1
|
Wang BA, Mehta HM, Penumutchu SR, Tolbert BS, Cheng C, Kimmel M, Haferlach T, Maciejewski JP, Corey SJ. Alternatively spliced CSF3R isoforms in SRSF2 P95H mutated myeloid neoplasms. Leukemia 2022; 36:2499-2508. [PMID: 35941213 DOI: 10.1038/s41375-022-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Alternatively spliced colony stimulating factor 3 receptor (CSF3R) isoforms Class III and Class IV are observed in myelodysplastic syndromes (MDS), but their roles in disease remain unclear. We report that the MDS-associated splicing factor SRSF2 affects the expression of Class III and Class IV isoforms and perturbs granulopoiesis. Add-back of the Class IV isoform in Csf3r-null mouse progenitor cells increased granulocyte progenitors with impaired neutrophil differentiation, while add-back of the Class III produced dysmorphic neutrophils in fewer numbers. These CSF3R isoforms were elevated in patients with myeloid neoplasms harboring SRSF2 mutations. Using in vitro splicing assays, we confirmed increased Class III and Class IV transcripts when SRSF2 P95 mutations were co-expressed with the CSF3R minigene in K562 cells. Since SRSF2 regulates splicing partly by recognizing exonic splicing enhancer (ESE) sequences on pre-mRNA, deletion of either ESE motifs within CSF3R exon 17 decreased Class IV transcript levels without affecting Class III. CD34+ cells expressing SRSF2 P95H showed impaired neutrophil differentiation in response to G-CSF and was accompanied by increased levels of Class IV. Our findings suggest that SRSF2 P95H promotes Class IV splicing by binding to key ESE sequences in CSF3R exon 17, and that SRSF2, when mutated, contributes to dysgranulopoiesis.
Collapse
Affiliation(s)
- Borwyn A Wang
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Hrishikesh M Mehta
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marek Kimmel
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, USA.,Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
2
|
Neuronal Pnn Deficiency Increases Oxidative Stress and Exacerbates Cerebral Ischemia/Reperfusion Injury in Mice. Antioxidants (Basel) 2022; 11:antiox11030466. [PMID: 35326115 PMCID: PMC8944488 DOI: 10.3390/antiox11030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Cerebral stroke remains one of the leading causes of death worldwide. Ischemic stroke caused by the sudden loss of blood flow in brain is the major type of cerebral stroke. In addition to necrotic cell death in the ischemic core region, neuronal apoptosis is usually observed in the ischemic penumbra. Pnn, a multi-functional protein, participates in cellular proliferation, migration, differentiation, apoptosis as well as cell–cell interaction through its abilities in regulating gene transcription and mRNA processing. Our recent studies have demonstrated that Pnn has a cell type-specific distribution manner in neural cells under ischemic injury and plays a protective role in astrocytes against ischemic stress. In this study, we generated an inducible neuron-specific Pnn deficiency mouse model to further investigate the physiological role of Pnn in neurons. To directly examine the role of neuronal Pnn in ischemic stress, four weeks after induction of Pnn deficiency in neurons, middle cerebral artery occlusion (MCAO) was applied to induce cerebral ischemia/reperfusion in mice. In the cerebrum and hippocampus with neuronal Pnn depletion, the expression of SRSF2, a mRNA splicing regulator, was increased, while the expression of SRSF1, a functional antagonist of SRSF2, was reduced. Expression levels of ROS generators (NOX-1 and NOX-2) and antioxidant proteins (GR, HO-1, NQO-1) were upregulated in brain tissue with loss of neuronal Pnn, echoing an increase in oxidized proteins in cortical and hippocampal neurons. Furthermore, the expression of DNA damage marker, p53bp1, was found in the choroid plexus of mice with neuronal Pnn depletion. In mice with MCAO, compared to wild type mice, both increased cerebral infarcted area and elevated expressions of proapoptotic proteins were found in mice with neuronal Pnn depletion. In conclusion, Pnn deficiency increases oxidative stress in neurons and exacerbates cerebral ischemia/reperfusion injury in mice.
Collapse
|
3
|
Krchňáková Z, Thakur PK, Krausová M, Bieberstein N, Haberman N, Müller-McNicoll M, Staněk D. Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5' splice-site sequences due to weak interactions with SR proteins. Nucleic Acids Res 2019; 47:911-928. [PMID: 30445574 PMCID: PMC6344860 DOI: 10.1093/nar/gky1147] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5'ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5'ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.
Collapse
Affiliation(s)
- Zuzana Krchňáková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Prasoon Kumar Thakur
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Krausová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Nicole Bieberstein
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Nejc Haberman
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | | | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front Genet 2018; 9:231. [PMID: 30050558 PMCID: PMC6052891 DOI: 10.3389/fgene.2018.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in the LMNA gene, which encodes for the nuclear lamina proteins lamins A and C, are responsible for a diverse group of diseases known as laminopathies. One type of laminopathy is Dilated Cardiomyopathy (DCM), a heart muscle disease characterized by dilation of the left ventricle and impaired systolic function, often leading to heart failure and sudden cardiac death. LMNA is the second most commonly mutated gene in DCM. In addition to LMNA, mutations in more than 60 genes have been associated with DCM. The DCM-associated genes encode a variety of proteins including transcription factors, cytoskeletal, Ca2+-regulating, ion-channel, desmosomal, sarcomeric, and nuclear-membrane proteins. Another important category among DCM-causing genes emerged upon the identification of DCM-causing mutations in RNA binding motif protein 20 (RBM20), an alternative splicing factor that is chiefly expressed in the heart. In addition to RBM20, several essential splicing factors were validated, by employing mouse knock out models, to be embryonically lethal due to aberrant cardiogenesis. Furthermore, heart-specific deletion of some of these splicing factors was found to result in aberrant splicing of their targets and DCM development. In addition to splicing alterations, advances in next generation sequencing highlighted the association between splice-site mutations in several genes and DCM. This review summarizes LMNA mutations and splicing alterations in DCM and discusses how the interaction between LMNA and splicing regulators could possibly explain DCM disease mechanisms.
Collapse
Affiliation(s)
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Nuclear bodies reorganize during myogenesis in vitro and are differentially disrupted by expression of FSHD-associated DUX4. Skelet Muscle 2016; 6:42. [PMID: 27906075 PMCID: PMC5134237 DOI: 10.1186/s13395-016-0113-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear bodies, such as nucleoli, PML bodies, and SC35 speckles, are dynamic sub-nuclear structures that regulate multiple genetic and epigenetic processes. Additional regulation is provided by RNA/DNA handling proteins, notably TDP-43 and FUS, which have been linked to ALS pathology. Previous work showed that mouse cell line myotubes have fewer but larger nucleoli than myoblasts, and we had found that nuclear aggregation of TDP-43 in human myotubes was induced by expression of DUX4-FL, a transcription factor that is aberrantly expressed and causes pathology in facioscapulohumeral dystrophy (FSHD). However, questions remained about nuclear bodies in human myogenesis and in muscle disease. Methods We examined nucleoli, PML bodies, SC35 speckles, TDP-43, and FUS in myoblasts and myotubes derived from healthy donors and from patients with FSHD, laminin-alpha-2-deficiency (MDC1A), and alpha-sarcoglycan-deficiency (LGMD2D). We further examined how these nuclear bodies and proteins were affected by DUX4-FL expression. Results We found that nucleoli, PML bodies, and SC35 speckles reorganized during differentiation in vitro, with all three becoming less abundant in myotube vs. myoblast nuclei. In addition, though PML bodies did not change in size, both nucleoli and SC35 speckles were larger in myotube than myoblast nuclei. Similar patterns of nuclear body reorganization occurred in healthy control, MDC1A, and LGMD2D cultures, as well as in the large fraction of nuclei that did not show DUX4-FL expression in FSHD cultures. In contrast, nuclei that expressed endogenous or exogenous DUX4-FL, though retaining normal nucleoli, showed disrupted morphology of some PML bodies and most SC35 speckles and also co-aggregation of FUS with TDP-43. Conclusions Nucleoli, PML bodies, and SC35 speckles reorganize during human myotube formation in vitro. These nuclear body reorganizations are likely needed to carry out the distinct gene transcription and splicing patterns that are induced upon myotube formation. DUX4-FL-induced disruption of some PML bodies and most SC35 speckles, along with co-aggregation of TDP-43 and FUS, could contribute to pathogenesis in FSHD, perhaps by locally interfering with genetic and epigenetic regulation of gene expression in the small subset of nuclei that express high levels of DUX4-FL at any one time.
Collapse
|
6
|
Skrdlant L, Lin RJ. Characterization of RNA-Protein Interactions: Lessons from Two RNA-Binding Proteins, SRSF1 and SRSF2. Methods Mol Biol 2016; 1421:1-13. [PMID: 26965252 DOI: 10.1007/978-1-4939-3591-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
SR proteins are a class of RNA-binding proteins whose RNA-binding ability is required for both constitutive and alternative splicing. While members of the SR protein family were once thought to have redundant functions, in-depth biochemical analysis of their RNA-binding abilities has revealed distinct binding profiles for each SR protein, that often lead to either synergistic or antagonistic functions. SR protein family members SRSF1 and SRSF2 are two of the most highly studied RNA-binding proteins. Here we examine the various methods used to differentiate SRSF1 and SRSF2 RNA-binding ability. We discuss the benefits and type of information that can be determined using each method.
Collapse
Affiliation(s)
- Lindsey Skrdlant
- Irell & Manella Graduate School of Biological Sciences of the City of Hope, Duarte, CA, USA
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ren-Jang Lin
- Irell & Manella Graduate School of Biological Sciences of the City of Hope, Duarte, CA, USA.
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy. Mol Vis 2015; 21:1295-306. [PMID: 26702251 PMCID: PMC4676936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/06/2015] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. METHODS Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. RESULTS The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron-exon junction, we observed a homozygous 10 bp deletion between positions -26 and -17 (c.2281-26_-17del). The deletion was linked to a known SNP, c.2281-6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281-26_-17del leads to complete exon 22 skipping. CONCLUSIONS A novel and unique intronic mutation of PROM1, underlying autosomal recessive CRD in a consanguineous Israeli family, was found. This report expands the spectrum of pathogenic mutations of PROM1 and further demonstrates the importance of intronic mutations.
Collapse
|
8
|
Sohail M, Xie J. Diverse regulation of 3' splice site usage. Cell Mol Life Sci 2015; 72:4771-93. [PMID: 26370726 PMCID: PMC11113787 DOI: 10.1007/s00018-015-2037-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
The regulation of splice site (SS) usage is important for alternative pre-mRNA splicing and thus proper expression of protein isoforms in cells; its disruption causes diseases. In recent years, an increasing number of novel regulatory elements have been found within or nearby the 3'SS in mammalian genes. The diverse elements recruit a repertoire of trans-acting factors or form secondary structures to regulate 3'SS usage, mostly at the early steps of spliceosome assembly. Their mechanisms of action mainly include: (1) competition between the factors for RNA elements, (2) steric hindrance between the factors, (3) direct interaction between the factors, (4) competition between two splice sites, or (5) local RNA secondary structures or longer range loops, according to the mode of protein/RNA interactions. Beyond the 3'SS, chromatin remodeling/transcription, posttranslational modifications of trans-acting factors and upstream signaling provide further layers of regulation. Evolutionarily, some of the 3'SS elements seem to have emerged in mammalian ancestors. Moreover, other possibilities of regulation such as that by non-coding RNA remain to be explored. It is thus likely that there are more diverse elements/factors and mechanisms that influence the choice of an intron end. The diverse regulation likely contributes to a more complex but refined transcriptome and proteome in mammals.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
9
|
Mohagheghi F, Prudencio M, Stuani C, Cook C, Jansen-West K, Dickson DW, Petrucelli L, Buratti E. TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Hum Mol Genet 2015; 25:534-45. [PMID: 26614389 DOI: 10.1093/hmg/ddv491] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022] Open
Abstract
The aggregation and mislocalization of RNA-binding proteins leads to the aberrant regulation of RNA metabolism and is a key feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. However, the pathological consequences of abnormal deposition of TDP-43 and other RNA-binding proteins remain unclear, as the specific molecular events that drive neurodegeneration have been difficult to identify and continue to be elusive. Here, we provide novel insight into the complexity of the RNA-binding protein network by demonstrating that the inclusion of exon 17b in the SORT1 mRNA, a pathologically relevant splicing event known to be regulated by TDP-43, is also considerably affected by additional RNA-binding proteins, such as hnRNP L, PTB/nPTB and hnRNP A1/A2. Most importantly, the expression of hnRNP A1/A2 and PTB/nPTB is significantly altered in patients with frontotemporal dementia with TDP-43-positive inclusions (FTLD-TDP), indicating that perturbations in RNA metabolism and processing in FTLD-TDP are not exclusively driven by a loss of TDP-43 function. These results also suggest that a comprehensive assessment of the RNA-binding protein network will dramatically advance our current understanding of the role of TDP-43 in disease pathogenesis, as well as enhance both diagnostic and therapeutic capabilities.
Collapse
Affiliation(s)
- Fatemeh Mohagheghi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy and
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy and
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy and
| |
Collapse
|
10
|
Tejedor JR, Tilgner H, Iannone C, Guigó R, Valcárcel J. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing. RNA (NEW YORK, N.Y.) 2015; 21:1187-1202. [PMID: 25904137 PMCID: PMC4436670 DOI: 10.1261/rna.049890.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease.
Collapse
Affiliation(s)
- J Ramón Tejedor
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Hagen Tilgner
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Camilla Iannone
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Roderic Guigó
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08020 Barcelona, Spain
| |
Collapse
|
11
|
Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function. Biochem J 2015; 466:311-22. [PMID: 25529026 DOI: 10.1042/bj20141373] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The alternative splicing of human genes is dependent on SR proteins, a family of essential splicing factors whose name derives from a signature C-terminal domain rich in arginine-serine dipeptide repeats (RS domains). Although the SRPKs (SR-specific protein kinases) phosphorylate these repeats, RS domains also contain prolines with flanking serines that are phosphorylated by a second family of protein kinases known as the CLKs (Cdc2-like kinases). The role of specific serine-proline phosphorylation within the RS domain has been difficult to assign since CLKs also phosphorylate arginine-serine dipeptides and, thus, display overlapping residue specificities with the SRPKs. In the present study, we address the effects of discrete serine-proline phosphorylation on the conformation and cellular function of the SR protein SRSF1 (SR protein splicing factor 1). Using chemical tagging and dephosphorylation experiments, we show that modification of serine-proline dipeptides broadly amplifies the conformational ensemble of SRSF1. The induction of these new structural forms triggers SRSF1 mobilization in the nucleus and alters its binding mechanism to an exonic splicing enhancer in precursor mRNA. These physical events correlate with changes in the alternative splicing of over 100 human genes based on a global splicing assay. Overall, these studies draw a direct causal relationship between a specific type of chemical modification in an SR protein and the regulation of alternative gene splicing programmes.
Collapse
|
12
|
|
13
|
Guyot M, Pagès G. VEGF Splicing and the Role of VEGF Splice Variants: From Physiological-Pathological Conditions to Specific Pre-mRNA Splicing. Methods Mol Biol 2015; 1332:3-23. [PMID: 26285742 DOI: 10.1007/978-1-4939-2917-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During this past decade, the vascular endothelial growth factor (VEGF) pathway has been extensively studied. VEGF is a paradigm of molecular regulation since its expression is controlled at all possible steps including transcription, mRNA stability, translation, and pre-mRNA splicing. The latter form of molecular regulation is probably the least studied. This field has been neglected; yet different forms of VEGF with different sizes and different physiological properties issued from alternative splicing have been described a long time ago. Recently a new level of complexity was added to the field of splicing of VEGF pre-mRNA. Whereas thousands of publications have described VEGF as a pro-angiogenic factor, an alternative splicing event generates specific anti-angiogenic forms of VEGF that only differ from the others by a modification in the last six amino acids of the protein. According to the scientists who discovered these isoforms, which are indistinguishable from the pro-angiogenic ones with pan VEGF antibodies, some of the literature on VEGF is at least inexact if not completely false. Moreover, the presence of anti-angiogenic forms of VEGF may explain the disappointing efficacy of anti-VEGF therapies on the overall survival of patients with different forms of cancers and with wet age-related macular degeneration. This review focuses on the existence of the different alternative splice variants of VEGF and the molecular mechanisms associated with their expression and function.
Collapse
Affiliation(s)
- Mélanie Guyot
- Institute for Research on Cancer and Aging of Nice (IRCAN), University of Nice Sophia Antipolis, Centre Antoine Lacassagne 33 Avenue de Valombrose, UMR CNRS 7284/INSERM U 1081, Nice, 06189, France
| | | |
Collapse
|
14
|
Hao H, Veleri S, Sun B, Kim DS, Keeley PW, Kim JW, Yang HJ, Yadav SP, Manjunath SH, Sood R, Liu P, Reese BE, Swaroop A. Regulation of a novel isoform of Receptor Expression Enhancing Protein REEP6 in rod photoreceptors by bZIP transcription factor NRL. Hum Mol Genet 2014; 23:4260-71. [PMID: 24691551 DOI: 10.1093/hmg/ddu143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Maf-family leucine zipper transcription factor NRL is essential for rod photoreceptor development and functional maintenance in the mammalian retina. Mutations in NRL are associated with human retinopathies, and loss of Nrl in mice leads to a cone-only retina with the complete absence of rods. Among the highly down-regulated genes in the Nrl(-/-) retina, we identified receptor expression enhancing protein 6 (Reep6), which encodes a member of a family of proteins involved in shaping of membrane tubules and transport of G-protein coupled receptors. Here, we demonstrate the expression of a novel Reep6 isoform (termed Reep6.1) in the retina by exon-specific Taqman assay and rapid analysis of complementary deoxyribonucleic acid (cDNA) ends (5'-RACE). The REEP6.1 protein includes 27 additional amino acids encoded by exon 5 and is specifically expressed in rod photoreceptors of developing and mature retina. Chromatin immunoprecipitation assay identified NRL binding within the Reep6 intron 1. Reporter assays in cultured cells and transfections in retinal explants mapped an intronic enhancer sequence that mediated NRL-directed Reep6.1 expression. We also demonstrate that knockdown of Reep6 in mouse and zebrafish resulted in death of retinal cells. Our studies implicate REEP6.1 as a key functional target of NRL-centered transcriptional regulatory network in rod photoreceptors.
Collapse
Affiliation(s)
- Hong Hao
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shobi Veleri
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bo Sun
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas S Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Patrick W Keeley
- Neuroscience Research Institute Department of Molecular, Cellular and Developmental Biology and
| | - Jung-Woong Kim
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun-Jin Yang
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharda P Yadav
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Souparnika H Manjunath
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raman Sood
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul Liu
- Oncogenesis and Development Section and Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Reese
- Neuroscience Research Institute Department of Psychological and Brain Sciences, University of California at Santa Barbara, CA, USA
| | - Anand Swaroop
- Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
A novel actin mRNA splice variant regulates ACTG1 expression. PLoS Genet 2013; 9:e1003743. [PMID: 24098136 PMCID: PMC3789816 DOI: 10.1371/journal.pgen.1003743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
Cytoplasmic actins are abundant, ubiquitous proteins in nucleated cells. However, actin expression is regulated in a tissue- and development-specific manner. We identified a novel cytoplasmic-γ-actin (Actg1) transcript that includes a previously unidentified exon (3a). Inclusion of this exon introduces an in-frame termination codon. We hypothesized this alternatively-spliced transcript down-regulates γ-actin production by targeting these transcripts for nonsense-mediated decay (NMD). To address this, we investigated conservation between mammals, tissue-specificity in mice, and developmental regulation using C2C12 cell culture. Exon 3a is 80% similar among mammals and varies in length from 41 nucleotides in humans to 45 in mice. Though the predicted amino acid sequences are not similar between all species, inclusion of exon 3a consistently results in the in the introduction of a premature termination codon within the alternative Actg1 transcript. Of twelve tissues examined, exon 3a is predominantly expressed in skeletal muscle, cardiac muscle, and diaphragm. Splicing to include exon 3a is concomitant with previously described down-regulation of Actg1 in differentiating C2C12 cells. Treatment of differentiated C2C12 cells with an inhibitor of NMD results in a 7-fold increase in exon 3a-containing transcripts. Therefore, splicing to generate exon 3a-containing transcripts may be one component of Actg1 regulation. We propose that this post-transcriptional regulation occurs via NMD, in a process previously described as “regulated unproductive splicing and translation” (RUST). Actin is a well-studied protein that plays an essential role in nearly all cell types. Cytoplasmic actins are considered to be ubiquitously expressed in most tissues of the body with the exception of developing skeletal muscle, where muscle specific actins are up-regulated and γ-actin is repressed. Interest in the regulation of this transcript led to the hypothesis that intron retention is responsible for down-regulation of cytoplasmic γ-actin in skeletal muscle during development. Since the publication of the sequence of γ-actin cDNA over two and a half decades ago, no additional splice variants or cDNAs of this gene have been described. In this paper, we identify an alternatively spliced transcript in muscle that allowed us to elucidate how the γ-actin is downregulated during the important transition from myoblast to differentiated muscle cells. This is the first description of regulation of an actin transcript by regulated unproductive splicing and translation.
Collapse
|
16
|
Liu S, Cheng C. Alternative RNA splicing and cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:547-66. [PMID: 23765697 PMCID: PMC4426271 DOI: 10.1002/wrna.1178] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/10/2013] [Accepted: 05/11/2013] [Indexed: 01/04/2023]
Abstract
Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells.
Collapse
Affiliation(s)
- Sali Liu
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
17
|
Cléry A, Sinha R, Anczuków O, Corrionero A, Moursy A, Daubner GM, Valcárcel J, Krainer AR, Allain FHT. Isolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. Proc Natl Acad Sci U S A 2013; 110:E2802-11. [PMID: 23836656 PMCID: PMC3725064 DOI: 10.1073/pnas.1303445110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serine/arginine (SR) proteins, one of the major families of alternative-splicing regulators in Eukarya, have two types of RNA-recognition motifs (RRMs): a canonical RRM and a pseudo-RRM. Although pseudo-RRMs are crucial for activity of SR proteins, their mode of action was unknown. By solving the structure of the human SRSF1 pseudo-RRM bound to RNA, we discovered a very unusual and sequence-specific RNA-binding mode that is centered on one α-helix and does not involve the β-sheet surface, which typically mediates RNA binding by RRMs. Remarkably, this mode of binding is conserved in all pseudo-RRMs tested. Furthermore, the isolated pseudo-RRM is sufficient to regulate splicing of about half of the SRSF1 target genes tested, and the bound α-helix is a pivotal element for this function. Our results strongly suggest that SR proteins with a pseudo-RRM frequently regulate splicing by competing with, rather than recruiting, spliceosome components, using solely this unusual RRM.
Collapse
Affiliation(s)
- Antoine Cléry
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Rahul Sinha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Olga Anczuków
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Anna Corrionero
- Institució Catalana de Recerca i Estudis Avançats, Universitat Pompeu Fabra 08003 Barcelona, Spain; and
- Centre de Regulació Genòmica, 08003 Barcelona, Spain
| | - Ahmed Moursy
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Gerrit M. Daubner
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | - Juan Valcárcel
- Institució Catalana de Recerca i Estudis Avançats, Universitat Pompeu Fabra 08003 Barcelona, Spain; and
- Centre de Regulació Genòmica, 08003 Barcelona, Spain
| | | | - Frédéric H.-T. Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| |
Collapse
|
18
|
Pandit S, Zhou Y, Shiue L, Coutinho-Mansfield G, Li H, Qiu J, Huang J, Yeo GW, Ares M, Fu XD. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell 2013; 50:223-35. [PMID: 23562324 DOI: 10.1016/j.molcel.2013.03.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/02/2013] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
Abstract
SR proteins are well-characterized RNA binding proteins that promote exon inclusion by binding to exonic splicing enhancers (ESEs). However, it has been unclear whether regulatory rules deduced on model genes apply generally to activities of SR proteins in the cell. Here, we report global analyses of two prototypical SR proteins, SRSF1 (SF2/ASF) and SRSF2 (SC35), using splicing-sensitive arrays and CLIP-seq on mouse embryo fibroblasts (MEFs). Unexpectedly, we find that these SR proteins promote both inclusion and skipping of exons in vivo, but their binding patterns do not explain such opposite responses. Further analyses reveal that loss of one SR protein is accompanied by coordinated loss or compensatory gain in the interaction of other SR proteins at the affected exons. Therefore, specific effects on regulated splicing by one SR protein actually depend on a complex set of relationships with multiple other SR proteins in mammalian genomes.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Cellular and Molecular Medicine and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013; 122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.
Collapse
|
20
|
Mitchell AL, Judis LM, Schwarze U, Vaynshtok PM, Drumm ML, Byers PH. Characterization of tissue-specific and developmentally regulated alternative splicing of exon 64 in the COL5A1 gene. Connect Tissue Res 2011; 53:267-76. [PMID: 22149965 PMCID: PMC3999617 DOI: 10.3109/03008207.2011.636160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The COL5A1 gene, a member of the clade B fibrillar collagen gene family, was recently shown to contain two alternatively spliced exons (64A and 64B) that encode 23 amino acids in the carboxyl-terminal propeptide. The two are identical in length, very similar in sequence, and used in a mutually exclusive fashion because of the small intron that separates them. Each COL5A1 allele uses both exons, but a given transcript will contain only one of the two exons. The sequences in other species are highly conserved at the amino acid level. The expression profile of the two isoforms was determined from analysis of RNA levels in a panel of murine tissues. While both isoforms were found in all tissues studied, actively proliferating tissues (liver, lung) used isoform B more often, while a less mitotically active tissue, brain, had a higher proportion of exon 64A. The high degree of conservation between the two exons is consistent with a regional genomic duplication. The presence of the two isoforms as far back as pufferfish (tetraodon) implies an important functional significance. The exact role determined by the two sequences is not known, but involvement in the determination of chain composition of mature type V collagen or regulation of cell activity is possible, given the differences in tissue distribution.
Collapse
Affiliation(s)
- Anna L Mitchell
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Regulation of alternative splicing within the supraspliceosome. J Struct Biol 2011; 177:152-9. [PMID: 22100336 DOI: 10.1016/j.jsb.2011.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 12/12/2022]
Abstract
Alternative splicing is a fundamental feature in regulating the eukaryotic transcriptome, as ~95% of multi-exon human Pol II transcripts are subject to this process. Regulated splicing operates through the combinatorial interplay of positive and negative regulatory signals present in the pre-mRNA, which are recognized by trans-acting factors. All these RNA and protein components are assembled in a gigantic, 21 MDa, ribonucleoprotein splicing machine - the supraspliceosome. Because most alternatively spliced mRNA isoforms vary between different cell and tissue types, the ability to perform alternative splicing is expected to be an integral part of the supraspliceosome, which constitutes the splicing machine in vivo. Here we show that both the constitutively and alternatively spliced mRNAs of the endogenous human pol II transcripts: hnRNP A/B, survival of motor neuron (SMN) and ADAR2 are predominantly found in supraspliceosomes. This finding is consistent with our observations that the splicing regulators hnRNP G as well as all phosphorylated SR proteins are predominantly associated with supraspliceosomes. We further show that changes in alternative splicing of hnRNP A/B, affected by up regulation of SRSF5 (SRp40) or by treatment with C6-ceramide, occur within supraspliceosomes. These observations support the proposed role of the supraspliceosome in splicing regulation and alternative splicing.
Collapse
|
22
|
SR proteins induce alternative exon skipping through their activities on the flanking constitutive exons. Mol Cell Biol 2010; 31:793-802. [PMID: 21135118 DOI: 10.1128/mcb.01117-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SR proteins are well known to promote exon inclusion in regulated splicing through exonic splicing enhancers. SR proteins have also been reported to cause exon skipping, but little is known about the mechanism. We previously characterized SRSF1 (SF2/ASF)-dependent exon skipping of the CaMKIIδ gene during heart remodeling. By using mouse embryo fibroblasts derived from conditional SR protein knockout mice, we now show that SR protein-induced exon skipping depends on their prevalent actions on a flanking constitutive exon and requires collaboration of more than one SR protein. These findings, coupled with other established rules for SR proteins, provide a theoretical framework to understand the complex effect of SR protein-regulated splicing in mammalian cells. We further demonstrate that heart-specific CaMKIIδ splicing can be reconstituted in fibroblasts by downregulating SR proteins and upregulating a RBFOX protein and that SR protein overexpression impairs regulated CaMKIIδ splicing and neuronal differentiation in P19 cells, illustrating that SR protein-dependent exon skipping may constitute a key strategy for synergism with other splicing regulators in establishing tissue-specific alternative splicing critical for cell differentiation programs.
Collapse
|
23
|
Apostolatos H, Apostolatos A, Vickers T, Watson JE, Song S, Vale F, Cooper DR, Sanchez-Ramos J, Patel NA. Vitamin A metabolite, all-trans-retinoic acid, mediates alternative splicing of protein kinase C deltaVIII (PKCdeltaVIII) isoform via splicing factor SC35. J Biol Chem 2010; 285:25987-95. [PMID: 20547768 DOI: 10.1074/jbc.m110.100735] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin A metabolite, all-trans-retinoic acid (RA), induces cell growth, differentiation, and apoptosis and has an emerging role in gene regulation and alternative splicing events. Protein kinase Cdelta (PKCdelta), a serine/threonine kinase, has a role in cell proliferation, differentiation, and apoptosis. We reported an alternatively spliced variant of human PKCdelta, PKCdeltaVIII that functions as a pro-survival protein (1). RA regulates the splicing and expression of PKCdeltaVIII via utilization of a downstream 5' splice site of exon 10 on PKCdelta pre-mRNA. Here, we further elucidate the molecular mechanisms involved in RA regulation of alternative splicing of PKCdeltaVIII mRNA. Overexpression and knockdown of the splicing factor SC35 (i.e. SRp30b) indicated that it is involved in PKCdeltaVIII alternative splicing. To identify the cis-elements involved in 5' splice site selection we cloned a minigene, which included PKCdelta exon 10 and its flanking introns in the pSPL3 splicing vector. Alternative 5' splice site utilization in the minigene was promoted by RA. Further, co-transfection of SC35 with PKCdelta minigene promoted selection of 5' splice site II. Mutation of the SC35 binding site in the PKCdelta minigene abolished RA-mediated utilization of 5' splice splice II. RNA binding assays demonstrated that the enhancer element downstream of PKCdelta exon 10 is a SC35 cis-element. We conclude that SC35 is pivotal in RA-mediated PKCdelta pre-mRNA alternative splicing. This study demonstrates how a nutrient, vitamin A, via its metabolite RA, regulates alternative splicing and thereby gene expression of the pro-survival protein PKCdeltaVIII.
Collapse
|
24
|
Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol 2010; 30:1718-28. [PMID: 20123975 DOI: 10.1128/mcb.01301-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bioactive compounds have been invaluable for dissecting the mechanisms, regulation, and functions of cellular processes. However, very few such reagents have been described for pre-mRNA splicing. To facilitate their systematic discovery, we developed a high-throughput cell-based assay that measures pre-mRNA splicing by utilizing a quantitative reporter system with advantageous features. The reporter, consisting of a destabilized, intron-containing luciferase expressed from a short-lived mRNA, allows rapid screens (<4 h), thereby obviating the potential toxicity of splicing inhibitors. We describe three inhibitors (out of >23,000 screened), all pharmacologically active: clotrimazole, flunarizine, and chlorhexidine. Interestingly, none was a general splicing inhibitor. Rather, each caused distinct splicing changes of numerous genes. We further discovered the target of action of chlorhexidine and show that it is a selective inhibitor of specific Cdc2-like kinases (Clks) that phosphorylate serine-arginine-rich (SR) protein splicing factors. Our findings reveal unexpected activities of clinically used drugs in splicing and uncover differential regulation of constitutively spliced introns.
Collapse
|
25
|
Dreumont N, Hardy S, Behm-Ansmant I, Kister L, Branlant C, Stévenin J, Bourgeois CF. Antagonistic factors control the unproductive splicing of SC35 terminal intron. Nucleic Acids Res 2009; 38:1353-66. [PMID: 19965769 PMCID: PMC2831310 DOI: 10.1093/nar/gkp1086] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is regulated in part by variations in the relative concentrations of a variety of factors, including serine/arginine-rich (SR) proteins. The SR protein SC35 self-regulates its expression by stimulating unproductive splicing events in the 3' untranslated region of its own pre-mRNA. Using various minigene constructs containing the terminal retained intron and flanking exons, we identified in the highly conserved last exon a number of exonic splicing enhancer elements responding specifically to SC35, and showed an inverse correlation between affinity of SC35 and enhancer strength. The enhancer region, which is included in a long stem loop, also contains repressor elements, and is recognized by other RNA-binding proteins, notably hnRNP H protein and TAR DNA binding protein (TDP-43). Finally, in vitro and in cellulo experiments indicated that hnRNP H and TDP-43 antagonize the binding of SC35 to the terminal exon and specifically repress the use of SC35 terminal 3' splice site. Our study provides new information about the molecular mechanisms of SC35-mediated splicing activation. It also highlights the existence of a complex network of self- and cross-regulatory mechanisms between splicing regulators, which controls their homeostasis and offers many ways of modulating their concentration in response to the cellular environment.
Collapse
Affiliation(s)
- Natacha Dreumont
- IGBMC Department of Functional Genomics, INSERM U964, CNRS UMR 7104, 67400 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Fan C, Chen Q, Wang QK. Functional role of transcriptional factor TBX5 in pre-mRNA splicing and Holt-Oram syndrome via association with SC35. J Biol Chem 2009; 284:25653-63. [PMID: 19648116 DOI: 10.1074/jbc.m109.041368] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TBX5 is a T-box transcriptional factor required for cardiogenesis and limb development. TBX5 mutations cause Holt-Oram syndrome characterized by congenital heart defects and upper limb deformations. Here we establish a novel function for TBX5 in pre-mRNA splicing, and we show that this function is relevant to the pathogenesis of Holt-Oram syndrome, providing a novel pathogenic mechanism for the disease. Proteomics in combination with affinity purification identifies splicing factor SC35 as a candidate TBX5-associating protein. Co-immunoprecipitation and glutathione S-transferase pulldown assays confirm the complex formation between TBX5 and SC35. TBX5 can bind to RNA homopolymers (polyribonucleotides) and to the 5'-splice site, which overrides the binding of SC35 to the same RNA. Overexpression of TBX5 increases the efficiency of pre-mRNA splicing and regulates alternative splice site selection. However, co-expression of TBX5 and SC35 antagonizes each other's positive effect on splicing. The most severe TBX5 mutation, G80R, with complete penetrance of the cardiac phenotype, strongly affects pre-mRNA splicing, whereas other mutations with incomplete penetrance of the cardiac phenotype, including R237Q, do not alter the splicing activity of TBX5. This study establishes TBX5 as the first cardiac gene and the first human disease gene with dual roles in both transcriptional activation and pre-mRNA splicing.
Collapse
Affiliation(s)
- Chun Fan
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
27
|
Meili D, Kralovicova J, Zagalak J, Bonafé L, Fiori L, Blau N, Thöny B, Vorechovsky I. Disease-causing mutations improving the branch site and polypyrimidine tract: pseudoexon activation of LINE-2 and antisense Alu lacking the poly(T)-tail. Hum Mutat 2009; 30:823-31. [PMID: 19280650 DOI: 10.1002/humu.20969] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryptic exons or pseudoexons are typically activated by point mutations that create GT or AG dinucleotides of new 5' or 3' splice sites in introns, often in repetitive elements. Here we describe two cases of tetrahydrobiopterin deficiency caused by mutations improving the branch point sequence and polypyrimidine tracts of repeat-containing pseudoexons in the PTS gene. In the first case, we demonstrate a novel pathway of antisense Alu exonization, resulting from an intronic deletion that removed the poly(T)-tail of antisense AluSq. The deletion brought a favorable branch point sequence within proximity of the pseudoexon 3' splice site and removed an upstream AG dinucleotide required for the 3' splice site repression on normal alleles. New Alu exons can thus arise in the absence of poly(T)-tails that facilitated inclusion of most transposed elements in mRNAs by serving as polypyrimidine tracts, highlighting extraordinary flexibility of Alu repeats in shaping intron-exon structure. In the other case, a PTS pseudoexon was activated by an A>T substitution 9 nt upstream of its 3' splice site in a LINE-2 sequence, providing the first example of a disease-causing exonization of the most ancient interspersed repeat. These observations expand the spectrum of mutational mechanisms that introduce repetitive sequences in mature transcripts and illustrate the importance of intronic mutations in alternative splicing and phenotypic variability of hereditary disorders.
Collapse
Affiliation(s)
- David Meili
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Iriko H, Jin L, Kaneko O, Takeo S, Han ET, Tachibana M, Otsuki H, Torii M, Tsuboi T. A small-scale systematic analysis of alternative splicing in Plasmodium falciparum. Parasitol Int 2009; 58:196-9. [DOI: 10.1016/j.parint.2009.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/30/2009] [Accepted: 02/15/2009] [Indexed: 11/24/2022]
|
29
|
Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009; 417:15-27. [PMID: 19061484 DOI: 10.1042/bj20081501] [Citation(s) in RCA: 853] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SR protein family comprises a number of phylogenetically conserved and structurally related proteins with a characteristic domain rich in arginine and serine residues, known as the RS domain. They play significant roles in constitutive pre-mRNA splicing and are also important regulators of alternative splicing. In addition they participate in post-splicing activities, such as mRNA nuclear export, nonsense-mediated mRNA decay and mRNA translation. These wide-ranging roles of SR proteins highlight their importance as pivotal regulators of mRNA metabolism, and if these functions are disrupted, developmental defects or disease may result. Furthermore, animal models have shown a highly specific, non-redundant role for individual SR proteins in the regulation of developmental processes. Here, we will review the current literature to demonstrate how SR proteins are emerging as one of the master regulators of gene expression.
Collapse
Affiliation(s)
- Jennifer C Long
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH42XU, UK
| | | |
Collapse
|
30
|
Solis AS, Peng R, Crawford JB, Phillips JA, Patton JG. Growth hormone deficiency and splicing fidelity: two serine/arginine-rich proteins, ASF/SF2 and SC35, act antagonistically. J Biol Chem 2008; 283:23619-26. [PMID: 18586677 DOI: 10.1074/jbc.m710175200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of mutations that cause isolated growth hormone deficiency type II are the result of aberrant splicing of transcripts encoding human growth hormone. Such mutations increase skipping of exon 3 and encode a 17.5-kDa protein that acts as a dominant negative to block secretion of full-length protein produced from unaffected alleles. Previously, we identified a splicing regulatory element in exon 3 (exonic splicing enhancer 2 (ESE2)), but we had not determined the molecular mechanism by which this element prevents exon skipping. Here, we show that two members of the serine/arginine-rich (SR) protein superfamily (ASF/SF2 and SC35) act antagonistically to regulate exon 3 splicing. ASF/SF2 activates exon 3 inclusion, but SC35, acting through a region just downstream of ESE2, can block such activation. These findings explain the disease-causing mechanism of a patient mutation in ESE2 that creates a functional SC35-binding site that then acts synergistically with the downstream SC35 site to produce pathological levels of exon 3 skipping. Although the precedent for SR proteins acting as repressors is established, this is the first example of a patient mutation that creates a site through which an SR protein represses splicing.
Collapse
Affiliation(s)
- Amanda S Solis
- Department of Biological Sciences, Vanderbilt University, 2301 Vanderbilt Pl., Nashville, TN 37235, USA
| | | | | | | | | |
Collapse
|
31
|
Gunning P, O'Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1-35. [PMID: 18195081 DOI: 10.1152/physrev.00001.2007] [Citation(s) in RCA: 373] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.
Collapse
Affiliation(s)
- Peter Gunning
- Oncology Research Unit, The Children's Hospital at Westmead, and Muscle Development Unit, Children's Medical Research Institute, Westmead; New South Wales, Australia.
| | | | | |
Collapse
|
32
|
Gromak N, Talotti G, Proudfoot NJ, Pagani F. Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA. RNA (NEW YORK, N.Y.) 2008; 14:359-66. [PMID: 18065715 PMCID: PMC2212250 DOI: 10.1261/rna.615508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 10/24/2007] [Indexed: 05/25/2023]
Abstract
Cotranscriptional cleavage mediated by a hammerhead ribozyme can affect alternative splicing if interposed between an exon and its intronic regulatory elements. This has been demonstrated using two different alternative splicing systems based on alpha-tropomyosin and fibronectin genes. We suggest that there is a requirement for intronic regulatory elements to be covalently attached to exons that are in turn tethered to the elongating polymerase. In the case of the alternatively spliced EDA exon of the fibronectin gene, we demonstrate that the newly identified intronic downstream regulatory element is associated with the splicing regulatory protein SRp20. Our results suggest that targeted hammerhead ribozyme cleavage within introns can be used as a tool to define splicing regulatory elements.
Collapse
Affiliation(s)
- Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
33
|
Gooding C, Smith CWJ. Tropomyosin exons as models for alternative splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:27-42. [PMID: 19209811 DOI: 10.1007/978-0-387-85766-4_3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Three of the four mammalian tropomyosin (Tm) genes are alternatively spliced, most commonly by mutually exclusive selection from pairs of internal or 3' end exons. Alternative splicing events in the TPM1, 2 and 3 genes have been analysed experimentally in various levels ofdetail. In particular, mutually exclusive exon pairs in the betaTm (TPM2) and alphaTm (TPM1) genes are among the most intensively studied models for striated and smooth muscle specific alternative splicing, respectively. Analysis of these model systems has provided important insights into general mechanisms and strategies of splicing regulation.
Collapse
Affiliation(s)
- Clare Gooding
- Department of Biochemistry, University of Cambridge, CB2 1GA, UK
| | | |
Collapse
|
34
|
Paradis C, Cloutier P, Shkreta L, Toutant J, Klarskov K, Chabot B. hnRNP I/PTB can antagonize the splicing repressor activity of SRp30c. RNA (NEW YORK, N.Y.) 2007; 13:1287-300. [PMID: 17548433 PMCID: PMC1924885 DOI: 10.1261/rna.403607] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/26/2007] [Indexed: 05/15/2023]
Abstract
The control of alternative pre-mRNA splicing often requires the participation of factors displaying synergistic or antagonistic activities. In the hnRNP A1 pre-mRNA, three elements promote the exclusion of alternative exon 7B, while a fourth intron element (CE9) represses splicing of exon 7B to the downstream exon. We have shown previously that the 5' portion of the 38-nucleotide-long CE9 element is bound by SRp30c, and that this interaction is important for repression in vitro. To determine whether SRp30c alone can impose repression, we tested a high-affinity SRp30c binding site that we identified using the SELEX protocol. We find that multiple high-affinity SRp30c sites are required to replicate the level of repression obtained with CE9, and that both the 5' and the 3' portions of CE9 contribute to SRp30c binding. Performing RNA affinity chromatography with the complete CE9 element recovered hnRNP I/PTB. Surprisingly however, His-tagged PTB reduced the binding of SRp30c to CE9 in a nuclear extract, stimulated splicing to a downstream 3' splice site, and relieved the CE9-mediated splicing repression in vitro. Our in vivo results are consistent with the notion that increasing PTB levels alleviates the repression imposed by CE9 to a downstream 3' splice site. Thus, PTB can function as an anti-repressor molecule to counteract the splicing inhibitory activity of SRp30c.
Collapse
Affiliation(s)
- Caroline Paradis
- RNA/RNP Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Buratti E, Stuani C, De Prato G, Baralle FE. SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer. Nucleic Acids Res 2007; 35:4359-68. [PMID: 17576688 PMCID: PMC1935002 DOI: 10.1093/nar/gkm444] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/14/2007] [Accepted: 05/18/2007] [Indexed: 11/13/2022] Open
Abstract
The intronic splicing silencer (ISS) of CFTR exon 9 promotes exclusion of this exon from the mature mRNA. This negative influence has important consequences with regards to human pathologic events, as lack of exon 9 correlates well with the occurrence of monosymptomatic and full forms of CF disease. We have previously shown that the ISS element interacts with members of the SR protein family. In this work, we now provide the identification of SF2/ASF and SRp40 as the specific SR proteins binding to this element and map their precise binding sites in IVS9. We have also performed a functional analysis of the ISS element using a variety of unrelated SR-binding sequences and different splicing systems. Our results suggest that SR proteins mediate CFTR exon 9 exclusion by providing a 'decoy' sequence in the vicinity of its suboptimal donor site. The results of this study give an insight on intron 'exonization' mechanisms and provide useful indications for the development of novel therapeutic strategies aimed at the recovery of exon inclusion.
Collapse
Affiliation(s)
| | | | | | - Francisco E. Baralle
- International Centre for Genetic Engineering and Biotechnology (ICGEB) 34012 Trieste, Italy
| |
Collapse
|
36
|
Lin S, Fu XD. SR proteins and related factors in alternative splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:107-22. [PMID: 18380343 DOI: 10.1007/978-0-387-77374-2_7] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
SR proteins are a family of RNA binding proteins that contain a signature RS domain enriched with serine/arginine repeats. The RS domain is also found in many other proteins, which are collectively referred to as SR-related proteins. Several prototypical SR proteins are essential splicing factors, but the majority of RS domain-containing factors are characterized by their ability to alter splice site selection in vitro or in transfected cells. SR proteins and SR-related proteins are generally believed to modulate splice site selection via RNA recognition motif-mediated binding to exonic splicing enhancers and RS domain-mediated protein-protein and protein-RNA interactions during spliceosome assembly. However, the biological function of individual RS domain-containing splicing regulators is complex because of redundant as well as competitive functions, context-dependent effects and regulation by cotranscriptional and post-translational events. This chapter will focus on our current mechanistic understanding of alternative splicing regulation by SR proteins and SR-related proteins and will discuss some of the questions that remain to be addressed in future research.
Collapse
Affiliation(s)
- Shengrong Lin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
37
|
Saulière J, Sureau A, Expert-Bezançon A, Marie J. The polypyrimidine tract binding protein (PTB) represses splicing of exon 6B from the beta-tropomyosin pre-mRNA by directly interfering with the binding of the U2AF65 subunit. Mol Cell Biol 2006; 26:8755-69. [PMID: 16982681 PMCID: PMC1636812 DOI: 10.1128/mcb.00893-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/27/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022] Open
Abstract
Splicing of exon 6B from the beta-tropomyosin pre-mRNA is repressed in nonmuscle cells and myoblasts by a complex array of intronic elements surrounding the exon. In this study, we analyzed the proteins that mediate splicing repression of exon 6B through binding to the upstream element. We identified the polypyrimidine tract binding protein (PTB) as a component of complexes isolated from myoblasts that assemble onto the branch point region and the pyrimidine tract. In vitro splicing assays and PTB knockdown experiments by RNA interference demonstrated that PTB acts as a repressor of splicing of exon 6B. Using psoralen experiments, we showed that PTB acts at an early stage of spliceosome assembly by preventing the binding of U2 snRNA on the branch point. Using UV cross-linking and immunoprecipitation experiments with site-specific labeled RNA in PTB-depleted nuclear extracts, we found that the decrease in PTB was correlated with an increase in U2AF65. In addition, competition experiments showed that PTB is able to displace the binding of U2AF65 on the polypyrimidine tract. Our results strongly support a model whereby PTB competes with U2AF65 for binding to the polypyrimidine tract.
Collapse
Affiliation(s)
- Jérôme Saulière
- Centre de Génétique Moléculaire, UPR2167, CNRS, 1 avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
38
|
Qi J, Su S, McGuffin ME, Mattox W. Concentration dependent selection of targets by an SR splicing regulator results in tissue-specific RNA processing. Nucleic Acids Res 2006; 34:6256-63. [PMID: 17098939 PMCID: PMC1669769 DOI: 10.1093/nar/gkl755] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The splicing factor Transformer-2 (Tra2) is expressed almost ubiquitously in Drosophila adults, but participates in the tissue-specific regulation of splicing in several RNAs. In somatic tissues Tra2 participates in the activation of sex-specific splice sites in doublesex and fruitless pre-mRNAs. In the male germline it affects splicing of other transcripts and represses removal of the M1 intron from its own pre-mRNA. Here we test the hypothesis that the germline specificity of M1 repression is determined by tissue-specific differences in Tra2 concentration. We find that Tra2 is expressed at higher levels in primary spermatocytes of males than in other cell types. Increased Tra2 expression in other tissues reduces viability in a manner consistent with known dose-dependent effects of excessive Tra2 expression in the male germline. Somatic cells were found to be competent to repress M1 splicing if the level of Tra2 transcription was raised above endogenous concentrations. This suggests not only that M1 repression is restricted to the germline by a difference in Tra2 transcription levels but also that the protein's threshold concentration for M1 regulation differs from that of doublesex and fruitless RNAs. We propose that quantitative differences in regulator expression can give rise to cell-type-specific restrictions in splicing.
Collapse
Affiliation(s)
| | | | | | - William Mattox
- To whom correspondence should be addressed. Tel: +1 713 834 6329; Fax: +1 713 834 6339;
| |
Collapse
|
39
|
Meshorer E, Bryk B, Toiber D, Cohen J, Podoly E, Dori A, Soreq H. SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Mol Psychiatry 2005; 10:985-97. [PMID: 16116489 DOI: 10.1038/sj.mp.4001735] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Long-lasting alternative splicing of neuronal acetylcholinesterase (AChE) pre-mRNA occurs during neuronal development and following stress, altering synaptic properties. To explore the corresponding molecular events, we sought to identify mRNAs encoding for abundant splicing factors in the prefrontal cortex (PFC) following stress. Here we show elevated levels of the splicing factor SC35 in stressed as compared with naïve mice. In cotransfections of COS-1 and HEK293 cells with an AChE minigene allowing 3' splice variations, SC35 facilitated a shift from the primary AChE-S to the stress-induced AChE-R variant, while ASF/SF2 caused the opposite effect. Transfection with chimeric constructs comprising of SC35 and ASF/SF2 RRM/RS domains identified the SC35 RRM as responsible for AChE mRNA's alternative splicing. In poststress PFC neurons, increased SC35 mRNA and protein levels coincided with selective increase in AChE-R mRNA. In the developing mouse embryo, cortical progenitor cells in the ventricular zone displayed transient SC35 elevation concomitant with dominance of AChE-R over AChE-S mRNA. Finally, transgenic mice overexpressing human AChE-R, but not those overexpressing AChE-S, showed significant elevation in neuronal SC35 levels, suggesting a reciprocal reinforcement process. Together, these findings point to an interactive relationship of SC35 with cholinergic signals in the long-lasting consequences of stress on nervous system plasticity and development.
Collapse
Affiliation(s)
- E Meshorer
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
40
|
Mercado PA, Ayala YM, Romano M, Buratti E, Baralle FE. Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res 2005; 33:6000-10. [PMID: 16254078 PMCID: PMC1270946 DOI: 10.1093/nar/gki897] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 09/19/2005] [Accepted: 09/27/2005] [Indexed: 01/11/2023] Open
Abstract
Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA.
Collapse
Affiliation(s)
- Pablo Arrisi Mercado
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Youhna M. Ayala
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Maurizio Romano
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
- Department of Physiology and Pathology, University of TriesteVia A. Fleming 22, 34127 Trieste, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| | - Francisco E. Baralle
- International Centre for Genetic Engineering and BiotechnologyPadriciano 99, I-34012 Trieste, Italy
| |
Collapse
|
41
|
Pettigrew C, Wayte N, Lovelock PK, Tavtigian SV, Chenevix-Trench G, Spurdle AB, Brown MA. Evolutionary conservation analysis increases the colocalization of predicted exonic splicing enhancers in the BRCA1 gene with missense sequence changes and in-frame deletions, but not polymorphisms. Breast Cancer Res 2005; 7:R929-39. [PMID: 16280041 PMCID: PMC1410749 DOI: 10.1186/bcr1324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/24/2005] [Accepted: 09/02/2005] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Aberrant pre-mRNA splicing can be more detrimental to the function of a gene than changes in the length or nature of the encoded amino acid sequence. Although predicting the effects of changes in consensus 5' and 3' splice sites near intron:exon boundaries is relatively straightforward, predicting the possible effects of changes in exonic splicing enhancers (ESEs) remains a challenge. METHODS As an initial step toward determining which ESEs predicted by the web-based tool ESEfinder in the breast cancer susceptibility gene BRCA1 are likely to be functional, we have determined their evolutionary conservation and compared their location with known BRCA1 sequence variants. RESULTS Using the default settings of ESEfinder, we initially detected 669 potential ESEs in the coding region of the BRCA1 gene. Increasing the threshold score reduced the total number to 464, while taking into consideration the proximity to splice donor and acceptor sites reduced the number to 211. Approximately 11% of these ESEs (23/211) either are identical at the nucleotide level in human, primates, mouse, cow, dog and opossum Brca1 (conserved) or are detectable by ESEfinder in the same position in the Brca1 sequence (shared). The frequency of conserved and shared predicted ESEs between human and mouse is higher in BRCA1 exons (2.8 per 100 nucleotides) than in introns (0.6 per 100 nucleotides). Of conserved or shared putative ESEs, 61% (14/23) were predicted to be affected by sequence variants reported in the Breast Cancer Information Core database. Applying the filters described above increased the colocalization of predicted ESEs with missense changes, in-frame deletions and unclassified variants predicted to be deleterious to protein function, whereas they decreased the colocalization with known polymorphisms or unclassified variants predicted to be neutral. CONCLUSION In this report we show that evolutionary conservation analysis may be used to improve the specificity of an ESE prediction tool. This is the first report on the prediction of the frequency and distribution of ESEs in the BRCA1 gene, and it is the first reported attempt to predict which ESEs are most likely to be functional and therefore which sequence variants in ESEs are most likely to be pathogenic.
Collapse
Affiliation(s)
- Christopher Pettigrew
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicola Wayte
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Paul K Lovelock
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | | | | | - Amanda B Spurdle
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Melissa A Brown
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
42
|
Ballut L, Marchadier B, Baguet A, Tomasetto C, Séraphin B, Le Hir H. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol 2005; 12:861-9. [PMID: 16170325 DOI: 10.1038/nsmb990] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/09/2005] [Indexed: 11/09/2022]
Abstract
The multiprotein exon junction complex (EJC) is assembled on mRNAs as a consequence of splicing. EJC core components maintain a stable grip on mRNAs even as the overall EJC protein composition evolves while mRNAs travel to the cytoplasm. Here we show that recombinant EJC subunits MLN51, MAGOH and Y14, together with the DEAD-box protein eIF4AIII bound to ATP, are necessary and sufficient to form a highly stable complex on single-stranded RNA. Cross-linking and RNase protection studies indicate that this recombinant complex recapitulates the EJC core. The stable association of the recombinant EJC core with RNA is maintained by inhibition of eIF4AIII ATPase activity by MAGOH-Y14. We elucidate the modalities of EJC binding to RNA and provide the first example of how cellular machineries may use RNA helicases to clamp several proteins onto RNA in stable and sequence-independent manners.
Collapse
Affiliation(s)
- Lionel Ballut
- Equipe Labélisée La Ligue, Centre de Génétique Moléculaire, associé à l'Université Paris 6, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
43
|
Sanford JR, Ellis J, Cáceres JF. Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans 2005; 33:443-6. [PMID: 15916537 DOI: 10.1042/bst0330443] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SR proteins (serine- and arginine-rich proteins) are an evolutionarily conserved family consisting of essential pre-mRNA splicing factors. Since their discovery and initial characterization, roles of SR proteins in pre-mRNA splicing and in subsequent steps of post-transcriptional gene expression have expanded significantly. The current hypotheses suggest that SR proteins are multifunctional adaptor molecules that may couple distinct steps of RNA metabolism. In the present study, we will provide an overview of the roles of SR proteins in different steps of post-transcriptional gene expression.
Collapse
Affiliation(s)
- J R Sanford
- MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, U.K
| | | | | |
Collapse
|
44
|
McAlinden A, Havlioglu N, Liang L, Davies SR, Sandell LJ. Alternative splicing of type II procollagen exon 2 is regulated by the combination of a weak 5' splice site and an adjacent intronic stem-loop cis element. J Biol Chem 2005; 280:32700-11. [PMID: 16076844 DOI: 10.1074/jbc.m505940200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Chondroprogenitor cells produce the type IIA procollagen isoform by splicing (including) exon 2 during pre-mRNA processing, whereas differentiated chondrocytes synthesize the type IIB procollagen isoform by exon 2 skipping (exclusion). Using a COL2A1 mini-gene and chondrocytes at various stages of differentiation, we identified a non-classical consensus splicing sequence in intron 2 adjacent to the 5' splice site, which is essential in regulating exon 2 splicing. RNA mapping confirmed this region contains secondary structure in the form of a stem-loop. Mutational analysis identified three cis elements within the conserved double-stranded stem region that are functional only in the context of the natural weak 5' splice site of exon 2; they are 1) a uridine-rich enhancer element in all cell types tested except differentiated chondrocytes; 2) an adenine-rich silencer element, and 3) an enhancer cis element functional in the context of secondary structure. This is the first report identifying key cis elements in the COL2A1 gene that modulate the cell type-specific alternative splicing switch of exon 2 during cartilage development.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
45
|
Ibrahim EC, Schaal TD, Hertel KJ, Reed R, Maniatis T. Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers. Proc Natl Acad Sci U S A 2005; 102:5002-7. [PMID: 15753297 PMCID: PMC555999 DOI: 10.1073/pnas.0500543102] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 5' and 3' splice sites within an intron can, in principle, be joined to those within any other intron during pre-mRNA splicing. However, exons are joined in a strict 5' to 3' linear order in constitutively spliced pre-mRNAs. Thus, specific mechanisms must exist to prevent the random joining of exons. Here we report that insertion of exon sequences into an intron can inhibit splicing to the downstream 3' splice site and that this inhibition is independent of intron size. The exon sequences required for splicing inhibition were found to be exonic enhancer elements, and their inhibitory activity requires the binding of serine/arginine-rich splicing factors. We conclude that exonic enhancers can act as barriers to prevent exon skipping and thereby may play a key role in ensuring the correct 5' to 3' linear order of exons in spliced mRNA.
Collapse
Affiliation(s)
- El Chérif Ibrahim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
46
|
Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JR, Ye Z, Liu F, Rosenfeld MG, Manley JL, Ross J, Chen J, Xiao RP, Cheng H, Fu XD. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 2005; 120:59-72. [PMID: 15652482 DOI: 10.1016/j.cell.2004.11.036] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 11/01/2004] [Accepted: 11/16/2004] [Indexed: 11/29/2022]
Abstract
The transition from juvenile to adult life is accompanied by programmed remodeling in many tissues and organs, which is key for organisms to adapt to the demand of the environment. Here we report a novel regulated alternative splicing program that is crucial for postnatnal heart remodeling in the mouse. We identify the essential splicing factor ASF/SF2 as a key component of the program, regulating a restricted set of tissue-specific alternative splicing events during heart remodeling. Cardiomyocytes deficient in ASF/SF2 display an unexpected hypercontraction phenotype due to a defect in postnatal splicing switch of the Ca(2+)/calmodulin-dependent kinase IIdelta (CaMKIIdelta) transcript. This failure results in mistargeting of the kinase to sarcolemmal membranes, causing severe excitation-contraction coupling defects. Our results validate ASF/SF2 as a fundamental splicing regulator in the reprogramming pathway and reveal the central contribution of ASF/SF2-regulated CaMKIIdelta alternative splicing to functional remodeling in developing heart.
Collapse
Affiliation(s)
- Xiangdong Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zheng ZM. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 2004; 11:278-94. [PMID: 15067211 PMCID: PMC2442652 DOI: 10.1007/bf02254432] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 11/12/2003] [Indexed: 12/16/2022] Open
Abstract
Intron removal from a pre-mRNA by RNA splicing was once thought to be controlled mainly by intron splicing signals. However, viral and other eukaryotic RNA exon sequences have recently been found to regulate RNA splicing, polyadenylation, export, and nonsense-mediated RNA decay in addition to their coding function. Regulation of alternative RNA splicing by exon sequences is largely attributable to the presence of two major cis-acting elements in the regulated exons, the exonic splicing enhancer (ESE) and the suppressor or silencer (ESS). Two types of ESEs have been verified from more than 50 genes or exons: purine-rich ESEs, which are the more common, and non-purine-rich ESEs. In contrast, the sequences of ESSs identified in approximately 20 genes or exons are highly diverse and show little similarity to each other. Through interactions with cellular splicing factors, an ESE or ESS determines whether or not a regulated splice site, usually an upstream 3' splice site, will be used for RNA splicing. However, how these elements function precisely in selecting a regulated splice site is only partially understood. The balance between positive and negative regulation of splice site selection likely depends on the cis-element's identity and changes in cellular splicing factors under physiological or pathological conditions.
Collapse
Affiliation(s)
- Zhi-Ming Zheng
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Bennett EM, Lever AML, Allen JF. Human immunodeficiency virus type 2 Gag interacts specifically with PRP4, a serine-threonine kinase, and inhibits phosphorylation of splicing factor SF2. J Virol 2004; 78:11303-12. [PMID: 15452250 PMCID: PMC521795 DOI: 10.1128/jvi.78.20.11303-11312.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 06/10/2004] [Indexed: 11/20/2022] Open
Abstract
Using a yeast two-hybrid screen of a T-cell cDNA library to identify cellular proteins that bind to the human immunodeficiency virus type 2 (HIV-2) Gag polyprotein, we identified PRP4, a serine-threonine protein kinase. Specific interaction of PRP4 and HIV-2 Gag was confirmed in in vitro and in vivo assays. The interacting region of HIV-2 Gag is located in the conserved matrix and capsid domains, while both the RS (arginine-serine-rich) domain and the KS (kinase) domain of PRP4 are able to bind to HIV-2 Gag. PRP4 is not incorporated into virus particles. HIV-2 Gag is able to inhibit PRP4-mediated phosphorylation of the splicing factor SF2. This is also observed with Gag from simian immunodeficiency virus, a closely related virus, but not with Gag from human T-cell lymphotropic virus type 1. Our results provide evidence for a novel interaction between Gag and a cellular protein kinase involved in the control of constitutive splicing in two closely related retroviruses. We hypothesize that as Gag accumulates in the cell, down regulation of splicing occurs through reduced phosphorylation of SF2. At late stages of infection, this interaction may replace the function of the early viral regulatory protein Rev.
Collapse
Affiliation(s)
- Erin M Bennett
- Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | |
Collapse
|
49
|
Expert-Bezançon A, Sureau A, Durosay P, Salesse R, Groeneveld H, Lecaer JP, Marie J. hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B. J Biol Chem 2004; 279:38249-59. [PMID: 15208309 DOI: 10.1074/jbc.m405377200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutually exclusive splicing of exons 6A and 6B from the chicken beta-tropomyosin gene involves numerous regulatory sequences. Previously, we identified a G-rich intronic sequence (S3) downstream of exon 6B. This element consists of six G-rich motifs, mutations of which abolish splicing of exon 6B. In this paper, we investigated the cellular factors that bind to this G-rich element. By using RNA affinity chromatography, we identified heterogeneous nuclear ribonucleoprotein (hnRNP) A1, the SR proteins ASF/SF2 and SC35, and hnRNP F/H as specific components that are assembled onto the G-rich element. By using hnRNP A1-depleted HeLa nuclear extract and add-back experiments, we show that hnRNP A1 has a negative effect on splicing of exon 6B. In agreement with in vitro data, artificial recruitment of hnRNP A1, as a fusion with the MS2 coat protein, also represses splicing of exon 6B ex vivo. In contrast, ASF/SF2 and SC35 activate splicing of exon 6B. As observed with other systems, hnRNP A1 counteracts the stimulating effect of the SR proteins. Moreover, cross-linking experiments show that both ASF/SF2 and SC35 are able to displace binding of hnRNP A1 to the G-rich element, suggesting that the binding sites for these proteins are overlapping. These data indicate that the G-rich sequence is a composite element that acts as an enhancer or as a silencer, depending on which proteins bind to them.
Collapse
Affiliation(s)
- Alain Expert-Bezançon
- Centre de Génétique Moléculaire, CNRS UPR 2167, Laboratoire Propre Associé à l'Université Pierre et Marie Curie, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Ropers D, Ayadi L, Gattoni R, Jacquenet S, Damier L, Branlant C, Stévenin J. Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. J Biol Chem 2004; 279:29963-73. [PMID: 15123677 DOI: 10.1074/jbc.m404452200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing is a crucial step for human immunodeficiency virus, type 1 (HIV-1) multiplication; eight acceptor sites are used in competition to produce the vif, vpu, vpr, nef, env, tat, and rev mRNAs. The effects of SR proteins have only been investigated on a limited number of HIV-1 splicing sites by using small HIV-1 RNA pieces. To understand how SR proteins influence the use of HIV-1 splicing sites, we tested the effects of overproduction of individual SR proteins in HeLa cells on the splicing pattern of an HIV-1 RNA that contained all the splicing sites. The steady state levels of the HIV-1 mRNAs produced were quantified by reverse transcriptase-PCR. For interpretation of the data, transcripts containing one or several of the HIV-1 acceptor sites were spliced in vitro in the presence or the absence of one of the tested SR proteins. Both in vivo and in vitro, acceptor sites A2 and A3 were found to be strongly and specifically regulated by SR proteins. ASF/SF2 strongly activates site A2 and to a lesser extent site A1. As a result, upon ASF/SF2 overexpression, the vpr mRNA steady state level is specifically increased. SC35 and SRp40, but not 9G8, strongly activate site A3, and their overexpression ex vivo induces a dramatic accumulation of the tat mRNA, to the detriment of most of the other viral mRNAs. Here we showed by Western blot analysis that the Nef protein synthesis is strongly decreased by overexpression of SC35, SRp40, and ASF/SF2. Finally, activation by ASF/SF2 and 9G8 was found to be independent of the RS domain. This is the first investigation of the effects of variations of individual SR protein concentrations that is performed ex vivo on an RNA containing a complex set of splicing sites.
Collapse
Affiliation(s)
- Delphine Ropers
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR CNRS 7567, Université Henri Poincaré Nancy 1, Boulevard des Aiguillettes, BP239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|