1
|
Kleine-Kleffmann L, Stepanenko V, Shoyama K, Wehner M, Würthner F. Controlling the Supramolecular Polymerization of Squaraine Dyes by a Molecular Chaperone Analogue. J Am Chem Soc 2023; 145:9144-9151. [PMID: 37058428 DOI: 10.1021/jacs.3c01002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Molecular chaperones are proteins that assist in the (un)folding and (dis)assembly of other macromolecular structures toward their biologically functional state in a non-covalent manner. Transferring this concept from nature to artificial self-assembly processes, here, we show a new strategy to control supramolecular polymerization via a chaperone-like two-component system. A new kinetic trapping method was developed that enables efficient retardation of the spontaneous self-assembly of a squaraine dye monomer. The suppression of supramolecular polymerization could be regulated with a cofactor, which precisely initiates self-assembly. The presented system was investigated and characterized by ultraviolet-visible, Fourier transform infrared, and nuclear magnetic resonance spectroscopy, atomic force microscopy, isothermal titration calorimetry, and single-crystal X-ray diffraction. With these results, living supramolecular polymerization and block copolymer fabrication could be realized, demonstrating a new possibility for effective control over supramolecular polymerization processes.
Collapse
Affiliation(s)
- Lara Kleine-Kleffmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Marius Wehner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Mamipour M, Yousefi M, Hasanzadeh M. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. Int J Biol Macromol 2017; 102:367-375. [PMID: 28412337 PMCID: PMC7185796 DOI: 10.1016/j.ijbiomac.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023]
Abstract
The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation.
Collapse
Affiliation(s)
- Mina Mamipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Structural and Molecular Biology of a Protein-Polymerizing Nanomachine for Pilus Biogenesis. J Mol Biol 2017; 429:2654-2666. [PMID: 28551336 DOI: 10.1016/j.jmb.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/23/2023]
Abstract
Bacteria produce protein polymers on their surface called pili or fimbriae that serve either as attachment devices or as conduits for secreted substrates. This review will focus on the chaperone-usher pathway of pilus biogenesis, a widespread assembly line for pilus production at the surface of Gram-negative bacteria and the archetypical protein-polymerizing nanomachine. Comparison with other nanomachines polymerizing other types of biological units, such as nucleotides during DNA replication, provides some unifying principles as to how multidomain proteins assemble biological polymers.
Collapse
|
4
|
Bao R, Liu Y, Savarino SJ, Xia D. Off-pathway assembly of fimbria subunits is prevented by chaperone CfaA of CFA/I fimbriae from enterotoxigenic E. coli. Mol Microbiol 2016; 102:975-991. [PMID: 27627030 DOI: 10.1111/mmi.13530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
The assembly of the class 5 colonization factor antigen I (CFA/I) fimbriae of enterotoxigenic E. coli was proposed to proceed via the alternate chaperone-usher pathway. Here, we show that in the absence of the chaperone CfaA, CfaB, the major pilin subunit of CFA/I fimbriae, is able to spontaneously refold and polymerize into cyclic trimers. CfaA kinetically traps CfaB to form a metastable complex that can be stabilized by mutations. Crystal structure of the stabilized complex reveals distinctive interactions provided by CfaA to trap CfaB in an assembly competent state through donor-strand complementation (DSC) and cleft-mediated anchorage. Mutagenesis indicated that DSC controls the stability of the chaperone-subunit complex and the cleft-mediated anchorage of the subunit C-terminus additionally assist in subunit refolding. Surprisingly, over-stabilization of the chaperone-subunit complex led to delayed fimbria assembly, whereas destabilizing the complex resulted in no fimbriation. Thus, CfaA acts predominantly as a kinetic trap by stabilizing subunit to avoid its off-pathway self-polymerization that results in energetically favorable trimers and could serve as a driving force for CFA/I pilus assembly, representing an energetic landscape unique to class 5 fimbria assembly.
Collapse
Affiliation(s)
- Rui Bao
- Division of Infectious Diseases, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospitals, Sichuan University, Chengdu, 610041, China.,Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yang Liu
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, 20910-7500, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, 20910-7500, USA.,Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814-4799, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
5
|
Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli. J Bacteriol 2016; 198:1429-41. [PMID: 26929298 DOI: 10.1128/jb.00657-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CS6 is a common colonization factor expressed by enterotoxigenic Escherichia coli It is a two-subunit protein consisting of CssA and CssB in an equal stoichiometry, assembled via the chaperone-usher pathway into an afimbrial, oligomeric assembly on the bacterial cell surface. A recent structural study has predicted the involvement of the N- and C-terminal regions of the CS6 subunits in its assembly. Here, we identified the functionally important residues in the N- and C-terminal regions of the CssA and CssB subunits during CS6 assembly by alanine scanning mutagenesis. Bacteria expressing mutant proteins were tested for binding with Caco-2 cells, and the results were analyzed with respect to the surface expression of mutant CS6. In this assay, many mutant proteins were not expressed on the surface while some showed reduced expression. It appeared that some, but not all, of the residues in both the N and C termini of CssA and CssB played an important role in the intermolecular interactions between these two structural subunits, as well as chaperone protein CssC. Our results demonstrated that T20, K25, F27, S36, Y143, and V147 were important for the stability of CssA, probably through interaction of CssC. We also found that I22, V29, and I33 of CssA and G154, Y156, L160, V162, F164, and Y165 of CssB were responsible for CssA-CssB intermolecular interactions. In addition, some of the hydrophobic residues in the C terminus of CssA and the N terminus of CssB were involved in the stabilization of higher-order complex formation. Overall, the results presented here might help in understanding the pathway used to assemble CS6 and predict its structure. IMPORTANCE Unlike most other colonization factors, CS6 is nonfimbrial, and in a sense, its subunit composition and assembly are also unique. Here we report that both the N- and C-terminal amino acid residues of CssA and CssB play a critical role in the intermolecular interactions between them and assembly proteins. We found mainly that alternate hydrophobic residues present in these motifs are essential for the interaction between the structural subunits, as well as the chaperone and usher assembly proteins. Our results indicate the involvement of the side chains of identified amino acids in CS6 assembly. This study adds a step toward understanding the interactions between structural subunits of CS6 and assembly proteins during CS6 biogenesis.
Collapse
|
6
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
7
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
8
|
Wu M, Xu S, Zhu W, Mao X. The archaic chaperone–usher pathways may depend on donor strand exchange for intersubunit interactions. Microbiology (Reading) 2014; 160:2200-2207. [DOI: 10.1099/mic.0.080457-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subunit–subunit interactions of the classical and alternate chaperone–usher (CU) systems have been shown to proceed through a donor strand exchange (DSE) mechanism. However, it is not known whether DSE is required for intersubunit interactions in the archaic CU system. We have previously shown that the Myxococcus xanthus Mcu system, a member of the archaic CU family that functions in spore coat formation, is likely to use the principle of donor strand complementation to medicate chaperone–subunit interactions analogous to the classical CU pathway. Here we describe the results of studies on Mcu subunit–subunit interactions. We constructed a series of N-terminal-deleted, single amino acid-mutated and donor strand-complemented Mcu subunits, and characterized their abilities to participate in subunit–subunit interactions. It appears that certain residues in both the N and C termini of McuA, a subunit of the Mcu system, play a critical role in intersubunit interactions and these interactions may involve the general principle of DSE of the classical and alternate CU systems. In addition, the specificity of the M. xanthus CU system for Mcu subunits over other spore coat proteins is demonstrated.
Collapse
Affiliation(s)
- Miaomiao Wu
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Shihui Xu
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Wei Zhu
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xiaohua Mao
- Department of Biochemistry, Southeast University School of Medicine, Nanjing, Jiangsu 210009, PR China
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| |
Collapse
|
9
|
Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc Natl Acad Sci U S A 2013; 110:15530-7. [PMID: 24003161 DOI: 10.1073/pnas.1315203110] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH's ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.
Collapse
|
10
|
Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG, Hsu KY, Chang HY, Hsu L. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7428-7435. [PMID: 22524463 DOI: 10.1021/la300224w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Klebsiella pneumoniae type 3 fimbriae are mainly composed of MrkA pilins that assemble into a helixlike filament. This study determined the biomechanical properties of the fimbriae and analyzed 11 site-directed MrkA mutants to identify domains that are critical for the properties. Escherichia coli strains expressing type 3 fimbriae with an Ala substitution at either F34, V45, C87, G189, T196, or Y197 resulted in a significant reduction in biofilm formation. The E. coli strain expressing MrkAG189A remained capable of producing a normal number of fimbriae. Although F34A, V45A, T196A, and Y197A substitutions expressed on E. coli strains produced sparse quantities of fimbriae, no fimbriae were observed on the cells expressing MrkAC87A. Further investigations of the mechanical properties of the MrkAG189A fimbriae with optical tweezers revealed that, unlike the wild-type fimbriae, the uncoiling force for MrkAG189A fimbriae was not constant. The MrkAG189A fimbriae also exhibited a lower enthalpy in the differential scanning calorimetry analysis. Together, these findings indicate that the mutant fimbriae are less stable than the wild-type. This study has demonstrated that the C-terminal β strands of MrkA are required for the assembly and structural stability of fimbriae.
Collapse
Affiliation(s)
- Chia-Han Chan
- Institute and Department of Electrophysics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Warnecke T, Lynch M, Lipscomb M, Gill R. Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli. Biotechnol Bioeng 2012; 109:1347-52. [DOI: 10.1002/bit.24398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/15/2011] [Accepted: 11/23/2011] [Indexed: 11/10/2022]
|
12
|
Abstract
The chaperone/usher (CU) pathway is a conserved bacterial secretion system that assembles adhesive fibres termed pili or fimbriae. Pilus biogenesis by the CU pathway requires a periplasmic chaperone and an outer membrane (OM) assembly platform termed the usher. The usher catalyses formation of subunit-subunit interactions to promote polymerization of the pilus fibre and provides the channel for fibre secretion. The mechanism by which the usher catalyses pilus assembly is not known. Using the P and type 1 pilus systems of uropathogenic Escherichia coli, we show that a conserved N-terminal disulphide region of the PapC and FimD ushers, as well as residue F4 of FimD, are required for the catalytic activity of the ushers. PapC disulphide loop mutants were able to bind PapDG chaperone-subunit complexes, but did not assemble PapG into pilus fibres. FimD disulphide loop and F4 mutants were able to bind chaperone-subunit complexes and initiate assembly of pilus fibres, but were defective for extending the pilus fibres, as measured using in vivo co-purification and in vitro pilus polymerization assays. These results suggest that the catalytic activity of PapC is required to initiate pilus biogenesis, whereas the catalytic activity of FimD is required for extension of the pilus fibre.
Collapse
Affiliation(s)
| | | | | | - David G. Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120, USA
| |
Collapse
|
13
|
Importance of conserved residues of the serine protease autotransporter beta-domain in passenger domain processing and beta-barrel assembly. Infect Immun 2010; 78:3516-28. [PMID: 20515934 DOI: 10.1128/iai.00390-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Serine protease autotransporters of the family Enterobacteriaceae (SPATE) comprise a family of virulence proteins secreted by enteric Gram-negative bacteria via the autotransporter secretion pathway. A SPATE polypeptide contains a C-terminal translocator domain that inserts into the bacterial outer membrane as a beta-barrel structure and mediates secretion of the passenger domain to the extracellular environment. In the present study, we examined the role of conserved residues located in the SPATE beta-barrel-forming region in passenger domain secretion. Thirty-nine fully conserved residues in Tsh were mutated by single-residue substitution, and defects in their secretion phenotypes were assessed by cell fractionation and immunochemistry. A total of 22 single mutants exhibited abnormal phenotypes in different cellular compartments. Most mutants affecting secretion are charged residues with side chains pointing into the beta-barrel interior. Seven mutants showed notable abnormalities in processing (constructs with the E1231A, E1249A, and R1374A mutations) and beta-barrel assembly or insertion into the outer membrane (constructs with the G1158Y, F1360A, Y1375A, and F1377A mutations). The phenotypes of the beta-barrel assembly/insertion mutants and the presence of a processed Tsh passenger domain in the periplasm support the possibility that the translocator domain must undergo extensive folding prior to insertion into the outer membrane. Results from double-mutation experiments further demonstrate that F1360 and F1377 affect beta-barrel insertion/assembly at different times. In light of these new data, a more refined model for the mechanism of SPATE secretion is presented.
Collapse
|
14
|
Affiliation(s)
- Bimal K. Banik
- Dept. Chemistry, University of Texas-Pan American, W. University Drive 1201, Edinburg, 78539 USA
| |
Collapse
|
15
|
Torres-Escobar A, Juárez-Rodríguez MD, Curtiss R. Biogenesis of Yersinia pestis PsaA in recombinant attenuated Salmonella Typhimurium vaccine (RASV) strain. FEMS Microbiol Lett 2009; 302:106-13. [PMID: 20002189 DOI: 10.1111/j.1574-6968.2009.01827.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Yersinia pestis PsaA is an adhesin important for the establishment of bacterial infection. PsaA synthesis requires the products of the psaEFABC genes. Here, by prediction analysis, we identified a PsaA signal sequence with two signal peptidase (SPase) cleavage sites, type-I and type-II (SPase-I and SPase-II). By Edman degradation and site-directed mutagenesis, the precise site for one of these Spase-I PsaA cleavage sites was located between alanine and serine at positions 31 and 32, respectively. Yersinia pestis psaA expression and the role of the PsaB and PsaC proteins were evaluated in recombinant attenuated Salmonella Typhimurium vaccine strains. PsaA was detected in total extracts as a major 15-kDa (mature) and 18-kDa (unprocessed) protein bands. PsaA synthesis was not altered by a DeltaA31-DeltaS32 double-deletion mutation. In contrast, the synthesis of PsaA (DeltaA31-DeltaS32) in Y. pestis and delivery to the supernatant was decreased. Otherwise, substitution of the amino acid cysteine at position 26 by valine involved in the SPase-II cleavage site did not show any effect on the secretion of PsaA in Salmonella and Yersinia. These results help clarify the secretion pathway of PsaA for the possible development of vaccines against Y. pestis.
Collapse
Affiliation(s)
- Ascención Torres-Escobar
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
16
|
Knight SD, Bouckaert J. Structure, Function, and Assembly of Type 1 Fimbriae. GLYCOSCIENCE AND MICROBIAL ADHESION 2009; 288:67-107. [DOI: 10.1007/128_2008_13] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Verger D, Rose RJ, Paci E, Costakes G, Daviter T, Hultgren S, Remaut H, Ashcroft AE, Radford SE, Waksman G. Structural determinants of polymerization reactivity of the P pilus adaptor subunit PapF. Structure 2008; 16:1724-31. [PMID: 19000824 DOI: 10.1016/j.str.2008.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
P pili are important adhesive fibers involved in kidney infection by uropathogenic Escherichia coli. Pilus subunits are characterized by a large groove resulting from lack of a beta strand. Polymerization of pilus subunits occurs via the donor-strand exchange (DSE) mechanism initiated when the N terminus of an incoming subunit interacts with the P5 region/pocket of the previously assembled subunit groove. Here, we solve the structure of the PapD:PapF complex in order to understand why PapF undergoes slow DSE. The structure reveals that the PapF P5 pocket is partially obstructed. MD simulations show this region of PapF is flexible compared with its equivalent in PapH, a subunit that also has an obstructed P5 pocket and is unable to undergo DSE. Using electrospray-ionization mass spectrometry, we show that mutations in the P5 region result in increased DSE rates. Thus, partial obstruction of the P5 pocket serves as a modulating mechanism of DSE.
Collapse
Affiliation(s)
- Denis Verger
- Institute of Structural and Molecular Biology, University College London, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rose RJ, Verger D, Daviter T, Remaut H, Paci E, Waksman G, Ashcroft AE, Radford SE. Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry. Proc Natl Acad Sci U S A 2008; 105:12873-8. [PMID: 18728178 PMCID: PMC2525559 DOI: 10.1073/pnas.0802177105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Indexed: 12/23/2022] Open
Abstract
P pili are multisubunit fibers essential for the attachment of uropathogenic Escherichia coli to the kidney. These fibers are formed by the noncovalent assembly of six different homologous subunit types in an array that is strictly defined in terms of both the number and order of each subunit type. Assembly occurs through a mechanism termed "donor-strand exchange (DSE)" in which an N-terminal extension (Nte) of one subunit donates a beta-strand to an adjacent subunit, completing its Ig fold. Despite structural determination of the different subunits, the mechanism determining specificity of subunit ordering in pilus assembly remained unclear. Here, we have used noncovalent mass spectrometry to monitor DSE between all 30 possible pairs of P pilus subunits and their Ntes. We demonstrate a striking correlation between the natural order of subunits in pili and their ability to undergo DSE in vitro. The results reveal insights into the molecular mechanism by which subunit ordering during the assembly of this complex is achieved.
Collapse
Affiliation(s)
- Rebecca J. Rose
- *Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; and
| | - Denis Verger
- Institute of Structural Molecular Biology, University College London/Birkbeck and School of Crystallography, Malet Street, London WC1E 7HX, United Kingdom
| | - Tina Daviter
- Institute of Structural Molecular Biology, University College London/Birkbeck and School of Crystallography, Malet Street, London WC1E 7HX, United Kingdom
| | - Han Remaut
- Institute of Structural Molecular Biology, University College London/Birkbeck and School of Crystallography, Malet Street, London WC1E 7HX, United Kingdom
| | - Emanuele Paci
- *Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; and
| | - Gabriel Waksman
- Institute of Structural Molecular Biology, University College London/Birkbeck and School of Crystallography, Malet Street, London WC1E 7HX, United Kingdom
| | - Alison E. Ashcroft
- *Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; and
| | - Sheena E. Radford
- *Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; and
| |
Collapse
|
19
|
Verger D, Bullitt E, Hultgren SJ, Waksman G. Crystal structure of the P pilus rod subunit PapA. PLoS Pathog 2007; 3:e73. [PMID: 17511517 PMCID: PMC1868955 DOI: 10.1371/journal.ppat.0030073] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/02/2007] [Indexed: 11/18/2022] Open
Abstract
P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE) mechanism, whereby the chaperone's G1 beta-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte) of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it.
Collapse
Affiliation(s)
- Denis Verger
- Institute of Structural Molecular Biology, University College London and Birkbeck College, London, United Kingdom
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gabriel Waksman
- Institute of Structural Molecular Biology, University College London and Birkbeck College, London, United Kingdom
| |
Collapse
|
20
|
Abstract
In a time of emerging bacterial resistance there is a vital need for new targets and strategies in antibacterial therapy. Using uropathogenic Escherichia coli as a model pathogen we have developed a class of compounds, pilicides, which inhibit the formation of virulence-associated organelles termed pili. The pilicides interfere with a highly conserved bacterial assembly and secretion system called the chaperone-usher pathway, which is abundant in a vast number of Gram-negative pathogens and serves to assemble multi-protein surface fibers (pili/fimbriae). This class of compounds provides a platform to gain insight into important biological processes such as the molecular mechanisms of the chaperone-usher pathway and the sophisticated function of pili. Pili are primarily involved in bacterial adhesion, invasion and persistence to host defenses. On this basis, pilicides can aid the development of new antibacterial agents.
Collapse
Affiliation(s)
- Veronica Aberg
- Department of Chemistry, Umeå University, SE-90187, Umeå, Sweden.
| | | |
Collapse
|
21
|
Structure and Assembly of Yersinia pestis F1 Antigen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:74-87. [DOI: 10.1007/978-0-387-72124-8_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Verger D, Miller E, Remaut H, Waksman G, Hultgren S. Molecular mechanism of P pilus termination in uropathogenic Escherichia coli. EMBO Rep 2006; 7:1228-32. [PMID: 17082819 PMCID: PMC1794691 DOI: 10.1038/sj.embor.7400833] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/08/2022] Open
Abstract
P pili are important adhesive fibres that are assembled by the conserved chaperone-usher pathway. During pilus assembly, the subunits are incorporated into the growing fibre by the donor-strand exchange mechanism, whereby the beta-strand of the chaperone, which complements the incomplete immunoglobulin fold of each subunit, is displaced by the amino-terminal extension of an incoming subunit in a zip-in-zip-out exchange process that is initiated at the P5 pocket, an exposed hydrophobic pocket in the groove of the subunit. In vivo, termination of P pilus growth requires a specialized subunit, PapH. Here, we show that PapH is incorporated at the base of the growing pilus, where it is unable to undergo donor-strand exchange. This inability is not due to a stronger PapD-PapH interaction, but to a lack of a P5 initiator pocket in the PapH structure, suggesting that PapH terminates pilus growth because it is lacking the initiation point by which donor-strand exchange proceeds.
Collapse
Affiliation(s)
- Denis Verger
- Institute of Structural Molecular Biology, University College London, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Eric Miller
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63130, USA
| | - Han Remaut
- Institute of Structural Molecular Biology, University College London, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural Molecular Biology, University College London, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Scott Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63130, USA
| |
Collapse
|
23
|
Mu XQ, Bullitt E. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci U S A 2006; 103:9861-6. [PMID: 16782819 PMCID: PMC1502544 DOI: 10.1073/pnas.0509620103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-resolution structures of macromolecular complexes offer unparalleled insight into the workings of biological systems and hence the interplay of these systems in health and disease. We have adopted a multifaceted approach to understanding the pathogenically important structure of P-pili, the class I adhesion pili from pyelonephritic Escherichia coli. Our approach combines electron cryomicroscopy, site-directed mutagenesis, homology modeling, and energy calculations, resulting in a high-resolution model of PapA, the major structural element of these pili. Fitting of the modeled PapA subunit into the electron cryomicroscopy data provides a detailed view of these pilins within the supramolecular architecture of the pilus filament. A structural hinge in the N-terminal region of the subunit is located at the site of a newly resolved electron density that protrudes from the P-pilus surface. The structural flexibility provided by this hinge is necessary for assembly of P-pili, illustrating one solution to construction of large macromolecular complexes from small repeating units. These data support our hypothesis that domain-swapped pilin subunits transit the outer cell membrane vertically and rotate about the hinge for final positioning into the pilus filament. Our data confirm and supply a structural basis for much previous genetic, biochemical, and structural data. This model of the P-pilus filament provides an insight into the mechanism of assembly of a macromolecular complex essential for initiation of kidney infection by these bacteria.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
- *To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, W302, Boston, MA 02118-2526. E-mail:
| |
Collapse
|
24
|
So SSK, Thanassi DG. Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus. Mol Microbiol 2006; 60:364-75. [PMID: 16573686 DOI: 10.1111/j.1365-2958.2006.05111.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Uropathogenic strains of Escherichia coli assemble type 1 and P pili to colonize the bladder and kidney respectively. These pili are prototype structures assembled by the chaperone/usher secretion pathway. In this pathway, a periplasmic chaperone works together with an outer membrane (OM) usher to control the folding of pilus subunits, their assembly into a pilus fibre and secretion of the fibre to the cell surface. The usher serves as the assembly and secretion platform in the OM. The usher has distinct functional domains, with the N-terminus providing the initial targeting site for chaperone-subunit complexes and the C-terminus required for subsequent stages of pilus biogenesis. In this study, we investigated the molecular interactions occurring at the usher during pilus biogenesis and the function of the usher C-terminus. We provide genetic and biochemical evidence that the usher functions as a complex in the OM and that interaction of the pilus adhesin with the usher is critical to prime the usher for pilus biogenesis. Analysis of C-terminal truncation and substitution mutants of the P pilus usher PapC demonstrated that the C-terminus is required for proper binding of chaperone-subunit complexes to the usher and plays an important role in assembly of complete pili.
Collapse
Affiliation(s)
- Stephane Shu Kin So
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | |
Collapse
|
25
|
Starks AM, Froehlich BJ, Jones TN, Scott JR. Assembly of CS1 pili: the role of specific residues of the major pilin, CooA. J Bacteriol 2006; 188:231-9. [PMID: 16352839 PMCID: PMC1317577 DOI: 10.1128/jb.188.1.231-239.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS1 pili are important virulence factors of enterotoxigenic Escherichia coli strains associated with human diarrheal disease. They are the prototype for a family of pili that share extensive sequence similarity among their structural and assembly proteins. Only four linked genes, cooB, cooA, cooC, and cooD, are required to produce CS1 pili in E. coli K-12. To identify amino acids important for the function of the major pilin CooA, we used alanine substitution mutagenesis targeting conserved residues in the N and C termini of the protein. To test function, we examined cooA mutants for the ability to agglutinate bovine erythrocytes. Each hemagglutination-negative (HA(-)) cooA mutant was examined to identify its assembly pathway defect. CooA has been shown to be degraded in the absence of CooB (K. Voegele, H. Sakellaris, and J. R. Scott, Proc. Natl. Acad. Sci. USA 94:13257-13261, 1997). We found several HA(-) cooA mutants that produced no detectable CooA, suggesting that recognition by CooB is mediated by residues in both the N and C termini of CooA. In addition, we found that alanine substitution for some of the conserved residues in the C-terminal motif "AGxYxG(x(6))T," which is found in all subunits of this pilus family, had no effect on pilus formation. However, alanine substitution for some of the alternating hydrophobic residues within this motif prevented CooA from interacting with CooD, which serves as both the tip adhesin and nucleation protein for pilus formation. Thus, it appears that some, but not all, of the residues in both the N and C termini of CooA play a critical role in the intermolecular interactions of the major pilin with the other structural and assembly proteins. We anticipate that the results obtained here for CS1 pili in enterotoxigenic E. coli will help develop an understanding of the pilus assembly pathway used by CS1 family members in several important human pathogens.
Collapse
Affiliation(s)
- Angela M Starks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
26
|
Zavialov A, Tischenko V, Fooks L, Brandsdal B, Åqvist J, Zav'yalov V, Macintyre S, Knight S. Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem J 2005; 389:685-94. [PMID: 15799718 PMCID: PMC1180718 DOI: 10.1042/bj20050426] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Periplasmic chaperone/usher machineries are used for assembly of filamentous adhesion organelles of Gram-negative pathogens in a process that has been suggested to be driven by folding energy. Structures of mutant chaperone-subunit complexes revealed a final folding transition (condensation of the subunit hydrophobic core) on the release of organelle subunit from the chaperone-subunit pre-assembly complex and incorporation into the final fibre structure. However, in view of the large interface between chaperone and subunit in the pre-assembly complex and the reported stability of this complex, it is difficult to understand how final folding could release sufficient energy to drive assembly. In the present paper, we show the X-ray structure for a native chaperone-fibre complex that, together with thermodynamic data, shows that the final folding step is indeed an essential component of the assembly process. We show that completion of the hydrophobic core and incorporation into the fibre results in an exceptionally stable module, whereas the chaperone-subunit pre-assembly complex is greatly destabilized by the high-energy conformation of the bound subunit. This difference in stabilities creates a free energy potential that drives fibre formation.
Collapse
Affiliation(s)
- Anton V. Zavialov
- *Department of Molecular Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-753 24 Uppsala, Sweden
- Correspondence may be addressed to either of these authors (email or )
| | | | - Laura J. Fooks
- ‡Microbiology Division, School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, U.K
| | - Bjørn O. Brandsdal
- §Department of Cell and Molecular Biology, Uppsala Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Johan Åqvist
- §Department of Cell and Molecular Biology, Uppsala Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Vladimir P. Zav'yalov
- ∥Department of Molecular and Microbial Biology, George Mason University Manassas, VA 20110, U.S.A
| | - Sheila Macintyre
- ‡Microbiology Division, School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, U.K
| | - Stefan D. Knight
- *Department of Molecular Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-753 24 Uppsala, Sweden
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
27
|
Hedenström M, Emtenäs H, Pemberton N, Aberg V, Hultgren SJ, Pinkner JS, Tegman V, Almqvist F, Sethson I, Kihlberg J. NMR studies of interactions between periplasmic chaperones from uropathogenic E. coli and pilicides that interfere with chaperone function and pilus assembly. Org Biomol Chem 2005; 3:4193-200. [PMID: 16294247 DOI: 10.1039/b511857c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adherence of uropathogenic Escherichia coli to host tissue is mediated by pili, which are hair-like protein structures extending from the outer cell membrane of the bacterium. The chaperones FimC and PapD are key components in pilus assembly since they catalyse folding of subunits that are incorporated in type 1 and P pili, respectively, and also transport the subunits across the periplasmic space. Recently, compounds that inhibit pilus biogenesis and interfere with chaperone-subunit interactions have been discovered and termed pilicides. In this paper NMR spectroscopy was used to study the interaction of different pilicides with PapD and FimC in order to gain structural knowledge that would explain the effect that some pilicides have on pilus assembly. First relaxation-edited NMR experiments revealed that the pilicides bound to the PapD chaperone with mM affinity. Then the pilicide-chaperone interaction surface was investigated through chemical shift mapping using 15N-labelled FimC. Principal component analysis performed on the chemical shift perturbation data revealed the presence of three binding sites on the surface of FimC, which interacted with three different classes of pilicides. Analysis of structure-activity relationships suggested that pilicides reduce pilus assembly in E. coli either by binding in the cleft of the chaperone, or by influencing the orientation of the flexible F1-G1 loop, both of which are part of the surface by which the chaperone forms complexes with pilus subunits. It is suggested that binding to either of these sites interferes with folding of the pilus subunits, which occurs during formation of the chaperone-subunit complexes. In addition, pilicides that influence the F1-G1 loop also appear to reduce pilus formation by their ability to dissociate chaperone-subunit complexes.
Collapse
Affiliation(s)
- Mattias Hedenström
- Organic Chemistry, Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fällman E, Schedin S, Jass J, Uhlin BE, Axner O. The unfolding of the P pili quaternary structure by stretching is reversible, not plastic. EMBO Rep 2005; 6:52-6. [PMID: 15592451 PMCID: PMC1299220 DOI: 10.1038/sj.embor.7400310] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 11/09/2022] Open
Abstract
P pili are protein filaments expressed by uropathogenic Escherichia coli that mediate binding to glycolipids on epithelial cell surfaces, which is a prerequisite for bacterial infection. When a bacterium, attached to a cell surface, is exposed to external forces, the pili, which are composed of approximately 10(3) PapA protein subunits arranged in a helical conformation, can elongate by unfolding to a linear conformation. This property is considered important for the ability of a bacterium to withstand shear forces caused by urine flow. It has hitherto been assumed that this elongation is plastic, thus constituting a permanent conformational deformation. We demonstrate, using optical tweezers, that this is not the case; the unfolding of the helical structure to a linear conformation is fully reversible. It is surmised that this reversibility helps the bacteria regain close contact to the host cells after exposure to significant shear forces, which is believed to facilitate their colonization.
Collapse
Affiliation(s)
- Erik Fällman
- Department of Physics, and Electronics, Umeå University, 901 87 Umeå, Sweden
- Tel: +46 90 786 6775; Fax: +46 90 786 6673; E-mail:
| | - Staffan Schedin
- Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden
| | - Jana Jass
- Department of Microbiology and Immunology, The Lawson Health Research Institute, University of Western Ontario, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Bernt-Eric Uhlin
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Ove Axner
- Department of Physics, and Electronics, Umeå University, 901 87 Umeå, Sweden
- Tel: + 46 90 786 6754; Fax: +46 90 786 6673; E-mail:
| |
Collapse
|
29
|
Kau AL, Hunstad DA, Hultgren SJ. Interaction of uropathogenic Escherichia coli with host uroepithelium. Curr Opin Microbiol 2005; 8:54-9. [PMID: 15694857 DOI: 10.1016/j.mib.2004.12.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Investigation into the pathogenesis of Escherichia coli urinary tract infection has provided numerous insights into the mechanisms by which bacteria adhere, grow and persist in association with host tissue. Many molecular details concerning the interaction of these bacteria with their host have been elucidated, and the murine model of cystitis has generated a new paradigm by which acute and recurrent urinary tract infections may proceed. These advances could potentially result in the development of novel vaccines and therapies for this very costly disease.
Collapse
Affiliation(s)
- Andrew L Kau
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8230, Saint Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
30
|
Piatek R, Zalewska B, Kolaj O, Ferens M, Nowicki B, Kur J. Molecular aspects of biogenesis of Escherichia coli Dr Fimbriae: characterization of DraB-DraE complexes. Infect Immun 2005; 73:135-45. [PMID: 15618148 PMCID: PMC538934 DOI: 10.1128/iai.73.1.135-145.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dr hemagglutinin of uropathogenic Escherichia coli is a fimbrial homopolymer of DraE subunits encoded by the dra operon. The dra operon includes the draB and draC genes, whose products exhibit homology to chaperone-usher proteins involved in the biogenesis of surface-located polymeric structures. DraB is one of the periplasmic proteins belonging to the superfamily of PapD-like chaperones. It possesses two conserved cysteine residues characteristic of the FGL subfamily of Caf1M-like chaperones. In this study we obtained evidence that DraB cysteines form a disulfide bond in a mature chaperone and have the crucial function of forming the DraB-DraE binary complex. Expression experiments showed that the DraB protein is indispensable in the folding of the DraE subunit to a form capable of polymerization. Accumulation of DraB-DraE(n) oligomers, composed of head-to-tail subunits and the chaperone DraB, was observed in the periplasm of a recombinant E. coli strain which expressed DraB and DraE (but not DraC). To investigate the donor strand exchange mechanism during the formation of DraE oligomers, we constructed a series of DraE N-terminal deletion mutants. Deletion of the first three N-terminal residues of a potential donor strand resulted in a DraE protein lacking an oligomerization function. In vitro data showed that the DraE disulfide bond was not needed to form a binary complex with the DraB chaperone but was essential in the polymerization process. Our data suggest that assembly of Dr fimbriae requires a chaperone-usher pathway and the donor strand exchange mechanism.
Collapse
Affiliation(s)
- Rafal Piatek
- Department of Microbiology, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Verdonck F, Cox E, Goddeeris BM. F4 fimbriae expressed by porcine enterotoxigenic Escherichia coli, an example of an eccentric fimbrial system? J Mol Microbiol Biotechnol 2004; 7:155-69. [PMID: 15383714 DOI: 10.1159/000079825] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An overwhelming number of infectious diseases in both humans and animals are initiated by bacterial adhesion to carbohydrate structures on a mucosal surface. Most bacterial pathogens mediate this adhesion by fimbriae or pili which contain an adhesive lectin subunit. The importance of fimbriae as virulence factors led to research elucidating the regulation of fimbrial expression and their molecular assembly process. This review provides an overview of the current knowledge of induction, expression and assembly of F4 (K88) fimbriae and discusses its unique as well as its identical characteristics compared to other intensively studied fimbriae or pili expressed by Escherichia coli.
Collapse
Affiliation(s)
- F Verdonck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
32
|
Sauer FG, Remaut H, Hultgren SJ, Waksman G. Fiber assembly by the chaperone–usher pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:259-67. [PMID: 15546670 DOI: 10.1016/j.bbamcr.2004.02.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/10/2004] [Indexed: 11/22/2022]
Abstract
Bacterial pathogens utilize the chaperone-usher pathway to assemble extracellular multi-subunit fibers essential for virulence. The periplasmic chaperone facilitates the initial folding of fiber subunits but then traps them in activated folding transition states. Chaperone dissociation releases the folding energy that drives subunit incorporation into the fiber, which grows through a pore formed by the outer-membrane usher.
Collapse
Affiliation(s)
- Frederic G Sauer
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave., New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
33
|
Ng TW, Akman L, Osisami M, Thanassi DG. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events. J Bacteriol 2004; 186:5321-31. [PMID: 15292133 PMCID: PMC490915 DOI: 10.1128/jb.186.16.5321-5331.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pilus biogenesis on the surface of uropathogenic Escherichia coli requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway, periplasmic chaperone-subunit complexes target an outer membrane (OM) usher for subunit assembly into pili and secretion to the cell surface. The molecular mechanisms of protein secretion across the OM are not well understood. Mutagenesis of the P pilus usher PapC and the type 1 pilus usher FimD was undertaken to elucidate the initial stages of pilus biogenesis at the OM. Deletion of residues 2 to 11 of the mature PapC N terminus abolished the targeting of the usher by chaperone-subunit complexes and rendered PapC nonfunctional for pilus biogenesis. Similarly, an intact FimD N terminus was required for chaperone-subunit binding and pilus biogenesis. Analysis of PapC-FimD chimeras and N-terminal fragments of PapC localized the chaperone-subunit targeting domain to the first 124 residues of PapC. Single alanine substitution mutations were made in this domain that blocked pilus biogenesis but did not affect targeting of chaperone-subunit complexes. Thus, the usher N terminus does not function simply as a static binding site for chaperone-subunit complexes but also participates in subsequent pilus assembly events.
Collapse
Affiliation(s)
- Tony W Ng
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794-5120, USA
| | | | | | | |
Collapse
|
34
|
Verdonck F, Cox E, Schepers E, Imberechts H, Joensuu J, Goddeeris BM. Conserved regions in the sequence of the F4 (K88) fimbrial adhesin FaeG suggest a donor strand mechanism in F4 assembly. Vet Microbiol 2004; 102:215-25. [PMID: 15327796 DOI: 10.1016/j.vetmic.2004.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 06/07/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Oral immunization of newly weaned piglets with recombinant F4 (K88) fimbrial adhesin FaeG induces a F4-specific immune response, significantly reducing F4+ Escherichia coli excretion following challenge. In order to use FaeG subunits in an oral vaccine against F4+ enterotoxigenic E. coli, it is necessary to determine the conservation of the adhesin subunit. Hereto, the faeG sequence was determined of 21 F4ac+ E. coli field isolates from piglets with diarrhoea and subsequently compared with these of the reference strain GIS26 and previously reported FaeG sequences from F4ab, F4ac and F4ad antigenic variant strains. The FaeG amino acid sequence was 96-100% homologous within each F4 serotype, but only 92 and 88% when the F4ab and F4ad antigenic variants were compared with the F4ac antigenic variant. Furthermore, the conserved regions of the adhesin suggest a donor strand mechanism in F4 fimbriae assembly as reported for type 1 and P pili. In conclusion, the results of the reported experiments support the usefulness FaeG in an oral subunit vaccine against F4+ E. coli infections or as a mucosal carrier since the adhesin is conserved among F4+ E. coli field isolates.
Collapse
Affiliation(s)
- F Verdonck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
35
|
Lee YM, DiGiuseppe PA, Silhavy TJ, Hultgren SJ. P pilus assembly motif necessary for activation of the CpxRA pathway by PapE in Escherichia coli. J Bacteriol 2004; 186:4326-37. [PMID: 15205435 PMCID: PMC421624 DOI: 10.1128/jb.186.13.4326-4337.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/29/2004] [Indexed: 11/20/2022] Open
Abstract
P pilus biogenesis occurs via the highly conserved chaperone-usher pathway, and assembly is monitored by the CpxRA two-component signal transduction pathway. Structural pilus subunits consist of an N-terminal extension followed by an incomplete immunoglobulin-like fold that is missing a C-terminal seventh beta strand. In the pilus fiber, the immunoglobulin-like fold of each pilin is completed by the N-terminal extension of its neighbor. Subunits that do not get incorporated into the pilus fiber are driven "OFF-pathway." In this study, we found that PapE was the only OFF-pathway nonadhesin P pilus subunit capable of activating Cpx. Manipulation of the PapE structure by removing, relocating within the protein, or swapping its N-terminal extension with that of other subunits altered the protein's self-associative and Cpx-activating properties. The self-association properties of the new subunits were dictated by the specific N-terminal extension provided and were consistent with the order of the subunits in the pilus fiber. However, these aggregation properties did not directly correlate with Cpx induction. Cpx activation instead correlated with the presence or absence of an N-terminal extension in the PapE pilin structure. Removal of the N-terminal extension of PapE was sufficient to abolish Cpx activation. Replacement of an N-terminal extension at either the amino or carboxyl terminus restored Cpx induction. Thus, the data presented in this study argue that PapE has features inherent in its structure or during its folding that act as specific inducers of Cpx signal transduction.
Collapse
Affiliation(s)
- Yvonne M Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
36
|
Nishiyama M, Vetsch M, Puorger C, Jelesarov I, Glockshuber R. Identification and characterization of the chaperone-subunit complex-binding domain from the type 1 pilus assembly platform FimD. J Mol Biol 2003; 330:513-25. [PMID: 12842468 DOI: 10.1016/s0022-2836(03)00591-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The outer membrane protein FimD represents the assembly platform of adhesive type 1 pili from Escherichia coli. FimD forms ring-shaped oligomers of 91.4 kDa subunits that recognize complexes between the pilus chaperone FimC and individual pilus subunits in the periplasm and mediate subunit translocation through the outer membrane. Here, we have identified a periplasmic domain of FimD (FimD(N)) comprising the N-terminal 139 residues of FimD. Purified FimD(N) is a monomeric, soluble protein that specifically recognizes complexes between FimC and individual type 1 pilus subunits, but does not bind the isolated chaperone, or isolated subunits. In addition, FimD(N) retains the ability of FimD to recognize different chaperone-subunit complexes with different affinities, and has the highest affinity towards the FimC-FimH complex. Overexpression of FimD(N) in the periplasm of wild-type E.coli cells diminished incorporation of FimH at the tip of type 1 pili, while pilus assembly itself was not affected. The identification of FimD(N) and its ternary complexes with FimC and individual pilus subunits opens the avenue to structural characterization of critical type 1 pilus assembly intermediates.
Collapse
Affiliation(s)
- Mireille Nishiyama
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Abstract
The periplasmic PapD-like chaperones have long been known to be necessary for the assembly of bacterial surface organelles. New structural work now suggests that they control assembly by arresting subunit folding. This step may be required to preserve energy for fiber formation.
Collapse
Affiliation(s)
- Susanne Behrens
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, Georg-August-University Goettingen, Grisebachstrasse 8, D-37077 Goettingen, Germany
| |
Collapse
|
38
|
Zavialov AV, Berglund J, Pudney AF, Fooks LJ, Ibrahim TM, MacIntyre S, Knight SD. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 2003; 113:587-96. [PMID: 12787500 DOI: 10.1016/s0092-8674(03)00351-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.
Collapse
Affiliation(s)
- Anton V Zavialov
- Department of Molecular Biosciences/Structural Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
39
|
Barnhart MM, Sauer FG, Pinkner JS, Hultgren SJ. Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly. J Bacteriol 2003; 185:2723-30. [PMID: 12700251 PMCID: PMC154394 DOI: 10.1128/jb.185.9.2723-2730.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a channel across the outer membrane through which pilus subunits are translocated and assembled into pili via a mechanism known as donor strand exchange. This is a mechanism whereby chaperone uncapping from a subunit is coupled with the simultaneous assembly of the subunit into the pilus fiber. Thus, in the pilus fiber, the N-terminal extension of every subunit completes the Ig fold of its neighboring subunit by occupying the same site previously occupied by the chaperone. Here, we investigated details of the donor strand exchange assembly mechanism. We discovered that the information necessary for targeting the FimC-FimH complex to the usher resides mainly in the FimH protein. This interaction is an initiating event in pilus biogenesis. We discovered that the ability of an incoming subunit (in a chaperone-subunit complex) to participate in donor strand exchange with the growing pilus depended on a previously unrecognized function of the chaperone. Furthermore, the donor strand exchange assembly mechanism between subunits was found to be necessary for subunit translocation across the outer membrane usher.
Collapse
Affiliation(s)
- Michelle M Barnhart
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
40
|
Smeds A, Pertovaara M, Timonen T, Pohjanvirta T, Pelkonen S, Palva A. Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun 2003; 71:2163-72. [PMID: 12654838 PMCID: PMC152074 DOI: 10.1128/iai.71.4.2163-2182.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Revised: 11/12/2002] [Accepted: 12/23/2002] [Indexed: 11/20/2022] Open
Abstract
F18 fimbrial Esherichia coli strains are associated with porcine postweaning diarrhea and pig edema disease. Recently, the FedF subunit was identified as the adhesin of the F18 fimbriae. In this study, adhesion domains of FedF were further studied by constructing deletions within the fedF gene and expressing FedF proteins with deletions either together with the other F18 fimbrial subunits or as fusion proteins tagged with maltose binding protein. The region essential for adhesion to porcine intestinal epithelial cells was mapped between amino acid residues 60 and 109 of FedF. To map the binding domain even more closely, all eight charged amino acid residues within this region were independently replaced by alanine. Three of these single point mutants expressing F18 fimbriae exhibited significantly diminished capabilities to adhere to porcine epithelial cells in vitro. In addition, a triple point mutation and a double point mutation completely abolished receptor adhesiveness. The result further confirmed that the region between amino acid residues 60 and 109 is essential for the binding of F18 fimbriae to their receptor. In addition, the adhesion capability of the binding domain was eliminated after treatment with iodoacetamide, suggesting the formation of a disulfide bridge between Cys-63 and Cys-83, whereas Cys-111 and Cys-116 could be deleted without affecting the binding ability of FedF.
Collapse
Affiliation(s)
- A Smeds
- Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences, Section of Microbiology, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Smeds A, Pertovaara M, Timonen T, Pohjanvirta T, Pelkonen S, Palva A. Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun 2003; 71:2163-2172. [PMID: 12654838 PMCID: PMC152074 DOI: 10.1128/iai.71.4.2163-2172.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Revised: 11/12/2002] [Accepted: 12/23/2002] [Indexed: 05/29/2023] Open
Abstract
F18 fimbrial Esherichia coli strains are associated with porcine postweaning diarrhea and pig edema disease. Recently, the FedF subunit was identified as the adhesin of the F18 fimbriae. In this study, adhesion domains of FedF were further studied by constructing deletions within the fedF gene and expressing FedF proteins with deletions either together with the other F18 fimbrial subunits or as fusion proteins tagged with maltose binding protein. The region essential for adhesion to porcine intestinal epithelial cells was mapped between amino acid residues 60 and 109 of FedF. To map the binding domain even more closely, all eight charged amino acid residues within this region were independently replaced by alanine. Three of these single point mutants expressing F18 fimbriae exhibited significantly diminished capabilities to adhere to porcine epithelial cells in vitro. In addition, a triple point mutation and a double point mutation completely abolished receptor adhesiveness. The result further confirmed that the region between amino acid residues 60 and 109 is essential for the binding of F18 fimbriae to their receptor. In addition, the adhesion capability of the binding domain was eliminated after treatment with iodoacetamide, suggesting the formation of a disulfide bridge between Cys-63 and Cys-83, whereas Cys-111 and Cys-116 could be deleted without affecting the binding ability of FedF.
Collapse
Affiliation(s)
- A Smeds
- Faculty of Veterinary Medicine, Department of Basic Veterinary Sciences, Section of Microbiology, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
42
|
Berglund J, Knight SD. Structural Basis for Bacterial Adhesion in the Urinary Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:33-52. [PMID: 14714887 DOI: 10.1007/978-1-4615-0065-0_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Jenny Berglund
- Department of Molecular Biosciences/Structural Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-753 24 Uppsala, Sweden
| | | |
Collapse
|
43
|
Abstract
An elementary step in the assembly of adhesive type 1 pili of Escherichia coli is the folding of structural pilus subunits in the periplasm. The previously determined X-ray structure of the complex between the type 1 pilus adhesin FimH and the periplasmic pilus assembly chaperone FimC has shown that FimH consists of a N-terminal lectin domain and a C-terminal pilin domain, and that FimC exclusively interacts with the pilin domain. The pilin domain fold, which is common to all pilus subunits, is characterized by an incomplete beta-sheet that is completed by a donor strand from FimC in the FimC-FimH complex. This, together with unsuccessful attempts to refold isolated, urea-denatured FimH in vitro had suggested that folding of pilin domains strictly depends on sequence information provided by FimC. We have now analyzed in detail the folding of FimH and its two isolated domains in vitro. We find that not only the lectin domain, but also the pilin domain can fold autonomously and independently of FimC. However, the thermodynamic stability of the pilin domain is very low (8-10kJmol(-1)) so that a significant fraction of the domain is unfolded even in the absence of denaturant. This explains the high tendency of structural pilus subunits to aggregate non-specifically in the absence of stoichiometric amounts of FimC. Thus, pilus chaperones prevent non-specific aggregation of pilus subunits by native state stabilization after subunit folding.
Collapse
Affiliation(s)
- Michael Vetsch
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
44
|
Richter S, Lamppa GK. Determinants for removal and degradation of transit peptides of chloroplast precursor proteins. J Biol Chem 2002; 277:43888-94. [PMID: 12235143 DOI: 10.1074/jbc.m206020200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stromal processing peptidase (SPP) cleaves a large diversity of chloroplast precursor proteins, removing an N-terminal transit peptide. We predicted previously that this key step of the import pathway is mediated by features of the transit peptide that determine precursor binding and cleavage followed by transit peptide conversion to a degradable substrate. Here we performed competition experiments using synthesized oligopeptides of the transit peptide of ferredoxin precursor to investigate the mechanism of these processes. We found that binding and processing of ferredoxin precursor depend on specific interactions of SPP with the region consisting of the C-terminal 12 residues of the transit peptide. Analysis of four other precursors suggests that processing depends on the same region, although their transit peptides are highly divergent in primary sequence and length. Upon processing, SPP terminates its interaction with the transit peptide by a second cleavage, converting it to a subfragment form. From the competition experiments we deduce that SPP releases a subfragment consisting of the transit peptide without its original C terminus. Interestingly, examination of the ATP-dependent metallopeptidase activity responsible for degradation of transit peptide subfragments suggests that it may recognize other unrelated peptides and, hence, act separately from SPP as a novel stromal oligopeptidase.
Collapse
Affiliation(s)
- Stefan Richter
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
45
|
Sauer FG, Pinkner JS, Waksman G, Hultgren SJ. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 2002; 111:543-51. [PMID: 12437927 DOI: 10.1016/s0092-8674(02)01050-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Periplasmic chaperones direct the assembly of adhesive, multi-subunit pilus fibers that play critical roles in bacterial pathogenesis. Pilus assembly occurs via a donor strand exchange mechanism in which the N-terminal extension of one subunit replaces the chaperone G(1) strand that transiently occupies a groove in the neighboring subunit. Here, we show that the chaperone primes the subunit for assembly by holding the groove in an open, activated conformation. During donor strand exchange, the subunit undergoes a topological transition that triggers the closure of the groove and seals the N-terminal extension in place. It is this topological transition, made possible only by the priming action of the chaperone that drives subunit assembly into the fiber.
Collapse
Affiliation(s)
- Frederic G Sauer
- Department of Molecular Microbiology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63105, USA
| | | | | | | |
Collapse
|
46
|
Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguénec C, Gounon P, Phillips A, Nataro JP. A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 2002; 110:1329-37. [PMID: 12417572 PMCID: PMC151617 DOI: 10.1172/jci16172] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Accepted: 08/27/2002] [Indexed: 11/17/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a diarrheal pathogen defined by its characteristic aggregative adherence (AA) to HEp-2 cells in culture. We have previously shown that EAEC strains secrete a 10-kDa protein that is immunogenic in a human EAEC challenge model. We report here that this protein is encoded by a gene (called aap) lying immediately upstream of that encoding the AggR transcriptional activator, and that aap is under AggR control. The product of aap has a typical signal sequence and is secreted to the extracellular milieu, where it remains noncovalently attached to the surface of the bacterium. EAEC aap mutants aggregate more intensely than the wild-type parent in a number of assays, forming larger aggregates and fewer individual bacteria. Infection of colonic biopsies with wild-type EAEC strain 042 and its aap mutant revealed more dramatic autoagglutination of the mutant compared with the wild-type parent. Our data suggest that the aap gene product participates in formation of a surface coat that acts to disperse the bacteria, thus partially counteracting aggregation mediated by aggregative adherence fimbriae. We have therefore named the aap gene product "dispersin," and we propose that it may be representative of a functional class of colonization factors. Since dispersin is expressed in vivo, is highly immunogenic, and is present in most EAEC strains, it holds considerable promise as an EAEC immunogen.
Collapse
Affiliation(s)
- Jalaluddin Sheikh
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zavialov AV, Kersley J, Korpela T, Zav'yalov VP, MacIntyre S, Knight SD. Donor strand complementation mechanism in the biogenesis of non-pilus systems. Mol Microbiol 2002; 45:983-95. [PMID: 12180918 DOI: 10.1046/j.1365-2958.2002.03066.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The F1 antigen of Yersinia pestis belongs to a class of non-pilus adhesins assembled via a classical chaperone-usher pathway. Such pathways consist of PapD-like chaperones that bind subunits and pilot them to the outer membrane usher, where they are assembled into surface structures. In a recombinant Escherichia coli model system, chaperone-subunit (Caf1M:Caf1n) complexes accumulate in the periplasm. Three independent methods showed that these complexes are rod- or coil-shaped linear arrays of Caf1 subunits capped at one end by a single copy of Caf1M chaperone. Deletion and point mutagenesis identified an N-terminal donor strand region of Caf1 that was essential for polymerization in vitro, in the periplasm and at the cell surface, but not for chaperone-subunit interaction. Partial protease digestion of periplasmic complexes revealed that this region becomes buried upon formation of Caf1:Caf1 contacts. These results show that, despite the capsule-like appearance of F1 antigen, the basic structure is assembled as a linear array of subunits held together by intersubunit donor strand complementation. This example shows that strikingly different architectures can be achieved by the same general principle of donor strand complementation and suggests that a similar basic polymer organization will be shared by all surface structures assembled by classical chaperone-usher pathways.
Collapse
Affiliation(s)
- A V Zavialov
- Department of Molecular Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Svensson A, Larsson A, Emtenäs H, Hedenström M, Fex T, Hultgren SJ, Pinkner JS, Almqvist F, Kihlberg J. Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli. Chembiochem 2001; 2:915-8. [PMID: 11948880 DOI: 10.1002/1439-7633(20011203)2:12<915::aid-cbic915>3.0.co;2-m] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- A Svensson
- Organic Chemistry 2, Center for Chemistry and Chemical Engineering, Lund Institute of Technology, Lund University P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Duthy TG, Manning PA, Heuzenroeder MW. Characterization of the CsfC and CsfD proteins involved in the biogenesis of CS5 pili from enterotoxigenic Escherichia coli. Microb Pathog 2001; 31:115-29. [PMID: 11500097 DOI: 10.1006/mpat.2001.0452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The region required for biosynthesis of CS5 pili consists of six csf genes, with csfA encoding the major subunit. In this study, we describe the characterization of two of the genes constituting the region, csfC and csfD, but also identify the true morphology of the CS5 pilus by high resolution electron microscopy. CsfD was shown to be essential in the initiation of CS5 pilus biogenesis, did not possess any chaperone-like activity for the major subunit, and was an integral minor component of the pilus structure. Studies on CsfD translocation across the outer membrane in Escherichia coli K-12 using a csfA mutant also showed that CsfD is likely to be the first pilin subunit assembled. A specific in-frame deletion in the csfC gene resulted in the complete absence of cell surface CS5 pili and prevented the translocation of CsfA and CsfD pilins across the outer membrane. Specific cell localization studies showed an accumulation of CsfC in the outer membranes of E. coli K-12, while complementation experiments with homologous outer membrane assembly genes from CS1 and CFA/I pili systems were unable to restore assembly of CS5 pili. The CS5 pilus was shown to be a 2 nm flexible fibrillar structure, which adopted a predominantly open helical conformation under the electron microscope.
Collapse
Affiliation(s)
- T G Duthy
- Discipline of Microbiology and Immunology, Department of Molecular BioSciences, Adelaide University, Frome Road, Adelaide, SA 5005, Australia
| | | | | |
Collapse
|
50
|
Hung DL, Raivio TL, Jones C, Silhavy TJ, Hultgren SJ. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J 2001; 20:1508-18. [PMID: 11285215 PMCID: PMC145513 DOI: 10.1093/emboj/20.7.1508] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
P pili are important virulence factors in uropathogenic Escherichia coli. The Cpx two-component signal transduction system controls a stress response and is activated by misfolded proteins in the periplasm. We have discovered new functions for the Cpx pathway, indicating that it may play a critical role in pathogenesis. P pili are assembled via the chaperone/usher pathway. Subunits that go 'OFF-pathway' during pilus biogenesis generate a signal. This signal is derived from the misfolding and aggregation of subunits that failed to come into contact with the chaperone in the periplasm. In response, Cpx not only controls the stress response, but also controls genes necessary for pilus biogenesis, and is involved in regulating the phase variation of pap expression and, potentially, the expression of a panoply of other virulence factors. This study demonstrates how the prototypic chaperone/usher pathway is intricately linked and dependent upon a signal transduction system.
Collapse
Affiliation(s)
| | - Tracy L. Raivio
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110,
SIGA Technologies Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA and Department of Biological Sciences, 6315 Biological Services Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Corresponding author e-mail:
| | - C.Hal Jones
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110,
SIGA Technologies Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA and Department of Biological Sciences, 6315 Biological Services Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Corresponding author e-mail:
| | - Thomas J. Silhavy
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110,
SIGA Technologies Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA and Department of Biological Sciences, 6315 Biological Services Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Corresponding author e-mail:
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110,
SIGA Technologies Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA and Department of Biological Sciences, 6315 Biological Services Building, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 Corresponding author e-mail:
| |
Collapse
|