1
|
Sun H, Wang S, Du S, Wang N, Shi R, Zhao K, Huang C, Chen Y. PA5402-5407 of Pseudomonas aeruginosa Regulate the Expression of the Aa3-Type Oxidases and Their Growth Under Carbon Starvation and High-Density Conditions. Curr Microbiol 2024; 82:18. [PMID: 39607502 DOI: 10.1007/s00284-024-03984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Our previous studies identified PA5407 in Pseudomonas aeruginosa as a new regulatory protein for bacterial division and named it ZapAL. This protein enhances the assembly of the key bacterial division protein FtsZ and participates in the assembly of the bacterial Z-ring, but its physiological function is not clear. ZapAL is in the same gene cluster as PA5402-5406, and in this study, we found that these genes are involved in the regulation of bacterial growth under nutrient deficiency and high-density conditions. The expression of Aa3 oxidase increases significantly at the end of the stationary phase of bacterial growth under aerobic conditions, and appropriately accelerate energy intake to adapt to the adversity. In our study, we found that the knockout of PA5402-5407 in P. aeruginosa promotes the further expression of Aa3 oxidase and its expression increased more and faster than the wild type, especially under carbon starvation and high-density conditions. This results in a larger bacteria population, but the average length of the bacteria is abnormally reduced. In summary, our study found that the P. aeruginosa gene cluster PA5402-5407 regulated the expression of Aa3 oxidase in the late stationary phase, and these genes balance energy intake, growth and division of bacteria under adverse conditions.
Collapse
Affiliation(s)
- Haiyu Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Shenping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Shuheng Du
- Key Laboratory of Resources Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Na Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Runqing Shi
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Kairui Zhao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Chenghao Huang
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Yang Y, Zhang W, Zhang Z, Yang T, Xu Z, Zhang C, Guo B, Lu W. Efficient Bioremediation of Petroleum-Contaminated Soil by Immobilized Bacterial Agent of Gordonia alkanivorans W33. Bioengineering (Basel) 2023; 10:bioengineering10050561. [PMID: 37237630 DOI: 10.3390/bioengineering10050561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In this article, we report a method for preparing an immobilized bacterial agent of petroleum-degrading bacteria Gordonia alkanivorans W33 by combining high-density fermentation and bacterial immobilization technology and testing its bioremediation effect on petroleum-contaminated soil. After determining the optimal combination of MgCl2, CaCl2 concentration, and culture time in the fermentation conditions by conducting a response surface analysis, the cell concentration reached 7.48 × 109 CFU/mL by 5 L fed-batch fermentation. The W33-vermiculite-powder-immobilized bacterial agent mixed with sophorolipids and rhamnolipids in a weight ratio of 9:10 was used for the bioremediation of petroleum-contaminated soil. After 45 days of microbial degradation, 56.3% of the petroleum in the soil with 20,000 mg/kg petroleum content was degraded, and the average degradation rate reached 250.2 mg/kg/d.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianjin 300457, China
| | - Wanze Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Yang
- China Offshore Environmental Service Ltd., Tianjin 300457, China
| | - Zhuo Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bing Guo
- China Offshore Environmental Service Ltd., Tianjin 300457, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Levin PA, Janakiraman A. Localization, Assembly, and Activation of the Escherichia coli Cell Division Machinery. EcoSal Plus 2021; 9:eESP00222021. [PMID: 34910577 PMCID: PMC8919703 DOI: 10.1128/ecosalplus.esp-0022-2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023]
Abstract
Decades of research, much of it in Escherichia coli, have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings. We begin with a short historical perspective into the discovery of FtsZ, the tubulin homolog that is essential for division in bacteria and archaea. We then discuss assembly of the divisome, an FtsZ-dependent multiprotein platform, at the midcell septal site. Not simply a scaffold, the dynamic properties of polymeric FtsZ ensure the efficient and uniform synthesis of septal peptidoglycan. Next, we describe the remodeling of the cell wall, invagination of the cell envelope, and disassembly of the division apparatus culminating in scission of the mother cell into two daughter cells. We conclude this review by highlighting some of the open questions in the cell division field, emphasizing that much remains to be discovered, even in an organism as extensively studied as E. coli.
Collapse
Affiliation(s)
- Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Center for Science & Engineering of Living Systems (CSELS), McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anuradha Janakiraman
- Department of Biology, The City College of New York, New York, New York, USA
- Programs in Biology and Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
4
|
DiBiasio EC, Dickinson RA, Trebino CE, Ferreira CN, Morrison JJ, Camberg JL. The Stress-Active Cell Division Protein ZapE Alters FtsZ Filament Architecture to Facilitate Division in Escherichia coli. Front Microbiol 2021; 12:733085. [PMID: 34646253 PMCID: PMC8503651 DOI: 10.3389/fmicb.2021.733085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
During pathogenic infections, bacterial cells experience environmental stress conditions, including low oxygen and thermal stress. Bacterial cells proliferate during infection and divide by a mechanism characterized by the assembly of a large cytoskeletal structure at the division site called the Z-ring. The major protein constituting the Z-ring is FtsZ, a tubulin homolog and GTPase that utilizes the nucleotide to assemble into dynamic polymers. In Escherichia coli, many cell division proteins interact with FtsZ and modulate Z-ring assembly, while others direct cell wall insertion and peptidoglycan remodeling. Here, we show that ZapE, an ATPase that accumulates during late constriction, directly interacts with FtsZ and phospholipids in vitro. In the presence of adenosine triphosphate (ATP), ZapE induces bundling of GTP-induced FtsZ polymers; however, ZapE also binds FtsZ in the absence of GTP. The ZapE mutant protein ZapE(K84A), which is defective for ATP hydrolysis, also interacts with FtsZ and induces FtsZ filament bundling. In vivo, cultures of zapE deletion cells contain a low percentage of filamentous cells, suggesting that they have a modest division defect; however, they are able to grow when exposed to stress, such as high temperature and limited oxygen. When combined with the chromosomal deletion of minC, which encodes an FtsZ disassembly factor, ΔzapE ΔminC cells experience growth delays that slow proliferation at high temperature and prevent recovery. This synthetic slow growth phenotype after exposure to stress suggests that ZapE may function to ensure proliferation during and after stress, and this is exacerbated when cells are also deleted for minC. Expression of either ZapE or ZapE(K84A) complements the aberrant growth phenotypes in vivo suggesting that the division-associated role of ZapE does not require ZapE ATP hydrolysis. These results support that ZapE is a stress-regulated cell division protein that interacts directly with FtsZ and phospholipids, promoting growth and division after exposure to environmental stress.
Collapse
Affiliation(s)
- Eric C DiBiasio
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - Rebecca A Dickinson
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - Catherine E Trebino
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - Colby N Ferreira
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
5
|
Wang X, Ma X, Li Z, Niu M, Zhai M, Chen Y. A Novel Z-Ring Associated Protein ZapA-Like Protein (PA5407) From Pseudomonas aeruginosa Promotes FtsZ to Form Double Filaments. Front Microbiol 2021; 12:717013. [PMID: 34421877 PMCID: PMC8371321 DOI: 10.3389/fmicb.2021.717013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
Bacterial cell division is initiated by the assembly of the contraction ring (Z-ring), which consists of the self-assembled FtsZ protofilaments and dozens of other associate proteins. ZapA, a regulatory protein found in almost all bacteria, stabilizes FtsZ protofilaments to form bundles and enhances the Z-ring condensation. Here, we reported that another small protein from Pseudomonas aeruginosa, ZapA-Like protein (ZapAL; PA5407), is a new FtsZ associated protein. ZapAL exists in many Pseudomonas species and shares only 20% sequence identity to ZapA. ZapAL interacts with FtsZ and induces FtsZ to form long straight double filaments; in comparison, ZapA promotes long bundles with multiple FtsZ filaments. ZapAL has only a mild effect on GTPase activity of FtsZ, which is reduced by around 26% when 10 μM ZapAL is added in the solution. However, to study their assembly dynamics using light-scattering assay, we found that FtsZ-ZapAL double filament is stable and no depolymerization process is observed, which is different from ZapA. Further research found that ZapA and ZapL are likely to form heterodimers. The bundles formed by the mixture of FtsZ-ZapA-ZapAL will depolymerize after GTP is hydrolyzed. Consistent with ZapAL interaction with FtsZ in vitro, the expression of ZapAL-GFP was observed as a narrow band or spots in the middle of the cells, suggesting that it is a component of bacterial division machinery. Similar to ZapA, ZapAL is also not essential for bacterial cell division. Little changes were observed when zapAL gene was deleted, or overexpressed under normal conditions; however, overexpression of ZapAL caused zapA-deficient cells to grow approximately two times longer, showing a mild bacterial division defect. Although we still do not know the exact physiological roles of ZapAL, our results suggest that ZapAL is a novel Z-ring associate protein, which may work together with ZapA to stabilize the FtsZ protofilament and Z-ring structure.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xueqin Ma
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhe Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Mingyue Niu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Meiting Zhai
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
6
|
Assembly properties of bacterial tubulin homolog FtsZ regulated by the positive regulator protein ZipA and ZapA from Pseudomonas aeruginosa. Sci Rep 2020; 10:21369. [PMID: 33288818 PMCID: PMC7721900 DOI: 10.1038/s41598-020-78431-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial tubulin homolog FtsZ self-assembles into dynamic protofilaments, which forms the scaffold for the contractile ring (Z-ring) to achieve bacterial cell division. Here, we study the biochemical properties of FtsZ from Pseudomonas aeruginosa (PaFtsZ) and the effects of its two positive regulator proteins, ZipA and ZapA. Similar to Escherichia coli FtsZ, PaFtsZ had a strong GTPase activity, ~ 7.8 GTP min-1 FtsZ-1 at pH 7.5, and assembled into mainly short single filaments in vitro. However, PaFtsZ protofilaments were mixtures of straight and “intermediate-curved” (100–300 nm diameter) in pH 7.5 solution and formed some bundles in pH 6.5 solution. The effects of ZipA on PaFtsZ assembly varied with pH. In pH 6.5 buffer ZipA induced PaFtsZ to form large bundles. In pH 7.5 buffer PaFtsZ-ZipA protofilaments were not bundled, but ZipA enhanced PaFtsZ assembly and promoted more curved filaments. Comparable to ZapA from other bacterial species, ZapA from P. aeruginosa induced PaFtsZ protofilaments to associate into long straight loose bundles and/or sheets at both pH 6.5 and pH 7.5, which had little effect on the GTPase activity of PaFtsZ. These results provide us further information that ZipA functions as an enhancer of FtsZ curved filaments, while ZapA works as a stabilizer of FtsZ straight filaments.
Collapse
|
7
|
Jalil A, Asim MH, Nazir I, Matuszczak B, Bernkop-Schnürch A. Self-emulsifying drug delivery systems containing hydrophobic ion pairs of polymyxin B and agaric acid: A decisive strategy for enhanced antimicrobial activity. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Swain A, Anil Kumar AV. A stochastic model for dynamics of FtsZ filaments and the formation of Z -ring. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:43. [PMID: 32617695 DOI: 10.1140/epje/i2020-11967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the mechanisms responsible for the formation and growth of FtsZ polymers and their subsequent formation of the Z -ring is important for gaining insight into the cell division in prokaryotic cells. In this work, we present a minimal stochastic model that qualitatively reproduces in vitro observations of polymerization, formation of dynamic contractile ring that is stable for a long time and depolymerization shown by FtsZ polymer filaments. In this stochastic model, we explore different mechanisms for ring breaking and hydrolysis. In addition to hydrolysis, which is known to regulate the dynamics of other tubulin polymers like microtubules, we find that the presence of the ring allows for an additional mechanism for regulating the dynamics of FtsZ polymers. Ring breaking dynamics in the presence of hydrolysis naturally induce rescue and catastrophe events in this model irrespective of the mechanism of hydrolysis.
Collapse
Affiliation(s)
- Arabind Swain
- School of Physical Sciences, National Institute of Science Education and Research, 752050, Jatni, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400094, Mumbai, India
| | - A V Anil Kumar
- School of Physical Sciences, National Institute of Science Education and Research, 752050, Jatni, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400094, Mumbai, India
| |
Collapse
|
9
|
Cell Division Protein FtsZ Is Unfolded for N-Terminal Degradation by Antibiotic-Activated ClpP. mBio 2020; 11:mBio.01006-20. [PMID: 32605984 PMCID: PMC7327170 DOI: 10.1128/mbio.01006-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acyldepsipeptide (ADEP) antibiotics effectively kill multidrug-resistant Gram-positive pathogens, including vancomycin-resistant enterococcus, penicillin-resistant Streptococcus pneumoniae (PRSP), and methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial activity of ADEP depends on a new mechanism of action, i.e., the deregulation of bacterial protease ClpP that leads to bacterial self-digestion. Our data allow new insights into the mode of ADEP action by providing a molecular explanation for the distinct bacterial phenotypes observed at low versus high ADEP concentrations. In addition, we show that ClpP alone, in the absence of any unfoldase or energy-consuming system, and only activated by the small molecule antibiotic ADEP, leads to the unfolding of the cell division protein FtsZ. Antibiotic acyldepsipeptides (ADEPs) deregulate ClpP, the proteolytic core of the bacterial Clp protease, thereby inhibiting its native functions and concomitantly activating it for uncontrolled proteolysis of nonnative substrates. Importantly, although ADEP-activated ClpP is assumed to target multiple polypeptide and protein substrates in the bacterial cell, not all proteins seem equally susceptible. In Bacillus subtilis, the cell division protein FtsZ emerged to be particularly sensitive to degradation by ADEP-activated ClpP at low inhibitory ADEP concentrations. In fact, FtsZ is the only bacterial protein that has been confirmed to be degraded in vitro as well as within bacterial cells so far. However, the molecular reason for this preferred degradation remained elusive. Here, we report the unexpected finding that ADEP-activated ClpP alone, in the absence of any Clp-ATPase, leads to an unfolding and subsequent degradation of the N-terminal domain of FtsZ, which can be prevented by the stabilization of the FtsZ fold via nucleotide binding. At elevated antibiotic concentrations, importantly, the C terminus of FtsZ is notably targeted for degradation in addition to the N terminus. Our results show that different target structures are more or less accessible to ClpP, depending on the ADEP level present. Moreover, our data assign a Clp-ATPase-independent protein unfolding capability to the ClpP core of the bacterial Clp protease and suggest that the protein fold of FtsZ may be more flexible than previously anticipated.
Collapse
|
10
|
Tay MF, Lee S, Xu H, Jeong K, Liu C, Cornelissen ER, Wu B, Chong TH. Impact of salt accumulation in the bioreactor on the performance of nanofiltration membrane bioreactor (NF-MBR)+Reverse osmosis (RO) process for water reclamation. WATER RESEARCH 2020; 170:115352. [PMID: 31812816 DOI: 10.1016/j.watres.2019.115352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The impacts of salt accumulation, through adjusting the solid retention time (SRT), in the bioreactor on the bioprocess as well as membrane performance of a high retention nanofiltration membrane bioreactor (NF-MBR) and subsequent reverse osmosis (RO) process for water reclamation are addressed in this study. The build-up of salts (i.e., Ca, Mg, PO4) is a function of SRT, hydraulic retention time (HRT) and membrane rejection. Despite the accumulation of salts, both NF-MBRs at SRT of 30 and 60 days, achieved (i) similar biodegradation efficiency; (ii) excellent organic removal (> 97%); and (iii) excellent ammonia removal (> 98%). Extending the SRT could improve the microbial bio-flocculation capability, but did not influence the microbial activity, viability, and community structure. However, more severe membrane fouling was observed in the NF-MBR with elevated salt levels, which was attributed to the greater formation of calcium phosphate scale and Ca-polysaccharides complex (i.e., irreversible fouling layer) as well as the cake-enhanced-osmotic-pressure (CEOP) effect. Although both NF-MBRs produced comparable quality of permeate, a higher RO membrane fouling rate was observed when the permeate of NF-MBR with SRT at 60 days was fed to the RO system, implying organic compositions in NF-MBR permeate may influence RO performance.
Collapse
Affiliation(s)
- Ming Feng Tay
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Huijuan Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Kwanho Jeong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Chang Liu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; School of Environment and Resource, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Emile R Cornelissen
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; KWR Watercycle Research Institute, 3433 PE, Nieuwegein, Netherlands; Particle and Interfacial Technology Group, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| | - Tzyy Haur Chong
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
11
|
Tsuchiya K, Sano T, Tomioka N, Kohzu A, Komatsu K, Shinohara R, Shimode S, Toda T, Imai A. Incorporation characteristics of exogenous 15N-labeled thymidine, deoxyadenosine, deoxyguanosine and deoxycytidine into bacterial DNA. PLoS One 2020; 15:e0229740. [PMID: 32106263 PMCID: PMC7046229 DOI: 10.1371/journal.pone.0229740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Bacterial production has been often estimated from DNA synthesis rates by using tritium-labeled thymidine. Some bacteria species cannot incorporate extracellular thymidine into their DNA, suggesting their biomass production might be overlooked when using the conventional method. In the present study, to evaluate appropriateness of deoxyribonucleosides for evaluating bacterial production of natural bacterial communities from the viewpoint of DNA synthesis, incorporation rates of four deoxyribonucleosides (thymidine, deoxyadenosine, deoxyguanosine and deoxycytidine) labeled by nitrogen stable isotope (15N) into bacterial DNA were examined in both ocean (Sagami Bay) and freshwater (Lake Kasumigaura) ecosystems in July 2015 and January 2016. In most stations in Sagami Bay and Lake Kasumigaura, we found that incorporation rates of deoxyguanosine were the highest among those of the four deoxyribonucleosides, and the incorporation rate of deoxyguanosine was approximately 2.5 times higher than that of thymidine. Whereas, incorporation rates of deoxyadenosine and deoxycytidine were 0.9 and 0.2 times higher than that of thymidine. These results clearly suggest that the numbers of bacterial species which can incorporate exogenous deoxyguanosine into their DNA are relatively greater as compared to the other deoxyribonucleosides, and measurement of bacterial production using deoxyguanosine more likely reflects larger numbers of bacterial species productions.
Collapse
Affiliation(s)
- Kenji Tsuchiya
- Faculty of Science and Engineering, Soka University, Tangi, Hachioji, Tokyo, Japan
- Center for Regional Environmental Research, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Noriko Tomioka
- Center for Regional Environmental Research, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Ayato Kohzu
- Center for Regional Environmental Research, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Komatsu
- Center for Regional Environmental Research, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Ryuichiro Shinohara
- Center for Regional Environmental Research, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Shinji Shimode
- Graduate School of Environment and Information Science, Yokohama National University, Tokiwadai, Hodogaya, Yokohama, Kanagawa, Japan
| | - Tatsuki Toda
- Faculty of Science and Engineering, Soka University, Tangi, Hachioji, Tokyo, Japan
| | - Akio Imai
- Center for Regional Environmental Research, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Jalil A, Asim MH, Akkus ZB, Schoenthaler M, Matuszczak B, Bernkop-Schnürch A. Self-emulsifying drug delivery systems comprising chlorhexidine and alkyl-EDTA: A novel approach for augmented antimicrobial activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
FtsA-FtsZ interaction in Vibrio cholerae causes conformational change of FtsA resulting in inhibition of ATP hydrolysis and polymerization. Int J Biol Macromol 2019; 142:18-32. [PMID: 31790740 DOI: 10.1016/j.ijbiomac.2019.11.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/23/2022]
Abstract
Proper interaction between the divisome proteins FtsA and FtsZ is important for the bacterial cell division which is not well characterized till date. In this study, the objective was to understand the mechanism of FtsA-FtsZ interaction using full-length recombinant proteins. We cloned, over-expressed, purified and subsequently characterized FtsA of Vibrio cholerae (VcFtsA). We found that VcFtsA polymerization assembly was dependent on Ca2+ ions, which is unique among FtsA proteins reported until now. VcFtsA also showed ATPase activity and its assembly was ATP dependent. Binding parameters of the interaction between the two full-length proteins, VcFtsA, and VcFtsZ determined by fluorescence spectrophotometry yielded a Kd value of around 38 μM. The Kd value of the interaction was 3 μM when VcFtsA was in ATP bound state. We found that VcFtsZ after interacting with VcFtsA causes a change of secondary structure in the later one leading to loss of its ability to hydrolyze ATP, subsequently halting the VcFtsA polymerization. On the other hand, a double-mutant of VcFtsA (VcFtsA-D242E,R300E), that does not bind to VcFtsZ, polymerized in the presence of VcFtsZ. Though FtsA proteins among different organisms show 70-80% homology in their sequences, assembly of VcFtsA showed a difference in its regulatory processes.
Collapse
|
14
|
De Wever A, Benzerara K, Coutaud M, Caumes G, Poinsot M, Skouri-Panet F, Laurent T, Duprat E, Gugger M. Evidence of high Ca uptake by cyanobacteria forming intracellular CaCO 3 and impact on their growth. GEOBIOLOGY 2019; 17:676-690. [PMID: 31347755 DOI: 10.1111/gbi.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG-11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+ /H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.
Collapse
Affiliation(s)
- Alexis De Wever
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Margot Coutaud
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Géraldine Caumes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mélanie Poinsot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Laurent
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Muriel Gugger
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| |
Collapse
|
15
|
Wang T, Flint S, Palmer J. Magnesium and calcium ions: roles in bacterial cell attachment and biofilm structure maturation. BIOFOULING 2019; 35:959-974. [PMID: 31687841 DOI: 10.1080/08927014.2019.1674811] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The ubiquitous divalent cations magnesium and calcium are important nutrients required by bacteria for growth and cell maintenance. Multi-faceted roles are shown both in bacterial initial attachment and biofilm maturation. The effects of calcium and magnesium can be highlighted in physio-chemical interactions, gene regulation and bio-macromolecular structural modification, which lead to either promotion or inhibition of biofilms. This review outlines recent research addressing phenotypic changes and mechanisms undertaken by calcium and magnesium in affecting bacterial biofilm formation.
Collapse
Affiliation(s)
- Tianyang Wang
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, New Zealand
| | - Steve Flint
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, New Zealand
| | - Jon Palmer
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, New Zealand
| |
Collapse
|
16
|
Kusuma KD, Payne M, Ung AT, Bottomley AL, Harry EJ. FtsZ as an Antibacterial Target: Status and Guidelines for Progressing This Avenue. ACS Infect Dis 2019; 5:1279-1294. [PMID: 31268666 DOI: 10.1021/acsinfecdis.9b00055] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The disturbing increase in the number of bacterial pathogens that are resistant to multiple, or sometimes all, current antibiotics highlights the desperate need to pursue the discovery and development of novel classes of antibacterials. The wealth of knowledge available about the bacterial cell division machinery has aided target-driven approaches to identify new inhibitor compounds. The main division target being pursued is the highly conserved and essential protein FtsZ. Despite very active research on FtsZ inhibitors for several years, this protein is not yet targeted by any commercial antibiotic. Here, we discuss the suitability of FtsZ as an antibacterial target for drug development and review progress achieved in this area. We use hindsight to highlight the gaps that have slowed progress in FtsZ inhibitor development and to suggest guidelines for concluding that FtsZ is actually the target of these molecules, a key missing link in several studies. In moving forward, a multidisciplinary, communicative, and collaborative process, with sharing of research expertise, is critical if we are to succeed.
Collapse
|
17
|
Dhaked HPS, Ray S, Battaje RR, Banerjee A, Panda D. Regulation ofStreptococcus pneumoniaeFtsZ assembly by divalent cations: paradoxical effects of Ca2+on the nucleation and bundling of FtsZ polymers. FEBS J 2019; 286:3629-3646. [DOI: 10.1111/febs.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
Affiliation(s)
| | - Shashikant Ray
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
- Department of Biotechnology Mahatma Gandhi Central University Motihari Bihar India
| | - Rachana Rao Battaje
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| | - Dulal Panda
- Department of Biosciences and Bioengineering Indian Institute of Technology Bombay India
| |
Collapse
|
18
|
Tian B, Shah M, Choi MH, Rho JK, Lee SY, Yoon SC. Calcium Involved Directional Organization of Polymer Chains in Polyester Nanogranules in Bacterial Cells. Sci Rep 2019; 9:3429. [PMID: 30837614 PMCID: PMC6401383 DOI: 10.1038/s41598-019-40097-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/06/2019] [Indexed: 12/04/2022] Open
Abstract
Soil bacteria accumulate polyesters (typically poly([R]-3-hydroxybutyrate (PHB), in which one end of the chain terminates with a carboxyl group) in the form of hydrated, amorphous nanogranules in cells. However, it is not clear what drives the structure of these biomaterials inside bacterial cells. Here, we determined that calcium guides intracellular formation of PHB nanogranules. Our systematic study using the surface zeta potential measurement and the carboxyl-specific SYTO-62 dye binding assay showed that the terminal carboxyl is not exposed to the granule surface but is buried inside native “unit-granules” comprising the mature granule. Extracellular Ca2+ was found to mediate the formation of these PHB unit-granules, with uptaken Ca2+ stored inside the granules. Comparative [Ca2+]-dependent fluorescence spectroscopy revealed that the native granules in Cupriavidus necator H16 act as a Ca2+ storage system, presumably for the regulation of its cytosolic Ca2+ level, but those from recombinant Escherichia coli do not. This study reveals intimate links between Ca2+ and native granule formation, and establishes a novel mechanism that intracellular PHB granules function as Ca2+ storage in order to relieve soil bacteria from Ca2+ stress.
Collapse
Affiliation(s)
- Baoxia Tian
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 23003, People's Republic of China
| | - Mohsin Shah
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Department of Physiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 40000, Pakistan
| | - Mun Hwan Choi
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jong Kook Rho
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Yeol Lee
- Systems & Synthetic Agrobiotech Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sung Chul Yoon
- Nano-Biomaterials Science Laboratory, Division of Applied Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea. .,Systems & Synthetic Agrobiotech Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
19
|
Affiliation(s)
- Ashoka Chary Taviti
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Manipal Academy of Higher Education, Manipal, India
| | - Tushar Kant Beuria
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
20
|
Schoenemann KM, Krupka M, Rowlett VW, Distelhorst SL, Hu B, Margolin W. Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling. Mol Microbiol 2018; 109:676-693. [PMID: 29995995 DOI: 10.1111/mmi.14069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2018] [Indexed: 01/19/2023]
Abstract
Escherichia coli requires FtsZ, FtsA and ZipA proteins for early stages of cell division, the latter two tethering FtsZ polymers to the cytoplasmic membrane. Hypermorphic mutants of FtsA such as FtsA* (R286W) map to the FtsA self-interaction interface and can bypass the need for ZipA. Purified FtsA forms closed minirings on lipid monolayers that antagonize bundling of FtsZ protofilaments, whereas FtsA* forms smaller oligomeric arcs that enable bundling. Here, we examined three additional FtsA*-like mutant proteins for their ability to form oligomers on lipid monolayers and bundle FtsZ. Surprisingly, all three formed distinct structures ranging from mostly arcs (T249M), a mixture of minirings, arcs and straight filaments (Y139D) or short straight double filaments (G50E). All three could form filament sheets at higher concentrations with added ATP. Despite forming these diverse structures, all three mutant proteins acted like FtsA* to enable FtsZ protofilament bundling on lipid monolayers. Synthesis of the FtsA*-like proteins in vivo suppressed the toxic effects of a bundling-defective FtsZ, exacerbated effects of a hyper-bundled FtsZ, and rescued some thermosensitive cell division alleles. Together, the data suggest that conversion of FtsA minirings into any type of non-miniring oligomer can promote progression of cytokinesis through FtsZ bundling and other mechanisms.
Collapse
Affiliation(s)
- Kara M Schoenemann
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Steven L Distelhorst
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030
| |
Collapse
|
21
|
Guan F, Yu J, Yu J, Liu Y, Li Y, Feng XH, Huang KC, Chang Z, Ye S. Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division. eLife 2018; 7:35578. [PMID: 29889022 PMCID: PMC6050046 DOI: 10.7554/elife.35578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/10/2018] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic tubulin homolog FtsZ polymerizes into protofilaments, which further assemble into higher-order structures at future division sites to form the Z-ring, a dynamic structure essential for bacterial cell division. The precise nature of interactions between FtsZ protofilaments that organize the Z-ring and their physiological significance remain enigmatic. In this study, we solved two crystallographic structures of a pair of FtsZ protofilaments, and demonstrated that they assemble in an antiparallel manner through the formation of two different inter-protofilament lateral interfaces. Our in vivo photocrosslinking studies confirmed that such lateral interactions occur in living cells, and disruption of the lateral interactions rendered cells unable to divide. The inherently weak lateral interactions enable FtsZ protofilaments to self-organize into a dynamic Z-ring. These results have fundamental implications for our understanding of bacterial cell division and for developing antibiotics that target this key process.
Collapse
Affiliation(s)
- Fenghui Guan
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Jiayu Yu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jie Yu
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Yang Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Ying Li
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Zengyi Chang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Sheng Ye
- Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.,Life Sciences Institute, Zheijiang University, Hangzhou, China
| |
Collapse
|
22
|
Li ZH, Zhu YM, Zhang J, Yang CJ, Zhang TY, Yu HQ. Evaluation of robustness of activated sludge using calcium-induced enhancement of respiration. BIORESOURCE TECHNOLOGY 2018; 253:55-63. [PMID: 29328935 DOI: 10.1016/j.biortech.2018.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Robustness of an activated sludge system, describing uncertainty and operational risk, was evaluated using the absence or presence of calcium-induced enhancement of respiration (CaER) effect. Generally, the fast-growing system was susceptible to external environmental variations, of which the sludge exhibited significant CaER effect under normal operational conditions, while the slow growing system showed less significant CaER effect. However, sludge in both systems exhibited CaER effect under stressed conditions of decreasing temperature or ammonia shocking. Therefore, the absence of CaER effect indicates a more robust system, while the presence of CaER effect indicates a susceptible system. Additionally, a method to identify safe and dangerous shocking was established by a hybrid usage of absence or presence of CaER effect and recovery index (RI) curve type. The evaluation of robustness could help determining when adjustment should be really taken to cope with the uncertainty, and thus holds a high promise for field application.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yuan-Mo Zhu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jing Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Cheng-Jian Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tian-Yu Zhang
- Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717-2400, USA
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Krupka M, Margolin W. Unite to divide: Oligomerization of tubulin and actin homologs regulates initiation of bacterial cell division. F1000Res 2018; 7:235. [PMID: 29560258 PMCID: PMC5832921 DOI: 10.12688/f1000research.13504.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 01/05/2023] Open
Abstract
To generate two cells from one, bacteria such as
Escherichia coli use a complex of membrane-embedded proteins called the divisome that synthesize the division septum. The initial stage of cytokinesis requires a tubulin homolog, FtsZ, which forms polymers that treadmill around the cell circumference. The attachment of these polymers to the cytoplasmic membrane requires an actin homolog, FtsA, which also forms dynamic polymers that directly bind to FtsZ. Recent evidence indicates that FtsA and FtsZ regulate each other’s oligomeric state in
E. coli to control the progression of cytokinesis, including the recruitment of septum synthesis proteins. In this review, we focus on recent advances in our understanding of protein-protein association between FtsZ and FtsA in the initial stages of divisome function, mainly in the well-characterized
E. coli system.
Collapse
Affiliation(s)
- Marcin Krupka
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, USA
| |
Collapse
|
24
|
Effects of EGTA on cell surface structures of Corynebacterium glutamicum. Arch Microbiol 2017; 200:281-289. [DOI: 10.1007/s00203-017-1445-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 11/25/2022]
|
25
|
Kumar P, Yadav A, Fishov I, Feingold M. Z-ring Structure and Constriction Dynamics in E. coli. Front Microbiol 2017; 8:1670. [PMID: 28959238 PMCID: PMC5603902 DOI: 10.3389/fmicb.2017.01670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/17/2017] [Indexed: 12/04/2022] Open
Abstract
The Z-ring plays a central role in bacterial division. It consists of FtsZ filaments, but the way these reorganize in the ring-like structure during septation remains largely unknown. Here, we measure the effective constriction dynamics of the ring. Using an oscillating optical trap, we can switch individual rod-shaped E. coli cells between horizontal and vertical orientations. In the vertical orientation, the fluorescent Z-ring image appears as a symmetric circular structure that renders itself to quantitative analysis. In the horizontal orientation, we use phase-contrast imaging to determine the extent of the cell constriction and obtain the effective time of division. We find evidence that the Z-ring constricts at a faster rate than the cell envelope such that its radial width (inwards from the cytoplasmic membrane) grows during septation. In this respect, our results differ from those recently obtained using photoactivated localization microscopy (PALM) where the radial width of the Z-ring was found to be approximately constant as the ring constricts. A possible reason for the different behavior of the constricting Z-rings could be the significant difference in the corresponding cell growth rates.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Physics, Ben-Gurion University of the NegevBeer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Amarjeet Yadav
- Department of Physics, Ben-Gurion University of the NegevBeer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Mario Feingold
- Department of Physics, Ben-Gurion University of the NegevBeer Sheva, Israel.,The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the NegevBeer Sheva, Israel
| |
Collapse
|
26
|
Abstract
FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
27
|
Woldemeskel SA, McQuillen R, Hessel AM, Xiao J, Goley ED. A conserved coiled-coil protein pair focuses the cytokinetic Z-ring in Caulobacter crescentus. Mol Microbiol 2017; 105:721-740. [PMID: 28613431 DOI: 10.1111/mmi.13731] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 11/27/2022]
Abstract
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ-binding protein, promotes Z-ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled-coil protein we named ZauP. ZapA and ZauP co-localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z-rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z-ring through a bundling-independent mechanism. The zauPzapA operon is present in diverse Gram-negative bacteria, indicating a common mechanism for Z-ring assembly.
Collapse
Affiliation(s)
- Selamawit Abi Woldemeskel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan McQuillen
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex M Hessel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Goley
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Chen Y, Porter K, Osawa M, Augustus AM, Milam SL, Joshi C, Osteryoung KW, Erickson HP. The Chloroplast Tubulin Homologs FtsZA and FtsZB from the Red Alga Galdieria sulphuraria Co-assemble into Dynamic Filaments. J Biol Chem 2017; 292:5207-5215. [PMID: 28174299 DOI: 10.1074/jbc.m116.767715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/06/2017] [Indexed: 01/09/2023] Open
Abstract
FtsZ is a homolog of eukaryotic tubulin and is present in almost all bacteria and many archaea, where it is the major cytoskeletal protein in the Z ring, required for cell division. Unlike some other cell organelles of prokaryotic origin, chloroplasts have retained FtsZ as an essential component of the division machinery. However, chloroplast FtsZs have been challenging to study because they are difficult to express and purify. To this end, we have used a FATT tag expression system to produce as soluble proteins the two chloroplast FtsZs from Galdieria sulphuraria, a thermophilic red alga. GsFtsZA and GsFtsZB assembled individually in the presence of GTP, forming large bundles of protofilaments. GsFtsZA also assembled in the presence of GDP, the first member of the FtsZ/tubulin superfamily to do so. Mixtures of GsFtsZA and GsFtsZB assembled protofilament bundles and hydrolyzed GTP at a rate approximately equal to the sum of their individual rates, suggesting a random co-assembly. GsFtsZA assembly by itself in limiting GTP gave polymers that remained stable for a prolonged time. However, when GsFtsZB was added, the co-polymers disassembled with enhanced kinetics, suggesting that the GsFtsZB regulates and enhances disassembly dynamics. GsFtsZA-mts (where mts is a membrane-targeting amphipathic helix) formed Z ring-like helices when expressed in Escherichia coli Co-expression of GsFtsZB (without an mts) gave co-assembly of both into similar helices. In summary, we provide biochemical evidence that GsFtsZA assembles as the primary scaffold of the chloroplast Z ring and that GsFtsZB co-assembly enhances polymer disassembly and dynamics.
Collapse
Affiliation(s)
- Yaodong Chen
- From the College of Life Science, Northwest University, Xi'an, ShaanXi, China 710069.,the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Katie Porter
- the Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312
| | - Masaki Osawa
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Anne Marie Augustus
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Sara L Milam
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Chandra Joshi
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| | - Katherine W Osteryoung
- the Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1312
| | - Harold P Erickson
- the Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710-3709, and
| |
Collapse
|
29
|
Synthesis of curcumin/polyrhodanine nanocapsules with antimicrobial properties by oxidative polymerization using the Fenton reaction. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Biomineralization Patterns of Intracellular Carbonatogenesis in Cyanobacteria: Molecular Hypotheses. MINERALS 2016. [DOI: 10.3390/min6010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Arjes HA, Lai B, Emelue E, Steinbach A, Levin PA. Mutations in the bacterial cell division protein FtsZ highlight the role of GTP binding and longitudinal subunit interactions in assembly and function. BMC Microbiol 2015; 15:209. [PMID: 26463348 PMCID: PMC4603965 DOI: 10.1186/s12866-015-0544-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/02/2015] [Indexed: 11/28/2022] Open
Abstract
Background Assembly of the tubulin-like GTPase, FtsZ, at the future division site initiates the process of bacterial cytokinesis. The FtsZ ring serves as a platform for assembly of the division machinery and constricts at the leading edge of the invaginating septum during cytokinesis. In vitro, FtsZ assembles in a GTP-dependent manner, forming straight filaments that curve upon GTP hydrolysis. FtsZ binds but cannot hydrolyze GTP as a monomer. Instead, the active site for GTP hydrolysis is formed at the monomer-monomer interface upon dimerization. While the dynamics of GTP hydrolysis and assembly have been extensively studied in vitro, significantly less is known about the role of GTP binding and hydrolysis in vivo. ftsZ84, a GTPase defective allele of Escherichia coli ftsZ, provides a striking example of the disconnect between in vivo and in vitro FtsZ assembly. Results Although ftsZ84 mutants are defective for FtsZ ring formation and division under nonpermissive conditions, they are near wild type for ring formation and division under permissive conditions. In vitro, however, purified FtsZ84 is defective in GTP binding, hydrolysis and assembly under standard reaction conditions. To clarify the nature of the FtsZ84 assembly defect, we isolated and characterized three intragenic suppressors of ftsZ84. All three suppressor mutations increased the apparent affinity of FtsZ84 for GTP, consistent with improved subunit-subunit interactions along the longitudinal interface. Although kinetic analysis indicates that the suppressor mutations increase the affinity of FtsZ84 for GTP, all three exhibit reduced rates of GTP hydrolysis and fail to support assembly in vitro. Conclusion Together, our data suggest that FtsZ, and potentially other enzymes whose assembly is similarly regulated, can compensate for defects in catalysis through increases in substrate binding and subunit-subunit interactions. In addition, these results highlight the dichotomy between commonly used in vitro assembly conditions and FtsZ ring formation in the complex intracellular milieu. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0544-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi A Arjes
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA. .,Present address: Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Bradley Lai
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Ezinwanne Emelue
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Adriana Steinbach
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
32
|
Ortiz C, Natale P, Cueto L, Vicente M. The keepers of the ring: regulators of FtsZ assembly. FEMS Microbiol Rev 2015; 40:57-67. [PMID: 26377318 DOI: 10.1093/femsre/fuv040] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
FtsZ, a GTPase distributed in the cytoplasm of most bacteria, is the major component of the machinery responsible for division (the divisome) in Escherichia coli. It interacts with additional proteins that contribute to its function forming a ring at the midcell that is essential to constrict the membrane. FtsZ is indirectly anchored to the membrane and it is prevented from polymerizing at locations where septation is undesired. Several properties of FtsZ are mediated by other proteins that function as keepers of the ring. ZipA and FtsA serve to anchor the ring, and together with a set of Zap proteins, they stabilize it. The MinCDE and SlmA proteins prevent the polymerization of FtsZ at sites other than the midcell. Finally, ClpP degrades FtsZ, an action prevented by ZipA. Many of the FtsZ keepers interact with FtsZ through a central hub located at its carboxy terminal end.
Collapse
Affiliation(s)
- Cristina Ortiz
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| | - Paolo Natale
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| | - Laura Cueto
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC), C/ Darwin 3, Madrid 28049, Spain
| |
Collapse
|
33
|
Haeusser DP, Rowlett VW, Margolin W. A mutation in Escherichia coli ftsZ bypasses the requirement for the essential division gene zipA and confers resistance to FtsZ assembly inhibitors by stabilizing protofilament bundling. Mol Microbiol 2015; 97:988-1005. [PMID: 26046682 DOI: 10.1111/mmi.13081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
The earliest step in Escherichia coli cell division consists of the assembly of FtsZ protein into a proto-ring structure, tethered to the cytoplasmic membrane by FtsA and ZipA. The proto-ring then recruits additional cell division proteins to form the divisome. Previously we described an ftsZ allele, ftsZL169R , which maps to the side of the FtsZ subunit and confers resistance to FtsZ assembly inhibitory factors including Kil of bacteriophage λ. Here we further characterize this allele and its mechanism of resistance. We found that FtsZL169R permits the bypass of the normally essential ZipA, a property previously observed for FtsA gain-of-function mutants such as FtsA* or increased levels of the FtsA-interacting protein FtsN. Similar to FtsA*, FtsZL169R also can partially suppress thermosensitive mutants of ftsQ or ftsK, which encode additional divisome proteins, and confers strong resistance to excess levels of FtsA, which normally inhibit FtsZ ring function. Additional genetic and biochemical assays provide further evidence that FtsZL169R enhances FtsZ protofilament bundling, thereby conferring resistance to assembly inhibitors and bypassing the normal requirement for ZipA. This work highlights the importance of FtsZ protofilament bundling during cell division and its likely role in regulating additional divisome activities.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - Veronica W Rowlett
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX, 77030, USA
| |
Collapse
|
34
|
Li X, Ma S. Advances in the discovery of novel antimicrobials targeting the assembly of bacterial cell division protein FtsZ. Eur J Med Chem 2015; 95:1-15. [DOI: 10.1016/j.ejmech.2015.03.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 01/23/2023]
|
35
|
Arumugam S, Petrov EP, Schwille P. Cytoskeletal pinning controls phase separation in multicomponent lipid membranes. Biophys J 2015; 108:1104-13. [PMID: 25762322 PMCID: PMC4375424 DOI: 10.1016/j.bpj.2014.12.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/22/2022] Open
Abstract
We study the effect of a minimal cytoskeletal network formed on the surface of giant unilamellar vesicles by the prokaryotic tubulin homolog, FtsZ, on phase separation in freestanding lipid membranes. FtsZ has been modified to interact with the membrane through a membrane targeting sequence from the prokaryotic protein MinD. FtsZ with the attached membrane targeting sequence efficiently forms a highly interconnected network on membranes with a concentration-dependent mesh size, much similar to the eukaryotic cytoskeletal network underlying the plasma membrane. Using giant unilamellar vesicles formed from a quaternary lipid mixture, we demonstrate that the artificial membrane-associated cytoskeleton, on the one hand, suppresses large-scale phase separation below the phase transition temperature, and, on the other hand, preserves phase separation above the transition temperature. Our experimental observations support the ideas put forward in our previous simulation study: In particular, the picket fence effect on phase separation may explain why micrometer-scale membrane domains are observed in isolated, cytoskeleton-free giant plasma membrane vesicles, but not in intact cell membranes. The experimentally observed suppression of large-scale phase separation much below the transition temperatures also serves as an argument in favor of the cryoprotective role of the cytoskeleton.
Collapse
Affiliation(s)
- Senthil Arumugam
- Institut Curie, Centre de Recherche, Paris, France; CNRS, UMR 168, Physico-chimie Curie, Paris, France; CNRS, UMR 3666, Endocytic Trafficking and Therapeutic Delivery Group, Paris, France
| | - Eugene P Petrov
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, Martinsried, Germany.
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, Martinsried, Germany.
| |
Collapse
|
36
|
Broughton CE, Roper DI, Van Den Berg HA, Rodger A. Bacterial cell division: experimental and theoretical approaches to the divisome. Sci Prog 2015; 98:313-45. [PMID: 26790174 PMCID: PMC10365498 DOI: 10.3184/003685015x14461391862881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell division is a key event in the bacterial life cycle. It involves constriction at the midcell, so that one cell can give rise to two daughter cells. This constriction is mediated by a ring composed offibrous multimers of the protein FtsZ. However a host of additional factors is involved in the formation and dynamics of this "Z-ring" and this complicated apparatus is collectively known as the "divisome". We review the literature, with an emphasis on mathematical modelling, and show how such theoretical efforts have helped experimentalists to make sense of the at times bewildering data, and plan further experiments.
Collapse
|
37
|
Norris V, Reusch RN, Igarashi K, Root-Bernstein R. Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells. Biol Direct 2014; 10:28. [PMID: 25470982 PMCID: PMC4264330 DOI: 10.1186/s13062-014-0028-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/24/2014] [Indexed: 01/29/2023] Open
Abstract
Background Fundamental problems faced by the protocells and their modern descendants include how to go from one phenotypic state to another; escape from a basin of attraction in the space of phenotypes; reconcile conflicting growth and survival strategies (and thereby live on ‘the scales of equilibria’); and create a coherent, reproducible phenotype from a multitude of constituents. Presentation of the hypothesis The solutions to these problems are likely to be found with the organic and inorganic molecules and inorganic ions that constituted protocells, which we term SUMIs for Simple Universal Molecules and Ions. These SUMIs probably included polyphosphate (PolyP) as a source of energy and of phosphate; poly-(R)-3-hydroxybutyrate (PHB) as a source of carbon and as a transporter in association with PolyP; polyamines as a source of nitrogen; lipids as precursors of membranes; as well as peptides, nucleic acids, and calcium. Here, we explore the hypothesis that the direct interactions between PHB, PolyP, polyamines and lipids – modulated by calcium – played a central role in solving the fundamental problems faced by early and modern cells. Testing the hypothesis We review evidence that SUMIs (1) were abundant and available to protocells; (2) are widespread in modern cells; (3) interact with one another and other cellular constituents to create structures with new functions surprisingly similar to those of proteins and RNA; (4) are essential to creating coherent phenotypes in modern bacteria. SUMIs are therefore natural candidates for reducing the immensity of phenotype space and making the transition from a “primordial soup” to living cells. Implications of the hypothesis We discuss the relevance of the SUMIs and their interactions to the ideas of molecular complementarity, composomes (molecular aggregates with hereditary properties based on molecular complementarity), and a prebiotic ecology of co-evolving populations of composomes. In particular, we propose that SUMIs might limit the initial phenotype space of composomes in a coherent way. As examples, we propose that acidocalcisomes arose from interactions and self-selection among SUMIs and that the phosphorylation of proteins in modern cells had its origin in the covalent modification of proteins by PHB. Reviewers This article was reviewed by Doron Lancet and Kepa Ruiz-Mirazo.
Collapse
|
38
|
Chatterjee A, Chakrabarti G. Dimethyl sulphoxide and Ca2+ stimulate assembly of Vibrio cholerae FtsZ. Biochimie 2014; 105:64-75. [DOI: 10.1016/j.biochi.2014.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
39
|
Camberg JL, Viola MG, Rea L, Hoskins JR, Wickner S. Location of dual sites in E. coli FtsZ important for degradation by ClpXP; one at the C-terminus and one in the disordered linker. PLoS One 2014; 9:e94964. [PMID: 24722340 PMCID: PMC3983244 DOI: 10.1371/journal.pone.0094964] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/21/2014] [Indexed: 12/15/2022] Open
Abstract
ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction. The FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured linker region and a C-terminal conserved region. To better understand substrate selection by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is located 30 residues away from the C-terminus in the unstructured linker region that connects the polymerization domain to the C-terminal region. The other region is near the FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused the protein to be more stable and mutation of both caused an additive effect, suggesting that both regions are important. We also observed that in vitro MinC inhibits degradation of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that are important for degradation by ClpXP are important for binding MinC.
Collapse
Affiliation(s)
- Jodi L. Camberg
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Cell and Molecular Biology, College of Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
- * E-mail: (JLC); (SW)
| | - Marissa G. Viola
- Department of Cell and Molecular Biology, College of Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Leslie Rea
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joel R. Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JLC); (SW)
| |
Collapse
|
40
|
Bacterial cell division proteins as antibiotic targets. Bioorg Chem 2014; 55:27-38. [PMID: 24755375 DOI: 10.1016/j.bioorg.2014.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/21/2022]
Abstract
Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of proteins and the availability of crystal structures has increased our knowledge on bacterial cell division considerably in this century. Consequently, bacterial cell division proteins are more and more recognized as potential new antibiotic targets. An international effort to find small molecules that inhibit the cell division initiating protein FtsZ has yielded many compounds of which some are promising as leads for preclinical use. The essential transglycosylase activity of peptidoglycan synthases has recently become accessible to inhibitor screening. Enzymatic assays for and structural information on essential integral membrane proteins such as MraY and FtsW involved in lipid II (the peptidoglycan building block precursor) biosynthesis have put these proteins on the list of potential new targets. This review summarises and discusses the results and approaches to the development of lead compounds that inhibit bacterial cell division.
Collapse
|
41
|
MinCDE exploits the dynamic nature of FtsZ filaments for its spatial regulation. Proc Natl Acad Sci U S A 2014; 111:E1192-200. [PMID: 24707052 DOI: 10.1073/pnas.1317764111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In Escherichia coli, a contractile ring (Z-ring) is formed at midcell before cytokinesis. This ring consists primarily of FtsZ, a tubulin-like GTPase, that assembles into protofilaments similar to those in microtubules but different in their suprastructures. The Min proteins MinC, MinD, and MinE are determinants of Z-ring positioning in E. coli. MinD and MinE oscillate from pole to pole, and genetic and biochemical evidence concludes that MinC positions the Z-ring by coupling its assembly to the oscillations by direct inhibitory interaction. The mechanism of inhibition of FtsZ polymerization and, thus, positioning by MinC, however, is not understood completely. Our in vitro reconstitution experiments suggest that the Z-ring consists of dynamic protofilament bundles in which monomers constantly are exchanged throughout, stochastically creating protofilament ends along the length of the filament. From the coreconstitution of FtsZ with MinCDE, we propose that MinC acts on the filaments in two ways: by increasing the detachment rate of FtsZ-GDP within the filaments and by reducing the attachment rate of FtsZ monomers to filaments by occupying binding sites on the FtsZ filament lattice. Furthermore, our data show that the MinCDE system indeed is sufficient to cause spatial regulation of FtsZ, required for Z-ring positioning.
Collapse
|
42
|
Abstract
Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. Bacterial cell division has mainly been characterized in vitro. In this report, we could identify ZapE as a novel cell division protein which is not essential in vitro but is required during an infectious process. The bacterial cell division process relies on the assembly, positioning, and constriction of FtsZ ring (the so-called Z-ring). Among nonessential cell division proteins recently identified, ZapE is the first in which detection at the Z-ring correlates with its constriction. We demonstrate that ZapE abundance has to be tightly regulated to allow cell division to occur; absence or overexpression of ZapE leads to bacterial filamentation. As zapE is not essential, we speculate that additional Z-ring destabilizing proteins transiently recruited during late cell division process might be identified in the future.
Collapse
|
43
|
Haeusser DP, Hoashi M, Weaver A, Brown N, Pan J, Sawitzke JA, Thomason LC, Court DL, Margolin W. The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet 2014; 10:e1004217. [PMID: 24651041 PMCID: PMC3961180 DOI: 10.1371/journal.pgen.1004217] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA.
Collapse
Affiliation(s)
- Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Marina Hoashi
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Anna Weaver
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Nathan Brown
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James Pan
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James A. Sawitzke
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Lynn C. Thomason
- Frederick National Laboratory for Cancer Research, Leidos Biomedical, Inc., Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Donald L. Court
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
44
|
Modi KM, Tewari R, Misra HS. FtsZDr, a tubulin homologue in radioresistant bacterium Deinococcus radiodurans is characterized as a GTPase exhibiting polymerization/depolymerization dynamics in vitro and FtsZ ring formation in vivo. Int J Biochem Cell Biol 2014; 50:38-46. [PMID: 24502896 DOI: 10.1016/j.biocel.2014.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 11/17/2022]
Abstract
The GTPase-dependent polymerization/depolymerization dynamics of FtsZ regulate bacterial cell division in vivo. Deinococcus radiodurans is better known for its extraordinary radioresistance and therefore, the characterization of FtsZ of this bacterium (FtsZDr) would be required to understand the mechanisms underlying regulation of cell division in response to DNA damage. Recombinant FtsZDr bound to GTP and showed GTPase activity. It produced bundles of protofilaments in the presence of either GTP or Mg2+ ions. But the formation of the higher size ordered structures required both GTP and Mg2+ in vitro. It showed polymerization/depolymerization dynamics as a function of GTP and Mg2+. Interestingly, ATP interacted with FtsZDr and stimulated its GTPase activity by ∼2-fold possibly by increasing both substrate affinity and rate of reaction. FtsZDr-GFP expressing in D. radiodurans produced typical Z ring perpendicular to the plane of first cell division. These results suggested that FtsZDr is a GTPase in vitro and produces typical Z ring at the mid cell position in D. radiodurans.
Collapse
Affiliation(s)
- Kruti Mehta Modi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Raghvendra Tewari
- Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| |
Collapse
|
45
|
Buske PJ, Levin PA. A flexible C-terminal linker is required for proper FtsZ assembly in vitro and cytokinetic ring formation in vivo. Mol Microbiol 2013; 89:249-63. [PMID: 23692518 DOI: 10.1111/mmi.12272] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2013] [Indexed: 02/01/2023]
Abstract
Assembly of the cytoskeletal protein FtsZ into a ring-like structure is required for bacterial cell division. Structurally, FtsZ consists of four domains: the globular N-terminal core, a flexible linker, 8-9 conserved residues implicated in interactions with modulatory proteins, and a highly variable set of 4-10 residues at its very C terminus. Largely ignored and distinguished by lack of primary sequence conservation, the linker is presumed to be intrinsically disordered. Here we employ genetics, biochemistry and cytology to dissect the role of the linker in FtsZ function. Data from chimeric FtsZs substituting the native linker with sequences from unrelated FtsZs as well as a helical sequence from human beta-catenin indicate that while variations in the primary sequence are well tolerated, an intrinsically disordered linker is essential for Bacillus subtilis FtsZ assembly. Linker lengths ranging from 25 to 100 residues supported FtsZ assembly, but replacing the B. subtilis FtsZ linker with a 249-residue linker from Agrobacterium tumefaciens FtsZ interfered with cell division. Overall, our results support a model in which the linker acts as a flexible tether allowing FtsZ to associate with the membrane through a conserved C-terminal domain while simultaneously interacting with itself and modulatory proteins in the cytoplasm.
Collapse
Affiliation(s)
- P J Buske
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | | |
Collapse
|
46
|
Jones TH, Vail KM, McMullen LM. Filament formation by foodborne bacteria under sublethal stress. Int J Food Microbiol 2013; 165:97-110. [PMID: 23727653 DOI: 10.1016/j.ijfoodmicro.2013.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
Abstract
A number of studies have reported that pathogenic and nonpathogenic foodborne bacteria have the ability to form filaments in microbiological growth media and foods after prolonged exposure to sublethal stress or marginal growth conditions. In many cases, nucleoids are evenly spaced throughout the filamentous cells but septa are not visible, indicating that there is a blockage in the early steps of cell division but the mechanism behind filament formation is not clear. The formation of filamentous cells appears to be a reversible stress response. When filamentous cells are exposed to more favorable growth conditions, filaments divide rapidly into a number of individual cells, which may have major health and regulatory implications for the food industry because the potential numbers of viable bacteria will be underestimated and may exceed tolerated levels in foods when filamentous cells that are subjected to sublethal stress conditions are enumerated. Evidence suggests that filament formation under a number of sublethal stresses may be linked to a reduced energy state of bacterial cells. This review focuses on the conditions and extent of filament formation by foodborne bacteria under conditions that are used to control the growth of microorganisms in foods such as suboptimal pH, high pressure, low water activity, low temperature, elevated CO2 and exposure to antimicrobial substances as well as lack a of nutrients in the food environment and explores the impact of the sublethal stresses on the cell's inability to divide.
Collapse
Affiliation(s)
- Tineke H Jones
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C&E Trail, Lacombe, Alberta T4L 1W1, Canada.
| | | | | |
Collapse
|
47
|
Abstract
Prokaryotic cell division is a highly orchestrated process requiring the formation of a wide range of biomolecular complexes, perhaps the most important of these involving the prokaryotic tubulin homologue FtsZ, a fibre-forming GTPase. FtsZ assembles into a ring (the Z-ring) on the inner surface of the inner membrane at the site of cell division. The Z-ring then acts as a recruitment site for at least ten other proteins which form the division apparatus. One of these proteins, ZapA, acts to enhance lateral associations between FtsZ fibres to form bundles. Previously we have expressed, purified and crystallized ZapA and demonstrated that it exists as a tetramer. We also showed that ZapA binds to FtsZ polymers, strongly promoting their bundling, while inhibiting FtsZ GTPase activity by inducing conformational changes in the bound nucleotide. In the present study we investigate the importance of the tetramerization of ZapA on its function. We generated a number of mutant forms of ZapA with the aim of disrupting the dimer-dimer interface. We show that one of these mutants, I83E, is fully folded and binds to FtsZ, but is a constitutive dimer. Using this mutant we show that tetramerization is a requirement for both FtsZ bundling and GTPase modulation activities.
Collapse
|
48
|
Identification of the SlmA active site responsible for blocking bacterial cytokinetic ring assembly over the chromosome. PLoS Genet 2013; 9:e1003304. [PMID: 23459366 PMCID: PMC3573117 DOI: 10.1371/journal.pgen.1003304] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
Bacterial cells use chromosome-associated division inhibitors to help coordinate the processes of DNA replication and segregation with cytokinesis. SlmA from Escherichia coli, a member of the tetracycline repressor (TetR)-like protein family, is one example of this class of regulator. It blocks the assembly of the bacterial cytokinetic ring by interfering with the polymerization of the tubulin-like FtsZ protein in a manner that is dramatically stimulated upon specific DNA binding. Here we used a combination of molecular genetics and biochemistry to identify the active site of SlmA responsible for disrupting FtsZ polymerization. Interestingly, this site maps to a region of SlmA that in the published DNA-free structure is partially occluded by the DNA-binding domains. In this conformation, the SlmA structure resembles the drug/inducer-bound conformers of other TetR-like proteins, which in the absence of inducer require an inward rotation of their DNA-binding domains to bind successive major grooves on operator DNA. Our results are therefore consistent with a model in which DNA-binding activates SlmA by promoting a rotational movement of the DNA-binding domains that fully exposes the FtsZ-binding sites. SlmA may thus represent a special subclass of TetR-like proteins that have adapted conformational changes normally associated with inducer sensing in order to modulate an interaction with a partner protein. In this case, the adaptation ensures that SlmA only blocks cytokinesis in regions of the cell occupied by the origin-proximal portion of the chromosome where SlmA-binding sites are enriched.
Collapse
|
49
|
Wang T, Zhang J, Zhang X, Xu C, Tu X. Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca2+-binding module. Sci Rep 2013; 3:1079. [PMID: 23326635 PMCID: PMC3546320 DOI: 10.1038/srep01079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/03/2012] [Indexed: 01/22/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-β-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca(2+) binding domain. The structure of the Big domain is different from those of the well known Ca(2+) binding domains, therefore revealing a novel Ca(2+)-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca(2+). We are the first to report the interactions between the Big domain and Ca(2+) in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis.
Collapse
Affiliation(s)
- Tao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | | | | | | | | |
Collapse
|
50
|
Involvement of minerals in adherence of Legionella pneumophila to surfaces. Curr Microbiol 2013; 66:437-42. [PMID: 23292133 DOI: 10.1007/s00284-012-0295-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/07/2012] [Indexed: 02/05/2023]
Abstract
Legionella pneumophila is the causative agent of 90 % of Legionnaires' disease cases. This bacterium lives naturally in fresh water and can colonize biofilms, which play an important role in the protection of Legionella against environmental stress factors. Relationship between the presence of minerals in water and Legionella adherence to surfaces is not well-known. In this study, we studied influence of minerals on bacterial adherence. For the first time, to our knowledge, this report shows that calcium and magnesium in a less extent, enhances the adherence of Legionella to surfaces compared to the bacteria behavior in distilled water. Treatment with proteinase K of live cells showed that surface proteins do not seem to play a crucial role in bacteria adherence to surfaces. Our results represent a first step in understanding effect of ions on Legionella adherence to surfaces. Such field of research could be helpful to better understand biofilm colonization by this bacterium to improve Legionella risk management in water networks.
Collapse
|