1
|
Kaltner H, Caballero GG, Schmidt S. Analysis of chicken LGALSL (galectin-related protein) gene's proximal promoter and its control by Krüppel-like factors 3 and 7. Gene 2025; 933:148972. [PMID: 39343186 DOI: 10.1016/j.gene.2024.148972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The Galectin-Related Protein (GRP), encoded by the LGALSL gene, assigned to the protein family of β-galactoside-binding Galectins, has lost carbohydrate-binding abilities. Its chicken homolog (C-GRP) occurs in the bursa of Fabricius' epithelial and B cells. Our study investigates the unknown regulatory mechanisms controlling its expression by analyzing the promoter region of the chicken (C-)LGALSL gene in chicken cells. We aimed to identify the sequence elements of the C-LGALSL gene promoter responsible for maximum activity and transcription factors (TFs) that can modulate this activity. Using luciferase reporter assays, we investigated deletion variants of the 5' region (-2480 bp to +26 bp). Through in silico analyses and site-directed mutagenesis, we explored potential transcription factor binding sites, identified crucial transcription factors through transient overexpression and tested its direct binding by ChIP. Our findings highlight that the region from -274 to -75 bp, conserved among bird species, is crucial for promoter regulation. Among other tested factors, only the chicken (ch) Krüppel-like factors, chKLF3 and chKLF7, modulate the promoter's activity. The TFs chKLF3 acts as a repressor, and chKLF7 as an activator, although direct binding could not be confirmed. In conclusion, chKLF3 and chKLF7 contribute, in contrast to other factors with binding sites in the region from -274 to -75 bp, to C-LGALSL gene promoter regulation with a balanced impact on activity.
Collapse
Affiliation(s)
- Herbert Kaltner
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany
| | - Gabriel García Caballero
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany
| | - Sebastian Schmidt
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
3
|
Pastoors D, Havermans M, Mulet-Lazaro R, Brian D, Noort W, Grasel J, Hoogenboezem R, Smeenk L, Demmers JAA, Milsom MD, Enver T, Groen RWJ, Bindels E, Delwel R. Oncogene EVI1 drives acute myeloid leukemia via a targetable interaction with CTBP2. SCIENCE ADVANCES 2024; 10:eadk9076. [PMID: 38748792 PMCID: PMC11095456 DOI: 10.1126/sciadv.adk9076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.
Collapse
Affiliation(s)
- Dorien Pastoors
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marije Havermans
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Duncan Brian
- Stem Cell Group, UCL Cancer Institute, University College London, London, UK
| | - Willy Noort
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, Netherlands
| | - Julius Grasel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Experimental Hematology, German Cancer Research Center, DKFZ69120 Heidelberg, Germany
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leonie Smeenk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Michael D. Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Experimental Hematology, German Cancer Research Center, DKFZ69120 Heidelberg, Germany
| | - Tariq Enver
- Stem Cell Group, UCL Cancer Institute, University College London, London, UK
| | - Richard W. J. Groen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
4
|
Wang H, Han J, Dmitrii G, Ning K, Zhang X. KLF transcription factors in bone diseases. J Cell Mol Med 2024; 28:e18278. [PMID: 38546623 PMCID: PMC10977429 DOI: 10.1111/jcmm.18278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2025] Open
Abstract
Krüppel-like factors (KLFs) are crucial in the development of bone disease. They are a family of zinc finger transcription factors that are unusual in containing three highly conserved zinc finger structural domains interacting with DNA. It has been discovered that it engages in various cell functions, including proliferation, apoptosis, autophagy, stemness, invasion and migration, and is crucial for the development of human tissues. In recent years, the role of KLFs in bone physiology and pathology has received adequate attention. In addition to regulating the normal growth and development of the musculoskeletal system, KLFs participate in the pathological process of the bones and joints and are intimately linked to several skeletal illnesses, such as osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP) and osteosarcoma (OS). Consequently, targeting KLFs has emerged as a promising therapeutic approach for an array of bone disorders. In this review, we summarize the current literature on the importance of KLFs in the emergence and regulation of bone illnesses, with a particular emphasis on the pertinent mechanisms by which KLFs regulate skeletal diseases. We also discuss the need for KLFs-based medication-targeted treatment. These endeavours offer new perspectives on the use of KLFs in bone disorders and provide prognostic biomarkers, therapeutic targets and possible drug candidates for bone diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Juanjuan Han
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
- Department of Sport RehabilitationShanghai University of SportShanghaiChina
| | - Gorbachev Dmitrii
- Head of General Hygiene DepartmentSamara State Medical UniversitySamaraRussia
| | - Ke Ning
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Xin‐an Zhang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| |
Collapse
|
5
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
6
|
Zhang CX, Lin YL, Lu FF, Yu LN, Liu Y, Zhou JD, Kong N, Li D, Yan GJ, Sun HX, Cao GY. Krüppel-like factor 12 regulates aging ovarian granulosa cell apoptosis by repressing SPHK1 transcription and sphingosine-1-phosphate (S1P) production. J Biol Chem 2023; 299:105126. [PMID: 37543362 PMCID: PMC10463260 DOI: 10.1016/j.jbc.2023.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.
Collapse
Affiliation(s)
- Chun-Xue Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yu-Ling Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Fei-Fei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Li-Na Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ji-Dong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Gui-Jun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Hai-Xiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| | - Guang-Yi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Li Y, Wang Y, Zou Q, Li S, Zhang F. KLF3 Transcription Activates WNT1 and Promotes the Growth and Metastasis of Gastric Cancer via Activation of the WNT/β-Catenin Signaling Pathway. J Transl Med 2023; 103:100078. [PMID: 36827869 DOI: 10.1016/j.labinv.2023.100078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
The transcription factor Krüppel-like factor (KLF) 3 is one of the members of the KLF family, which plays an important role in tumor progression. Nevertheless, the role of KLF3 in the growth and metastasis of gastric cancer (GC) still needs to be elucidated. Bioinformatics analysis showed that KLF3 was overexpressed in patients with GC, and the high expression of KLF3 was correlated with poor survival. KLF3 was also overexpressed in GC clinical samples and cell lines. In vitro functional role of KLF3 in GC cells was explored by a gain-of-function and loss-of-function assay. Overexpressed KLF3 promoted the cell proliferation, migration, invasion, and epithelial-mesenchymal transition of GC cells, whereas suppressed KLF3 inhibited these biological behaviors. The clinical samples and bioinformatics analysis showed that WNT1 was also highly expressed in GC tumor tissues and positively correlated with KLF3 expression. The luciferase reporter assay and chromatin immunoprecipitation result confirmed that KLF3 could directly bind to the WNT1 promoter to increase the transcriptional activity of WNT1, thus regulating its expression. Overexpressed KLF3 enhanced the protein expression level of p-GSK3β(Ser9) and β-catenin, the key elements in the WNT/β-catenin signaling pathway. Repression of KLF3 decreased the level of p-GSK3β(Ser9) and β-catenin. Immunofluorescence images showed that KLF3 promoted nuclear β-catenin accumulation. Inhibition of WNT1 attenuated the proliferation, migration, and invasiveness of KLF3-overexpressing GC cells. Moreover, the xenograft mouse model confirmed that KLF3 promotes GC tumor growth and metastasis in vivo. Our results demonstrated that KLF3 activates the WNT/β-catenin signaling pathway via WNT1 to promote GC tumor growth and metastasis, indicating that repression of KLF3 may act as a potential therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Wang
- Endoscopy Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qinguang Zou
- Department of Thoracic Surgery, Jilin Cancer Hospital, Changchun, Jilin, China
| | - Shouqing Li
- Tumor Integrative Medicine Center, Jilin Province People's Hospital, Changchun, Jilin, China
| | - Fan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
8
|
The Involvement of Krüppel-like Factors in Cardiovascular Diseases. Life (Basel) 2023; 13:life13020420. [PMID: 36836777 PMCID: PMC9962890 DOI: 10.3390/life13020420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Krüppel-like factors (KLFs) are a set of DNA-binding proteins belonging to a family of zinc-finger transcription factors, which have been associated with many biological processes related to the activation or repression of genes, inducing cell growth, differentiation, and death, and the development and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVDs). KLFs are among the transcriptional factors that take control of many physiological and, in this case, pathophysiological processes of CVD. KLFs seem to be associated with congenital heart disease-linked syndromes, malformations because of autosomal diseases, mutations that relate to protein instability, and/or loss of functions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because of the differentiation of cardiac myofibroblasts or a modified fatty acid oxidation related to the formation of a dilated cardiomyopathy, myocardial infarctions, left ventricular hypertrophy, and diabetic cardiomyopathies. In this review, we describe the importance of KLFs in cardiovascular diseases such as atherosclerosis, myocardial infarction, left ventricle hypertrophy, stroke, diabetic cardiomyopathy, and congenital heart diseases. We further discuss microRNAs that have been involved in certain regulatory loops of KLFs as they may act as critical in CVDs.
Collapse
|
9
|
EVI1 drives leukemogenesis through aberrant ERG activation. Blood 2023; 141:453-466. [PMID: 36095844 DOI: 10.1182/blood.2022016592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023] Open
Abstract
Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.
Collapse
|
10
|
Kruppel-like Factors in Skeletal Physiology and Pathologies. Int J Mol Sci 2022; 23:ijms232315174. [PMID: 36499521 PMCID: PMC9741390 DOI: 10.3390/ijms232315174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Kruppel-like factors (KLFs) belong to a large group of zinc finger-containing transcription factors with amino acid sequences resembling the Drosophila gap gene Krüppel. Since the first report of molecular cloning of the KLF family gene, the number of KLFs has increased rapidly. Currently, 17 murine and human KLFs are known to play crucial roles in the regulation of transcription, cell proliferation, cellular differentiation, stem cell maintenance, and tissue and organ pathogenesis. Recent evidence has shown that many KLF family molecules affect skeletal cells and regulate their differentiation and function. This review summarizes the current understanding of the unique roles of each KLF in skeletal cells during normal development and skeletal pathologies.
Collapse
|
11
|
Paredes R, Doleschall N, Connors K, Geary B, Meyer S. EVI1 protein interaction dynamics: targetable for therapeutic intervention? Exp Hematol 2021; 107:1-8. [PMID: 34958895 DOI: 10.1016/j.exphem.2021.12.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
High expression of the transcriptional regulator EVI1 encoded at the MECOM locus at 3q26 is one of the most aggressive oncogenic drivers in acute myeloid leukaemia (AML) and carries a very poor prognosis. How EVI1 confers leukaemic transformation and chemotherapy resistance in AML is subject to important ongoing clinical and experimental studies. Recent discoveries have revealed critical details about genetic mechanisms of the activation of EVI1 overexpression and downstream events of aberrantly high EVI1 expression. Here we review and discuss aspects concerning the protein interactions of EVI1 and the related proteins MDS-EVI1 and ΔEVI1 from the perspective of their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Nora Doleschall
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester; Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital; Young Oncology Unit, The Christie NHS Foundation Trust.
| |
Collapse
|
12
|
Han JH, Jang KW, Myung CS. Garcinia cambogia attenuates adipogenesis by affecting CEBPB and SQSTM1/p62-mediated selective autophagic degradation of KLF3 through RPS6KA1 and STAT3 suppression. Autophagy 2021; 18:518-539. [PMID: 34101546 DOI: 10.1080/15548627.2021.1936356] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The overexpansion of adipose tissues leads to obesity and eventually results in metabolic disorders. Garcinia cambogia (G. cambogia) has been used as an antiobesity supplement. However, the molecular mechanisms underlying the effects of G. cambogia on cellular processes have yet to be fully understood. Here, we discovered that G. cambogia attenuated the expression of CEBPB (CCAAT/enhancer binding protein (C/EBP), beta), an important adipogenic factor, suppressing its transcription in differentiated cells. In addition, G. cambogia inhibited macroautophagic/autophagic flux by decreasing autophagy-related gene expression and autophagosome formation. Notably, G. cambogia markedly elevated the expression of KLF3 (Kruppel-like factor 3 (basic)), a negative regulator of adipogenesis, by reducing SQSTM1/p62-mediated selective autophagic degradation. Furthermore, increased KLF3 induced by G. cambogia interacted with CTBP2 (C-terminal binding protein 2) to form a transcriptional repressor complex and inhibited Cebpa and Pparg transcription. Importantly, we found that RPS6KA1 and STAT3 were involved in the G. cambogia-mediated regulation of CEBPB and autophagic flux. In an obese animal model, G. cambogia reduced high-fat diet (HFD)-induced obesity by suppressing epididymal and inguinal subcutaneous white adipose tissue mass and adipocyte size, which were attributed to the regulation of targets that had been consistently identified in vitro. These findings provide new insight into the mechanism of G. cambogia-mediated regulation of adipogenesis and suggest molecular links to therapeutic targets for the treatment of obesity.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Keun-Woo Jang
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Endoplasmic reticulum stress regulates the intestinal stem cell state through CtBP2. Sci Rep 2021; 11:9892. [PMID: 33972635 PMCID: PMC8111031 DOI: 10.1038/s41598-021-89326-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Enforcing differentiation of cancer stem cells is considered as a potential strategy to sensitize colorectal cancer cells to irradiation and chemotherapy. Activation of the unfolded protein response, due to endoplasmic reticulum (ER) stress, causes rapid stem cell differentiation in normal intestinal and colon cancer cells. We previously found that stem cell differentiation was mediated by a Protein kinase R-like ER kinase (PERK) dependent arrest of mRNA translation, resulting in rapid protein depletion of WNT-dependent transcription factor c-MYC. We hypothesize that ER stress dependent stem cell differentiation may rely on the depletion of additional transcriptional regulators with a short protein half-life that are rapidly depleted due to a PERK-dependent translational pause. Using a novel screening method, we identify novel transcription factors that regulate the intestinal stem cell fate upon ER stress. ER stress was induced in LS174T cells with thapsigargin or subtilase cytotoxin (SubAB) and immediate alterations in nuclear transcription factor activity were assessed by the CatTFRE assay in which transcription factors present in nuclear lysate are bound to plasmid DNA, co-extracted and quantified using mass-spectrometry. The role of altered activity of transcription factor CtBP2 was further examined by modification of its expression levels using CAG-rtTA3-CtBP2 overexpression in small intestinal organoids, shCtBP2 knockdown in LS174T cells, and familial adenomatous polyposis patient-derived organoids. CtBP2 overexpression organoids were challenged by ER stress and ionizing irradiation. We identified a unique set of transcription factors with altered activation upon ER stress. Gene ontology analysis showed that transcription factors with diminished binding were involved in cellular differentiation processes. ER stress decreased CtBP2 protein expression in mouse small intestine. ER stress induced loss of CtBP2 expression which was rescued by inhibition of PERK signaling. CtBP2 was overexpressed in mouse and human colorectal adenomas. Inducible CtBP2 overexpression in organoids conferred higher clonogenic potential, resilience to irradiation-induced damage and a partial rescue of ER stress-induced loss of stemness. Using an unbiased proteomics approach, we identified a unique set of transcription factors for which DNA-binding activity is lost directly upon ER stress. We continued investigating the function of co-regulator CtBP2, and show that CtBP2 mediates ER stress-induced loss of stemness which supports the intestinal stem cell state in homeostatic stem cells and colorectal cancer cells.
Collapse
|
14
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
15
|
García-Niño WR, Zazueta C. New insights of Krüppel-like transcription factors in adipogenesis and the role of their regulatory neighbors. Life Sci 2020; 265:118763. [PMID: 33189819 DOI: 10.1016/j.lfs.2020.118763] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Obesity is a serious public health problem associated with predisposition to develop metabolic diseases. Over the past decade, several studies in vitro and in vivo have shown that the activity of Krüppel-like factors (KLFs) regulates adipogenesis, adipose tissue function and metabolism. Comprehension of both the origin and development of adipocytes and of adipose tissue could provide new insights into therapeutic strategies to contend against obesity and related metabolic diseases. This review focus on the transcriptional role that KLF family members play during adipocyte differentiation, describes their main interactions and the mechanisms involved in this fine-tuned developmental process. We also summarize new findings of the involvement of several effectors that modulate KLFs expression during adipogenesis, including growth factors, circadian clock proteins, interleukins, nuclear receptors, protein kinases and importantly, microRNAs. Thus, KLFs regulation by these factors and emerging molecules might constitute a potential therapeutic target for anti-obesity intervention.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology "Ignacio Chávez", Mexico City 14080, Mexico.
| |
Collapse
|
16
|
Hongfang G, Khan R, Raza SHA, Nurgulsim K, Suhail SM, Rahman A, Ahmed I, Ijaz A, Ahmad I, Linsen Z. Transcriptional regulation of adipogenic marker genes for the improvement of intramuscular fat in Qinchuan beef cattle. Anim Biotechnol 2020; 33:776-795. [PMID: 33151113 DOI: 10.1080/10495398.2020.1837847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intramuscular fat content plays a crucial role in meat quality traits. Increasing the degree of adipogenesis in beef cattle leads to an increase in the content of intramuscular fat. Adipogenesis a complex biochemical process which is under firm genetic control. Over the last three decades, the Qinchuan beef cattle have been extensively studied for the improvement of meat production and quality traits. In this study, we reviewed the literature regarding adipogenesis and intramuscular fat deposition. Then, we summarized the research conducted on the transcriptional regulation of key adipogenic marker genes, and also reviewed the roles of adipogenic marker genes in adipogenesis of Qinchuan beef cattle. This review will elaborate our understanding regarding transcriptional regulation which is a vital physiological process regulated by a cascade of transcription factors (TFs), key target marker genes, and regulatory proteins. This synergistic action of TFs and target genes ensures the accurate and diverse transmission of the genetic information for the accomplishment of central physiological processes. This information will provide an insight into the transcriptional regulation of the adipogenic marker genes and its role in bovine adipogenesis for the breed improvement programs especially for the trait of intramuscular fat deposition.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, Xuchang City, Henan Province, P. R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmed
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Asim Ijaz
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
17
|
Waldner DM, Ito K, Chen LL, Nguyen L, Chow RL, Lee A, Rancourt DE, Tremblay F, Stell WK, Bech-Hansen NT. Transgenic Expression of Cacna1f Rescues Vision and Retinal Morphology in a Mouse Model of Congenital Stationary Night Blindness 2A (CSNB2A). Transl Vis Sci Technol 2020; 9:19. [PMID: 33117610 PMCID: PMC7571326 DOI: 10.1167/tvst.9.11.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Congenital stationary night blindness 2A (CSNB2A) is a genetic retinal disorder characterized by poor visual acuity, nystagmus, strabismus, and other signs of retinal dysfunction resulting from mutations in Cacna1f -the gene coding for the pore-forming subunit of the calcium channel CaV1.4. Mouse models of CSNB2A have shown that mutations causing the disease deleteriously affect photoreceptors and their synapses with second-order neurons. This study was undertaken to evaluate whether transgenic expression of Cacna1f could rescue morphology and visual function in a Cacna1f-KO model of CSNB2A. Methods Strategic creation, breeding and use of transgenic mouse lines allowed for Cre-driven retina-specific expression of Cacna1f in a CSNB2A model. Transgene expression and retinal morphology were investigated with immunohistochemistry in retinal wholemounts or cross-sections. Visual function was assessed by optokinetic response (OKR) analysis and electroretinography (ERG). Results Mosaic, prenatal expression of Cacna1f in the otherwise Cacna1f-KO retina was sufficient to rescue some visual function. Immunohistochemical analyses demonstrated wild-type-like photoreceptor and synaptic morphology in sections with transgenic expression of Cacna1f. Conclusions This report describes a novel system for Cre-inducible expression of Cacna1f in a Cacna1f-KO mouse model of CSNB2A and provides preclinical evidence for the potential use of gene therapy in the treatment of CSNB2A. Translational Relevance These data have relevance in the treatment of CSNB2A and in understanding how photoreceptor integration might be achieved in retinas in which photoreceptors have been lost, such as retinitis pigmentosa, age-related macular degeneration, and other degenerative conditions.
Collapse
Affiliation(s)
- Derek M Waldner
- Graduate Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kenichi Ito
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Li-Li Chen
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Lisa Nguyen
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, Department of Otolaryngology Head-Neck Surgery and Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Francois Tremblay
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, and Clinical Vision Sciences Program, Faculty of Health Dalhousie University, NS, Canada
| | - William K Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N Torben Bech-Hansen
- Department of Medical Genetics, and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Li Y, Shen Y, Zhu Z, Wen H, Feng C. Comprehensive analysis of copy number variance and sensitivity to common targeted therapy in clear cell renal cell carcinoma: In silico analysis with in vitro validation. Cancer Med 2020; 9:6020-6029. [PMID: 32628820 PMCID: PMC7433817 DOI: 10.1002/cam4.3281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chromosomal rearrangements are common in clear cell renal cell carcinoma (ccRCC) and their roles in mediating sensitivity to tyrosine kinase inhibitors (TKIs) and mTOR inhibitors (mTORi) remain elusive. Methods We developed an in silico strategy by screening copy number variance (CNV) that was potentially related to TKI or mTORi sensitivity in ccRCC by reproducing the TCGA and GDSC datasets. Candidate genes should be both significantly prognostic and related to drug sensitivity or resistance, and were then validated in vitro. Results ADCYAP1 loss and GNAS gain were associated with sensitivity and resistance and to Cabozantinib, respectively. ACRBP gain and CTBP1 loss were associated with sensitivity and resistance and to Pazopanib, respectively. CDKN2A loss and SULT1A3 gain were associated with sensitivity and resistance and to Temsirolimus, respectively. CCNE1 gain was associated with resistance to Axitinib and LRP10 loss was associated with resistance to Sunitinib. Mutivariate analysis showed ADCYAP1, GNAS, and CCNE1 remained independently prognostic when adjusted for the rest. Conclusion Here we show CNVs of several genes that are associated with sensitivity and resistance to commonly used TKIs and mTORi in ccRCC. Further validation and functional analyses are therefore needed.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yanyun Shen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhidong Zhu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hui Wen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
19
|
Wang R, Xu J, Xu J, Zhu W, Qiu T, Li J, Zhang M, Wang Q, Xu T, Guo R, Lu K, Yin Y, Gu Y, Zhu L, Huang P, Liu P, Liu L, De W, Shu Y. MiR-326/Sp1/KLF3: A novel regulatory axis in lung cancer progression. Cell Prolif 2019; 52:e12551. [PMID: 30485570 PMCID: PMC6495967 DOI: 10.1111/cpr.12551] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the function and regulatory mechanism of Krüppel-like factor 3 (KLF3) in lung cancer. MATERIALS AND METHODS KLF3 expression was analysed by qRT-PCR and Western blot assays. The proliferation, migration, invasion, cycle and apoptosis were measured by CCK-8 and EdU, wound-healing and Transwell, and flow cytometry assays. The tumour growth was detected by nude mouse tumorigenesis assay. In addition, the interaction between KLF3 and Sp1 was accessed by luciferase reporter, EMSA and ChIP assay. JAK2, STAT3, PI3K and p-AKT levels were evaluated by Western blot and IHC assays. RESULTS The results indicated that KLF3 expression was elevated in lung cancer tissues. Knockdown of KLF3 inhibited lung cancer cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis. In addition, the downregulation of KLF3 suppressed tumour growth in vivo. KLF3 was transcriptionally activated by Sp1. miR-326 could bind to 3'UTR of Sp1 but not KLF3 and decreased the accumulation of Sp1, which further indirectly reduced KLF3 expression and inactivated JAK2/STAT3 and PI3K/AKT signaling pathways in vitro and in vivo. CONCLUSIONS Our data demonstrate that miR-326/Sp1/KLF3 regulatory axis is involved in the development of lung cancer, which hints the potential target for the further therapeutic strategy against lung cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jiali Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jing Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tianzhu Qiu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jun Li
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Meiling Zhang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Qianqian Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tongpeng Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Renhua Guo
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Kaihua Lu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yongmei Yin
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yanhong Gu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lingjun Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Puwen Huang
- Department of OncologyLiyang people's Hospital of Jiangsu ProvinceLiyangChina
| | - Ping Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lianke Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei De
- Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
| | - Yongqian Shu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| |
Collapse
|
20
|
Rane MJ, Zhao Y, Cai L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine 2019; 40:743-750. [PMID: 30662001 PMCID: PMC6414320 DOI: 10.1016/j.ebiom.2019.01.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Dysregulated Krϋppel-like factor (KLF) gene expression appears in many disease-associated pathologies. In this review, we discuss physiological functions of KLFs in the kidney with a focus on potential pharmacological modulation/therapeutic applications of these KLF proteins. KLF2 is critical to maintaining endothelial barrier integrity and preventing gap formations and in prevention of glomerular endothelial cell and podocyte damage in diabetic mice. KLF4 is renoprotective in the setting of AKI and is a critical regulator of proteinuria in mice and humans. KLF6 expression in podocytes preserves mitochondrial function and prevents podocyte apoptosis, while KLF5 expression prevents podocyte apoptosis by blockade of ERK/p38 MAPK pathways. KLF15 is a critical regulator of podocyte differentiation and is protective against podocyte injury. Loss of KLF4 and KLF15 promotes renal fibrosis, while fibrotic kidneys have increased KLF5 and KLF6 expression. For therapeutic modulation of KLFs, continued screening of small molecules will promote drug discoveries targeting KLF proteins.
Collapse
Affiliation(s)
- Madhavi J Rane
- Department of Medicine, Division Nephrology, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA.
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
21
|
King AJ, Higgs DR. Potential new approaches to the management of the Hb Bart's hydrops fetalis syndrome: the most severe form of α-thalassemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:353-360. [PMID: 30504332 PMCID: PMC6246003 DOI: 10.1182/asheducation-2018.1.353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The α-thalassemia trait, associated with deletions removing both α-globin genes from 1 chromosome (genotype ζ αα/ζ--), is common throughout Southeast Asia. Consequently, many pregnancies in couples of Southeast Asian origin carry a 1 in 4 risk of producing a fetus inheriting no functional α-globin genes (ζ--/ζ--), leading to hemoglobin (Hb) Bart's hydrops fetalis syndrome (BHFS). Expression of the embryonic α-globin genes (ζ-globin) is normally limited to the early stages of primitive erythropoiesis, and so when the ζ-globin genes are silenced, at ∼6 weeks of gestation, there should be no α-like globin chains to pair with the fetal γ-globin chains of Hb, which consequently form nonfunctional tetramers (γ4) known as Hb Bart's. When deletions leave the ζ-globin gene intact, a low level of ζ-globin gene expression continues in definitive erythroid cells, producing small amounts of Hb Portland (ζ2γ2), a functional form of Hb that allows the fetus to survive up to the second or third trimester. Untreated, all affected individuals die at these stages of development. Prevention is therefore of paramount importance. With improvements in early diagnosis, intrauterine transfusion, and advanced perinatal care, there are now a small number of individuals with BHFS who have survived, with variable outcomes. A deeper understanding of the mechanism underlying the switch from ζ- to α-globin expression could enable persistence or reactivation of embryonic globin synthesis in definitive cells, thereby providing new therapeutic options for such patients.
Collapse
Affiliation(s)
- Andrew J King
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Douglas R Higgs
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
22
|
Zhang W, Xu J, Li J, Guo T, Jiang D, Feng X, Ma X, He L, Wu W, Yin M, Ge L, Wang Z, Ho MS, Zhao Y, Fei Z, Zhang L. The TEA domain family transcription factor TEAD4 represses murine adipogenesis by recruiting the cofactors VGLL4 and CtBP2 into a transcriptional complex. J Biol Chem 2018; 293:17119-17134. [PMID: 30209132 DOI: 10.1074/jbc.ra118.003608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is known to play an important role in multiple physiological processes, including adipogenesis. However, whether the downstream components of the Hippo pathway are involved in adipogenesis remains unknown. Here we demonstrate that the TEA domain family (TEAD) transcription factors are essential for adipogenesis in murine 3T3-L1 preadipocytes. Knockdown of TEAD1-4 stimulated adipogenesis and increased the expression of adipocyte markers in these cells. Interestingly, we found that the TEAD4 knockdown-mediated adipogenesis proceeded in a Yes-associated protein (YAP)/TAZ (Wwtr1)-independent manner and that adipogenesis suppression in WT cells involved formation of a ternary complex comprising TEAD4 and the transcriptional cofactors C-terminal binding protein 2 (CtBP2) and vestigial-like family member 4 (VGLL4). VGLL4 acted as an adaptor protein that enhanced the interaction between TEAD4 and CtBP2, and this TEAD4-VGLL4-CtBP2 ternary complex dynamically existed at the early stage of adipogenesis. Finally, we verified that TEAD4 directly targets the promoters of major adipogenesis transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adiponectin, C1Q, and collagen domain-containing (Adipoq) during adipogenesis. These findings reveal critical insights into the role of the TEAD4-VGLL4-CtBP2 transcriptional repressor complex in suppression of adipogenesis in murine preadipocytes.
Collapse
Affiliation(s)
- Wenxiang Zhang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Jinjin Xu
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Jinhui Li
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Tong Guo
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Dan Jiang
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xue Feng
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Xueyan Ma
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Lingli He
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Mengxin Yin
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Ling Ge
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Zuoyun Wang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Margaret S Ho
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and.,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoliang Fei
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China and .,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
23
|
Du K, Zhang X, Lou Z, Guo P, Zhang F, Wang B, Chen L, Zhang C. MicroRNA485-3p negatively regulates the transcriptional co-repressor CtBP1 to control the oncogenic process in osteosarcoma cells. Int J Biol Sci 2018; 14:1445-1456. [PMID: 30262996 PMCID: PMC6158736 DOI: 10.7150/ijbs.26335] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/08/2018] [Indexed: 12/31/2022] Open
Abstract
Carboxyl-terminal binding protein 1 (CtBP1), a well-known transcriptional co-repressor, is highly expressed in a number of cancer types. However, it is still absent in osteosarcoma cells. Here, we found that CtBP1, but not CtBP2, is overexpressed in invasive osteosarcoma tissues and cells. The overexpressed CtBP1 in turn represses its downstream targets, such as the pro-apoptotic regulators Bax, Bim and p53 upregulated modulator of apoptosis (PUMA), cell adhesion molecule E-cadherin, and the cell cycle regulators p16, p21 and phosphatase and tensin homolog (PTEN). To explore the molecular mechanism of CtBP1 overexpression, we subjected three independent clinical samples to miRNA microarray analysis and found that miR-485-3p could specifically bind to the 3'-untranslated region (3'-UTR) of CtBP1, thereby negatively controlling CtBP1 expression. The overexpression of miR-485-3p in osteosarcoma cells significantly repressed CtBP1 levels and inhibited cell proliferation, colony formation, cell migration and sphere formation. Further analysis indicated that DNA hypermethylation in the promoter region of miR-485-3p caused the downregulation of miR-485-3p. Treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) resulted in the upregulation of miR-485-3p and the downregulation of CtBP1 as well as inhibited osteosarcoma cell growth. This study provides evidence that CtBP1 is also overexpressed in osteosarcoma cells and demonstrates the underlying mechanism regarding its overexpression. Thus, therapeutically targeting CtBP1 may represent an effective strategy for osteosarcoma therapy.
Collapse
Affiliation(s)
- Kaili Du
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xinliang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, China
| | - Zhenkai Lou
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Peiyu Guo
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Fan Zhang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Bing Wang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lingqiang Chen
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Chunqiang Zhang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
24
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Guo H, Khan R, Raza SHA, Ning Y, Wei D, Wu S, Hosseini SM, Ullah I, Garcia MD, Zan L. KLF15 promotes transcription of KLF3 gene in bovine adipocytes. Gene 2018; 659:77-83. [DOI: 10.1016/j.gene.2018.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
|
26
|
Sargolzaei J, Chamani E, Kazemi T, Fallah S, Soori H. The role of adiponectin and adipolin as anti-inflammatory adipokines in the formation of macrophage foam cells and their association with cardiovascular diseases. Clin Biochem 2018; 54:1-10. [PMID: 29452073 DOI: 10.1016/j.clinbiochem.2018.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Obesity is one of the major public health concerns that is closely associated with obesity-related disorders such as type 2 diabetes mellitus (T2DM), hypertension, and atherosclerosis. Atherosclerosis is a chronic disease characterized by excess cholesterol deposition in the arterial intima and the formation of foam cells. Adipocytokines or adipokines are secreted by the adipose tissue as endocrine glands; adiponectin and adipolin are among these adipokines that are associated with obese and insulin-resistant phenotypes. Adipolin and adiponectin are cytokines that exert substantial impact on obesity, progression of atherosclerosis, insulin resistance, and glucose metabolism. In this paper, we review the formation of macrophage foam cells, which are associated with atherosclerosis, and the macrophage mechanism, which includes uptake, esterification, and release. We also summarize current information on adipose tissue-derived hormone and energy homeostasis in obesity. Finally, the role of adipokines, e.g., adipoline and adiponectin, in regulating metabolic, cardiovascular diseases is discussed.
Collapse
Affiliation(s)
- Javad Sargolzaei
- Department of Biochemistry, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Elham Chamani
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Tooba Kazemi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Soudabeh Fallah
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hosna Soori
- Department of Biochemistry, Institute Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Waldner DM, Giraldo Sierra NC, Bonfield S, Nguyen L, Dimopoulos IS, Sauvé Y, Stell WK, Bech-Hansen NT. Cone dystrophy and ectopic synaptogenesis in a Cacna1f loss of function model of congenital stationary night blindness (CSNB2A). Channels (Austin) 2018; 12:17-33. [PMID: 29179637 PMCID: PMC5972796 DOI: 10.1080/19336950.2017.1401688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/22/2017] [Accepted: 10/31/2017] [Indexed: 01/05/2023] Open
Abstract
Congenital stationary night blindness 2A (CSNB2A) is an X-linked retinal disorder, characterized by phenotypically variable signs and symptoms of impaired vision. CSNB2A is due to mutations in CACNA1F, which codes for the pore-forming α1F subunit of a L-type voltage-gated calcium channel, Cav1.4. Mouse models of CSNB2A, used for characterizing the effects of various Cacna1f mutations, have revealed greater severity of defects than in human CSNB2A. Specifically, Cacna1f-knockout mice show an apparent lack of visual function, gradual retinal degeneration, and disruption of photoreceptor synaptic terminals. Several reports have also noted cone-specific disruptions, including axonal abnormalities, dystrophy, and cell death. We have explored further the involvement of cones in our 'G305X' mouse model of CSNB2A, which has a premature truncation, loss-of-function mutation in Cacna1f. We show that the expression of genes for several phototransduction-related cone markers is down-regulated, while that of several cellular stress- and damage-related markers is up-regulated; and that cone photoreceptor structure and photopic visual function - measured by immunohistochemistry, optokinetic response and electroretinography - deteriorate progressively with age. We also find that dystrophic cone axons establish synapse-like contacts with rod bipolar cell dendrites, which they normally do not contact in wild-type retinas - ectopically, among rod cell bodies in the outer nuclear layer. These data support a role for Cav1.4 in cone synaptic development, cell viability, and synaptic transmission of cone-dependent visual signals. Although our novel finding of cone-to-rod-bipolar cell contacts in this mouse model of a retinal channelopathy may challenge current views of the role of Cav1.4 in photopic vision, it also suggests a potential new target for restorative therapy.
Collapse
Affiliation(s)
- D. M. Waldner
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - N. C. Giraldo Sierra
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S. Bonfield
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - L. Nguyen
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - I. S. Dimopoulos
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Y. Sauvé
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - W. K. Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - N. T. Bech-Hansen
- Department of Medical Genetics, and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Bi C, Meng F, Yang L, Cheng L, Wang P, Chen M, Fang M, Xie H. CtBP represses Dpp signaling as a dimer. Biochem Biophys Res Commun 2018; 495:1980-1985. [DOI: 10.1016/j.bbrc.2017.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
30
|
Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO. Sci Rep 2017; 7:16369. [PMID: 29180716 PMCID: PMC5703730 DOI: 10.1038/s41598-017-16638-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
Transcriptional coordination is a vital process contributing to metabolic homeostasis. As one of the key nodes in the metabolic network, the forkhead transcription factor FOXO has been shown to interact with diverse transcription co-factors and integrate signals from multiple pathways to control metabolism, oxidative stress response, and cell cycle. Recently, insulin/FOXO signaling has been implicated in the regulation of insect development via the interaction with insect hormones, such as ecdysone and juvenile hormone. In this study, we identified an interaction between Drosophila FOXO (dFOXO) and the zinc finger transcription factor Kruppel homolog 1 (Kr-h1), one of the key players in juvenile hormone signaling. We found that Kr-h1 mutants show delayed larval development and altered lipid metabolism, in particular induced lipolysis upon starvation. Notably, Kr-h1 physically and genetically interacts with dFOXO in vitro and in vivo to regulate the transcriptional activation of insulin receptor (InR) and adipose lipase brummer (bmm). The transcriptional co-regulation by Kr-h1 and dFOXO may represent a broad mechanism by which Kruppel-like factors integrate with insulin signaling to maintain metabolic homeostasis and coordinate organism growth.
Collapse
|
31
|
Wang X, Jiang Z, Zhang Y, Wang X, Liu L, Fan Z. RNA sequencing analysis reveals protective role of kruppel-like factor 3 in colorectal cancer. Oncotarget 2017; 8:21984-21993. [PMID: 28423541 PMCID: PMC5400639 DOI: 10.18632/oncotarget.15766] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/27/2017] [Indexed: 01/03/2023] Open
Abstract
The Kruppel-like factor (KLF) family of transcription factors plays an important role in embryonic formation and cancer progression. This study was performed to determine the clinical importance of the KLF family in colorectal cancer (CRC). In total, 361 patients with CRC from The Cancer Genome Atlas (TCGA) cohort were used to comprehensively study the role of the KLF family in CRC. The results were then further validated using an in-house cohort (n=194). Univariate and multivariate Cox proportional hazards models were used to assess the risk factors for survival. In the TCGA cohort, KLF3 (hazard ratio [HR], 0.501; 95% confidence interval [CI], 0.272-0.920; P=0.025), KLF14 (HR, 1.454; 95% CI, 1.059-1.995; P=0.020), and KLF17 (HR, 1.241; 95% CI, 1.030-1.494, P=0.023) were identified as potential biomarkers in the univariate analysis, but after Cox proportional hazards analysis, only KLF3 (HR, 0.473; 95% CI, 0.230-0.831; P=0.012) was shown to be independently predictive of overall survival in patients with CRC. This finding was validated in our in-house cohort, which demonstrated that KLF3 expression was an independent predictor of both overall survival (HR, 0.628; 95% CI, 0.342-0.922; P=0.035) and disease-free survival (HR, 0.421; 95% CI, 0.317-0.697, P=0.016). KLF3 expression was inversely correlated with the N stage (P=0.015) and lymphovascular invasion (P=0.020). Collectively, loss of KLF3 was correlated with aggressive phenotypes and poor survival outcomes. KLF3 might be a potential new predictor and therapeutic target for CRC. Further study is needed for a more detailed understanding of the role of KLF3 in CRC.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Digestive Endoscopy Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Gastroenterology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhonghua Jiang
- Department of Gastroenterology, First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yu Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiang Wang
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Liu
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhining Fan
- Department of Digestive Endoscopy Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
32
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
33
|
Ilsley MD, Gillinder KR, Magor GW, Huang S, Bailey TL, Crossley M, Perkins AC. Krüppel-like factors compete for promoters and enhancers to fine-tune transcription. Nucleic Acids Res 2017; 45:6572-6588. [PMID: 28541545 PMCID: PMC5499887 DOI: 10.1093/nar/gkx441] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of 17 transcription factors characterized by a conserved DNA-binding domain of three zinc fingers and a variable N-terminal domain responsible for recruiting cofactors. KLFs have diverse functions in stem cell biology, embryo patterning, and tissue homoeostasis. KLF1 and related family members function as transcriptional activators via recruitment of co-activators such as EP300, whereas KLF3 and related members act as transcriptional repressors via recruitment of C-terminal Binding Proteins. KLF1 directly activates the Klf3 gene via an erythroid-specific promoter. Herein, we show KLF1 and KLF3 bind common as well as unique sites within the erythroid cell genome by ChIP-seq. We show KLF3 can displace KLF1 from key erythroid gene promoters and enhancers in vivo. Using 4sU RNA labelling and RNA-seq, we show this competition results in reciprocal transcriptional outputs for >50 important genes. Furthermore, Klf3-/- mice displayed exaggerated recovery from anemic stress and persistent cell cycling consistent with a role for KLF3 in dampening KLF1-driven proliferation. We suggest this study provides a paradigm for how KLFs work in incoherent feed-forward loops or networks to fine-tune transcription and thereby control diverse biological processes such as cell proliferation.
Collapse
Affiliation(s)
- Melissa D. Ilsley
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Kevin R. Gillinder
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Graham W. Magor
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
| | - Stephen Huang
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | | | | | - Andrew C. Perkins
- Mater Research Institute, Translational Research Institute, University of Queensland, Brisbane 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
- The Princess Alexandra Hospital, Brisbane 4102, Australia
| |
Collapse
|
34
|
|
35
|
Wijnands KPJ, Chen J, Liang L, Verbiest MMPJ, Lin X, Helbing WA, Gittenberger-de Groot AC, van der Spek PJ, Uitterlinden AG, Steegers-Theunissen RPM. Genome-wide methylation analysis identifies novel CpG loci for perimembranous ventricular septal defects in human. Epigenomics 2017; 9:241-251. [DOI: 10.2217/epi-2016-0093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Congenital heart diseases are the most common birth defects worldwide and leading cause of infant mortality. The perimembranous ventricular septal defect is most prevalent. Epigenetics may provide an underlying mechanism of the gene–environment interactions involved. Materials & methods: We examined epigenome-wide DNA methylation using the Illumina HumanMethylation450 BeadChip in 84 case children and 196 control children. Results: We identified differential methylation of a CpG locus (cg17001566) within the PRDM16 gene after Bonferroni correction (p = 9.17 × 10-8). This was validated by bisulfite pyrosequencing. PRDM16 functions as a repressor of TGF-β signaling controlling tissue morphogenesis crucial during cardiogenesis. At 15% false-discovery rate, we identified seven additional CpG loci. Conclusion: These findings provide novel insights in the pathogenesis of perimembranous ventricular septal defect, which is of interest for future prediction and prevention.
Collapse
Affiliation(s)
- Kim PJ Wijnands
- Department of Obstetrics & Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jun Chen
- Division of Biomedical Statistics & Informatics & Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael MPJ Verbiest
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Willem A Helbing
- Department of Paediatrics, Division of Paediatric Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
36
|
Knights AJ, Yik JJ, Mat Jusoh H, Norton LJ, Funnell APW, Pearson RCM, Bell-Anderson KS, Crossley M, Quinlan KGR. Krüppel-like Factor 3 (KLF3/BKLF) Is Required for Widespread Repression of the Inflammatory Modulator Galectin-3 (Lgals3). J Biol Chem 2016; 291:16048-58. [PMID: 27226561 PMCID: PMC4965555 DOI: 10.1074/jbc.m116.715748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/22/2016] [Indexed: 01/13/2023] Open
Abstract
The Lgals3 gene encodes a multifunctional β-galactoside-binding protein, galectin-3. Galectin-3 has been implicated in a broad range of biological processes from chemotaxis and inflammation to fibrosis and apoptosis. The role of galectin-3 as a modulator of inflammation has been studied intensively, and recent evidence suggests that it may serve as a protective factor in obesity and other metabolic disorders. Despite considerable interest in galectin-3, little is known about its physiological regulation at the transcriptional level. Here, using knockout mice, chromatin immunoprecipitations, and cellular and molecular analyses, we show that the zinc finger transcription factor Krüppel-like factor 3 (KLF3) directly represses galectin-3 transcription. We find that galectin-3 is broadly up-regulated in KLF3-deficient mouse tissues, that KLF3 occupies regulatory regions of the Lgals3 gene, and that KLF3 directly binds its cognate elements (CACCC boxes) in the galectin-3 promoter and represses its activation in cellular assays. We also provide mechanistic insights into the regulation of Lgals3, demonstrating that C-terminal binding protein (CtBP) is required to drive optimal KLF3-mediated silencing. These findings help to enhance our understanding of how expression of the inflammatory modulator galectin-3 is controlled, opening up avenues for potential therapeutic interventions in the future.
Collapse
Affiliation(s)
- Alexander J Knights
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052 and
| | - Jinfen J Yik
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052 and
| | | | - Laura J Norton
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052 and
| | - Alister P W Funnell
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052 and
| | - Richard C M Pearson
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052 and
| | - Kim S Bell-Anderson
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Merlin Crossley
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052 and
| | - Kate G R Quinlan
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052 and
| |
Collapse
|
37
|
Ray SK. The Transcription Regulator Krüppel-Like Factor 4 and Its Dual Roles of Oncogene in Glioblastoma and Tumor Suppressor in Neuroblastoma. ACTA ACUST UNITED AC 2016; 7:127-139. [PMID: 28497005 DOI: 10.1615/forumimmundisther.2016017227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Krüppel-like factor 4 (KLF4) gene is located on chromosome 9q31. All of the currently known 17 KLF transcription regulators that have similarity with members of the specificity protein family are distinctly characterized by the Cys2/His2 zinc finger motifs at their carboxyl terminals for preferential binding to the GC/GT box or the CACCC element of the gene promoter and enhancer regions. KLF4 is a transcriptional regulator of cell proliferation, differentiation, apoptosis, migration, and invasion, emphasizing its importance in diagnosis and prognosis of particular tumors. KLF4 has been implicated in tumor progression as well as in tumor suppression, depending on tumor types and contexts. Different studies so far strongly suggest that KLF4 acts as an oncogene in glioblastoma, which is the most malignant and prevalent brain tumor in human adult. It is now well established that the presence of glioblastoma stem cells (GSCs) in glioblastoma causes therapy resistance and progressive growth of the tumor. Because KLF4 is one of the key stemness factors in GSCs, it is likely that KLF4 contributes significantly to the survival of GSCs and the recurrence of glioblastoma. On the other hand, recent studies show that KLF4 can act as a tumor suppressor in human malignant neuroblastoma, which is a deadly tumor mostly in children, by inhibiting the cell cycle and activating the cell differentiation and death pathways. Our increasing understanding of the molecular mechanisms of the contrasting roles of KLF4 in glioblastoma and neuroblastoma is useful for superior diagnosis, therapy, and prognosis of these tumors of the nervous system.
Collapse
Affiliation(s)
- Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C11, 6439 Garners Ferry Road, Columbia, SC 29209; Tel.: 803-216-3420
| |
Collapse
|
38
|
Lim WF, Burdach J, Funnell APW, Pearson RCM, Quinlan KGR, Crossley M. Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain. Nucleic Acids Res 2015; 44:3118-30. [PMID: 26673701 PMCID: PMC4838343 DOI: 10.1093/nar/gkv1380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/27/2015] [Indexed: 01/05/2023] Open
Abstract
Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA binding in vitro, it appears that in vivo FDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to the VEGF-A promoter as predicted, but was also found to occupy approximately 25 000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50 000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate.
Collapse
Affiliation(s)
- Wooi F Lim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Jon Burdach
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Richard C M Pearson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
39
|
Stankiewicz TR, Gray JJ, Winter AN, Linseman DA. C-terminal binding proteins: central players in development and disease. Biomol Concepts 2015; 5:489-511. [PMID: 25429601 DOI: 10.1515/bmc-2014-0027] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/07/2014] [Indexed: 01/06/2023] Open
Abstract
C-terminal binding proteins (CtBPs) were initially identified as binding partners for the E1A-transforming proteins. Although the invertebrate genome encodes one CtBP protein, two CtBPs (CtBP1 and CtBP2) are encoded by the vertebrate genome and perform both unique and duplicative functions. CtBP1 and CtBP2 are closely related and act as transcriptional corepressors when activated by nicotinamide adenine dinucleotide binding to their dehydrogenase domains. CtBPs exert transcriptional repression primarily via recruitment of a corepressor complex to DNA that consists of histone deacetylases (HDACs) and histone methyltransferases, although CtBPs can also repress transcription through HDAC-independent mechanisms. More recent studies have demonstrated a critical function for CtBPs in the transcriptional repression of pro-apoptotic genes such as Bax, Puma, Bik, and Noxa. Nonetheless, although recent efforts have characterized the essential involvement of CtBPs in promoting cellular survival, the dysregulation of CtBPs in both neurodegenerative disease and cancers remains to be fully elucidated.
Collapse
|
40
|
Sachdeva M, Dodd RD, Huang Z, Grenier C, Ma Y, Lev DC, Cardona DM, Murphy SK, Kirsch DG. Epigenetic silencing of Kruppel like factor-3 increases expression of pro-metastatic miR-182. Cancer Lett 2015; 369:202-11. [PMID: 26314219 DOI: 10.1016/j.canlet.2015.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
Accumulating evidence indicates that microRNAs (miRs) regulate cancer metastasis. We have shown that miR-182 drives sarcoma metastasis in vivo by coordinated regulation of multiple genes. Recently, we also demonstrated that in a subset of primary sarcomas that metastasize to the lung, miR-182 expression is elevated through binding of MyoD1 to the miR-182 promoter. However, it is not known if there are also transcription factors that inhibit miR-182 expression. Defining negative regulators of miR-182 expression may help explain why some sarcomas do not metastasize and may also identify pathways that can modulate miR-182 for therapeutic benefit. Here, we use an in silico screen, chromatin-immunoprecipitation, and luciferase reporter assays to discover that Kruppel like factor-3 (Klf-3) is a novel transcriptional repressor of miR-182. Knockdown of Klf-3 increases miR-182 expression, and stable overexpression of Klf-3, but not a DNA-binding mutant Klf-3, decreases miR-182 levels. Klf-3 expression is downregulated in both primary mouse and human metastatic sarcomas, and Klf-3 levels negatively correlate with miR-182 expression. Interestingly, Klf-3 also negatively regulates MyoD1, suggesting an alternative mechanism for Klf-3 to repress miR-182 expression in addition to direct binding of the miR-182 promoter. Using Methylation Specific PCR (MSP) and pyrosequencing assays, we found that Klf-3 is epigenetically silenced by DNA hypermethylation both in mouse and human sarcoma cells. Finally, we show the DNA methylation inhibitor 5'Azacytidine (Aza) restores Klf-3 expression while reducing miR-182 levels. Thus, our findings suggest that demethylating agents could potentially be used to modulate miR-182 levels as a therapeutic strategy.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca D Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dina C Lev
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Diana M Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
41
|
Presnell JS, Schnitzler CE, Browne WE. KLF/SP Transcription Factor Family Evolution: Expansion, Diversification, and Innovation in Eukaryotes. Genome Biol Evol 2015; 7:2289-309. [PMID: 26232396 PMCID: PMC4558859 DOI: 10.1093/gbe/evv141] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
The Krüppel-like factor and specificity protein (KLF/SP) genes play key roles in critical biological processes including stem cell maintenance, cell proliferation, embryonic development, tissue differentiation, and metabolism and their dysregulation has been implicated in a number of human diseases and cancers. Although many KLF/SP genes have been characterized in a handful of bilaterian lineages, little is known about the KLF/SP gene family in nonbilaterians and virtually nothing is known outside the metazoans. Here, we analyze and discuss the origins and evolutionary history of the KLF/SP transcription factor family and associated transactivation/repression domains. We have identified and characterized the complete KLF/SP gene complement from the genomes of 48 species spanning the Eukarya. We have also examined the phylogenetic distribution of transactivation/repression domains associated with this gene family. We report that the origin of the KLF/SP gene family predates the divergence of the Metazoa. Furthermore, the expansion of the KLF/SP gene family is paralleled by diversification of transactivation domains via both acquisitions of pre-existing ancient domains as well as by the appearance of novel domains exclusive to this gene family and is strongly associated with the expansion of cell type complexity.
Collapse
Affiliation(s)
| | - Christine E Schnitzler
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health
| | | |
Collapse
|
42
|
Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Dev Biol 2015; 403:115-27. [PMID: 26015096 DOI: 10.1016/j.ydbio.2015.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
Krüppel-like transcription factors (Klfs), each of which contains a CACCC-box binding domain, have been investigated in a variety of developmental processes, such as angiogenesis, neurogenesis and somatic-cell reprogramming. However, the function and molecular mechanism by which the Klf family acts during developmental hematopoiesis remain elusive. Here, we report identification of 24 Klf family genes in zebrafish using bioinformatics. Gene expression profiling shows that 6 of these genes are expressed in blood and/or vascular endothelial cells during embryogenesis. Loss of function of 2 factors (klf3 or klf6a) leads to a decreased number of mature erythrocytes. Molecular studies indicate that both Klf3 and Klf6a are essential for erythroid cell differentiation and maturation but that these two proteins function in distinct manners. We find that Klf3 inhibits the expression of ferric-chelate reductase 1b (frrs1b), thereby promoting the maturation of erythroid cells, whereas Klf6a controls the erythroid cell cycle by negatively regulating cdkn1a expression to determine the rate of red blood cell proliferation. Taken together, our study provides a global view of the Klf family members that contribute to hematopoiesis in zebrafish and sheds new light on the function and molecular mechanism by which Klf3 and Klf6a act during erythropoiesis in vertebrates.
Collapse
|
43
|
KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood 2015; 125:2405-17. [PMID: 25724378 DOI: 10.1182/blood-2014-08-590968] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/21/2015] [Indexed: 12/14/2022] Open
Abstract
We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.
Collapse
|
44
|
Dewi V, Kwok A, Lee S, Lee MM, Tan YM, Nicholas HR, Isono KI, Wienert B, Mak KS, Knights AJ, Quinlan KGR, Cordwell SJ, Funnell APW, Pearson RCM, Crossley M. Phosphorylation of Krüppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomain-interacting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity. J Biol Chem 2015; 290:8591-605. [PMID: 25659434 DOI: 10.1074/jbc.m115.638338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Krüppel-like factor 3 (KLF3/BKLF), a member of the Krüppel-like factor (KLF) family of transcription factors, is a widely expressed transcriptional repressor with diverse biological roles. Although there is considerable understanding of the molecular mechanisms that allow KLF3 to silence the activity of its target genes, less is known about the signal transduction pathways and post-translational modifications that modulate KLF3 activity in response to physiological stimuli. We observed that KLF3 is modified in a range of different tissues and found that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) can both bind and phosphorylate KLF3. Mass spectrometry identified serine 249 as the primary phosphorylation site. Mutation of this site reduces the ability of KLF3 to bind DNA and repress transcription. Furthermore, we also determined that HIPK2 can phosphorylate the KLF3 co-repressor C-terminal binding protein 2 (CtBP2) at serine 428. Finally, we found that phosphorylation of KLF3 and CtBP2 by HIPK2 strengthens the interaction between these two factors and increases transcriptional repression by KLF3. Taken together, our results indicate that HIPK2 potentiates the activity of KLF3.
Collapse
Affiliation(s)
- Vitri Dewi
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alister Kwok
- the School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia, and
| | - Stella Lee
- the School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia, and
| | - Ming Min Lee
- the School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia, and
| | - Yee Mun Tan
- the School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia, and
| | - Hannah R Nicholas
- the School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia, and
| | - Kyo-ichi Isono
- the RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Beeke Wienert
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ka Sin Mak
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alexander J Knights
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kate G R Quinlan
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stuart J Cordwell
- the School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia, and
| | - Alister P W Funnell
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard C M Pearson
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Merlin Crossley
- From the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia, the School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, 2006, Australia, and
| |
Collapse
|
45
|
Human cancer: Is it linked to dysfunctional lipid metabolism? Biochim Biophys Acta Gen Subj 2015; 1850:352-64. [DOI: 10.1016/j.bbagen.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 11/23/2022]
|
46
|
Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:364-372. [PMID: 24881625 DOI: 10.1016/j.dci.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.
Collapse
Affiliation(s)
- Ping-Han Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shao-Chia Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Han Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Si Cai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
47
|
Clifton MK, Westman BJ, Thong SY, O’Connell MR, Webster MW, Shepherd NE, Quinlan KG, Crossley M, Blobel GA, Mackay JP. The identification and structure of an N-terminal PR domain show that FOG1 is a member of the PRDM family of proteins. PLoS One 2014; 9:e106011. [PMID: 25162672 PMCID: PMC4146578 DOI: 10.1371/journal.pone.0106011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/26/2014] [Indexed: 11/19/2022] Open
Abstract
FOG1 is a transcriptional regulator that acts in concert with the hematopoietic master regulator GATA1 to coordinate the differentiation of platelets and erythrocytes. Despite considerable effort, however, the mechanisms through which FOG1 regulates gene expression are only partially understood. Here we report the discovery of a previously unrecognized domain in FOG1: a PR (PRD-BF1 and RIZ) domain that is distantly related in sequence to the SET domains that are found in many histone methyltransferases. We have used NMR spectroscopy to determine the solution structure of this domain, revealing that the domain shares close structural similarity with SET domains. Titration with S-adenosyl-L-homocysteine, the cofactor product synonymous with SET domain methyltransferase activity, indicated that the FOG PR domain is not, however, likely to function as a methyltransferase in the same fashion. We also sought to define the function of this domain using both pulldown experiments and gel shift assays. However, neither pulldowns from mammalian nuclear extracts nor yeast two-hybrid assays reproducibly revealed binding partners, and we were unable to detect nucleic-acid-binding activity in this domain using our high-diversity Pentaprobe oligonucleotides. Overall, our data demonstrate that FOG1 is a member of the PRDM (PR domain containing proteins, with zinc fingers) family of transcriptional regulators. The function of many PR domains, however, remains somewhat enigmatic for the time being.
Collapse
Affiliation(s)
- Molly K. Clifton
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Belinda J. Westman
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Sock Yue Thong
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Michael W. Webster
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | | - Kate G. Quinlan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Merlin Crossley
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Gerd A. Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Alles M, Turchinovich G, Zhang P, Schuh W, Agenès F, Kirberg J. Leukocyte β7 integrin targeted by Krüppel-like factors. THE JOURNAL OF IMMUNOLOGY 2014; 193:1737-46. [PMID: 25015818 DOI: 10.4049/jimmunol.1302613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Constitutive expression of Krüppel-like factor 3 (KLF3, BKLF) increases marginal zone (MZ) B cell numbers, a phenotype shared with mice lacking KLF2. Ablation of KLF3, known to interact with serum response factor (SRF), or SRF itself, results in fewer MZ B cells. It is unknown how these functional equivalences result. In this study, it is shown that KLF3 acts as transcriptional repressor for the leukocyte-specific integrin β7 (Itgb7, Ly69) by binding to the β7 promoter, as revealed by chromatin immunoprecipitation. KLF2 overexpression antagonizes this repression and also binds the β7 promoter, indicating that these factors may compete for target sequence(s). Whereas β7 is identified as direct KLF target, its repression by KLF3 is not connected to the MZ B cell increase because β7-deficient mice have a normal complement of these and the KLF3-driven increase still occurs when β7 is deleted. Despite this, KLF3 overexpression abolishes lymphocyte homing to Peyer's patches, much like β7 deficiency does. Furthermore, KLF3 expression alone overcomes the MZ B cell deficiency when SRF is absent. SRF is also dispensable for the KLF3-mediated repression of β7. Thus, despite the shared phenotype of KLF3 and SRF-deficient mice, cooperation of these factors appears neither relevant for the formation of MZ B cells nor for the regulation of β7. Finally, a potent negative regulatory feedback loop limiting KLF3 expression is shown in this study, mediated by KLF3 directly repressing its own gene promoter. In summary, KLFs use regulatory circuits to steer lymphocyte maturation and homing and directly control leukocyte integrin expression.
Collapse
Affiliation(s)
- Melanie Alles
- Division of Immunology (3/3), Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Gleb Turchinovich
- Department of Biomedicine, Laboratory of Developmental Immunology, 4058 Basel, Switzerland; Basel University Children's Hospital, 4031 Basel, Switzerland
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Wolfgang Schuh
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Fabien Agenès
- INSERM U743, Montreal, Quebec H2X 1P1, Canada; and INSERM ADR Paris V Saint Anne, 75014 Paris, France
| | - Jörg Kirberg
- Division of Immunology (3/3), Paul-Ehrlich-Institut, 63225 Langen, Germany;
| |
Collapse
|
49
|
Knoedler JR, Denver RJ. Krüppel-like factors are effectors of nuclear receptor signaling. Gen Comp Endocrinol 2014; 203:49-59. [PMID: 24642391 PMCID: PMC4339045 DOI: 10.1016/j.ygcen.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/09/2023]
Abstract
Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs (1) act as accessory transcription factors for NR actions, (2) regulate expression of NR genes, and (3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
50
|
Upton KR, Faulkner GJ. Blood from 'junk': the LTR chimeric transcript Pu.2 promotes erythropoiesis. Mob DNA 2014; 5:15. [PMID: 24839466 PMCID: PMC4023170 DOI: 10.1186/1759-8753-5-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 11/25/2022] Open
Abstract
Transposable elements (TEs) are a prominent feature of most eukaryotic genomes. Despite rapidly accumulating evidence for the role of TE-driven insertional mutagenesis and structural variation in genome evolution, few clear examples of individual TEs impacting biology via perturbed gene regulation are available. A recent report describes the discovery of an alternative promoter for the murine erythroid transcription factor Pu.1. This promoter is located in an ORR1A0 long terminal repeat (LTR) retrotransposon intronic to Pu.1 and is regulated by the Krüppel-like factors KLF1 and KLF3. Expression of the resultant chimeric transcript, called Pu.2, spontaneously induces erythroid differentiation in vitro. These experiments illustrate how transcription factor binding sites spread by retrotransposition have the potential to impact networks encoding key biological processes in the host genome.
Collapse
Affiliation(s)
- Kyle R Upton
- Mater Research Institute - University of Queensland, TRI Building, 4102 Brisbane, QLD, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, 4102 Brisbane, QLD, Australia ; School of Biomedical Sciences, University of Queensland, 4072 Brisbane, QLD, Australia
| |
Collapse
|