results: IL-1β exhibited a prognostic role, being significantly correlated with a left ventricular ejection fraction below 30%. GDF-15 plays a dual role, as a cardio-inflammatory biomarker, being significantly correlated with both N-terminal pro-brain natriuretic peptide (NT-proBNP), and IL-1β, IL-6, and CRP. At the same time, GDF-15 represents a surrogate marker for renal dysfunction. According to the ROC analysis, patients at high mortality risk can be identified with adequate accuracy by cardiac troponin, GDF-15, and IL-10, in addition to NT-proBNP. Logistic regression models confirmed NT-proBNP and IL-10 as mortality predictors. Conclusions: IL-1β stands out for its significant prognostic role, while IL-6 did not demonstrate a diagnostic or prognostic role in acute myocardial infarction patients. IL-10 demonstrated superior predictive value in terms of fatal prognosis compared with the other modern biomarkers. GDF-15 is representative of a multivalent biomarker involved in inflammation, heart failure, and renal dysfunction.
Collapse
Affiliation(s)
- Amalia-Stefana Timpau
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Egidia-Gabriela Miftode
- Department of Infectious Diseases, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Antoniu-Octavian Petris
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Ivona Mitu
- Department of Morpho-Functional Sciences II, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Radu-Stefan Miftode
- Department of Internal Medicine I (Cardiology), Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| |
Collapse
|
2
|
Kimmoun A, O'Brien C, Blumer V, Wenzl FA, Pöss J, Zeymer U, Møller JE, Aissaoui N, Sinha SS, Combes A, Sato N, Sionis A, Soussi S, Price S, Monroe RE, Mathew R, Mebazaa A. Optimising trial design for cardiogenic shock: insights from the sixth Critical Care Clinical Trialists Workshop. THE LANCET. RESPIRATORY MEDICINE 2025:S2213-2600(25)00084-0. [PMID: 40339587 DOI: 10.1016/s2213-2600(25)00084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 05/10/2025]
Abstract
Despite substantial advancements in the management of cardiogenic shock, mortality rates remain greater than 40%. Trials have shown that increasing survival rates in cardiogenic shock is challenging. Even the most successful trials show 5-15% reductions in mortality, and gains have been restricted to acute myocardial infarction cardiogenic shock, representing approximately 5% of the population with cardiogenic shock. Trials studying pharmacological strategies in all populations with cardiogenic shock have been consistently neutral or negative. The reasons are complex and include heterogeneity in cardiogenic shock phenotypes, timing of patient inclusion, high prevalence of multiorgan failure and cardiac arrest, and unrealistic estimated treatment effects that restrict sample size with sometimes inadequate funding leading to underpowered trials. In June, 2024, international experts from the fields of cardiology, anaesthesiology, critical care medicine, biostatistics, government regulation of trials, and patient advocacy convened at the sixth Critical Care Clinical Trialists Workshop to reflect on how to improve the design of future randomised clinical trials in cardiogenic shock. This Position Paper summarises the results of discussions regarding what an optimal randomised controlled trial on cardiogenic shock should entail in terms of population selection, primary objectives, statistical analysis, and incorporation of the patient's perspective.
Collapse
Affiliation(s)
- Antoine Kimmoun
- Lorraine University, Nancy Teaching Hospital, Intensive care unit, INSERM U1116, Nancy, France
| | - Connor O'Brien
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vanessa Blumer
- Inova Schar Heart and Vascular, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland; National Disease Registration and Analysis Service, NHS, London, UK; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Janine Pöss
- Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Uwe Zeymer
- Institut für Herzinfarktforschung Ludwigshafen, Ludwigshafen, Germany; Department of Cardiology and Angiology, University Heart Center Freiburg, University of Freiburg, Bad Krozingen, Germany
| | - Jacob E Møller
- Department of Cardiology, Odense University Hospital, Odense, Denmark; Clinical Institute University of Southern Denmark, Odense, Denmark
| | - Nadia Aissaoui
- Service de Cardiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Shashank S Sinha
- Inova Schar Heart and Vascular, Inova Fairfax Medical Campus, Falls Church, VA, USA
| | - Alain Combes
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition, and Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Naoki Sato
- Department of Cardiovascular Medicine, Kawaguchi Cardiovascular and Respiratory Hospital, Kawaguchi, Japan
| | - Alessandro Sionis
- Unidad de Cuidados Intensivos Cardiológicos, Servicio de Cardiología, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Universidad Autónoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Sabri Soussi
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada; Shock and Acute Conditions Outcomes Platform Consortium, Toronto, ON, Canada; Inserm UMR-S 942 MASCOT, Cardiovascular Markers in Stress Conditions, University of Paris Cité, Paris, France
| | - Susanna Price
- National Heart and Lung Institute, Imperial College, London, UK; Department of Critical Care and Department of Cardiology, Royal Brompton and Harefield Hospitals, London, UK
| | - Rhonda E Monroe
- Better Outcomes Optimal Scientific Therapies, Charlotte, NC, USA
| | - Rebecca Mathew
- Department of Critical Care, University of Ottawa, Ottawa, ON, Canada; CAPITAL Research Group, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Alexandre Mebazaa
- Inserm UMR-S 942 MASCOT, Cardiovascular Markers in Stress Conditions, University of Paris Cité, Paris, France; Université Paris Cité, Paris, France; Department of Anesthesiology and Critical Care and Burn Unit, Saint-Louis and Lariboisière Hospitals, AP-HP Nord, Paris, France.
| |
Collapse
|
3
|
Tiller C, Reindl M, Holzknecht M, Lechner I, Oberhollenzer F, von der Emde S, Kaser A, Mayr A, Pamminger M, Gollmann-Tepeköylü C, Bauer A, Metzler B, Reinstadler SJ. Association of Intramyocardial Hemorrhage With Inflammatory Biomarkers in Patients With ST-Segment Elevation Myocardial Infarction. JACC. ADVANCES 2025; 4:101647. [PMID: 40080922 PMCID: PMC11953969 DOI: 10.1016/j.jacadv.2025.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury patterns detected by cardiac magnetic resonance imaging after percutaneous coronary intervention (PCI) have important prognostic implications and trigger inflammatory processes that can further enhance myocardial tissue damage. OBJECTIVES The authors aimed to investigate the association of circulating inflammatory markers and I/R injury patterns in patients with ST-segment elevation myocardial infarction (STEMI). METHODS This observational study included 456 STEMI patients. Peripheral venous blood samples were drawn 48 hours after PCI for analysis of high-sensitivity C-reactive protein (hs-CRP), white blood cell count (WBCc), and interleukin (IL)-6. The presence of I/R injury was defined by the detection of intramyocardial hemorrhage (IMH) according to cardiac magnetic resonance T2∗. Clinical endpoint was the occurrence of major adverse cardiac events, defined as composite of all-cause death, nonfatal reinfarction, and new congestive heart failure. RESULTS IMH was present in 150 (33%) patients. Hs-CRP (OR: 2.89; 95% CI: 1.96-4.26; P < 0.001), WBCc (OR: 1.32; 95% CI: 1.04-1.67; P = 0.021), and IL-6 (OR: 1.86; 95% CI: 1.38-2.51; P < 0.001) were associated with presence of IMH. Only hs-CRP was independently associated with IMH (OR: 1.95; 95% CI: 1.30-2.93; P = 0.001) after adjustment for other clinical parameters. Furthermore, patients with hs-CRP levels above the median (>26.4 mg/L) were more likely to experience major adverse cardiac events (12% vs 4%, P = 0.002) during a median follow-up of 12 (Q1-Q3: 12-13) months. CONCLUSIONS In patients with STEMI treated with primary PCI, inflammatory parameters including hs-CRP, WBCc, and IL-6 were significantly associated with I/R injury as defined by IMH. After adjustment for other factors, hs-CRP was the only independent inflammatory biomarker associated with IMH.
Collapse
Affiliation(s)
- Christina Tiller
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Martin Reindl
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Magdalena Holzknecht
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Ivan Lechner
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Fritz Oberhollenzer
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Sebastian von der Emde
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Alex Kaser
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Agnes Mayr
- Medical University of Innsbruck, University Clinic of Radiology, Innsbruck, Austria
| | - Mathias Pamminger
- Medical University of Innsbruck, University Clinic of Radiology, Innsbruck, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Axel Bauer
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Bernhard Metzler
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria
| | - Sebastian J Reinstadler
- Cardiology and Angiology, Medical University of Innsbruck, University Clinic of Internal Medicine III, Innsbruck, Austria.
| |
Collapse
|
4
|
Lechner I, Reindl M, Metzler B, Reinstadler SJ. Inflammation and ischemia-reperfusion injury in STEMI. Int J Cardiol 2025; 420:132760. [PMID: 39608725 DOI: 10.1016/j.ijcard.2024.132760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Affiliation(s)
- Ivan Lechner
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Martin Reindl
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Bernhard Metzler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Sebastian J Reinstadler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Zavadovsky KV, Ryabov VV, Vyshlov EV, Mochula OV, Sirotina M, Kan A, Mukhomedzyanov AV, Derkachev IA, Voronkov NS, Mochula AV, Maksimova AS, Maslov LN. Intra-myocardial hemorrhage and cardiac microvascular injury in ischemia/reperfusion. A systematic review of current evidences. Curr Probl Cardiol 2025; 50:102918. [PMID: 39510400 DOI: 10.1016/j.cpcardiol.2024.102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The in-hospital mortality rate in acute myocardial infarction (AMI) remains high despite the undoubted achievements in treatment of this disease achieved in the last 40 years. The dangerous complications of AMI remain cardiac microvascular injury (CMI) and intramyocardial hemorrhage (IMH). IMH is a widespread pathology that occurs in 42 - 57% of patients with ST-segment elevation myocardial infarction and percutaneous coronary intervention. IMH is associated with larger infarct size and contractile dysfunction. IMH is accompanied by inflammation. The appearance of IMH is depending on the duration of ischemia and requires reperfusion of the heart. IMH is accompanied by contractile dysfunction and adverse remodeling of the heart. The most likely cause of IMH is CMI. Pretreatment with ATL-146e, melatonin, tanshinone IIA, relaxin, empagliflozin, dapagliflozin, and astragaloside IV can mitigate I/R-induced CMI. CMI is accompanied by an increase in the myocardial and plasma proinflammatory cytokine levels and also the downregulation of tight junction proteins in cardiac vascular endothelial cells. However, there is no convincing evidence that proinflammatory cytokines trigger CMI. An increase in the proinflammatory cytokine levels and CMI could be two independent processes.
Collapse
Affiliation(s)
- Konstantin V Zavadovsky
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Vyacheslav V Ryabov
- Laboratory of Experimental Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Evgeny V Vyshlov
- Laboratory of Experimental Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Olga V Mochula
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Maria Sirotina
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Artur Kan
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Alexander V Mukhomedzyanov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Ivan A Derkachev
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Nikita S Voronkov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Andrey V Mochula
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Alexandra S Maksimova
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Leonid N Maslov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia.
| |
Collapse
|
6
|
Wiger CW, Ranheim T, Arnesen H, Vaage J, Pischke SE, Yndestad A, Stensløkken K, Torp M. TLR4 Inhibition Attenuated LPS-Induced Proinflammatory Signaling and Cytokine Release in Mouse Hearts and Cardiomyocytes. Immun Inflamm Dis 2025; 13:e70133. [PMID: 39853914 PMCID: PMC11760985 DOI: 10.1002/iid3.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion. METHODS Isolated C57BL/6N male mouse hearts were perfused for 120 min, with either LPS, E. coli, with and without CLI-095 (TLR4 inhibitor). Primary adult mouse cardiomyocytes were treated with LPS or LPS + CLI-095. Isolated hearts, exposed to 35 min of global ischemia, were treated with either vehicle or CLI-095 during reperfusion. Infarct size was quantified by triphenyltetrazolium staining. Cytokine expression was analyzed with ELISA, western blot analysis, and qPCR. RESULTS In isolated hearts, E. coli increased the expression of proinflammatory cytokines (IL-6 and CXCL2), which was not attenuated with TLR4 inhibition. TLR4 inhibition reduced expression (p = 0.004) and release of IL-6 (p < 0.0001) in LPS-exposed isolated hearts. LPS activated the nuclear-factor κ-light-chain-enhancer of activated B cells signaling pathway (NF-κB) in primary adult cardiomyocytes. Moreover, TLR4 inhibition reduced LPS-induced mRNA expression and release of IL-6 in primary adult cardiomyocytes. Isolated hearts treated with CLI-095 during reperfusion after ischemia (induced DAMPs release) showed reduced infarct size (39 ± 17% to 26 ± 8%, p = 0.034) and decreased IL-6 release (p = 0.006). CONCLUSION Inhibition of TLR4 reduced proinflammatory signaling and cytokine release in LPS-treated and ischemia-reperfused isolated mouse hearts and in primary adult murine cardiomyocytes.
Collapse
Affiliation(s)
- Christine W. Wiger
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Henriette Arnesen
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jarle Vaage
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Research and Innovation, Division of Emergencies and Critical CareOslo University HospitalOsloNorway
| | | | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University HospitalOsloNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Kåre‐Olav Stensløkken
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - May‐Kristin Torp
- Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Østfold Hospital TrustGrålumNorway
| |
Collapse
|
7
|
Tiller C, Holzknecht M, Lechner I, Oberhollenzer F, von der Emde S, Kremser T, Gollmann-Tepeköylü C, Mayr A, Bauer A, Metzler B, Reinstadler SJ, Reindl M. Association of Circulating PCSK9 With Ischemia-Reperfusion Injury in Acute ST-Elevation Myocardial Infarction. Circ Cardiovasc Imaging 2024; 17:e016482. [PMID: 39163371 DOI: 10.1161/circimaging.123.016482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Beyond therapeutic implications, PCSK9 (proprotein convertase subtilisin/kexin 9) has emerged as a promising cardiovascular biomarker. The exact role of PCSK9 in the setting of acute ST-elevation myocardial infarction (STEMI) is incompletely understood. We aimed to investigate the association of PCSK9 with ischemia-reperfusion injury, visualized by cardiac magnetic resonance imaging, in patients with STEMI revascularized by primary percutaneous coronary intervention (PCI). METHODS In this prespecified substudy from the prospective MARINA-STEMI (NCT04113356) registry, we included 205 patients with STEMI. PCSK9 concentrations were measured from venous blood samples by an immunoassay 24 and 48 hours after PCI. The primary end point was defined as presence of intramyocardial hemorrhage according to cardiac magnetic resonance T2* mapping. Secondary imaging end points were the presence of microvascular obstruction (MVO) and infarct size. The clinical end point was the occurrence of major adverse cardiac events. RESULTS We observed a significant increase in PCSK9 levels from 24 to 48 hours (268-304 ng/mL; P<0.001) after PCI. PCSK9 24 hours after PCI did not show any relation to intramyocardial hemorrhage, MVO, and infarct size (all P>0.05). PCSK9 concentrations 48 hours post-STEMI were higher in patients with intramyocardial hemorrhage (333 versus 287 ng/mL; P=0.004), MVO (320 versus 292 ng/mL; P=0.020), and large infarct size (323 versus 296 ng/mL; P=0.013). Furthermore, patients with increased PCSK9 levels >361 ng/mL at 48 hours were more likely to experience major adverse cardiac events (15% versus 8%; P=0.002) during a median follow-up of 12 months. CONCLUSIONS In patients with STEMI, a significant increase in PCSK9 was observed from 24 to 48 hours after PCI. While PCSK9 levels after 24 hours were not related to myocardial or microvascular injury, PCSK9 after 48 hours was significantly associated with intramyocardial hemorrhage, MVO, and infarct size as well as worse subsequent clinical outcomes. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier; NCT04113356.
Collapse
Affiliation(s)
- Christina Tiller
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Magdalena Holzknecht
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Ivan Lechner
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Fritz Oberhollenzer
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Sebastian von der Emde
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Thomas Kremser
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Can Gollmann-Tepeköylü
- University Clinic of Cardiac Surgery (C.G.-T.), Medical University of Innsbruck, Austria
| | - Agnes Mayr
- University Clinic of Radiology (A.M.), Medical University of Innsbruck, Austria
| | - Axel Bauer
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Bernhard Metzler
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Sebastian J Reinstadler
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| | - Martin Reindl
- University Clinic of Internal Medicine III, Cardiology and Angiology (C.T., M.H., I.L., F.O., S.E., T.K., A.B., B.M., S.J.R., M.R.), Medical University of Innsbruck, Austria
| |
Collapse
|
8
|
Tiller C, Reindl M, Holzknecht M, Lechner I, Troger F, Oberhollenzer F, von der Emde S, Kremser T, Mayr A, Bauer A, Metzler B, Reinstadler SJ. Relation of plasma neuropeptide-Y with myocardial function and infarct severity in acute ST-elevation myocardial infarction. Eur J Intern Med 2024; 126:63-68. [PMID: 38555253 DOI: 10.1016/j.ejim.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Acute myocardial infarction is associated with the release of the co-transmitter neuropeptide-Y (NPY). NPY acts as a potent vasoconstrictor and is associated with microvascular dysfunction after ST-elevation myocardial infarction (STEMI). This study comprehensively evaluated the association of plasma NPY with myocardial function and infarct severity, visualized by cardiac magnetic resonance (CMR) imaging, in STEMI patients revascularized by primary percutaneous coronary intervention (PCI). METHODS In this observational study, we included 260 STEMI patients enrolled in the prospective MARINA-STEMI (NCT04113356) study. Plasma NPY concentrations were measured by an immunoassay 24h after PCI from peripheral venous blood samples. Left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), infarct size (IS) and microvascular obstruction (MVO) were determined using CMR imaging. RESULTS Median plasma concentrations of NPY were 70 [interquartile range (IQR):35-115] pg/ml. NPY levels above median were significantly associated with lower LVEF (48%vs.52%, p=0.004), decreased GLS (-8.8%vs.-12.6%, p<0.001) and larger IS (17%vs.13%, p=0.041) in the acute phase after infarction as well as after 4 months (LVEF:50%vs.52%, p=0.030, GLS:-10.5vs.-12.9,p<0.001,IS:13%vs.10%,p=0.011). In addition, NPY levels were significantly related to presence of MVO (58%vs.52%, p=0.041). Moreover, in multivariable linear regression analysis, NPY remained significantly associated with all investigated CMR parameters (LVEF:p<0.001,GLS:p<0.001,IS:p=0.003,MVO:p=0.042) independent of other established clinical variables including high-sensitivity cardiac troponin T, pre-interventional TIMI flow 0 and left anterior descending artery as culprit lesion location. CONCLUSION High plasma levels of NPY, measured 24h after STEMI, were independently associated with lower LVEF, decreased GLS, larger IS as well as presence of MVO, indicating plasma NPY as a novel clinical risk marker post STEMI.
Collapse
Affiliation(s)
- Christina Tiller
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Martin Reindl
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Magdalena Holzknecht
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Ivan Lechner
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Felix Troger
- University Clinic of Radiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Fritz Oberhollenzer
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Sebastian von der Emde
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Thomas Kremser
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Agnes Mayr
- University Clinic of Radiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Axel Bauer
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Bernhard Metzler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Sebastian J Reinstadler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Vahldieck C, Löning S, Hamacher C, Fels B, Rudzewski B, Nickel L, Weil J, Nording H, Baron L, Kleingarn M, Karsten CM, Kusche-Vihrog K. Dysregulated complement activation during acute myocardial infarction leads to endothelial glycocalyx degradation and endothelial dysfunction via the C5a:C5a-Receptor1 axis. Front Immunol 2024; 15:1426526. [PMID: 39055717 PMCID: PMC11269135 DOI: 10.3389/fimmu.2024.1426526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Complement-mediated damage to the myocardium during acute myocardial infarction (AMI), particularly the late components of the terminal pathway (C5-convertase and C5b-9), have previously been characterized. Unfortunately, only few studies have reported a direct association between dysregulated complement activation and endothelial function. Hence, little attention has been paid to the role of the anaphylatoxin C5a. The endothelial glycocalyx (eGC) together with the cellular actin cortex provide a vasoprotective barrier against chronic vascular inflammation. Changes in their nanomechanical properties (stiffness and height) are recognized as hallmarks of endothelial dysfunction as they correlate with the bioavailability of vasoactive substances, such as nitric oxide (NO). Here, we determined how the C5a:C5aR1 axis affects the eGC and endothelial function in AMI. Methods Samples of fifty-five patients with ST-elevation myocardial infarction (STEMI) vs. healthy controls were analyzed in this study. eGC components and C5a levels were determined via ELISA; NO levels were quantified chemiluminescence-based. Endothelial cells were stimulated with C5a or patient sera (with/without C5a-receptor1 antagonist "PMX53") and the nanomechanical properties of eGC quantified using the atomic force microscopy (AFM)-based nanoindentation technique. To measure actin cytoskeletal tension regulator activation (RhoA and Rac1) G-LISA assays were applied. Vascular inflammation was examined by quantifying monocyte-endothelium interaction via AFM-based single-cell-force spectroscopy. Results Serum concentrations of eGC components and C5a were significantly increased during STEMI. Serum and solely C5a stimulation decreased eGC height and stiffness, indicating shedding of the eGC. C5a enhanced RhoA activation, resulting in increased cortical stiffness with subsequent reduction in NO concentrations. Monocyte adhesion to the endothelium was enhanced after both C5a and stimulation with STEMI serum. eGC degradation- and RhoA-induced cortical stiffening with subsequent endothelial dysfunction were attenuated after administering PMX53. Conclusion This study demonstrates that dysregulated C5a activation during AMI results in eGC damage with subsequent endothelial dysfunction and reduced NO bioavailability, indicating progressively developing vascular inflammation. This could be prevented by antagonizing C5aR1, highlighting the role of the C5a:C5a-Receptor1 axis in vascular inflammation development and endothelial dysfunction in AMI, offering new therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Carl Vahldieck
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, Luebeck, Germany
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | | | - Benedikt Fels
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | | | - Laura Nickel
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Henry Nording
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
- Cardioimmunology Group, Medical Clinic II, University Heart Center Luebeck, Luebeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Luebeck, Luebeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Luebeck, Luebeck, Germany
| | | | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, Luebeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| |
Collapse
|
10
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
11
|
Vahldieck C, Fels B, Löning S, Nickel L, Weil J, Kusche-Vihrog K. Prolonged Door-to-Balloon Time Leads to Endothelial Glycocalyx Damage and Endothelial Dysfunction in Patients with ST-Elevation Myocardial Infarction. Biomedicines 2023; 11:2924. [PMID: 38001925 PMCID: PMC10669223 DOI: 10.3390/biomedicines11112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Damage to the endothelial glycocalyx (eGC) has been reported during acute ischemic events like ST-elevation myocardial infarction (STEMI). In STEMI, a door-to-balloon time (D2B) of <60 min was shown to reduce mortality and nonfatal complications. Here, we hypothesize that eGC condition is associated with D2B duration and endothelial function during STEMI. One hundred and twenty-six individuals were analyzed in this study (STEMI patients vs. age-/sex-matched healthy volunteers). After stimulating endothelial cells with patient/control sera, the eGC's nanomechanical properties (i.e., height/stiffness) were analyzed using the atomic force microscopy-based nanoindentation technique. eGC components were determined via ELISA, and measurements of nitric oxide levels (NO) were based on chemiluminescence. eGC height/stiffness (both p < 0.001), as well as NO concentration (p < 0.001), were reduced during STEMI. Notably, the D2B had a strong impact on the endothelial condition: a D2B > 60 min led to significantly higher serum concentrations of eGC components (syndecan-1: p < 0.001/heparan sulfate: p < 0.001/hyaluronic acid: p < 0.0001). A D2B > 60 min led to the pronounced loss of eGC height/stiffness (both, p < 0.001) with reduced NO concentrations (p < 0.01), activated the complement system (p < 0.001), and prolonged the hospital stay (p < 0.01). An increased D2B led to severe eGC shedding, with endothelial dysfunction in a temporal context. eGC components and pro-inflammatory mediators correlated with a prolonged D2B, indicating a time-dependent immune reaction during STEMI, with a decreased NO concentration. Thus, D2B is a crucial factor for eGC damage during STEMI. Clinical evaluation of the eGC condition might serve as an important predictor for the endothelial function of STEMI patients in the future.
Collapse
Affiliation(s)
- Carl Vahldieck
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, 23538 Luebeck, Germany
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Laura Nickel
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| |
Collapse
|
12
|
Daios S, Anastasiou V, Moysidis DV, Didagelos M, Papazoglou AS, Stalikas N, Zegkos T, Karagiannidis E, Skoura L, Kaiafa G, Makedou K, Ziakas A, Savopoulos C, Kamperidis V. Prognostic Implications of Clinical, Laboratory and Echocardiographic Biomarkers in Patients with Acute Myocardial Infarction-Rationale and Design of the ''CLEAR-AMI Study''. J Clin Med 2023; 12:5726. [PMID: 37685793 PMCID: PMC10488329 DOI: 10.3390/jcm12175726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) remains a major cause of death worldwide. Survivors of AMI are particularly at high risk for additional cardiovascular events. Consequently, a comprehensive approach to secondary prevention is necessary to mitigate the occurrence of downstream complications. This may be achieved through a multiparametric tailored risk stratification by incorporating clinical, laboratory and echocardiographic parameters. METHODS The ''CLEAR-AMI Study'' (ClinicalTrials.gov Identifier: NCT05791916) is a non-interventional, prospective study including consecutive patients with AMI without a known history of coronary artery disease. All patients satisfying these inclusion criteria are enrolled in the present study. The rationale of this study is to refine risk stratification by using clinical, laboratory and novel echocardiographic biomarkers. All the patients undergo a comprehensive transthoracic echocardiographic assessment, including strain and myocardial work analysis of the left and right heart chambers, within 48 h of admission after coronary angiography. Their laboratory profile focusing on systemic inflammation is captured during the first 24 h upon admission, and their demographic characteristics, past medical history, and therapeutic management are recorded. The angioplasty details are documented, the non-culprit coronary lesions are archived, and the SYNTAX score is employed to evaluate the complexity of coronary artery disease. A 24-month follow-up period will be recorded for all patients recruited. CONCLUSION The ''CLEAR-AMI" study is an ongoing prospective registry endeavoring to refine risk assessment in patients with AMI without a known history of coronary artery disease, by incorporating echocardiographic parameters, biochemical indices, and clinical and coronary characteristics in the acute phase of AMI.
Collapse
Affiliation(s)
- Stylianos Daios
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | - Vasileios Anastasiou
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | - Dimitrios V. Moysidis
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | - Matthaios Didagelos
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | | | - Nikolaos Stalikas
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | - Thomas Zegkos
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Georgia Kaiafa
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (C.S.)
| | - Kali Makedou
- Laboratory of Biochemistry, AHEPA General Hospital, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.K.); (C.S.)
| | - Vasileios Kamperidis
- First Department of Cardiology, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, St. Kyriakidi 1, 54636 Thessaloniki, Greece; (S.D.); (V.A.); (D.V.M.); (M.D.); (N.S.); (T.Z.); (E.K.); (A.Z.)
| |
Collapse
|
13
|
Dimitroglou Y, Aggeli C, Theofilis P, Tsioufis P, Oikonomou E, Chasikidis C, Tsioufis K, Tousoulis D. Novel Anti-Inflammatory Therapies in Coronary Artery Disease and Acute Coronary Syndromes. Life (Basel) 2023; 13:1669. [PMID: 37629526 PMCID: PMC10455741 DOI: 10.3390/life13081669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence suggests that inflammation plays an important role in atherosclerosis and the consequent clinical presentation, including stable coronary artery disease (CAD) and acute coronary syndromes (ACS). The most essential elements are cytokines, proteins with hormone-like properties that are produced by the immune cells, endothelial cells, platelets, fibroblasts, and some stromal cells. Interleukins (IL-1β and IL-6), chemokines, interferon-γ (IFN-γ), and tumor necrosis factor-alpha (TNF-α) are the cytokines commonly associated with endothelial dysfunction, vascular inflammation, and atherosclerosis. These molecules can be targeted by commonly used therapeutic substances or selective molecules that exert targeted anti-inflammatory actions. The most significant anti-inflammatory therapies are aspirin, statins, colchicine, IL-1β inhibitors, and IL-6 inhibitors, along with novel therapies such as TNF-α inhibitors and IL-1 receptor antagonists. Aspirin and statins are well-established therapies for atherosclerosis and CAD and their pleiotropic and anti-inflammatory actions contribute to their efficacy and favorable profile. Colchicine may also be considered in high-risk patients if recurrent ACS episodes occur when on optimal medical therapy according to the most recent guidelines. Recent randomized studies have also shown that therapies specifically targeting inflammatory interleukins and inflammation can reduce the risk for cardiovascular events, but these therapies are yet to be fully implemented in clinical practice. Preclinical research is also intense, targeting various inflammatory mediators that are believed to be implicated in CAD, namely repeated transfers of the soluble mutant of IFN-γ receptors, NLRP3 inflammasome inhibitors, IL-10 delivery by nanocarriers, chemokine modulatory treatments, and reacting oxygen species (ROS) targeting nanoparticles. Such approaches, although intriguing and promising, ought to be tested in clinical settings before safe conclusions can be drawn. Although the link between inflammation and atherosclerosis is significant, further studies are needed in order to elucidate this association and improve outcomes in patients with CAD.
Collapse
Affiliation(s)
- Yannis Dimitroglou
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Constantina Aggeli
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Panagiotis Theofilis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Panagiotis Tsioufis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Evangelos Oikonomou
- Third Department of Cardiology, Thoracic Diseases General Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece;
| | - Christos Chasikidis
- Department of Cardiology, General Hospital of Corinth, 20100 Corinth, Greece;
| | - Konstantinos Tsioufis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| | - Dimitris Tousoulis
- First Department of Cardiology, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece; (Y.D.); (C.A.); (P.T.); (K.T.); (D.T.)
| |
Collapse
|
14
|
Benedikt M, Mangge H, Aziz F, Curcic P, Pailer S, Herrmann M, Kolesnik E, Tripolt NJ, Pferschy PN, Wallner M, Zirlik A, Sourij H, von Lewinski D. Impact of the SGLT2-inhibitor empagliflozin on inflammatory biomarkers after acute myocardial infarction - a post-hoc analysis of the EMMY trial. Cardiovasc Diabetol 2023; 22:166. [PMID: 37407956 PMCID: PMC10324245 DOI: 10.1186/s12933-023-01904-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND SGTL2-inhibitors are a cornerstone in the treatment of heart failure, but data on patients with acute myocardial infarction (AMI) is limited. The EMMY trial was the first to show a significant reduction in NTproBNP levels as well as improved cardiac structure and function in post-AMI patients treated with Empagliflozin compared to placebo. However, data on the potential impact of SGLT2-inhibitors on inflammatory biomarkers after AMI are scarce. MATERIALS AND METHODS The EMMY trial is an investigator-initiated, multicentre, double-blind, placebo-controlled trial, which enrolled patients after AMI, receiving either 10 mg Empagliflozin once daily or placebo over a period of 26 weeks on top of standard guideline-recommended therapy starting within 72 h after percutaneous coronary intervention. In this post-hoc subgroup analysis of the EMMY trial, we investigated inflammatory biomarkers of 374 patients. The endpoints investigated were the mean change in inflammatory biomarkers such as high-sensitive c-reactive protein (hsCRP), interleukin-6 (IL-6), neutrophils, leukocytes, neutrophile/lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) from baseline to 26 weeks. RESULTS Baseline median (interquartile ranges) IL-6 was 17.9 pg/mL (9.0-38.7), hsCRP 18.9 mg/L (11.2-37.1), neutrophil count 7.9 x G/L (6.2-10.1), leukocyte count 10.8 x G/L (9.1-12.8) and neutrophile/lymphocyte ratio (NLR) of 0.74 (0.67-0.80). At week 26, a significant mean reduction in inflammatory biomarkers was observed, being 35.1 ± 3.2% (p < 0.001) for IL-6, 57.4 ± 0.7% (p < 0.001) for hsCRP, 26.1 ± 0.7% (p < 0.001) for neutrophils, 20.5 ± 0.6% (p < 0.001) for leukocytes, 10.22 ± 0.50% (p < 0.001) for NLR, and - 2.53 ± 0.92% for PLR (p = 0.006) with no significant difference between Empagliflozin and placebo treatment. CONCLUSION Trajectories of inflammatory biomarkers showed a pronounced decline after AMI, but Empagliflozin treatment did not impact this decline indicating no central role in blunted systemic inflammation mediating beneficial effects.
Collapse
Affiliation(s)
- Martin Benedikt
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Faisal Aziz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Pero Curcic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sabine Pailer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria
| | - Norbert J Tripolt
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Markus Wallner
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria
| | - Andreas Zirlik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria.
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria.
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, Graz, 8036, Austria.
| |
Collapse
|
15
|
Sun W, Wang C, Cui S, Wang Y, Zhao S, Lu M, Yang F, Dong S, Chu Y. Association of GSDMD with microvascular-ischemia reperfusion injury after ST-elevation myocardial infarction. Front Cardiovasc Med 2023; 10:1138352. [PMID: 37424923 PMCID: PMC10325858 DOI: 10.3389/fcvm.2023.1138352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives Little is known about the clinical prognosis of gasdermin D (GSDMD) in patients with ST-elevation myocardial infarction (STEMI). The purpose of this study was to investigate the association of GSDMD with microvascular injury, infarction size (IS), left ventricular ejection fraction (LVEF), and major adverse cardiac events (MACEs), in STEMI patients with primary percutaneous coronary intervention (pPCI). Methods We retrospectively analyzed 120 prospectively enrolled STEMI patients (median age 53 years, 80% men) treated with pPCI between 2020 and 2021 who underwent serum GSDMD assessment and cardiac magnetic resonance (CMR) within 48 h post-reperfusion; CMR was also performed at one year follow-up. Results Microvascular obstruction was observed in 37 patients (31%). GSDMD concentrations ≧ median (13 ng/L) in patients were associated with a higher risk of microvascular obstruction and IMH (46% vs. 19%, P = 0.003; 31% vs. 13%, P = 0.02, respectively), as well as with a lower LVEF both in the acute phase after infarction (35% vs. 54%, P < 0.001) and in the chronic phase (42% vs. 56%, P < 0.001), larger IS in the acute (32% vs. 15%, P < 0.001) and in the chronic phases (26% vs. 11%, P < 0.001), and larger left ventricular volumes (119 ± 20 vs. 98 ± 14, P = 0.003) by CMR. Univariable and multivariable Cox regression analysis results showed that patients with GSDMD concentrations ≧ median (13 ng/L) had a higher incidence of MACE (P < 0.05). Conclusions High GSDMD concentrations in STEMI patients are associated with microvascular injury (including MVO and IMH), which is a powerful MACE predictor. Nevertheless, the therapeutic implications of this relation need further research.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunqiu Wang
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shihua Cui
- Department of Cardiology, Dalian Medical University, Dalian, China
| | - Yan Wang
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenghui Zhao
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lu
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Department of Cardiology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shujuan Dong
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjie Chu
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Tishkina IE, Pereverzeva KG, Yakushin SS. Predictors of post-infarction left ventricular aneurysm. RUSSIAN JOURNAL OF CARDIOLOGY 2023; 28:5201. [DOI: 10.15829/1560-4071-2023-5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Post-infarction left ventricular aneurysm (LVA) is a complication of myocardial infarction (MI), which is of great clinical importance due to high mortality. Data on its incidence are contradictory. The aim of the review was to highlight the existing and novel predictors of post-infarction LVA, the identification of which will help in identifying high-risk patients in order to optimize their treatment and rehabilitation. Known predictors of post-infarction LVA include pain-to-balloon time, age, female sex, recurrent MI, coronary angiography parameters, echocardiography, and electrocardiography. Increased levels of leukocytes, C-reactive protein, growth differentiation factor, stimulating growth factor, interleukin-1β, interleukin-6, tumor necrosis factor-α, matrix metalloproteinases, proprotein convertase subtilisin-kexin type 9, N-terminal pro-brain natriuretic peptide >400 pg/ml indicate the risk of pathological left ventricular remodeling and LVA. In this connection, there is a need to assess the incidence of post-infarction LVA and a comprehensive assessment of its predictors in patients with MI.
Collapse
|
17
|
Demirkiran A, van der Geest RJ, Hopman LHGA, Robbers LFHJ, Handoko ML, Nijveldt R, Greenwood JP, Plein S, Garg P. Association of left ventricular flow energetics with remodeling after myocardial infarction: New hemodynamic insights for left ventricular remodeling. Int J Cardiol 2022; 367:105-114. [PMID: 36007668 DOI: 10.1016/j.ijcard.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Myocardial infarction leads to complex changes in left ventricular (LV) hemodynamics. It remains unknown how four-dimensional acute changes in LV-cavity blood flow kinetic energy affects LV-remodeling. METHODS AND RESULTS In total, 69 revascularised ST-segment elevation myocardial infarction (STEMI) patients were enrolled. All patients underwent cardiovascular magnetic resonance (CMR) examination within 2 days of the index event and at 3-month. CMR examination included cine, late gadolinium enhancement, and whole-heart four-dimensional flow acquisitions. LV volume-function, infarct size (indexed to body surface area), microvascular obstruction, mitral inflow, and blood flow KEi (kinetic energy indexed to end-diastolic volume) characteristics were obtained. Adverse LV-remodeling was defined and categorized according to increase in LV end-diastolic volume of at least 10%, 15%, and 20%. Twenty-four patients (35%) developed at least 10%, 17 patients (25%) at least 15%, 11 patients (16%) at least 20% LV-remodeling. Demographics and clinical history were comparable between patients with/without LV-remodeling. In univariable regression-analysis, A-wave KEi was associated with at least 10%, 15%, and 20% LV-remodeling (p = 0.03, p = 0.02, p = 0.02, respectively), whereas infarct size only with at least 10% LV-remodeling (p = 0.02). In multivariable regression-analysis, A-wave KEi was identified as an independent marker for at least 10%, 15%, and 20% LV-remodeling (p = 0.09, p < 0.01, p < 0.01, respectively), yet infarct size only for at least 10% LV-remodeling (p = 0.03). CONCLUSION In patients with STEMI, LV hemodynamic assessment by LV blood flow kinetic energetics demonstrates a significant inverse association with adverse LV-remodeling. Late-diastolic LV blood flow kinetic energetics early after acute MI was independently associated with adverse LV-remodeling.
Collapse
Affiliation(s)
- Ahmet Demirkiran
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Rob J van der Geest
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, the Netherlands
| | - Luuk H G A Hopman
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Lourens F H J Robbers
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - M Louis Handoko
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Pankaj Garg
- Department of Cardiology, Norfolk Medical School, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
18
|
Predicting cardiac remodeling after myocardial infarction with machine learning: are we there yet? Int J Cardiol 2022; 355:6-7. [PMID: 35301076 DOI: 10.1016/j.ijcard.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022]
|
19
|
Ibanez B. Targeting inflammation to improve long-term outcome in ST-segment elevation myocardial infarction survivors. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2022; 11:124-126. [PMID: 35136996 DOI: 10.1093/ehjacc/zuac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Borja Ibanez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3. 28029. Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Spain
| |
Collapse
|
20
|
Scărlătescu AI, Micheu MM, Popa-Fotea N, Pascal AM, Mihail AM, Petre I, Deaconu S, Vîjîiac A, Dorobanțu M. IL-6, IL-1RA and Resistin as Predictors of Left Ventricular Remodelling and Major Adverse Cardiac Events in Patients with Acute ST Elevation Myocardial Infarction. Diagnostics (Basel) 2022; 12:266. [PMID: 35204357 PMCID: PMC8871243 DOI: 10.3390/diagnostics12020266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Despite continuous advances in diagnostic and therapeutic methods, acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. Considering the role of inflammation in AMI etiopathogenesis, we aimed to explore the role of a group of three inflammatory cytokines (IL-1RA, IL-6 and resistin) as an independent prognostic factor for LVR assessed by 3D echocardiography and MACE in patients with STEMI. We enrolled 41 patients with STEMI who underwent primary PCI. We assessed the occurrence of LVR (defined as an increase of over 20% in end-diastolic left ventricular volume at 6 months compared with baseline values) and MACE. Using the enzyme-linked immunosorbent assays (ELISA) method, we measured plasmatic levels of IL-6, IL-1RA and resistin (within 48 h after AMI and at 6 months). Out of 41 STEMI patients, 20.5% presented signs of LVR at follow up, and in 24.4%, MACE occurred. In univariate logistic regression analysis, baseline levels of IL-6 (OR = 1.042, p = 0.004), IL-1RA (OR = 1.004, p = 0.05) and resistin (OR = 1.7, p = 0.007) were all significantly associated with LVR. ROC analysis showed that the three cytokines as a group (AUC 0.946, p = 0.000) have a better predictive value for LVR than any individual cytokine. The group of cytokines also proved to have a better predictive value for MACE together than separately (AUC = 0.875, p = 0.000 for ROC regression model). IL-6, IL-1RA and resistin plasma levels at baseline have a good predictive value both as independent variables and also as a group for the development of adverse LVR and MACE at 6 months follow up after STEMI.
Collapse
Affiliation(s)
- Alina Ioana Scărlătescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.S.); (N.P.-F.); (I.P.); (A.V.); (M.D.)
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Miruna Mihaela Micheu
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Nicoleta Popa-Fotea
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.S.); (N.P.-F.); (I.P.); (A.V.); (M.D.)
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Ana Maria Pascal
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Ana Maria Mihail
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Ioana Petre
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.S.); (N.P.-F.); (I.P.); (A.V.); (M.D.)
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Silvia Deaconu
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Aura Vîjîiac
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.S.); (N.P.-F.); (I.P.); (A.V.); (M.D.)
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| | - Maria Dorobanțu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.I.S.); (N.P.-F.); (I.P.); (A.V.); (M.D.)
- Emergency Clinical Hospital Bucharest, Department of Cardiology, 014461 Bucharest, Romania; (A.M.P.); (A.M.M.); (S.D.)
| |
Collapse
|