1
|
Black HL, Livingstone R, Mastick CC, Al Tobi M, Taylor H, Geiser A, Stirrat L, Kioumourtzoglou D, Petrie JR, Boyle JG, Bryant NJ, Gould GW. Knockout of Syntaxin-4 in 3T3-L1 adipocytes reveals new insight into GLUT4 trafficking and adiponectin secretion. J Cell Sci 2021; 135:273617. [PMID: 34859814 PMCID: PMC8767277 DOI: 10.1242/jcs.258375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Adipocytes are key to metabolic regulation, exhibiting insulin-stimulated glucose transport that is underpinned by the insulin-stimulated delivery of glucose transporter type 4 (SLC2A4, also known and hereafter referred to as GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, and increase cell surface GLUT4 levels. Adipocytokines, such as adiponectin, are secreted via a similar mechanism. We used genome editing to knock out syntaxin-4, a protein reported to mediate fusion between GLUT4-containing vesicles and the plasma membrane in 3T3-L1 adipocytes. Syntaxin-4 knockout reduced insulin-stimulated glucose transport and adiponectin secretion by ∼50% and reduced GLUT4 levels. Ectopic expression of haemagglutinin (HA)-tagged GLUT4 conjugated to GFP showed that syntaxin-4-knockout cells retain significant GLUT4 translocation capacity, demonstrating that syntaxin-4 is dispensable for insulin-stimulated GLUT4 translocation. Analysis of recycling kinetics revealed only a modest reduction in the exocytic rate of GLUT4 in knockout cells, and little effect on endocytosis. These analyses demonstrate that syntaxin-4 is not always rate limiting for GLUT4 delivery to the cell surface. In sum, we show that syntaxin-4 knockout results in reduced insulin-stimulated glucose transport, depletion of cellular GLUT4 levels and inhibition of adiponectin secretion but has only modest effects on the translocation capacity of the cells. This article has an associated First Person interview with Hannah L. Black and Rachel Livingstone, joint first authors of the paper. Summary: Syntaxin-4 knockout reduces insulin-stimulated glucose transport, depletes levels of cellular GLUT4 and inhibits secretion of adiponectin but only modestly affects the translocation capacity of the cells.
Collapse
Affiliation(s)
- Hannah L Black
- Department of Biology and York Biomedical Research Institute, University of York. Heslington, York, YO10 5DD, UK
| | - Rachel Livingstone
- Henry Welcome Laboratory for Cell Biology, Institute for Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Cynthia C Mastick
- Henry Welcome Laboratory for Cell Biology, Institute for Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.,Department of Biology, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Mohammed Al Tobi
- Henry Welcome Laboratory for Cell Biology, Institute for Molecular, Cellular and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Holly Taylor
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Angéline Geiser
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Laura Stirrat
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Dimitrios Kioumourtzoglou
- Department of Biology and York Biomedical Research Institute, University of York. Heslington, York, YO10 5DD, UK
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow. Glasgow G12 8QQ, UK
| | - James G Boyle
- Institute of Cardiovascular and Medical Sciences, University of Glasgow. Glasgow G12 8QQ, UK.,School of Medicine, Dentistry and Nursing, University of Glasgow. Glasgow G12 8QQ, UK
| | - Nia J Bryant
- Department of Biology and York Biomedical Research Institute, University of York. Heslington, York, YO10 5DD, UK
| | - Gwyn W Gould
- Strathclyde Institute for Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| |
Collapse
|
2
|
Miyazaki M, Hayata M, Samukawa N, Iwanaga K, Nagai J. Pharmacokinetic-pharmacodynamic modelling of the hypoglycaemic effect of pulsatile administration of human insulin in rats. Sci Rep 2020; 10:18876. [PMID: 33139788 PMCID: PMC7608663 DOI: 10.1038/s41598-020-76007-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
The relationship between the plasma insulin (INS) concentration–time course and plasma glucose concentration–time course during and after pulsatile INS administration to rats was characterized using a pharmacokinetic–pharmacodynamic (PK–PD) model. A total INS dose of 0.5 IU/kg was intravenously injected in 2 to 20 pulses over a 2-h period. Compared with the single bolus administration, the area under the effect-time curve (AUE) increased depending on the number of pulses, and the AUEs for more than four pulses plateaued at a significantly larger value, which was similar to that after the infusion of a total of 0.5 IU/kg of INS over 2 h. No increase in plasma INS concentration occurred after pulsatile administration. Two indirect response models primarily reflecting the receptor-binding process (IR model) or glucose transporter 4 (GLUT4) translocation (GT model) were applied to describe the PK–PD relationship after single intravenous bolus administration of INS. These models could not explain the observed data after pulsatile administration. However, the IR-GT model, which was a combination of the IR and GT models, successfully explained the effects of pulsatile administration and intravenous infusion. These results indicate that the receptor-binding process and GLUT4 translocation are responsible for the change in AUE after pulsatile administration.
Collapse
Affiliation(s)
- Makoto Miyazaki
- Department of Pharmaceutics, Education and Research Center for Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Mariko Hayata
- Department of Pharmaceutics, Education and Research Center for Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Noriaki Samukawa
- Department of Pharmaceutics, Education and Research Center for Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazunori Iwanaga
- Department of Pharmaceutics, Education and Research Center for Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Junya Nagai
- Department of Pharmaceutics, Education and Research Center for Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
3
|
Abstract
The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle-targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785-809, 2020.
Collapse
Affiliation(s)
- Karla E. Merz
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
4
|
PI3K-GLUT4 Signal Pathway Associated with Effects of EX-B3 Electroacupuncture on Hyperglycemia and Insulin Resistance of T2DM Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7914387. [PMID: 27656242 PMCID: PMC5021857 DOI: 10.1155/2016/7914387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/21/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022]
Abstract
Objectives. To explore electroacupuncture's (EA's) effects on fasting blood glucose (FBG) and insulin resistance of type 2 diabetic mellitus (T2DM) model rats and give a possible explanation for the effects. Method. It takes high fat diet and intraperitoneal injection of streptozotocin (STZ, 30 mg/kg) for model preparation. Model rats were randomly divided into T2DM Model group, EA weiwanxiashu (EX-B3) group, and sham EA group (n = 12/group). EA (2 Hz continuous wave, 2 mA, 20 min/day, 6 days/week, 4 weeks) was applied as intervention. FBG, area under curve (AUC) of oral glucose tolerance test (OGTT), insulin resistance index (HOMA-IR), pancreatic B cell function index (HOMA-B), skeletal muscle phosphorylated phosphatidylinositol-3-kinase (PI3K), glucose transporter 4 (GLUT4), and membrane GLUT4 protein expression were measured. Results. EA weiwanxiashu (EX-B3) can greatly upregulate model rat's significantly reduced skeletal muscle PI3K (Y607) and membrane GLUT4 protein expression (P < 0.01), effectively reducing model rats' FBG and AUC of OGTT (P < 0.01). The effects are far superior to sham EA group. Conclusion. EA weiwanxiashu (EX-B3) can upregulate skeletal muscle phosphorylated PI3K protein expression, to stimulate membrane translocation of GLUT4 and thereby increase skeletal muscle glucose intake to treat T2DM.
Collapse
|
5
|
Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. Am J Physiol Cell Physiol 2014; 306:C879-86. [DOI: 10.1152/ajpcell.00069.2014] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle is the major tissue disposing of dietary glucose, a function regulated by insulin-elicited signals that impart mobilization of GLUT4 glucose transporters to the plasma membrane. This phenomenon, also central to adipocyte biology, has been the subject of intense and productive research for decades. We focus on muscle cell studies scrutinizing insulin signals and vesicle traffic in a spatiotemporal manner. Using the analogy of an integrated circuit to approach the intersection between signal transduction and vesicle mobilization, we identify signaling relays (“software”) that engage structural/mechanical elements (“hardware”) to enact the rapid mobilization and incorporation of GLUT4 into the cell surface. We emphasize how insulin signal transduction switches from tyrosine through lipid and serine phosphorylation down to activation of small G proteins of the Rab and Rho families, describe key negative regulation step of Rab GTPases through the GTPase-activating protein activity of the Akt substrate of 160 kDa (AS160), and focus on the mechanical effectors engaged by Rabs 8A and 10 (the molecular motor myosin Va), and the Rho GTPase Rac1 (actin filament branching and severing through Arp2/3 and cofilin). Finally, we illustrate how actin filaments interact with myosin 1c and α-Actinin4 to promote vesicle tethering as preamble to fusion with the membrane.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Yi Sun
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
| | - Tim Ting Chiu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| | - Kevin P. Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada; and
- Department of Biochemistry, The University of Toronto, Ontario, Canada
| |
Collapse
|
6
|
Rehman A, Jarrott RJ, Whitten AE, King GJ, Hu SH, Christie MP, Collins BM, Martin JL. Milligram quantities of homogeneous recombinant full-length mouse Munc18c from Escherichia coli cultures. PLoS One 2013; 8:e83499. [PMID: 24391775 PMCID: PMC3877047 DOI: 10.1371/journal.pone.0083499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/05/2013] [Indexed: 12/24/2022] Open
Abstract
Vesicle fusion is an indispensable cellular process required for eukaryotic cargo delivery. The Sec/Munc18 protein Munc18c is essential for insulin-regulated trafficking of glucose transporter4 (GLUT4) vesicles to the cell surface in muscle and adipose tissue. Previously, our biophysical and structural studies have used Munc18c expressed in SF9 insect cells. However to maximize efficiency, minimize cost and negate any possible effects of post-translational modifications of Munc18c, we investigated the use of Escherichia coli as an expression host for Munc18c. We were encouraged by previous reports describing Munc18c production in E. coli cultures for use in in vitro fusion assay, pulldown assays and immunoprecipitations. Our approach differs from the previously reported method in that it uses a codon-optimized gene, lower temperature expression and autoinduction media. Three N-terminal His-tagged constructs were engineered, two with a tobacco etch virus (TEV) or thrombin protease cleavage site to enable removal of the fusion tag. The optimized protocol generated 1–2 mg of purified Munc18c per L of culture at much reduced cost compared to Munc18c generated using insect cell culture. The purified recombinant Munc18c protein expressed in bacteria was monodisperse, monomeric, and functional. In summary, we developed methods that decrease the cost and time required to generate functional Munc18c compared with previous insect cell protocols, and which generates sufficient purified protein for structural and biophysical studies.
Collapse
Affiliation(s)
- Asma Rehman
- Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - Russell J. Jarrott
- Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - Andrew E. Whitten
- Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - Gordon J. King
- Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - Shu-Hong Hu
- Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - Michelle P. Christie
- Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - Brett M. Collins
- Division of Molecular Cell Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
| | - Jennifer L. Martin
- Division of Chemistry and Structural Biology, University of Queensland, Institute for Molecular Bioscience, Brisbane, Australia
- * E-mail:
| |
Collapse
|
7
|
Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 2013; 110:E3271-80. [PMID: 23918365 DOI: 10.1073/pnas.1311232110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sec1/Munc18 (SM) family proteins are essential for every vesicle fusion pathway. The best-characterized SM protein is the synaptic factor Munc18-1, but it remains unclear whether its functions represent conserved mechanisms of SM proteins or specialized activities in neurotransmitter release. To address this question, we dissected Munc18c, a functionally distinct SM protein involved in nonsynaptic exocytic pathways. We discovered that Munc18c binds to the trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex and strongly accelerates the fusion rate. Further analysis suggests that Munc18c recognizes both vesicle-rooted SNARE and target membrane-associated SNAREs, and promotes trans-SNARE zippering at the postdocking stage of the fusion reaction. The stimulation of fusion by Munc18c is specific to its cognate SNARE isoforms. Because Munc18-1 regulates fusion in a similar manner, we conclude that one conserved function of SM proteins is to bind their cognate trans-SNARE complexes and accelerate fusion kinetics. Munc18c also binds syntaxin-4 monomer but does not block target membrane-associated SNARE assembly, in agreement with our observation that six- to eightfold increases in Munc18c expression do not inhibit insulin-stimulated glucose uptake in adipocytes. Thus, the inhibitory "closed" syntaxin binding mode demonstrated for Munc18-1 is not conserved in Munc18c. Unexpectedly, we found that Munc18c recognizes the N-terminal region of the vesicle-rooted SNARE, whereas Munc18-1 requires the C-terminal sequences, suggesting that the architecture of the SNARE/SM complex likely differs across fusion pathways. Together, these comparative studies of two distinct SM proteins reveal conserved as well as divergent mechanisms of SM family proteins in intracellular vesicle fusion.
Collapse
|
8
|
Sadacca LA, Bruno J, Wen J, Xiong W, McGraw TE. Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol Biol Cell 2013; 24:2544-57. [PMID: 23804653 PMCID: PMC3744946 DOI: 10.1091/mbc.e13-02-0103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RAB10 and RAB14 function at sequential steps of insulin-stimulated GLUT4 translocation to the plasma membrane. RAB14 functions upstream of RAB10 in GLUT4 sorting to the specialized transport vesicles, and RAB10 and its GAP protein comprise the main signaling module that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.
Collapse
Affiliation(s)
- L Amanda Sadacca
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
9
|
Löffler MG, Birkenfeld AL, Philbrick KM, Belman JP, Habtemichael EN, Booth CJ, Castorena CM, Choi CS, Jornayvaz FR, Gassaway BM, Lee HY, Cartee GD, Philbrick W, Shulman GI, Samuel VT, Bogan JS. Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle. J Biol Chem 2013; 288:20135-50. [PMID: 23744065 DOI: 10.1074/jbc.m113.458075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12-13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet-induced insulin resistance in mice.
Collapse
Affiliation(s)
- Michael G Löffler
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tan Z, Zhou LJ, Mu PW, Liu SP, Chen SJ, Fu XD, Wang TH. Caveolin-3 is involved in the protection of resveratrol against high-fat-diet-induced insulin resistance by promoting GLUT4 translocation to the plasma membrane in skeletal muscle of ovariectomized rats. J Nutr Biochem 2012; 23:1716-24. [PMID: 22569348 DOI: 10.1016/j.jnutbio.2011.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 01/26/2023]
Abstract
Insulin resistance is recognized as a common metabolic factor which predicts the future development of both type 2 diabetes and atherosclerotic disease. Resveratrol (RSV), an agonist of estrogen receptor (ER), is known to affect insulin sensitivity, but the mechanism is unclear. Evidence suggests that caveolin-3 (CAV-3), a member of the caveolin family, is involved in insulin-stimulated glucose uptake. Our recent work indicated that estrogen via ER improves glucose uptake by up-regulation of CAV-3 expression. Here, we investigated the role of CAV-3 in the effect of RSV on insulin resistance in skeletal muscle both in vivo and in vitro. The results demonstrated that RSV ameliorated high-fat-diet (HFD)-induced glucose intolerance and insulin resistance in ovariectomized rats. RSV elevated insulin-stimulated glucose uptake in isolated soleus muscle in vivo and in C2C12 myotubes in vitro by enhancing GLUT4 translocation to the plasma membrane rather than increasing GLUT4 protein expression. Through ERα-mediated transcription, RSV increased CAV-3 protein expression, which contributed to GLUT4 translocation. Moreover, after knockdown of CAV-3 gene, the effects of RSV on glucose uptake and the translocation of GLUT4 to the plasma membrane, as well as the association of CAV-3 and GLUT4 in the membrane, were significantly attenuated. Our findings demonstrated that RSV via ERα elevated CAV-3 expression and then enhanced GLUT4 translocation to the plasma membrane to promote glucose uptake in skeletal muscle, exerting its protective effects against HFD-induced insulin resistance. It suggests that this pathway could represent an effective therapeutic target to fight against insulin resistance syndrome induced by HFD.
Collapse
Affiliation(s)
- Zhi Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ohsaka Y, Nishino H. Cooling-increased phospho-β-arrestin-1 and β-arrestin-1 expression levels in 3T3-L1 adipocytes. Cryobiology 2012; 65:12-20. [PMID: 22465333 DOI: 10.1016/j.cryobiol.2012.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 02/22/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
Abstract
Cooling induces several responses that are modulated by molecular inhibitors and activators and receptor signaling. Information regarding potential targets involved in cold response mechanisms is still insufficient. We examined levels of the receptor-signaling mediator β-arrestin-1 and phospho-Ser-412 β-arrestin-1 in 3T3-L1 adipocytes exposed to 4-37 °C or treated with some molecular agents at 37°C. We also cooled cells with or without modification and signal-modulating agents. These conditions did not decrease cell viability, and western blot analysis revealed that exposure to 4 °C for 1.5h and to 28 and 32 °C for 24 and 48 h increased phospho-β-arrestin-1 and β-arrestin-1 levels and that exposure to 4 and 18 °C for 3 and 4.5h increased β-arrestin-1 level. Serum removal and rewarming abolished β-arrestin-1 alterations induced by cooling. Mithramycin A (a transcription inhibitor) treatment for 4 and 24h increased the level of β-arrestin-1 but not that of phospho-β-arrestin-1. The level of phospho-β-arrestin-1 was increased by okadaic acid (a phosphatase inhibitor), decreased by epinephrine and aluminum fluoride (receptor-signaling modulators), and unaffected by N-ethylmaleimide (an alkylating agent) at 37 °C. N-Ethylmaleimide and the receptor-signaling modulators did not alter β-arrestin-1 expression at 37 °C but impaired the induction of phospho-β-arrestin-1 at 28 and 32 °C without affecting the induction of β-arrestin-1. We show that cold-induced β-arrestin-1 alterations are partially mimicked by molecular agents and that the responsive machinery for β-arrestin-1 requires serum factors and N-ethylmaleimide-sensitive sites and is linked to rewarming- and receptor signaling-responsive machinery. Our findings provide helpful information for clarifying the cold-responsive machinery for β-arrestin-1 and elucidating low-temperature responses.
Collapse
Affiliation(s)
- Yasuhito Ohsaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan.
| | | |
Collapse
|
12
|
Jewell JL, Oh E, Ramalingam L, Kalwat MA, Tagliabracci VS, Tackett L, Elmendorf JS, Thurmond DC. Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. ACTA ACUST UNITED AC 2011; 193:185-99. [PMID: 21444687 PMCID: PMC3082181 DOI: 10.1083/jcb.201007176] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
SNARE complex assembly and mobilization of GLUT4 vesicles is coordinated through direct targeting of Munc18c by the insulin receptor tyrosine kinase. How the Sec1/Munc18–syntaxin complex might transition to form the SNARE core complex remains unclear. Toward this, Munc18c tyrosine phosphorylation has been correlated with its dissociation from syntaxin 4. Using 3T3-L1 adipocytes subjected to small interfering ribonucleic acid reduction of Munc18c as a model of impaired insulin-stimulated GLUT4 vesicle exocytosis, we found that coordinate expression of Munc18c–wild type or select phosphomimetic Munc18c mutants, but not phosphodefective mutants, restored GLUT4 vesicle exocytosis, suggesting a requirement for Munc18c tyrosine phosphorylation at Tyr219 and Tyr521. Surprisingly, the insulin receptor (IR) tyrosine kinase was found to target Munc18c at Tyr521 in vitro, rapidly binding and phosphorylating endogenous Munc18c within adipocytes and skeletal muscle. IR, but not phosphatidylinositol 3-kinase, activation was required. Altogether, we identify IR as the first known tyrosine kinase for Munc18c as part of a new insulin-signaling step in GLUT4 vesicle exocytosis, exemplifying a new model for the coordination of SNARE assembly and vesicle mobilization events in response to a single extracellular stimulus.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev 2011; 91:177-219. [PMID: 21248166 DOI: 10.1152/physrev.00017.2010] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encode WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK1 and -4 were determined to cause the human disease familial hyperkalemic hypertension (also known as pseudohypoaldosteronism II, or Gordon's Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II, an early-onset autosomal disease of peripheral sensory nerves. Thus the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs as well as effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs.
Collapse
Affiliation(s)
- James A McCormick
- Division of Nephrology and Hypertension, Oregon Health and Science University and Veterans Affairs Medical Center, Portland, Oregon 97239, USA.
| | | |
Collapse
|
14
|
Miyazaki M, Fujii T, Takeda N, Magotani H, Iwanaga K, Kakemi M. Chronopharmacological Assessment Identified GLUT4 as a Factor Responsible for the Circadian Variation of the Hypoglycemic Effect of Tolbutamide in Rats. Drug Metab Pharmacokinet 2011; 26:503-15. [DOI: 10.2133/dmpk.dmpk-11-rg-021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake: conserved roles for Munc18c and syntaxin 4. Am J Physiol Regul Integr Comp Physiol 2010; 298:R517-31. [PMID: 20053958 DOI: 10.1152/ajpregu.00597.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes has been coined "a two-hit disease," as it involves specific defects of glucose-stimulated insulin secretion from the pancreatic beta cells in addition to defects in peripheral tissue insulin action required for glucose uptake. Both of these processes, insulin secretion and glucose uptake, are mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein core complexes composed of syntaxin, SNAP-23/25, and VAMP proteins. The SNARE core complex is regulated by the Sec1/Munc18 (SM) family of proteins, which selectively bind to their cognate syntaxin isoforms with high affinity. The process of insulin secretion uses multiple Munc18-syntaxin isoform pairs, whereas insulin action in the peripheral tissues appears to use only the Munc18c-syntaxin 4 pair. Importantly, recent reports have linked obesity and Type 2 diabetes in humans with changes in protein levels and single nucleotide polymorphisms (SNPs) of Munc18 and syntaxin isoforms relevant to these exocytotic processes, although the molecular mechanisms underlying the observed phenotypes remain incomplete (5, 104, 144). Given the conservation of these proteins in two seemingly disparate processes and the need to design and implement novel and more effective clinical interventions, it will be vitally important to delineate the mechanisms governing these conserved SNARE-mediated exocytosis events. Thus, we provide here an up-to-date historical review of advancements in defining the roles and molecular mechanisms of Munc18-syntaxin complexes in the pathophysiology of Type 2 diabetes.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
16
|
Brandie FM, Aran V, Verma A, McNew JA, Bryant NJ, Gould GW. Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c in vitro. PLoS One 2008; 3:e4074. [PMID: 19116655 PMCID: PMC2605266 DOI: 10.1371/journal.pone.0004074] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 12/01/2008] [Indexed: 02/04/2023] Open
Abstract
Background Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- Fiona M Brandie
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
17
|
Bergman BC, Cornier MA, Horton TJ, Bessesen DH, Eckel RH. Skeletal muscle munc18c and syntaxin 4 in human obesity. Nutr Metab (Lond) 2008; 5:21. [PMID: 18652694 PMCID: PMC2515313 DOI: 10.1186/1743-7075-5-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background Animal and cell culture data suggest a critical role for Munc18c and Syntaxin 4 proteins in insulin mediated glucose transport in skeletal muscle, but no studies have been published in humans. Methods We investigated the effect of a 12 vs. 48 hr fast on insulin action and skeletal muscle Munc18c and Syntaxin 4 protein in lean and obese subjects. Healthy lean (n = 14; age = 28.0 +/- 1.4 yr; BMI = 22.8 +/- 0.42 kg/m2) and obese subjects (n = 11; age = 34.6 +/- 2.3 yr; BMI = 36.1 +/- 1.5 kg/m2) were studied twice following a 12 and 48 hr fast. Skeletal muscle biopsies were obtained before a 3 hr 40 mU/m2/min hyperinsulinemic-euglycemic clamp with [6,6-2H2]glucose infusion. Results Glucose rate of disappearance (Rd) during the clamp was lower in obese vs. lean subjects after the 12 hr fast (obese: 6.25 +/- 0.67 vs. lean: 9.42 +/- 1.1 mg/kgFFM/min, p = 0.007), and decreased significantly in both groups after the 48 hr fast (obese 3.49 +/- 0.31 vs. lean: 3.91 +/- 0.42 mg/kgFFM/min, p = 0.002). Munc18c content was not significantly different between lean and obese subjects after the 12 hour fast, and decreased after the 48 hr fast in both groups (p = 0.013). Syntaxin 4 content was not altered by obesity or fasting duration. There was a strong positive relationship between plasma glucose concentration and Munc18c content in lean and obese subjects during both 12 and 48 hr fasts (R2 = 0.447, p = 0.0015). Significant negative relationships were also found between Munc18c and FFA (p = 0.041), beta-hydroxybutyrate (p = 0.039), and skeletal muscle AKT content (p = 0.035) in lean and obese subjects. Conclusion These data indicate Munc18c and Syntaxin 4 are present in human skeletal muscle. Munc18c content was not significantly different between lean and obese subjects, and is therefore unlikely to explain obesity-induced insulin resistance. Munc18c content decreased after prolonged fasting in lean and obese subjects concurrently with reduced insulin action. These data suggest changes in Munc18c content in skeletal muscle are associated with short-term changes in insulin action in humans.
Collapse
Affiliation(s)
- Bryan C Bergman
- Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Denver, Aurora, CO, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
One of the most important actions of insulin is the stimulation of the uptake of glucose into fat and muscle cells. Crucial to this response is the translocation of GLUT4 (glucose transporter-4) to the plasma membrane. The insulin-stimulated GLUT4 vesicle docking at the plasma membrane requires an interaction between VAMP-2 (vesicle-associated membrane protein-2) on the GLUT4 vesicle and syntaxin-4 in the plasma membrane. In the basal state, munc18c is thought to preclude GLUT4 vesicle docking by inhibiting this interaction. Here, we have used FCS (fluorescence correlation spectroscopy) in single living cells to show that munc18c binds to syntaxin-4 in both the basal and insulin-stimulated states. We show that munc18c contains two binding sites for syntaxin-4, one of which is disrupted by insulin, while the other is activated by insulin. Insulin-triggered repositioning of munc18c on syntaxin-4 in this way in turn allows syntaxin-4 to adopt its 'open' conformation and bind VAMP-2, resulting in the docking of the GLUT4 vesicle at the cell surface. The results also demonstrate the utility of using FCS in intact single living cells to elucidate cell signalling events.
Collapse
|
19
|
Thurmond DC. Regulation of Insulin Action and Insulin Secretion by SNARE-Mediated Vesicle Exocytosis. MECHANISMS OF INSULIN ACTION 2007:52-70. [DOI: 10.1007/978-0-387-72204-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Oh E, Heise CJ, English JM, Cobb MH, Thurmond DC. WNK1 is a novel regulator of Munc18c-syntaxin 4 complex formation in soluble NSF attachment protein receptor (SNARE)-mediated vesicle exocytosis. J Biol Chem 2007; 282:32613-22. [PMID: 17848561 PMCID: PMC2423411 DOI: 10.1074/jbc.m706591200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in soluble NSF attachment protein receptor (SNARE)-mediated granule exocytosis occur in islet beta cells, adipocytes, and/or skeletal muscle cells correlate with increased susceptibility to insulin resistance and diabetes. The serine/threonine kinase WNK1 (with no K (lysine)) has recently been implicated in exocytosis and is expressed in all three of these cell types. To search for WNK1 substrates related to exocytosis, we conducted a WNK1 two-hybrid screen, which yielded Munc18c. Munc18c is known to be a key regulator of accessibility of the target membrane (t-SNARE) protein syntaxin 4 to participate in SNARE core complex assembly, although a paucity of Munc18c-binding factors has precluded discovery of its precise functions. To validate WNK1 as a new Munc18c-interacting partner, the direct interaction between WNK1 and Munc18c was confirmed using in vitro binding analysis, and endogenous WNK1-Munc18c complexes were detected in the cytosolic and plasma membrane compartments of the islet beta cell line MIN6. This binding interaction is mediated through the N-terminal 172 residues of Munc18c and the kinase domain residues of WNK1 (residues 159-491). Expression of either of these two minimal interaction domains resulted in inhibition of glucose-stimulated insulin secretion, consistent with a functional importance for the endogenous WNK1-Munc18c complex in exocytosis. Interestingly, Munc18c failed to serve as a WNK1 substrate in kinase activity assays, suggesting that WNK1 functions in SNARE complex assembly outside its role as a kinase. Taken together, these data support a novel role for WNK1 and a new mechanism for the regulation of SNARE complex assembly by WNK1-Munc18c complexes.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Charles J. Heise
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Melanie H. Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Debbie C. Thurmond
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
- To whom correspondence and reprint requests should be addressed: 635 Barnhill Dr., MS4053, Dept. of Biochemistry and Molecular Biology, Indianapolis, IN 46202. Tel.: 317-274-1551; Fax: 317-274-4686; E-mail:
| |
Collapse
|
21
|
He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 2007; 21:2785-94. [PMID: 17652184 DOI: 10.1210/me.2007-0167] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Micro-RNAs (miRNAs) have been suggested to play pivotal roles in multifarious diseases associated with the posttranscriptional regulation of protein-coding genes. In this study, we aimed to investigate the function of miRNAs in type 2 diabetes mellitus. The miRNAs expression profiles were examined by miRNA microarray analysis of skeletal muscles from healthy and Goto-Kakizaki rats. We identified four up-regulated miRNAs, and 11 miRNAs that were down-regulated relative to normal individuals. Among induced miRNAs were three paralogs of miR-29, miR-29a, miR-29b, and miR-29c. Northern blotting further confirmed their elevated expression in three important target tissues of insulin action: muscle, fat, and liver of diabetic rats. Adenovirus-mediated overexpression of miR-29a/b/c in 3T3-L1 adipocytes could largely repress insulin-stimulated glucose uptake, presumably through inhibiting Akt activation. The increase in miR-29 level caused insulin resistance, similar to that of incubation with high glucose and insulin in combination, which, in turn, induced miR-29a and miR-29b expression. In this paper, we demonstrate that Akt is not the direct target gene of miR-29 and that the negative effects of miR-29 on insulin signaling might be mediated by other unknown intermediates. Taken together, these data reveal the crucial role of miR-29 in type 2 diabetes.
Collapse
Affiliation(s)
- Aibin He
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, The Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | |
Collapse
|
22
|
Ke B, Oh E, Thurmond DC. Doc2beta is a novel Munc18c-interacting partner and positive effector of syntaxin 4-mediated exocytosis. J Biol Chem 2007; 282:21786-97. [PMID: 17548353 DOI: 10.1074/jbc.m701661200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely expressed Sec/Munc18 (SM) protein Munc18c is required for SNARE-mediated insulin granule exocytosis from islet beta cells and GLUT4 vesicle exocytosis in skeletal muscle and adipocytes. Although Munc18c function is known to involve binding to the t-SNARE Syntaxin 4, a paucity of Munc18c-binding proteins has restricted elucidation of the mechanism by which it facilitates these exocytosis events. Toward this end, we have identified the double C2 domain protein Doc2beta as a new binding partner for Munc18c. Unlike its granule/vesicle localization in neuronal cells, Doc2beta was found principally in the plasma membrane compartment in islet beta cells and adipocytes. Moreover, co-immunoprecipitation and GST interaction assays showed Doc2beta-Munc18c binding to be direct and complexes to be devoid of Syntaxin 4. Supporting the notion of Munc18c binding with Syntaxin 4 and Doc2beta in mutually exclusive complexes, in vitro competition with Syntaxin 4 effectively displaced Munc18c from binding to Doc2beta. The second C2 domain (C2B) of Doc2beta and an N-terminal region of Munc18c were sufficient to confer complex formation. Disruption of endogenous Munc18c-Doc2beta complexes by addition of the Doc2beta binding domain of Munc18c (residues 173-255) was found to selectively inhibit glucose-stimulated insulin release. Moreover, increased expression of Doc2beta enhanced glucose-stimulated insulin secretion by approximately 40%, whereas siRNA-mediated depletion of Doc2beta attenuated insulin release. All changes in secretion correlated with parallel alterations in VAMP2 granule docking with Syntaxin 4. Taken together, these data support a model wherein Munc18c transiently switches from association with Syntaxin 4 to association with Doc2beta at the plasma membrane to facilitate exocytosis.
Collapse
Affiliation(s)
- Ban Ke
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
23
|
D'Andrea-Merrins M, Chang L, Lam AD, Ernst SA, Stuenkel EL. Munc18c interaction with syntaxin 4 monomers and SNARE complex intermediates in GLUT4 vesicle trafficking. J Biol Chem 2007; 282:16553-66. [PMID: 17412693 DOI: 10.1074/jbc.m610818200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the process of insulin-stimulated GLUT4 vesicle exocytosis, Munc18c has been proposed to control SNARE complex formation by inactivating syntaxin 4 in a self-associated conformation. Using in vivo fluorescence resonance energy transfer in 3T3L1 adipocytes, co-immunoprecipitation, and in vitro binding assays, we provide data to indicate that Munc18c also associates with nearly equal affinity to a mutant of syntaxin 4 in a constitutively open (unfolded) state (L173A/E174A; LE). To bind to the open conformation of syntaxin 4, we found that Munc18c requires an interaction with the N terminus of syntaxin 4, which resembles Sly1 interaction with the N terminus of ER/Golgi syntaxins. However, both N and C termini of syntaxin 4 are required for Munc18c binding, since a mutation in the syntaxin 4 SNARE domain (I241A) reduces the interaction, irrespective of syntaxin 4 conformation. Using an optical reporter for syntaxin 4-SNARE pairings in vivo, we demonstrate that Munc18c blocks recruitment of SNAP23 to wild type syntaxin 4 yet associates with syntaxin 4LE-SNAP23 Q-SNARE complexes. Fluorescent imaging of GLUT4 vesicles in 3T3L1 adipocytes revealed that syntaxin 4LE expressed with Munc18c bypasses the requirement of insulin for GLUT4 vesicle plasma membrane docking. This effect was attenuated by reducing the Munc18c-syntaxin 4LE interaction with the I241A mutation, indicating that Munc18c facilitates vesicle docking. Therefore, in contradiction to previous models, our data indicates that the conformational "opening" of syntaxin 4 rather than the dissociation of Munc18c is the critical event required for GLUT4 vesicle docking.
Collapse
Affiliation(s)
- Matthew D'Andrea-Merrins
- Department of Molecular and Integrative Physiology, Life Sciences Institute, University of Michigan, Ann Arbor 48109-0622, USA.
| | | | | | | | | |
Collapse
|
24
|
Latham CF, Osborne SL, Cryle MJ, Meunier FA. Arachidonic acid potentiates exocytosis and allows neuronal SNARE complex to interact with Munc18a. J Neurochem 2006; 100:1543-54. [PMID: 17181552 DOI: 10.1111/j.1471-4159.2006.04286.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuronal communication relies on the fusion of neurotransmitter-containing vesicles with the neuronal plasma membrane. Recent genetic studies have highlighted the critical role played by polyunsaturated fatty acids in neurotransmission, however, there is little information available about which fatty acids act on exocytosis and, more importantly, by what mechanism. We have used permeabilized chromaffin cells to screen various fatty acids of the n-3 and n-6 series for their acute effects on exocytosis. We have demonstrated that an n-6 series polyunsaturated fatty acid, arachidonic acid, potentiates secretion from intact neurosecretory cells regardless of the secretagogue used. We have shown that arachidonic acid dose dependently increases soluble NSF attachment protein receptor complex formation in chromaffin cells and bovine cortical brain extracts and that a non-hydrolysable analogue of arachidonic acid causes a similar increase in SNARE complex formation. This prompted us to examine the effect of arachidonic acid on SNARE protein interactions with Munc18a, a protein known to prevent Syntaxin1a engagement into the SNARE complex in vitro. In the presence of arachidonic acid, we show that Munc18a can interact with the neuronal SNARE complex in a dose-dependent manner. We further demonstrate that arachidonic acid directly interacts with Syntaxin1a.
Collapse
Affiliation(s)
- Catherine F Latham
- Molecular Dynamics of Synaptic Function Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
25
|
Latham CF, Lopez JA, Hu SH, Gee CL, Westbury E, Blair DH, Armishaw CJ, Alewood PF, Bryant NJ, James DE, Martin JL. Molecular dissection of the Munc18c/syntaxin4 interaction: implications for regulation of membrane trafficking. Traffic 2006; 7:1408-19. [PMID: 16899085 DOI: 10.1111/j.1600-0854.2006.00474.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sec1p/Munc18 (SM) proteins are believed to play an integral role in vesicle transport through their interaction with SNAREs. Different SM proteins have been shown to interact with SNAREs via different mechanisms, leading to the conclusion that their function has diverged. To further explore this notion, in this study, we have examined the molecular interactions between Munc18c and its cognate SNAREs as these molecules are ubiquitously expressed in mammals and likely regulate a universal plasma membrane trafficking step. Thus, Munc18c binds to monomeric syntaxin4 and the N-terminal 29 amino acids of syntaxin4 are necessary for this interaction. We identified key residues in Munc18c and syntaxin4 that determine the N-terminal interaction and that are consistent with the N-terminal binding mode of yeast proteins Sly1p and Sed5p. In addition, Munc18c binds to the syntaxin4/SNAP23/VAMP2 SNARE complex. Pre-assembly of the syntaxin4/Munc18c dimer accelerates the formation of SNARE complex compared to assembly with syntaxin4 alone. These data suggest that Munc18c interacts with its cognate SNAREs in a manner that resembles the yeast proteins Sly1p and Sed5p rather than the mammalian neuronal proteins Munc18a and syntaxin1a. The Munc18c-SNARE interactions described here imply that Munc18c could play a positive regulatory role in SNARE assembly.
Collapse
Affiliation(s)
- Catherine F Latham
- Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Oh E, Thurmond DC. The stimulus-induced tyrosine phosphorylation of Munc18c facilitates vesicle exocytosis. J Biol Chem 2006; 281:17624-34. [PMID: 16638745 PMCID: PMC2396333 DOI: 10.1074/jbc.m601581200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stimulus-induced tyrosine phosphorylation of Munc18c was investigated as a potential regulatory mechanism by which the Munc18c-Syntaxin 4 complex can be dissociated in response to divergent stimuli in multiple cell types. Use of [(32)P]orthophosphate incorporation, pervanadate treatment, and phosphotyrosine-specific antibodies demonstrated that Munc18c underwent tyrosine phosphorylation. Phosphorylation was apparent under basal conditions, but levels were significantly increased within 5 min of glucose stimulation in MIN6 beta cells. Tyrosine phosphorylation of Munc18c was also detected in 3T3L1 adipocytes and increased with insulin stimulation, suggesting that this may be a conserved mechanism. Syntaxin 4 binding to Munc18c decreased as Munc18c phosphorylation levels increased in pervanadate-treated cells, suggesting that phosphorylation dissociates the Munc18c-Syntaxin 4 complex. Munc18c phosphorylation was localized to the N-terminal 255 residues. Mutagenesis of one residue in this region, Y219F, significantly increased the affinity of Munc18c for Syntaxin 4, whereas mutation of three other candidate sites was without effect. Moreover, Munc18c-Y219F expression in MIN6 cells functionally inhibited glucose-stimulated SNARE complex formation and insulin granule exocytosis. These data support a novel and conserved mechanism for the dissociation of Munc18c-Syntaxin 4 complexes in a stimulus-dependent manner to facilitate the increase in Syntaxin 4-VAMP2 association and to promote vesicle/granule fusion.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, 635 Barnhill Dr., MS 4053, Indianapolis, IN 46202. Tel.: 317−274−1551; Fax: 317−274−4686; E-mail:
| |
Collapse
|
27
|
Koumanov F, Jin B, Yang J, Holman GD. Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab 2005; 2:179-89. [PMID: 16154100 DOI: 10.1016/j.cmet.2005.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/14/2005] [Accepted: 08/16/2005] [Indexed: 11/21/2022]
Abstract
A hypothesis that accounts for most of the available literature on insulin-stimulated GLUT4 translocation is that insulin action controls the access of GLUT4 vesicles to a constitutively active plasma-membrane fusion process. However, using an in vitro fusion assay, we show here that fusion is not constitutively active. Instead, the rate of fusion activity is stimulated 8-fold by insulin. Both the magnitude and time course of stimulated in vitro fusion recapitulate the cellular insulin response. Fusion is cell cytoplasm and SNARE dependent but does not require cell cytoskeleton. Furthermore, insulin activation of the plasma-membrane fraction of the fusion reaction is the essential step in regulation. Akt from the cytoplasm fraction is required for fusion. However, the participation of Akt in the stimulation of in vitro fusion is dependent on its in vitro recruitment onto the insulin-activated plasma membrane.
Collapse
|
28
|
van Dam EM, Govers R, James DE. Akt Activation Is Required at a Late Stage of Insulin-Induced GLUT4 Translocation to the Plasma Membrane. Mol Endocrinol 2005; 19:1067-77. [PMID: 15650020 DOI: 10.1210/me.2004-0413] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractInsulin stimulates the translocation of glucose transporter GLUT4 from intracellular vesicles to the plasma membrane (PM). This involves multiple steps as well as multiple intracellular compartments. The Ser/Thr kinase Akt has been implicated in this process, but its precise role is ill defined. To begin to dissect the role of Akt in these different steps, we employed a low-temperature block. Upon incubation of 3T3-L1 adipocytes at 19 C, GLUT4 accumulated in small peripheral vesicles with a slight increase in PM labeling concomitant with reduced trans-Golgi network labeling. Although insulin-dependent translocation of GLUT4 to the PM was impaired at 19 C, we still observed movement of vesicles toward the surface. Strikingly, insulin-stimulated Akt activity, but not phosphatidylinositol 3 kinase activity, was blocked at 19 C. Consistent with a multistep process in GLUT4 trafficking, insulin-stimulated GLUT4 translocation could be primed by treating cells with insulin at 19 C, whereas this was not the case for Akt activation. These data implicate two insulin-regulated steps in GLUT4 translocation: 1) redistribution of GLUT4 vesicles toward the cell cortex—this process is Akt-independent and is not blocked at 19 C; and 2) docking and/or fusion of GLUT4 vesicles with the PM—this process may be the major Akt-dependent step in the insulin regulation of glucose transport.
Collapse
Affiliation(s)
- Ellen M van Dam
- Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, 2010 New South Wales, Australia
| | | | | |
Collapse
|
29
|
Rodriguez-Boulan E, Kreitzer G, Müsch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 2005; 6:233-47. [PMID: 15738988 DOI: 10.1038/nrm1593] [Citation(s) in RCA: 497] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiments using mammalian epithelial cell lines have elucidated biosynthetic and recycling pathways for apical and basolateral plasma-membrane proteins, and have identified components that guide apical and basolateral proteins along these pathways. These components include apical and basolateral sorting signals, adaptors for basolateral signals, and docking and fusion proteins for vesicular trafficking. Recent live-cell-imaging studies provide a real-time view of sorting processes in epithelial cells, including key roles for actin, microtubules and motors in the organization of post-Golgi trafficking.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|
30
|
Oh E, Spurlin BA, Pessin JE, Thurmond DC. Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance. Diabetes 2005; 54:638-47. [PMID: 15734838 DOI: 10.2337/diabetes.54.3.638] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The disruption of Munc18c binding to syntaxin 4 impairs insulin-stimulated GLUT4 vesicle translocation in 3T3L1 adipocytes. To investigate the physiological function and requirement for Munc18c in the regulation of GLUT4 translocation and glucose homeostasis in vivo, we used homologous recombination to generate Munc18c-knockout (KO) mice. Homozygotic disruption of the Munc18c gene resulted in early embryonic lethality, whereas heterozygous KO mice (Munc18c(-/+)) had normal viability. Munc18c(-/+) mice displayed significantly decreased insulin sensitivity in an insulin tolerance test and a >50% reduction in skeletal muscle insulin-stimulated GLUT4 translocation when compared with wild-type (WT) mice. Furthermore, glucose-stimulated insulin secretion was significantly reduced in islets isolated from Munc18c(-/+) mice compared with those from WT mice. Despite the defects in insulin action and secretion, Munc18c(-/+) mice demonstrated the ability to clear glucose to the same level as WT mice in a glucose tolerance test when fed a normal diet. However, after consuming a high-fat diet for only 5 weeks, the Munc18c(-/+) mice manifested severely impaired glucose tolerance compared with high-fat-fed WT mice. Taken together, these data suggest that the reduction of Munc18c protein in the Munc18c(-/+) mice results in impaired insulin sensitivity with a latent increased susceptibility for developing severe glucose intolerance in response to environmental perturbations such as intake of a high-calorie diet rich in fat and carbohydrate.
Collapse
Affiliation(s)
- Eunjin Oh
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
31
|
Spurlin BA, Park SY, Nevins AK, Kim JK, Thurmond DC. Syntaxin 4 transgenic mice exhibit enhanced insulin-mediated glucose uptake in skeletal muscle. Diabetes 2004; 53:2223-31. [PMID: 15331531 DOI: 10.2337/diabetes.53.9.2223] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin-stimulated translocation of GLUT4 vesicles from an intracellular compartment to the plasma membrane in 3T3L1 adipocytes is mediated through a syntaxin 4 (Syn4)- and Munc18c-dependent mechanism. To investigate the impact of increasing Syn4 protein abundance on glucose homeostasis in vivo, we engineered tetracycline-repressible transgenic mice to overexpress Syn4 by fivefold in skeletal muscle and pancreas and threefold in adipose tissue. Increases in Syn4 caused increases in Munc18c protein, indicating that Syn4 regulates Munc18c expression in vivo. An important finding was that female Syn4 transgenic mice exhibited an increased rate of glucose clearance during glucose tolerance tests that was repressible by the administration of tetracycline. Insulin-stimulated glucose uptake in skeletal muscle was increased by twofold in Syn4 transgenic mice compared with wild-type mice as assessed by hyperinsulinemic-euglycemic clamp analysis, consistent with a twofold increase in insulin-stimulated GLUT4 translocation in skeletal muscle. Hepatic insulin action was unaffected. Moreover, insulin content and glucose-stimulated insulin secretion by islets isolated from Syn4 transgenic mice did not differ from that of wild-type mice. In sum, these data suggest that increasing the number of Syn4-Munc18c "fusion sites" at the plasma membrane of skeletal muscle increases the amount of GLUT4 available to increase the overall rate of insulin-mediated glucose uptake in vivo.
Collapse
Affiliation(s)
- Beth A Spurlin
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
In order to carry out their physiological functions, ion transport proteins must be targeted to the appropriate domains of cell membranes. Regulation of ion transport activity frequently involves the tightly controlled delivery of intracellular populations of transport proteins to the plasma membrane or the endocytic retrieval of transport proteins from the cell surface. Transport proteins carry signals embedded within their structures that specify their subcellular distributions and endow them with the capacity to participate in regulated membrane trafficking processes. Recently, a great deal has been learned about the biochemical nature of these signals, as well as about the cellular machinery that interprets them and acts upon their messages.
Collapse
Affiliation(s)
- Theodore R Muth
- Department of Biology, CUNY Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11231, USA.
| | | |
Collapse
|
33
|
Spurlin BA, Thomas RM, Nevins AK, Kim HJ, Kim YJ, Noh HL, Shulman GI, Kim JK, Thurmond DC. Insulin resistance in tetracycline-repressible Munc18c transgenic mice. Diabetes 2003; 52:1910-7. [PMID: 12882905 DOI: 10.2337/diabetes.52.8.1910] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To investigate the physiological effects of modulating the abundance of Munc18c or syntaxin 4 (Syn4) proteins on the regulation of glucose homeostasis in vivo, we generated tetracycline-repressible transgenic mice that overexpress either Munc18c or Syn4 proteins in skeletal muscle, pancreas and adipose tissue seven-, five-, and threefold over endogenous protein, respectively. Munc18c transgenic mice displayed whole-body insulin resistance during hyperinsulinemic-euglycemic clamp resulting from >41% reductions in skeletal muscle and white adipose tissue glucose uptake, but without alteration of hepatic insulin action. Munc18c transgenic mice exhibited approximately 40% decreases in whole-body glycogen/lipid synthesis, skeletal muscle glycogen synthesis, and glycolysis. Glucose intolerance in Munc18c transgenic mice was reversed by repression of transgene expression using tetracycline or by simultaneous overexpression of Syn4 protein. In addition, Munc18c transgenic mice had depressed serum insulin levels, reflecting a threefold reduction in insulin secretion from islets isolated therefrom, thus uncovering roles for Munc18c and/or Syn4 in insulin granule exocytosis. Taken together, these results indicate that balance, more than absolute abundance, of Munc18c and Syn4 proteins directly affects whole-body glucose homeostasis through alterations in insulin secretion and insulin action.
Collapse
Affiliation(s)
- Beth A Spurlin
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schlaepfer IR, Pulawa LK, Ferreira LDMCB, James DE, Capell WH, Eckel RH. Increased expression of the SNARE accessory protein Munc18c in lipid-mediated insulin resistance. J Lipid Res 2003; 44:1174-81. [PMID: 12700337 DOI: 10.1194/jlr.m300003-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.
Collapse
Affiliation(s)
- Isabel R Schlaepfer
- Department of Medicine, Division of Endocrinology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
35
|
Chen G, Liu P, Thurmond DC, Elmendorf JS. Glucosamine-induced insulin resistance is coupled to O-linked glycosylation of Munc18c. FEBS Lett 2003; 534:54-60. [PMID: 12527361 DOI: 10.1016/s0014-5793(02)03774-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Evidence suggests that glucosamine inhibits distal components regulating insulin-stimulated GLUT4 translocation to the plasma membrane. Here we assessed whether key membrane docking and fusion events were targeted. Consistent with a plasma membrane-localized effect, 3T3-L1 adipocytes exposed to glucosamine displayed an increase in cell-surface O-linked glycosylation and a simultaneously impaired mobilization of GLUT4 by insulin. Analysis of syntaxin 4 and SNAP23, plasma membrane-localized target receptor proteins (t-SNAREs) for the GLUT4 vesicle, showed that they were not cell-surface targets of O-linked glycosylation. However, the syntaxin 4 binding protein, Munc18c, was targeted by O-linked glycosylation. This occurred concomitantly with a block in insulin-stimulated association of syntaxin 4 with its cognate GLUT4 vesicle receptor protein (v-SNARE), VAMP2. In conclusion, our data suggest that the mechanism by which glucosamine inhibits insulin-stimulated GLUT4 translocation involves modification of Munc18c.
Collapse
Affiliation(s)
- Guoli Chen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Center for Diabetes Research, Indianapolis, IN 46202-5120, USA
| | | | | | | |
Collapse
|
36
|
Kauppi M, Wohlfahrt G, Olkkonen VM. Analysis of the Munc18b-syntaxin binding interface. Use of a mutant Munc18b to dissect the functions of syntaxins 2 and 3. J Biol Chem 2002; 277:43973-9. [PMID: 12198139 DOI: 10.1074/jbc.m208315200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Munc18b is a mammalian Sec1-related protein that is abundant in epithelial cells and regulates vesicle transport to the apical plasma membrane. We constructed a homology model of Munc18b in complex with syntaxin 3 based on the crystal structure of the neuronal Sec1.syntaxin 1A complex. In this model we identified all residues in the interface between the two proteins that contribute directly to the interaction and mutagenized residues in Munc18b to alter its binding to syntaxins 1A, 2, and 3. The syntaxin-binding properties of the mutants were tested using an in vitro assay and by a co-immunoprecipitation approach employing Munc18b expressed in CHO-K1 cells. Three Munc18b variants, W28S, S42K, and E59K, were generated that are defective in binding to all three syntaxins. A fourth mutant protein, S48D, shows abolishment of syntaxin 3 interaction but binds syntaxin 2 at normal and syntaxin 1A at mildly reduced efficiency. Over-expression of Munc18b S48D inhibited transport of influenza hemagglutinin to the apical surface of Madin-Darby canine kidney II cells, which express syntaxin 2 abundantly, but not of Caco-2 cells, in which syntaxin 3 is the major apical target SNARE (soluble NSF (N-ethylmaleimide sensitive factor) attachment protein receptors). This suggests that, although syntaxin 3 is the main target SNARE operating in exocytic transport to the apical plasma membrane in certain epithelial cell types, syntaxin 2 may play an important role in this trafficking route in others.
Collapse
Affiliation(s)
- Maria Kauppi
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
| | | | | |
Collapse
|
37
|
Macaulay SL, Grusovin J, Stoichevska V, Ryan JM, Castelli LA, Ward CW. Cellular munc18c levels can modulate glucose transport rate and GLUT4 translocation in 3T3L1 cells. FEBS Lett 2002; 528:154-60. [PMID: 12297296 DOI: 10.1016/s0014-5793(02)03279-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Munc18c has been shown to bind syntaxin 4 and to play a role in GLUT4 translocation and glucose transport, although this role is as yet poorly defined. In the present study, the effects of modulating the available level of munc18c on glucose transport and GLUT4 translocation were examined. Over-expression of munc18c in 3T3L1 adipocytes inhibited insulin-stimulated glucose transport by approximately 50%. Basal glucose transport rates were also decreased by approximately 25%. In contrast, microinjection of a munc18c polyclonal antibody stimulated GLUT4 translocation by approximately 60% over basal levels without affecting insulin-stimulated GLUT4 levels. Microinjection of a control antibody had no effect. These data are consistent with the likelihood that antibody microinjection sequesters munc18c enabling translocation/fusion of GLUT4 vesicles. Mutagenesis of a potential proline-directed kinase phosphorylation site in munc18c, T569, that in previous studies of its neuronal counterpart munc18a caused its dissociation from its complex with syntaxin 1a, had no effect on munc18c's association with syntaxin 4 or its inhibition of glucose transport, indicative that phosphorylation of this residue is not important for insulin regulation of glucose transport. The over-expression and microinjection sequestration data support an inhibitory role for munc18c on translocation/fusion of GLUT4 vesicles. They further show that altering the level of available munc18c in 3T3L1 cells can modulate glucose transport rates, indicating its potential as a target for therapeutics in diabetes.
Collapse
Affiliation(s)
- S Lance Macaulay
- CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Vic. 3052, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Kosodo Y, Noda Y, Adachi H, Yoda K. Binding of Sly1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J Cell Sci 2002; 115:3683-91. [PMID: 12186954 DOI: 10.1242/jcs.00027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLY1 is an essential gene for vesicular transport between the ER and the early Golgi apparatus in Saccharomyces cerevisiae. It encodes a hydrophilic Sec1/Munc18 family protein that binds to the t-SNAREs. The amount of Sly1 protein that coprecipitated with the t-SNARE Sed5 was much reduced in a temperature-sensitive sly1(ts) mutant yeast compared with the wildtype. The mutant Sly1(ts) protein was shown to have a reduced binding activity to Sed5. In the wildtype, a detectable amount of Sly1 was found in the complex between Sed5 and the v-SNARE Bet1. In vitro formation of this complex on different membranes in yeast lysate was enhanced by the addition of recombinant Sly1. These results indicate that binding of Sly1 to Sed5 enhances trans-SNARE complex formation.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Department of Biotechnology, the University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
39
|
Abstract
Adipocytes have traditionally been considered to be the primary site for whole body energy storage mainly in the form of triglycerides and fatty acids. This occurs through the ability of insulin to markedly stimulate both glucose uptake and lipogenesis. Conventional wisdom held that defects in fuel partitioning into adipocytes either because of increased adipose tissue mass and/or increased lipolysis and circulating free fatty acids resulted in dyslipidemia, obesity, insulin resistance and perhaps diabetes. However, it has become increasingly apparent that loss of adipose tissue (lipodystrophies) in both animal models and humans also leads to metabolic disorders that result in severe states of insulin resistance and potential diabetes. These apparently opposite functions can be resolved by the establishment of adipocytes not only as a fuel storage depot but also as a critical endocrine organ that secretes a variety of signaling molecules into the circulation. Although the molecular function of these adipocyte-derived signals are poorly understood, they play a central role in the maintenance of energy homeostasis by regulating insulin secretion, insulin action, glucose and lipid metabolism, energy balance, host defense and reproduction. The diversity of these secretory factors include enzymes (lipoprotein lipase (LPL) and adipsin), growth factors [vascular endothelial growth factor (VEGF)], cytokines (tumor necrosis factor-alpha, interleukin 6) and several other hormones involved in fatty acid and glucose metabolism (leptin, Acrp30, resistin and acylation stimulation protein). Despite the large number of molecules secreted by adipocytes, our understanding of the pathways and mechanisms controlling intracellular trafficking and exocytosis in adipocytes is poorly understood. In this article, we will review the current knowledge of the trafficking and secretion processes that take place in adipocytes, focusing our attention on two of the best characterized adipokine molecules (leptin and adiponectin) and on one of the most intensively studied regulated membrane proteins, the GLUT4 glucose transporter.
Collapse
Affiliation(s)
- Silvia Mora
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
40
|
Ducluzeau PH, Fletcher LM, Welsh GI, Tavaré JM. Functional consequence of targeting protein kinase B/Akt to GLUT4 vesicles. J Cell Sci 2002; 115:2857-66. [PMID: 12082147 DOI: 10.1242/jcs.115.14.2857] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the role of protein kinase B (Akt) in the insulin-stimulated translocation of vesicles containing the insulin-responsive isoform of glucose transporter (GLUT4) to the plasma membrane of adipocytes. Previous reports have suggested that protein kinase B can bind to intracellular GLUT4 vesicles in an insulin-dependent manner, but the functional consequence of this translocation is not known. In this study we have artificially targeted constitutively active and kinase-inactive mutants of protein kinase B to intracellular GLUT4 vesicles by fusing them with the N-terminus of GLUT4 itself. We examined the effect of these mutants on the insulin-dependent translocation of the insulin-responsive amino peptidase IRAP(a bona fide GLUT4-vesicle-resident protein). A kinase-inactive protein kinase B targeted to GLUT4 vesicles was an extremely effective dominant-negative inhibitor of insulin-stimulated IRAP translocation to the plasma membrane. By contrast, a kinase-inactive protein kinase B expressed in the cytoplasm did not have an effect. The results suggest that protein kinase B has an important functional role at, or in the vicinity of, GLUT4 vesicles in the insulin-dependent translocation of those vesicles to the plasma membrane of adipocytes.
Collapse
|
41
|
Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Südhof TC. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell 2002; 2:295-305. [PMID: 11879635 DOI: 10.1016/s1534-5807(02)00125-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sec1/munc18-like proteins (SM proteins) and SNARE complexes are probably universally required for membrane fusion. However, the molecular mechanism by which they interact has only been defined for synaptic vesicle fusion where munc18 binds to syntaxin in a closed conformation that is incompatible with SNARE complex assembly. We now show that Sly1, an SM protein involved in Golgi and ER fusion, binds to a short, evolutionarily conserved N-terminal peptide of Sed5p and Ufe1p in yeast and of syntaxins 5 and 18 in vertebrates. In these syntaxins, the Sly1 binding peptide is upstream of a separate, autonomously folded N-terminal domain. These data suggest a potentially general mechanism by which SM proteins could interact with peptides in target proteins independent of core complex assembly and suggest that munc18 binding to syntaxin is an exception.
Collapse
Affiliation(s)
- Tomohiro Yamaguchi
- Center for Basic Neuroscience, Department of Molecular Genetics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
42
|
Olson AL, Trumbly AR, Gibson GV. Insulin-mediated GLUT4 translocation is dependent on the microtubule network. J Biol Chem 2001; 276:10706-14. [PMID: 11278355 DOI: 10.1074/jbc.m007610200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-mediated GLUT4 exocytosis in 3T3-L1 adipocytes in which the microtubule network was depolymerized by pretreatment with nocodazole. Insulin-mediated GLUT4 translocation was inhibited by more than 80% in nocodazole-treated cells. Phosphorylation of insulin receptor substrate 1 (IRS-1), activation of IRS-1 associated phosphatidylinositide 3-kinase, and phosphorylation of protein kinase B/Akt-1 were not inhibited by nocodazole treatment indicating that the microtubule network was not required for proximal insulin signaling. An intact microtubule network is specifically required for insulin-mediated GLUT4 translocation since nocodazole treatment did not affect insulin-mediated GLUT1 translocation or adipsin secretion. By using in vitro microtubule binding, we demonstrated that both GLUT4 vesicles and IRS-1 bind specifically to microtubules, implicating microtubules in both insulin signaling and GLUT4 translocation. Vesicle binding to microtubules was not mediated through direct binding of GLUT4 or insulin-responsive aminopeptidase to microtubules. A model microtubule-dependent translocation of GLUT4 is proposed.
Collapse
Affiliation(s)
- A L Olson
- Department of Biochemistry and Molecular Biology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | |
Collapse
|
43
|
Thurmond DC, Pessin JE. Molecular basis for insulin-stimulated GLUT4 translocation. CURRENT OPINION IN ENDOCRINOLOGY & DIABETES 2001; 8:67-73. [DOI: 10.1097/00060793-200104000-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Holman GD, Sandoval IV. Moving the insulin-regulated glucose transporter GLUT4 into and out of storage. Trends Cell Biol 2001; 11:173-9. [PMID: 11306298 DOI: 10.1016/s0962-8924(01)01953-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The glucose transporter isoform GLUT4 is unique among the glucose transporter family of proteins in that, in resting cells, it is sequestered very efficiently in a storage compartment. In insulin-sensitive cells, such as fat and muscle, insulin stimulation leads to release of GLUT4 from this reservoir and its translocation to the plasma membrane. This process is crucial for the control of blood and tissue glucose levels. Investigations of the composition and structure of the GLUT4 storage compartment, together with the targeting motifs that direct GLUT4 to this compartment, have been extensive but have been controversial. Recent findings have now provided a clearer consensus of opinion on the mechanisms involved in the formation of this storage compartment. However, another controversy has now emerged, which is unresolved. This concerns the issue of whether the insulin-regulated step occurs at the level of release of GLUT4 from the storage compartment or at the level at which released vesicles fuse with the plasma membrane.
Collapse
Affiliation(s)
- G D Holman
- Dept of Biology, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
45
|
Palacios S, Lalioti V, Martinez-Arca S, Chattopadhyay S, Sandoval IV. Recycling of the insulin-sensitive glucose transporter GLUT4. Access of surface internalized GLUT4 molecules to the perinuclear storage compartment is mediated by the Phe5-Gln6-Gln7-Ile8 motif. J Biol Chem 2001; 276:3371-83. [PMID: 11031262 DOI: 10.1074/jbc.m006739200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin-sensitive glucose transporter GLUT4 is translocated to the plasma membrane in response to insulin and recycled back to the intracellular store(s) after removal of the hormone. We have used clonal 3T3-L1 fibroblasts and adipocyte-like cells stably expressing wild-type GLUT4 to characterize (a) the intracellular compartment where the bulk of GLUT4 is intracellularly stored and (b) the mechanisms involved in the recycling of endocytosed GLUT4 to the store compartment. Surface internalized GLUT4 is targeted to a large, flat, fenestrated saccular structure resistant to brefeldin A that localized to the vicinity of the Golgi complex is sealed to endocytosed transferrin (GLUT4 storage compartment). Recycling of endocytosed GLUT4 was studied by comparing the cellular distributions of antibody/biotin tagged GLUT4 and GLUT4(Ser(5)), a mutant with the Phe(5)-Gln(6)-Gln(7)-Ile(8) inactivated by the substitution of Ser for Phe(5). Ablation of the Phe(5)-Gln(6)-Gln(7)-Ile(8) inhibits the recycling of endocytosed GLUT4 to the GLUT4 store compartment and results in its transport to late endosomes/lysosomes where it is rapidly degraded.
Collapse
Affiliation(s)
- S Palacios
- Centro de Biologia Molecular Severo Ochoa. CSIC. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
46
|
Simpson F, Whitehead JP, James DE. GLUT4--at the cross roads between membrane trafficking and signal transduction. Traffic 2001; 2:2-11. [PMID: 11208163 DOI: 10.1034/j.1600-0854.2001.020102.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW, Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process? Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.
Collapse
Affiliation(s)
- F Simpson
- Institute for Molecular Biosciences and the Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|