1
|
Rijal A, Johnson ET, Curtis PD. Upstream CtrA-binding sites both induce and repress pilin gene expression in Caulobacter crescentus. BMC Genomics 2024; 25:703. [PMID: 39030481 PMCID: PMC11264516 DOI: 10.1186/s12864-024-10533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024] Open
Abstract
Pili are bacterial surface structures important for surface adhesion. In the alphaproteobacterium Caulobacter crescentus, the global regulator CtrA activates transcription of roughly 100 genes, including pilA which codes for the pilin monomer that makes up the pilus filament. While most CtrA-activated promoters have a single CtrA-binding site at the - 35 position and are induced at the early to mid-predivisional cell stage, the pilA promoter has 3 additional upstream CtrA-binding sites and it is induced at the late predivisional cell stage. Reporter constructs where these additional sites were disrupted by deletion or mutation led to increased activity compared to the WT promoter. In synchronized cultures, these mutations caused pilA transcription to occur approximately 20 min earlier than WT. The results suggested that the site overlapping the - 35 position drives pilA gene expression while the other upstream CtrA-binding sites serve to reduce and delay expression. EMSA experiments showed that the - 35 Site has lower affinity for CtrA∼P compared to the other sites, suggesting binding site affinity may be involved in the delay mechanism. Mutating the upstream inhibitory CtrA-binding sites in the pilA promoter caused significantly higher numbers of pre-divisional cells to express pili, and phage survival assays showed this strain to be significantly more sensitive to pilitropic phage. These results suggest that pilA regulation evolved in C. crescentus to provide an ecological advantage within the context of phage infection.
Collapse
Affiliation(s)
- Anurag Rijal
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA
| | - Eli T Johnson
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA.
| |
Collapse
|
2
|
Carter EW, Peraza OG, Wang N. The protein interactome of the citrus Huanglongbing pathogen Candidatus Liberibacter asiaticus. Nat Commun 2023; 14:7838. [PMID: 38030598 PMCID: PMC10687234 DOI: 10.1038/s41467-023-43648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
The bacterium Candidatus Liberibacter asiaticus (CLas) causes citrus Huanglongbing disease. Our understanding of the pathogenicity and biology of this microorganism remains limited because CLas has not yet been cultivated in artificial media. Its genome is relatively small and encodes approximately 1136 proteins, of which 415 have unknown functions. Here, we use a high-throughput yeast-two-hybrid (Y2H) screen to identify interactions between CLas proteins, thus providing insights into their potential functions. We identify 4245 interactions between 542 proteins, after screening 916 bait and 936 prey proteins. The false positive rate of the Y2H assay is estimated to be 2.9%. Pull-down assays for nine protein-protein interactions (PPIs) likely involved in flagellar function support the robustness of the Y2H results. The average number of PPIs per node in the CLas interactome is 15.6, which is higher than the numbers previously reported for interactomes of free-living bacteria, suggesting that CLas genome reduction has been accompanied by increased protein multi-functionality. We propose potential functions for 171 uncharacterized proteins, based on the PPI results, guilt-by-association analyses, and comparison with data from other bacterial species. We identify 40 hub-node proteins, including quinone oxidoreductase and LysR, which are known to protect other bacteria against oxidative stress and might be important for CLas survival in the phloem. We expect our PPI database to facilitate research on CLas biology and pathogenicity mechanisms.
Collapse
Affiliation(s)
- Erica W Carter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Orlene Guerra Peraza
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, US.
| |
Collapse
|
3
|
Computational modeling of unphosphorylated CtrA: Cori binding in the Caulobacter cell cycle. iScience 2021; 24:103413. [PMID: 34901785 PMCID: PMC8640480 DOI: 10.1016/j.isci.2021.103413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/17/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
In the alphaproteobacterium, Caulobacter crescentus, phosphorylated CtrA (CtrA∼P), a master regulatory protein, binds directly to the chromosome origin (Cori) to inhibit DNA replication. Using a mathematical model of CtrA binding at Cori site [d], we provide computational evidence that CtrAU can displace CtrA∼P from Cori at the G1-S transition. Investigation of this interaction within a detailed model of the C. crescentus cell cycle suggests that CckA phosphatase may clear Cori of CtrA∼P by altering the [CtrAU]/[CtrA∼P] ratio rather than by completely depleting CtrA∼P. Model analysis reveals that the mechanism allows for a speedier transition into S phase, stabilizes the timing of chromosome replication under fluctuating rates of CtrA proteolysis, and may contribute to the viability of numerous mutant strains. Overall, these results suggest that CtrAU enhances the robustness of chromosome replication. More generally, our proposed regulation of CtrA:Cori dynamics may represent a novel motif for molecular signaling in cell physiology.
Collapse
|
4
|
Tomasch J, Koppenhöfer S, Lang AS. Connection Between Chromosomal Location and Function of CtrA Phosphorelay Genes in Alphaproteobacteria. Front Microbiol 2021; 12:662907. [PMID: 33995326 PMCID: PMC8116508 DOI: 10.3389/fmicb.2021.662907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022] Open
Abstract
Most bacterial chromosomes are circular, with replication starting at one origin (ori) and proceeding on both replichores toward the terminus (ter). Several studies have shown that the location of genes relative to ori and ter can have profound effects on regulatory networks and physiological processes. The CtrA phosphorelay is a gene regulatory system conserved in most alphaproteobacteria. It was first discovered in Caulobacter crescentus where it controls replication and division into a stalked and a motile cell in coordination with other factors. The locations of the ctrA gene and targets of this response regulator on the chromosome affect their expression through replication-induced DNA hemi-methylation and specific positioning along a CtrA activity gradient in the dividing cell, respectively. Here we asked to what extent the location of CtrA regulatory network genes might be conserved in the alphaproteobacteria. We determined the locations of the CtrA phosphorelay and associated genes in closed genomes with unambiguously identifiable ori from members of five alphaproteobacterial orders. The location of the phosphorelay genes was the least conserved in the Rhodospirillales followed by the Sphingomonadales. In the Rhizobiales a trend toward certain chromosomal positions could be observed. Compared to the other orders, the CtrA phosphorelay genes were conserved closer to ori in the Caulobacterales. In contrast, the genes were highly conserved closer to ter in the Rhodobacterales. Our data suggest selection pressure results in differential positioning of CtrA phosphorelay and associated genes in alphaproteobacteria, particularly in the orders Rhodobacterales, Caulobacterales and Rhizobiales that is worth deeper investigation.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Sonja Koppenhöfer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
5
|
Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem 2020; 401:1349-1363. [DOI: 10.1515/hsz-2020-0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
AbstractWhile many bacteria divide by symmetric binary fission, some alphaproteobacteria have strikingly asymmetric cell cycles, producing offspring that differs significantly in their morphology and reproductive state. To establish this asymmetry, these species employ a complex cell cycle regulatory pathway based on two-component signaling cascades. At the center of this network is the essential DNA-binding response regulator CtrA, which acts as a transcription factor controlling numerous genes with cell cycle-relevant functions as well as a regulator of chromosome replication. The DNA-binding activity of CtrA is controlled at the level of both protein phosphorylation and stability, dependent on an intricate network of regulatory proteins, whose function is tightly coordinated in time and space. CtrA is differentially activated in the two (developing) offspring, thereby establishing distinct transcriptional programs that ultimately determine their distinct cell fates. Phase-separated polar microdomains of changing composition sequester proteins involved in the (in-)activation and degradation of CtrA specifically at each pole. In this review, we summarize the current knowledge of the CtrA pathway and discuss how it has evolved to regulate the cell cycle of morphologically distinct alphaproteobacteria.
Collapse
|
6
|
Integrative and quantitative view of the CtrA regulatory network in a stalked budding bacterium. PLoS Genet 2020; 16:e1008724. [PMID: 32324740 PMCID: PMC7200025 DOI: 10.1371/journal.pgen.1008724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 05/05/2020] [Accepted: 03/19/2020] [Indexed: 01/13/2023] Open
Abstract
The Alphaproteobacteria show a remarkable diversity of cell cycle-dependent developmental patterns, which are governed by the conserved CtrA pathway. Its central component CtrA is a DNA-binding response regulator that is controlled by a complex two-component signaling network, mediating distinct transcriptional programs in the two offspring. The CtrA pathway has been studied intensively and was shown to consist of an upstream part that reads out the developmental state of the cell and a downstream part that integrates the upstream signals and mediates CtrA phosphorylation. However, the role of this circuitry in bacterial diversification remains incompletely understood. We have therefore investigated CtrA regulation in the morphologically complex stalked budding alphaproteobacterium Hyphomonas neptunium. Compared to relatives dividing by binary fission, H. neptunium shows distinct changes in the role and regulation of various pathway components. Most notably, the response regulator DivK, which normally links the upstream and downstream parts of the CtrA pathway, is dispensable, while downstream components such as the pseudokinase DivL, the histidine kinase CckA, the phosphotransferase ChpT and CtrA are essential. Moreover, CckA is compartmentalized to the nascent bud without forming distinct polar complexes and CtrA is not regulated at the level of protein abundance. We show that the downstream pathway controls critical functions such as replication initiation, cell division and motility. Quantification of the signal flow through different nodes of the regulatory cascade revealed that the CtrA pathway is a leaky pipeline and must involve thus-far unidentified factors. Collectively, the quantitative system-level analysis of CtrA regulation in H. neptunium points to a considerable evolutionary plasticity of cell cycle regulation in alphaproteobacteria and leads to hypotheses that may also hold in well-established model organisms such as Caulobacter crescentus. Bacteria show a variety of morphologies and life cycles. This is especially true for members of the Alphaproteobacteria, a bacterial class of considerable ecological, medical, and biotechnological importance. The alphaproteobacterial cell cycle is regulated by a conserved regulatory pathway mediated by CtrA, a DNA-binding response regulator that acts as a transcriptional regulator and repressor of replication initiation. CtrA controls the expression of many genes with critical roles in cell growth, division, and differentiation. The contribution of changes in the CtrA regulatory network to the diversification of alphaproteobacterial species is still incompletely understood. Therefore, we comprehensively studied CtrA regulation in the stalked budding bacterium Hyphomonas neptunium, a morphologically complex species that multiplies by forming buds at the end of a stalk-like cellular extension. Our results show that this distinct mode of growth is accompanied by marked differences in the importance and subcellular localization of several CtrA pathway components. Moreover, quantitative analysis of the signal flow through the pathway indicates that its different nodes are less tightly connected than previously thought, suggesting the existence of so-far unidentified factors. Our results indicate a considerable plasticity of the CtrA regulatory network and reveal novel features that may also apply to other alphaproteobacterial species.
Collapse
|
7
|
Lasker K, von Diezmann L, Zhou X, Ahrens DG, Mann TH, Moerner WE, Shapiro L. Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus. Nat Microbiol 2020; 5:418-429. [PMID: 31959967 PMCID: PMC7549192 DOI: 10.1038/s41564-019-0647-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Selective recruitment and concentration of signalling proteins within membraneless compartments is a ubiquitous mechanism for subcellular organization1-3. The dynamic flow of molecules into and out of these compartments occurs on faster timescales than for membrane-enclosed organelles, presenting a possible mechanism to control spatial patterning within cells. Here, we combine single-molecule tracking and super-resolution microscopy, light-induced subcellular localization, reaction-diffusion modelling and a spatially resolved promoter activation assay to study signal exchange in and out of the 200 nm cytoplasmic pole-organizing protein popZ (PopZ) microdomain at the cell pole of the asymmetrically dividing bacterium Caulobacter crescentus4-8. Two phospho-signalling proteins, the transmembrane histidine kinase CckA and the cytoplasmic phosphotransferase ChpT, provide the only phosphate source for the cell fate-determining transcription factor CtrA9-18. We find that all three proteins exhibit restricted rates of entry into and escape from the microdomain as well as enhanced phospho-signalling within, leading to a submicron gradient of activated CtrA-P19 that is stable and sublinear. Entry into the microdomain is selective for cytosolic proteins and requires a binding pathway to PopZ. Our work demonstrates how nanoscale protein assemblies can modulate signal propagation with fine spatial resolution, and that in Caulobacter, this modulation serves to reinforce asymmetry and differential cell fate of the two daughter cells.
Collapse
Affiliation(s)
- Keren Lasker
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lexy von Diezmann
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Xiaofeng Zhou
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel G Ahrens
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Mann
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Ozaki S. Regulation of replication initiation: lessons from Caulobacter crescentus. Genes Genet Syst 2019; 94:183-196. [PMID: 31495806 DOI: 10.1266/ggs.19-00011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromosome replication is a fundamental process in all domains of life. To accurately transmit genetic material to offspring, the initiation of chromosome replication is tightly regulated to ensure that it occurs only once in each cell division cycle. In the model bacterium Caulobacter crescentus, the CtrA response regulator inhibits the origin of replication at the pre-replication stage. Inactivation of CtrA permits the universal DnaA initiator to form an initiation complex at the origin, leading to replication initiation. Subsequently, the initiation complex is inactivated to prevent extra initiation. Whereas DNA replication occurs periodically in exponentially growing cells, replication initiation is blocked under various stress conditions to halt cell cycle progression until the normal condition is restored or the cells adapt to the stress. Thus, regulating the initiation complex plays an important role in not only driving cell cycle progression, but also maintaining cell integrity under stress. Multiple regulatory signaling pathways controlling CtrA and DnaA have been identified and recent studies have advanced our knowledge of the underlying mechanistic and molecular processes. This review focuses on how bacterial cells control replication initiation, highlighting the latest findings that have emerged from studies in C. crescentus.
Collapse
Affiliation(s)
- Shogo Ozaki
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
9
|
Marczynski GT, Petit K, Patel P. Crosstalk Regulation Between Bacterial Chromosome Replication and Chromosome Partitioning. Front Microbiol 2019; 10:279. [PMID: 30863373 PMCID: PMC6399470 DOI: 10.3389/fmicb.2019.00279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/04/2019] [Indexed: 12/14/2022] Open
Abstract
Despite much effort, the bacterial cell cycle has proved difficult to study and understand. Bacteria do not conform to the standard eukaryotic model of sequential cell-cycle phases. Instead, for example, bacteria overlap their phases of chromosome replication and chromosome partitioning. In “eukaryotic terms,” bacteria simultaneously perform “S-phase” and “mitosis” whose coordination is absolutely required for rapid growth and survival. In this review, we focus on the signaling “crosstalk,” meaning the signaling mechanisms that advantageously commit bacteria to start both chromosome replication and chromosome partitioning. After briefly reviewing the molecular mechanisms of replication and partitioning, we highlight the crosstalk research from Bacillus subtilis, Vibrio cholerae, and Caulobacter crescentus. As the initiator of chromosome replication, DnaA also mediates crosstalk in each of these model bacteria but not always in the same way. We next focus on the C. crescentus cell cycle and describe how it is revealing novel crosstalk mechanisms. Recent experiments show that the novel nucleoid associated protein GapR has a special role(s) in starting and separating the replicating chromosomes, so that upon asymmetric cell division, the new chromosomes acquire different fates in C. crescentus’s distinct replicating and non-replicating cell types. The C. crescentus PopZ protein forms a special cell-pole organizing matrix that anchors the chromosomes through their centromere-like DNA sequences near the origin of replication. We also describe how PopZ anchors and interacts with several key cell-cycle regulators, thereby providing an organized subcellular environment for more novel crosstalk mechanisms.
Collapse
Affiliation(s)
- Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Kenny Petit
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Priya Patel
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Heindl JE, Crosby D, Brar S, Pinto JF, Singletary T, Merenich D, Eagan JL, Buechlein AM, Bruger EL, Waters CM, Fuqua C. Reciprocal control of motility and biofilm formation by the PdhS2 two-component sensor kinase of Agrobacterium tumefaciens. MICROBIOLOGY (READING, ENGLAND) 2019; 165:146-162. [PMID: 30620265 PMCID: PMC7003649 DOI: 10.1099/mic.0.000758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
A core regulatory pathway that directs developmental transitions and cellular asymmetries in Agrobacterium tumefaciens involves two overlapping, integrated phosphorelays. One of these phosphorelays putatively includes four histidine sensor kinase homologues, DivJ, PleC, PdhS1 and PdhS2, and two response regulators, DivK and PleD. In several different alphaproteobacteria, this pathway influences a conserved downstream phosphorelay that ultimately controls the phosphorylation state of the CtrA master response regulator. The PdhS2 sensor kinase reciprocally regulates biofilm formation and swimming motility. In the current study, the mechanisms by which the A. tumefaciens sensor kinase PdhS2 directs this regulation are delineated. PdhS2 lacking a key residue implicated in phosphatase activity is markedly deficient in proper control of attachment and motility phenotypes, whereas a kinase-deficient PdhS2 mutant is only modestly affected. A genetic interaction between DivK and PdhS2 is revealed, unmasking one of several connections between PdhS2-dependent phenotypes and transcriptional control by CtrA. Epistasis experiments suggest that PdhS2 may function independently of the CckA sensor kinase, the cognate sensor kinase for CtrA, which is inhibited by DivK. Global expression analysis of the pdhS2 mutant reveals a restricted regulon, most likely functioning through CtrA to separately control motility and regulate the levels of the intracellular signal cyclic diguanylate monophosphate (cdGMP), thereby affecting the production of adhesive polysaccharides and attachment. We hypothesize that in A. tumefaciens the CtrA regulatory circuit has expanded to include additional inputs through the addition of PdhS-type sensor kinases, likely fine-tuning the response of this organism to the soil microenvironment.
Collapse
Affiliation(s)
- Jason E. Heindl
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Crosby
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
- Present address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sukhdev Brar
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - John F. Pinto
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Tiyan Singletary
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel Merenich
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | - Justin L. Eagan
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Aaron M. Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Eric L. Bruger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Present address: Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
11
|
Herrou J, Willett JW, Fiebig A, Varesio LM, Czyż DM, Cheng JX, Ultee E, Briegel A, Bigelow L, Babnigg G, Kim Y, Crosson S. Periplasmic protein EipA determines envelope stress resistance and virulence in Brucella abortus. Mol Microbiol 2019; 111:637-661. [PMID: 30536925 DOI: 10.1111/mmi.14178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Abstract
Molecular components of the Brucella abortus cell envelope play a major role in its ability to infect, colonize and survive inside mammalian host cells. In this study, we have defined a role for a conserved gene of unknown function in B. abortus envelope stress resistance and infection. Expression of this gene, which we name eipA, is directly activated by the essential cell cycle regulator, CtrA. eipA encodes a soluble periplasmic protein that adopts an unusual eight-stranded β-barrel fold. Deletion of eipA attenuates replication and survival in macrophage and mouse infection models, and results in sensitivity to treatments that compromise the cell envelope integrity. Transposon disruption of genes required for LPS O-polysaccharide biosynthesis is synthetically lethal with eipA deletion. This genetic connection between O-polysaccharide and eipA is corroborated by our discovery that eipA is essential in Brucella ovis, a naturally rough species that harbors mutations in several genes required for O-polysaccharide production. Conditional depletion of eipA expression in B. ovis results in a cell chaining phenotype, providing evidence that eipA directly or indirectly influences cell division in Brucella. We conclude that EipA is a molecular determinant of Brucella virulence that functions to maintain cell envelope integrity and influences cell division.
Collapse
Affiliation(s)
- Julien Herrou
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jonathan W Willett
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Lydia M Varesio
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Jason X Cheng
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Eveline Ultee
- Department of Biology, Universiteit Leiden, Leiden, Netherlands
| | - Ariane Briegel
- Department of Biology, Universiteit Leiden, Leiden, Netherlands
| | - Lance Bigelow
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Youngchang Kim
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Poncin K, Gillet S, De Bolle X. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol Rev 2018; 42:500-513. [PMID: 29733367 DOI: 10.1093/femsre/fuy019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, including the Brucella genus, which is responsible for a worldwide zoonosis. One common feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first described in the model bacterium Caulobacter crescentus, where it controls gene expression at different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-proteobacteria in order to better assess the potential role of CtrA in the infectious context. Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific modules, as well as the acquisition of new factors during evolution. The comparison of CtrA regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these analyses provide an interesting example of the plasticity of a regulation network, subject to the constraints of inherent imperatives such as cell division and the adaptations to diversified environmental niches.
Collapse
Affiliation(s)
- Katy Poncin
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Sébastien Gillet
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Xavier De Bolle
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| |
Collapse
|
13
|
Abstract
Regulated proteolysis is a vital process that affects all living things. Bacteria use energy-dependent AAA+ proteases to power degradation of misfolded and native regulatory proteins. Given that proteolysis is an irreversible event, specificity and selectivity in degrading substrates are key. Specificity is often augmented through the use of adaptors that modify the inherent specificity of the proteolytic machinery. Regulated protein degradation is intricately linked to quality control, cell-cycle progression, and physiological transitions. In this review, we highlight recent work that has shed light on our understanding of regulated proteolysis in bacteria. We discuss the role AAA+ proteases play during balanced growth as well as how these proteases are deployed during changes in growth. We present examples of how protease selectivity can be controlled in increasingly complex ways. Finally, we describe how coupling a core recognition determinant to one or more modifying agents is a general theme for regulated protein degradation.
Collapse
Affiliation(s)
- Samar A Mahmoud
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA; ,
| |
Collapse
|
14
|
Felletti M, Omnus DJ, Jonas K. Regulation of the replication initiator DnaA in Caulobacter crescentus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:697-705. [PMID: 29382570 DOI: 10.1016/j.bbagrm.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. In nearly all bacteria, replication initiation requires the activity of the conserved replication initiation protein DnaA. Due to its central role in cell cycle progression, DnaA activity must be precisely regulated. This review summarizes the current state of DnaA regulation in the asymmetrically dividing α-proteobacterium Caulobacter crescentus, an important model for bacterial cell cycle studies. Mechanisms will be discussed that regulate DnaA activity and abundance under optimal conditions and in coordination with the asymmetric Caulobacter cell cycle. Furthermore, we highlight recent findings of how regulated DnaA synthesis and degradation collaborate to adjust DnaA abundance under stress conditions. The mechanisms described provide important examples of how DNA replication is regulated in an α-proteobacterium and thus represent an important starting point for the study of DNA replication in many other bacteria. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Michele Felletti
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Deike J Omnus
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
15
|
Wiktor J, Lesterlin C, Sherratt DJ, Dekker C. CRISPR-mediated control of the bacterial initiation of replication. Nucleic Acids Res 2016; 44:3801-10. [PMID: 27036863 PMCID: PMC4857001 DOI: 10.1093/nar/gkw214] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering.
Collapse
Affiliation(s)
- Jakub Wiktor
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | | | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| |
Collapse
|
16
|
Abstract
The initiation of chromosomal DNA replication starts at a replication origin, which in bacteria is a discrete locus that contains DNA sequence motifs recognized by an initiator protein whose role is to assemble the replication fork machinery at this site. In bacteria with a single chromosome, DnaA is the initiator and is highly conserved in all bacteria. As an adenine nucleotide binding protein, DnaA bound to ATP is active in the assembly of a DnaA oligomer onto these sites. Other proteins modulate DnaA oligomerization via their interaction with the N-terminal region of DnaA. Following the DnaA-dependent unwinding of an AT-rich region within the replication origin, DnaA then mediates the binding of DnaB, the replicative DNA helicase, in a complex with DnaC to form an intermediate named the prepriming complex. In the formation of this intermediate, the helicase is loaded onto the unwound region within the replication origin. As DnaC bound to DnaB inhibits its activity as a DNA helicase, DnaC must dissociate to activate DnaB. Apparently, the interaction of DnaB with primase (DnaG) and primer formation leads to the release of DnaC from DnaB, which is coordinated with or followed by translocation of DnaB to the junction of the replication fork. There, DnaB is able to coordinate its activity as a DNA helicase with the cellular replicase, DNA polymerase III holoenzyme, which uses the primers made by primase for leading strand DNA synthesis.
Collapse
Affiliation(s)
- S Chodavarapu
- Michigan State University, East Lansing, MI, United States
| | - J M Kaguni
- Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
17
|
Short-Stalked Prosthecomicrobium hirschii Cells Have a Caulobacter-Like Cell Cycle. J Bacteriol 2016; 198:1149-59. [PMID: 26833409 DOI: 10.1128/jb.00896-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/24/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The dimorphic alphaproteobacterium Prosthecomicrobium hirschii has both short-stalked and long-stalked morphotypes. Notably, these morphologies do not arise from transitions in a cell cycle. Instead, the maternal cell morphology is typically reproduced in daughter cells, which results in microcolonies of a single cell type. In this work, we further characterized the short-stalked cells and found that these cells have a Caulobacter-like life cycle in which cell division leads to the generation of two morphologically distinct daughter cells. Using a microfluidic device and total internal reflection fluorescence (TIRF) microscopy, we observed that motile short-stalked cells attach to a surface by means of a polar adhesin. Cells attached at their poles elongate and ultimately release motile daughter cells. Robust biofilm growth occurs in the microfluidic device, enabling the collection of synchronous motile cells and downstream analysis of cell growth and attachment. Analysis of a draft P. hirschii genome sequence indicates the presence of CtrA-dependent cell cycle regulation. This characterization of P. hirschii will enable future studies on the mechanisms underlying complex morphologies and polymorphic cell cycles. IMPORTANCE Bacterial cell shape plays a critical role in regulating important behaviors, such as attachment to surfaces, motility, predation, and cellular differentiation; however, most studies on these behaviors focus on bacteria with relatively simple morphologies, such as rods and spheres. Notably, complex morphologies abound throughout the bacteria, with striking examples, such as P. hirschii, found within the stalked Alphaproteobacteria. P. hirschii is an outstanding candidate for studies of complex morphology generation and polymorphic cell cycles. Here, the cell cycle and genome of P. hirschii are characterized. This work sets the stage for future studies of the impact of complex cell shapes on bacterial behaviors.
Collapse
|
18
|
The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA. J Bacteriol 2015; 197:3521-32. [PMID: 26324449 DOI: 10.1128/jb.00460-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It is not known how diverse bacteria regulate chromosome replication. Based on Escherichia coli studies, DnaA initiates replication and the homolog of DnaA (Hda) inactivates DnaA using the RIDA (regulatory inactivation of DnaA) mechanism that thereby prevents extra chromosome replication cycles. RIDA may be widespread, because the distantly related Caulobacter crescentus homolog HdaA also prevents extra chromosome replication (J. Collier and L. Shapiro, J Bacteriol 191:5706-5715, 2009, http://dx.doi.org/10.1128/JB.00525-09). To further study the HdaA/RIDA mechanism, we created a C. crescentus strain that shuts off hdaA transcription and rapidly clears HdaA protein. We confirm that HdaA prevents extra replication, since cells lacking HdaA accumulate extra chromosome DNA. DnaA binds nucleotides ATP and ADP, and our results are consistent with the established E. coli mechanism whereby Hda converts active DnaA-ATP to inactive DnaA-ADP. However, unlike E. coli DnaA, C. crescentus DnaA is also regulated by selective proteolysis. C. crescentus cells lacking HdaA reduce DnaA proteolysis in logarithmically growing cells, thereby implicating HdaA in this selective DnaA turnover mechanism. Also, wild-type C. crescentus cells remove all DnaA protein when they enter stationary phase. However, cells lacking HdaA retain stable DnaA protein even when they stop growing in nutrient-depleted medium that induces complete DnaA proteolysis in wild-type cells. Additional experiments argue for a distinct HdaA-dependent mechanism that selectively removes DnaA prior to stationary phase. Related freshwater Caulobacter species also remove DnaA during entry to stationary phase, implying a wider role for HdaA as a novel component of programed proteolysis. IMPORTANCE Bacteria must regulate chromosome replication, and yet the mechanisms are not completely understood and not fully exploited for antibiotic development. Based on Escherichia coli studies, DnaA initiates replication, and the homolog of DnaA (Hda) inactivates DnaA to prevent extra replication. The distantly related Caulobacter crescentus homolog HdaA also regulates chromosome replication. Here we unexpectedly discovered that unlike the E. coli Hda, the C. crescentus HdaA also regulates DnaA proteolysis. Furthermore, this HdaA proteolysis acts in logarithmically growing and in stationary-phase cells and therefore in two very different physiological states. We argue that HdaA acts to help time chromosome replications in logarithmically growing cells and that it is an unexpected component of the programed entry into stationary phase.
Collapse
|
19
|
Marczynski GT, Rolain T, Taylor JA. Redefining bacterial origins of replication as centralized information processors. Front Microbiol 2015; 6:610. [PMID: 26136739 PMCID: PMC4468827 DOI: 10.3389/fmicb.2015.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023] Open
Abstract
In this review we stress the differences between eukaryotes and bacteria with respect to their different cell cycles, replication mechanisms and genome organizations. One of the most basic and underappreciated differences is that a bacterial chromosome uses only one ori while eukaryotic chromosome uses multiple oris. Consequently, eukaryotic oris work redundantly in a cell cycle divided into separate phases: First inactive replication proteins assemble on eukaryotic oris, and then they await conditions (in the separate “S-phase”) that activate only the ori-bound and pre-assembled replication proteins. S-phase activation (without re-assembly) ensures that a eukaryotic ori “fires” (starts replication) only once and that each chromosome consistently duplicates only once per cell cycle. This precise chromosome duplication does not require precise multiple ori firing in S-phase. A eukaryotic ori can fire early, late or not at all. The single bacterial ori has no such margin for error and a comparable imprecision is lethal. Single ori usage is not more primitive; it is a totally different strategy that distinguishes bacteria. We further argue that strong evolutionary pressures created more sophisticated single ori systems because bacteria experience extreme and rapidly changing conditions. A bacterial ori must rapidly receive and process much information in “real-time” and not just in “cell cycle time.” This redefinition of bacterial oris as centralized information processors makes at least two important predictions: First that bacterial oris use many and yet to be discovered control mechanisms and second that evolutionarily distinct bacteria will use many very distinct control mechanisms. We review recent literature that supports both predictions. We will highlight three key examples and describe how negative-feedback, phospho-relay, and chromosome-partitioning systems act to regulate chromosome replication. We also suggest future studies and discuss using replication proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University , Montreal, QC, Canada
| | - Thomas Rolain
- Department of Microbiology and Immunology, McGill University , Montreal, QC, Canada
| | - James A Taylor
- Department of Microbiology and Immunology, McGill University , Montreal, QC, Canada
| |
Collapse
|
20
|
Wolański M, Donczew R, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 2015; 5:735. [PMID: 25610430 PMCID: PMC4285127 DOI: 10.3389/fmicb.2014.00735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Replication of the bacterial chromosome initiates at a single origin of replication that is called oriC. This occurs via the concerted action of numerous proteins, including DnaA, which acts as an initiator. The origin sequences vary across species, but all bacterial oriCs contain the information necessary to guide assembly of the DnaA protein complex at oriC, triggering the unwinding of DNA and the beginning of replication. The requisite information is encoded in the unique arrangement of specific sequences called DnaA boxes, which form a framework for DnaA binding and assembly. Other crucial sequences of bacterial origin include DNA unwinding element (DUE, which designates the site at which oriC melts under the influence of DnaA) and binding sites for additional proteins that positively or negatively regulate the initiation process. In this review, we summarize our current knowledge and understanding of the information encoded in bacterial origins of chromosomal replication, particularly in the context of replication initiation and its regulation. We show that oriC encoded instructions allow not only for initiation but also for precise regulation of replication initiation and coordination of chromosomal replication with the cell cycle (also in response to environmental signals). We focus on Escherichia coli, and then expand our discussion to include several other microorganisms in which additional regulatory proteins have been recently shown to be involved in coordinating replication initiation to other cellular processes (e.g., Bacillus, Caulobacter, Helicobacter, Mycobacterium, and Streptomyces). We discuss diversity of bacterial oriC regions with the main focus on roles of individual DNA recognition sequences at oriC in binding the initiator and regulatory proteins as well as the overall impact of these proteins on the formation of initiation complex.
Collapse
Affiliation(s)
- Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland ; Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
21
|
Ardissone S, Fumeaux C, Bergé M, Beaussart A, Théraulaz L, Radhakrishnan SK, Dufrêne YF, Viollier PH. Cell cycle constraints on capsulation and bacteriophage susceptibility. eLife 2014; 3. [PMID: 25421297 PMCID: PMC4241560 DOI: 10.7554/elife.03587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022] Open
Abstract
Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity.
Collapse
Affiliation(s)
- Silvia Ardissone
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Coralie Fumeaux
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Théraulaz
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Sunish Kumar Radhakrishnan
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Cell cycle-dependent adaptor complex for ClpXP-mediated proteolysis directly integrates phosphorylation and second messenger signals. Proc Natl Acad Sci U S A 2014; 111:14229-34. [PMID: 25197043 DOI: 10.1073/pnas.1407862111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cell-division cycle of Caulobacter crescentus depends on periodic activation and deactivation of the essential response regulator CtrA. Although CtrA is critical for transcription during some parts of the cell cycle, its activity must be eliminated before chromosome replication because CtrA also blocks the initiation of DNA replication. CtrA activity is down-regulated both by dephosphorylation and by proteolysis, mediated by the ubiquitous ATP-dependent protease ClpXP. Here we demonstrate that proteins needed for rapid CtrA proteolysis in vivo form a phosphorylation-dependent and cyclic diguanylate (cdG)-dependent adaptor complex that accelerates CtrA degradation in vitro by ClpXP. The adaptor complex includes CpdR, a single-domain response regulator; PopA, a cdG-binding protein; and RcdA, a protein whose activity cannot be predicted. When CpdR is unphosphorylated and when PopA is bound to cdG, they work together with RcdA in an all-or-none manner to reduce the Km of CtrA proteolysis 10-fold. We further identified a set of amino acids in the receiver domain of CtrA that modulate its adaptor-mediated degradation in vitro and in vivo. Complex formation between PopA and CtrA depends on these amino acids, which reside on alpha-helix 1 of the CtrA receiver domain, and on cdG binding by PopA. These results reveal that each accessory factor plays an essential biochemical role in the regulated proteolysis of CtrA and demonstrate, to our knowledge, the first example of a multiprotein, cdG-dependent proteolytic adaptor.
Collapse
|
23
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. J Bacteriol 2014; 196:2901-11. [PMID: 24914187 PMCID: PMC4135643 DOI: 10.1128/jb.01706-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous free-living bacteria undergo complex differentiation in response to unfavorable environmental conditions or as part of their natural cell cycle. Developmental programs require the de novo expression of several sets of genes responsible for morphological, physiological, and metabolic changes, such as spore/endospore formation, the generation of flagella, and the synthesis of antibiotics. Notably, the frequency of chromosomal replication initiation events must also be adjusted with respect to the developmental stage in order to ensure that each nascent cell receives a single copy of the chromosomal DNA. In this review, we focus on the master transcriptional factors, Spo0A, CtrA, and AdpA, which coordinate developmental program and which were recently demonstrated to control chromosome replication. We summarize the current state of knowledge on the role of these developmental regulators in synchronizing the replication with cell differentiation in Bacillus subtilis, Caulobacter crescentus, and Streptomyces coelicolor, respectively.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
24
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
25
|
Gora KG, Cantin A, Wohlever M, Joshi KK, Perchuk BS, Chien P, Laub MT. Regulated proteolysis of a transcription factor complex is critical to cell cycle progression in Caulobacter crescentus. Mol Microbiol 2013; 87:1277-89. [PMID: 23368090 DOI: 10.1111/mmi.12166] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2013] [Indexed: 11/28/2022]
Abstract
Cell cycle transitions are often triggered by the proteolysis of key regulatory proteins. In Caulobacter crescentus, the G1-S transition involves the degradation of an essential DNA-binding response regulator, CtrA, by the ClpXP protease. Here, we show that another critical cell cycle regulator, SciP, is also degraded during the G1-S transition, but by the Lon protease. SciP is a small protein that binds directly to CtrA and prevents it from activating target genes during G1. We demonstrate that SciP must be degraded during the G1-S transition so that cells can properly activate CtrA-dependent genes following DNA replication initiation and the reaccumulation of CtrA. These results indicate that like CtrA, SciP levels are tightly regulated during the Caulobacter cell cycle. In addition, we show that formation of a complex between CtrA and SciP at target promoters protects both proteins from their respective proteases. Degradation of either protein thus helps trigger the destruction of the other, facilitating a cooperative disassembly of the complex. Collectively, our results indicate that ClpXP and Lon each degrade an important cell cycle regulator, helping to trigger the onset of S phase and prepare cells for the subsequent programmes of gene expression critical to polar morphogenesis and cell division.
Collapse
Affiliation(s)
- Kasia G Gora
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tsokos CG, Laub MT. Polarity and cell fate asymmetry in Caulobacter crescentus. Curr Opin Microbiol 2012; 15:744-50. [PMID: 23146566 DOI: 10.1016/j.mib.2012.10.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
The production of asymmetric daughter cells is a hallmark of metazoan development and critical to the life cycle of many microbes, including the α-proteobacterium Caulobacter crescentus. For Caulobacter, every cell division is asymmetric, yielding daughter cells with different morphologies and replicative potentials. This asymmetry in daughter cell fate is governed by the response regulator CtrA, a transcription factor that can also bind and silence the origin of replication. CtrA activity is controlled by a complex regulatory circuit that includes several polarly localized histidine kinases. This circuit ensures differential activation of CtrA in daughter cells, leading to their asymmetric replicative potentials. Here, we review progress in elucidating the molecular mechanisms regulating CtrA and the role of cellular polarity in this process.
Collapse
Affiliation(s)
- Christos G Tsokos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
27
|
Mercer RG, Quinlan M, Rose AR, Noll S, Beatty JT, Lang AS. Regulatory systems controlling motility and gene transfer agent production and release in Rhodobacter capsulatus. FEMS Microbiol Lett 2012; 331:53-62. [PMID: 22443140 DOI: 10.1111/j.1574-6968.2012.02553.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 11/30/2022] Open
Abstract
Production of the gene transfer agent of Rhodobacter capsulatus, RcGTA, is dependent upon several cellular regulatory systems, including a putative phosphorelay involving the CtrA and CckA proteins. These proteins are also involved in flagellar motility in R. capsulatus. The interactions of proteins in this system are best understood in Caulobacter crescentus where CtrA is activated by phosphorylation by the CckA-ChpT phosphorelay. CtrA~P activity is further controlled by SciP, which represses ctrA transcription and CtrA activation of transcription. We show that R. capsulatus chpT and cckA mutants both have greatly reduced motility and RcGTA activity. Unlike the ctrA mutant where RcGTA gene transcription is absent, the decrease in RcGTA activity is because of reduced release of RcGTA from the cells. The sciP mutant is not affected for RcGTA production but our results support the C. crescentus model of SciP repression of flagellar motility genes. We show that both unphosphorylated and phosphorylated CtrA can activate RcGTA gene expression, while CtrA~P seems to be required for release of the particle and expression of motility genes. This has led us to a new model of how this regulatory system controls motility and production of RcGTA in R. capsulatus.
Collapse
Affiliation(s)
- Ryan G Mercer
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Collier J. Regulation of chromosomal replication in Caulobacter crescentus. Plasmid 2011; 67:76-87. [PMID: 22227374 DOI: 10.1016/j.plasmid.2011.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/12/2023]
Abstract
The alpha-proteobacterium Caulobacter crescentus is characterized by its asymmetric cell division, which gives rise to a replicating stalked cell and a non-replicating swarmer cell. Thus, the initiation of chromosomal replication is tightly regulated, temporally and spatially, to ensure that it is coordinated with cell differentiation and cell cycle progression. Waves of DnaA and CtrA activities control when and where the initiation of DNA replication will take place in C. crescentus cells. The conserved DnaA protein initiates chromosomal replication by directly binding to sites within the chromosomal origin (Cori), ensuring that DNA replication starts once and only once per cell cycle. The CtrA response regulator represses the initiation of DNA replication in swarmer cells and in the swarmer compartment of pre-divisional cells, probably by competing with DnaA for binding to Cori. CtrA and DnaA are controlled by multiple redundant regulatory pathways that include DNA methylation-dependent transcriptional regulation, temporally regulated proteolysis and the targeting of regulators to specific locations within the cell. Besides being critical regulators of chromosomal replication, CtrA and DnaA are also master transcriptional regulators that control the expression of many genes, thus connecting DNA replication with other events of the C. crescentus cell cycle.
Collapse
Affiliation(s)
- Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland.
| |
Collapse
|
29
|
Taylor JA, Ouimet MC, Wargachuk R, Marczynski GT. The Caulobacter crescentus chromosome replication origin evolved two classes of weak DnaA binding sites. Mol Microbiol 2011; 82:312-26. [PMID: 21843309 DOI: 10.1111/j.1365-2958.2011.07785.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Caulobacter crescentus replication initiator DnaA and essential response regulator CtrA compete to control chromosome replication. The C. crescentus replication origin (Cori) contains five strong CtrA binding sites but only two apparent DnaA boxes, termed G-boxes (with a conserved second position G, TGATCCACA). Since clusters of DnaA boxes typify bacterial replication origins, this discrepancy suggested that C. crescentus DnaA recognizes different DNA sequences or compensates with novel DNA-binding proteins. We searched for novel DNA sites by scanning mutagenesis of the most conserved Cori DNA. Autonomous replication assays showed that G-boxes and novel W-boxes (TCCCCA) are essential for replication. Further analyses showed that C. crescentus DnaA binds G-boxes with moderate and W-boxes with very weak affinities significantly below DnaA's capacity for high-affinity Escherichia coli-boxes (TTATCCACA). Cori has five conserved W-boxes. Increasing W-box affinities increases or decreases autonomous replication depending on their strategic positions between the G-boxes. In vitro, CtrA binding displaces DnaA from proximal G-boxes and from distal W-boxes implying CtrA-DnaA competition and DnaA-DnaA cooperation between G-boxes and W-boxes. Similarly, during cell cycle progression, CtrA proteolysis coincides with DnaA binding to Cori. We also observe highly conserved W-boxes in other replication origins lacking E. coli-boxes. Therefore, strategically weak DnaA binding can be a general means of replication control.
Collapse
Affiliation(s)
- James A Taylor
- Dept. Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
30
|
Thanbichler M. Synchronization of chromosome dynamics and cell division in bacteria. Cold Spring Harb Perspect Biol 2010; 2:a000331. [PMID: 20182599 DOI: 10.1101/cshperspect.a000331] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacterial cells have evolved a variety of regulatory circuits that tightly synchronize their chromosome replication and cell division cycles, thereby ensuring faithful transmission of genetic information to their offspring. Complex multicomponent signaling cascades are used to monitor the progress of cytokinesis and couple replication initiation to the separation of the two daughter cells. Moreover, the cell-division apparatus actively participates in chromosome partitioning and, particularly, in the resolution of topological problems that impede the segregation process, thus coordinating chromosome dynamics with cell constriction. Finally, bacteria have developed mechanisms that harness the cell-cycle-dependent positioning of individual chromosomal loci or the nucleoid to define the cell-division site and control the timing of divisome assembly. Each of these systems manages to integrate a complex set of spatial and temporal cues to regulate and execute critical steps in the bacterial cell cycle.
Collapse
Affiliation(s)
- Martin Thanbichler
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strabetae, D-35043 Marburg, Germany.
| |
Collapse
|
31
|
Gora KG, Tsokos CG, Chen YE, Srinivasan BS, Perchuk BS, Laub MT. A cell-type-specific protein-protein interaction modulates transcriptional activity of a master regulator in Caulobacter crescentus. Mol Cell 2010; 39:455-67. [PMID: 20598601 DOI: 10.1016/j.molcel.2010.06.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/13/2010] [Accepted: 06/09/2010] [Indexed: 11/17/2022]
Abstract
Progression through the Caulobacter cell cycle is driven by the master regulator CtrA, an essential two-component signaling protein that regulates the expression of nearly 100 genes. CtrA is abundant throughout the cell cycle except immediately prior to DNA replication. However, the expression of CtrA-activated genes is generally restricted to S phase. We identify the conserved protein SciP (small CtrA inhibitory protein) and show that it accumulates during G1, where it inhibits CtrA from activating target genes. The depletion of SciP from G1 cells leads to the inappropriate induction of CtrA-activated genes and, consequently, a disruption of the cell cycle. Conversely, the ectopic synthesis of SciP is sufficient to inhibit CtrA-dependent transcription, also disrupting the cell cycle. SciP binds directly to CtrA without affecting stability or phosphorylation; instead, SciP likely prevents CtrA from recruiting RNA polymerase. CtrA is thus tightly regulated by a protein-protein interaction which is critical to cell-cycle progression.
Collapse
Affiliation(s)
- Kasia G Gora
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
32
|
Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev 2010; 74:13-41. [PMID: 20197497 DOI: 10.1128/mmbr.00040-09] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Caulobacter crescentus is an aquatic Gram-negative alphaproteobacterium that undergoes multiple changes in cell shape, organelle production, subcellular distribution of proteins, and intracellular signaling throughout its life cycle. Over 40 years of research has been dedicated to this organism and its developmental life cycles. Here we review a portion of many developmental processes, with particular emphasis on how multiple processes are integrated and coordinated both spatially and temporally. While much has been discovered about Caulobacter crescentus development, areas of potential future research are also highlighted.
Collapse
|
33
|
Rajagopalan M, Dziedzic R, Al Zayer M, Stankowska D, Ouimet MC, Bastedo DP, Marczynski GT, Madiraju MV. Mycobacterium tuberculosis origin of replication and the promoter for immunodominant secreted antigen 85B are the targets of MtrA, the essential response regulator. J Biol Chem 2010; 285:15816-27. [PMID: 20223818 DOI: 10.1074/jbc.m109.040097] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient proliferation of Mycobacterium tuberculosis (Mtb) inside macrophage requires that the essential response regulator MtrA be optimally phosphorylated. However, the genomic targets of MtrA have not been identified. We show by chromatin immunoprecipitation and DNase I footprinting that the chromosomal origin of replication, oriC, and the promoter for the major secreted immunodominant antigen Ag85B, encoded by fbpB, are MtrA targets. DNase I footprinting analysis revealed that MtrA recognizes two direct repeats of GTCACAgcg-like sequences and that MtrA approximately P, the phosphorylated form of MtrA, binds preferentially to these targets. The oriC contains several MtrA motifs, and replacement of all motifs or of a single select motif with TATATA compromises the ability of oriC plasmids to maintain stable autonomous replication in wild type and MtrA-overproducing strains, indicating that the integrity of the MtrA motif is necessary for oriC replication. The expression of the fbpB gene is found to be down-regulated in Mtb cells upon infection when these cells overproduce wild type MtrA but not when they overproduce a nonphosphorylated MtrA, indicating that MtrA approximately P regulates fbpB expression. We propose that MtrA is a regulator of oriC replication and that the ability of MtrA to affect apparently unrelated targets, i.e. oriC and fbpB, reflects its main role as a coordinator between the proliferative and pathogenic functions of Mtb.
Collapse
Affiliation(s)
- Malini Rajagopalan
- Biomedical Research, University of Texas Health Science Center, Tyler, Texas 75708-3154, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 2010; 8:163-70. [PMID: 20157337 DOI: 10.1038/nrmicro2314] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromosomal replication must be limited to once and only once per cell cycle. This is accomplished by multiple regulatory pathways that govern initiator proteins and replication origins. A principal feature of DNA replication is the coupling of the replication reaction to negative-feedback regulation. Some of the factors that are important in this process have been discovered, including the clamp (DNA polymerase III subunit-beta (DnaN)), the datA locus, SeqA, DnaA homologue protein (Hda) and YabA, as well as factors that are involved at other stages of the regulatory mechanism, such as DnaA initiator-associating protein (DiaA), the DnaA-reactivating sequence (DARS) loci and Soj. Here, we describe the regulation of DnaA, one of the central proteins involved in bacterial DNA replication, by these factors in Escherichia coli, Bacillus subtilis and Caulobacter crescentus.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
35
|
Kobayashi H, De Nisco NJ, Chien P, Simmons LA, Walker GC. Sinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection. Mol Microbiol 2009; 73:586-600. [PMID: 19602145 DOI: 10.1111/j.1365-2958.2009.06794.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ATP-driven proteolysis plays a major role in regulating the bacterial cell cycle, development and stress responses. In the nitro -fixing symbiosis with host plants, Sinorhizobium meliloti undergoes a profound cellular differentiation, including endoreduplication of the ome. The regulatory mechanisms governing the alterations of the S. meliloti cell cycle in planta are largely unknown. Here, we report the characterization of two cpdR homologues, cpdR1 and cpdR2, of S. meliloti that encode single-domain response regulators. In Caulobacter crescentus, CpdR controls the polar localization of the ClpXP protease, thereby mediating the regulated proteolysis of key protein(s), such as CtrA, involved in cell cycle progression. The S. meliloti cpdR1-null mutant can invade the host cytoplasm, however, the intracellular bacteria are unable to differentiate into bacteroids. We show that S. meliloti CpdR1 has a polar localization pattern and a role in ClpX positioning similar to C. crescentus CpdR, suggesting a conserved function of CpdR proteins among alpha-proteobacteria. However, in S. meliloti, free-living cells of the cpdR1-null mutant show a striking morphology of irregular coccoids and aberrant DNA replication. Thus, we demonstrate that CpdR1 mediates the co-ordination of cell cycle events, which are critical for both the free-living cell division and the differentiation required for the chronic intracellular infection.
Collapse
Affiliation(s)
- Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
36
|
CtrA, a global response regulator, uses a distinct second category of weak DNA binding sites for cell cycle transcription control in Caulobacter crescentus. J Bacteriol 2009; 191:5458-70. [PMID: 19542275 DOI: 10.1128/jb.00355-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CtrA controls cell cycle programs of chromosome replication and genetic transcription. Phosphorylated CtrA approximately P exhibits high affinity (dissociation constant [K(d)], <10 nM) for consensus TTAA-N7-TTAA binding sites with "typical" (N = 7) spacing. We show here that ctrA promoters P1 and P2 use low-affinity (K(d), >500 nM) CtrA binding sites with "atypical" (N not equal 7) spacing. Footprints demonstrated that phosphorylated CtrA approximately P does not exhibit increased affinity for "atypical" sites, as it does for sites in the replication origin. Instead, high levels of CtrA (>10 microM) accumulate, which can drive CtrA binding to "atypical" sites. In vivo cross-linking showed that when the stable CtrADelta3 protein persists during the cell cycle, the "atypical" sites at ctrA and motB are persistently bound. Interestingly, the cell cycle timing of ctrA P1 and P2 transcription is not altered by persistent CtrADelta3 binding. Therefore, operator DNA occupancy is not sufficient for regulation, and it is the cell cycle variation of CtrA approximately P phosphorylation that provides the dominant "activation" signal. Protein dimerization is one potential means of "activation." The glutathione S-transferase (GST) protein dimerizes, and fusion with CtrA (GST-CtrA) creates a stable dimer with enhanced affinity for TTAA motifs. Electrophoretic mobility shift assays with GST-CtrA revealed cooperative modes of binding that further distinguish the "atypical" sites. GST-CtrA also binds a single TTAA motif in ctrA P1 aided by DNA in the extended TTAACCAT motif. We discuss how "atypical" sites are a common yet distinct category of CtrA regulatory sites and new implications for the working and evolution of cell cycle control networks.
Collapse
|
37
|
Shaheen SM, Ouimet MC, Marczynski GT. Comparative analysis of Caulobacter chromosome replication origins. MICROBIOLOGY-SGM 2009; 155:1215-1225. [PMID: 19332823 DOI: 10.1099/mic.0.025528-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Caulobacter crescentus (CB15) initiates chromosome replication only in stalked cells and not in swarmers. To better understand this dimorphic control of chromosome replication, we isolated replication origins (oris) from freshwater Caulobacter (FWC) and marine Caulobacter (MCS) species. Previous studies implicated integration host factor (IHF) and CcrM DNA methylation sites in replication control. However, ori IHF and CcrM sites identified in the model FWC CB15 were only conserved among closely related FWCs. DnaA boxes and CtrA binding sites are established CB15 ori components. CtrA is a two-component regulator that blocks chromosome replication selectively in CB15 swarmers. DnaA boxes and CtrA sites were found in five FWC and three MCS oris. Usually, a DnaA box and a CtrA site were paired, suggesting that CtrA binding regulates DnaA activity. We tested this hypothesis by site-directed mutagenesis of an MCS10 ori which contains only one CtrA binding site overlapping a critical DnaA box. This overlapping site is unique in the whole MCS10 genome. Selective DnaA box mutations decreased replication, while selective CtrA binding site mutations increased replication of MCS10 ori plasmids. Therefore, both FWC and MCS oris use CtrA to repress replication. Despite this similarity, phylogenetic analysis unexpectedly shows that CtrA usage evolved separately among these Caulobacter oris. We discuss consensus oris and convergent ori evolution in differentiating bacteria.
Collapse
Affiliation(s)
- S M Shaheen
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| | - Marie-Claude Ouimet
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| | - Gregory T Marczynski
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
38
|
Bastedo DP, Marczynski GT. CtrA response regulator binding to the Caulobacter chromosome replication origin is required during nutrient and antibiotic stress as well as during cell cycle progression. Mol Microbiol 2009; 72:139-54. [PMID: 19220749 DOI: 10.1111/j.1365-2958.2009.06630.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Caulobacter crescentus chromosome replication origin (Cori) has five binding sites for CtrA, an OmpR/PhoB family 'response regulator'. CtrA is degraded in replicating 'stalked' cells but is abundant in the non-replicating 'swarmer' cells, where it was proposed to repress replication by binding to Cori. We systematically mutated all Cori CtrA binding sites, and examined their consequences in the contexts of autonomous Cori-plasmid replication and in the natural chromosome locus. Remarkably, the C. crescentus chromosome tolerates severe mutations in all five CtrA binding sites, demonstrating that CtrA is not essential for replication. Further physiological and cell cycle experiments more rigorously supported the original hypothesis that CtrA represses replication. However, our experiments argued against another hypothesis that residual and/or replenished CtrA protein in stalked cells might prevent extra or unscheduled chromosome replication before cell division. Surprisingly, we also demonstrated that Cori CtrA binding sites are very advantageous and can become essential when cells encounter nutrients and antibiotics. Therefore, the CtrA cell cycle regulator co-ordinates replication with viable cell growth in stressful and rapidly changing environments. We argue that this new role for CtrA provided the primary selective pressure for evolving control by CtrA.
Collapse
Affiliation(s)
- D Patrick Bastedo
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec, Canada
| | | |
Collapse
|
39
|
Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2008; 54:1-101. [PMID: 18929067 DOI: 10.1016/s0065-2911(08)00001-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell-cycle progression. Stage-specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell-cycle progression.
Collapse
|
40
|
SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 2008; 190:6867-80. [PMID: 18723629 DOI: 10.1128/jb.00700-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle progression and polar differentiation are temporally coordinated in Caulobacter crescentus. This oligotrophic bacterium divides asymmetrically to produce a motile swarmer cell that represses DNA replication and a sessile stalked cell that replicates its DNA. The initiation of DNA replication coincides with the proteolysis of the CtrA replication inhibitor and the accumulation of DnaA, the replication initiator, upon differentiation of the swarmer cell into a stalked cell. We analyzed the adaptive response of C. crescentus swarmer cells to carbon starvation and found that there was a block in both the swarmer-to-stalked cell polar differentiation program and the initiation of DNA replication. SpoT is a bifunctional synthase/hydrolase that controls the steady-state level of the stress-signaling nucleotide (p)ppGpp, and carbon starvation caused a SpoT-dependent increase in (p)ppGpp concentration. Carbon starvation activates DnaA proteolysis (B. Gorbatyuk and G. T. Marczynski, Mol. Microbiol. 55:1233-1245, 2005). We observed that SpoT is required for this phenomenon in swarmer cells, and in the absence of SpoT, carbon-starved swarmer cells inappropriately initiated DNA replication. Since SpoT controls (p)ppGpp abundance, we propose that this nucleotide relays carbon starvation signals to the cellular factors responsible for activating DnaA proteolysis, thereby inhibiting the initiation of DNA replication. SpoT, however, was not required for the carbon starvation block of the swarmer-to-stalked cell polar differentiation program. Thus, swarmer cells utilize at least two independent signaling pathways to relay carbon starvation signals: a SpoT-dependent pathway mediating the inhibition of DNA replication initiation, and a SpoT-independent pathway(s) that blocks morphological differentiation.
Collapse
|
41
|
Matta MK, Lioliou EE, Panagiotidis CH, Kyriakidis DA, Panagiotidis CA. Interactions of the antizyme AtoC with regulatory elements of the Escherichia coli atoDAEB operon. J Bacteriol 2007; 189:6324-32. [PMID: 17616594 PMCID: PMC1951910 DOI: 10.1128/jb.00214-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AtoC has a dual function as both an antizyme, the posttranslational inhibitor of polyamine biosynthetic enzymes, and the transcriptional regulator of genes involved in short-chain fatty acid catabolism (the atoDAEB operon). We have previously shown that AtoC is the response regulator of the AtoS-AtoC two-component signal transduction system that activates atoDAEB when Escherichia coli is exposed to acetoacetate. Here, we show that the same cis elements control both promoter inducibility and AtoC binding. Chromatin immunoprecipitation experiments confirmed the acetoacetate-inducible binding of AtoC to the predicted DNA region in vivo. DNase I protection footprinting analysis revealed that AtoC binds two 20-bp stretches, constituting an inverted palindrome, that are located at -146 to -107 relative to the transcription initiation site. Analyses of promoter mutants obtained by in vitro chemical mutagenesis of the atoDAEB promoter verified both the importance of AtoC binding for the inducibility of the promoter by acetoacetate and the sigma54 dependence of atoDAEB expression. The integration host factor was also identified as a critical component of the AtoC-mediated induction of atoDAEB.
Collapse
Affiliation(s)
- Meropi K Matta
- Department of Pharmaceutical Sciences, Laboratory of Biochemistry, Aristotle University, Thessaloniki 54124, Greece
| | | | | | | | | |
Collapse
|
42
|
Abstract
In all organisms, multi-subunit replicases are responsible for the accurate duplication of genetic material during cellular division. Initiator proteins control the onset of DNA replication and direct the assembly of replisomal components through a series of precisely timed protein-DNA and protein-protein interactions. Recent structural studies of the bacterial protein DnaA have helped to clarify the molecular mechanisms underlying initiator function, and suggest that key structural features of cellular initiators are universally conserved. Moreover, it appears that bacteria use a diverse range of regulatory strategies dedicated to tightly controlling replication initiation; in many cases, these mechanisms are intricately connected to the activities of DnaA at the origin of replication. This Review presents an overview of both the mechanism and regulation of bacterial DNA replication initiation, with emphasis on the features that are similar in eukaryotic and archaeal systems.
Collapse
Affiliation(s)
- Melissa L Mott
- Department of Molecular and Cell Biology, Quantitative Biology Institute, University of California, Berkeley, 237 Hildebrand Hall #3220, California 94720-3220, USA
| | | |
Collapse
|
43
|
Zakrzewska-Czerwińska J, Jakimowicz D, Zawilak-Pawlik A, Messer W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol Rev 2007; 31:378-87. [PMID: 17459114 DOI: 10.1111/j.1574-6976.2007.00070.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The initiation of chromosomal replication occurs only once during the cell cycle in both prokaryotes and eukaryotes. Initiation of chromosome replication is the first and tightly controlled step of a DNA synthesis. Bacterial chromosome replication is initiated at a single origin, oriC, by the initiator protein DnaA, which specifically interacts with 9-bp non-palindromic sequences (DnaA boxes) at oriC. In Escherichia coli, a model organism used to study the mechanism of DNA replication and its regulation, the control of initiation relies on a reduction of the availability and/or activity of the two key elements, DnaA and the oriC region. This review summarizes recent research into the regulatory mechanisms of the initiation of chromosomal replication in bacteria, with emphasis on organisms other than E. coli.
Collapse
|
44
|
Ichida H, Matsuyama T, Abe T, Koba T. DNA adenine methylation changes dramatically during establishment of symbiosis. FEBS J 2007; 274:951-62. [PMID: 17250744 DOI: 10.1111/j.1742-4658.2007.05643.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The DNA adenine methylation status on specific 5'-GANTC-3' sites and its change during the establishment of plant-microbe interactions was demonstrated in several species of alpha-proteobacteria. Restriction landmark genome scanning (RLGS), which is a high-resolution two dimensional DNA electrophoresis method, was used to monitor the genomewide change in methylation. In the case of Mesorhizobium loti MAFF303099, real RLGS images obtained with the restriction enzyme MboI, which digests at GATC sites, almost perfectly matched the virtual RLGS images generated based on genome sequences. However, only a few spots were observed when the restriction enzyme HinfI was used, suggesting that most GANTC (HinfI) sites were tightly methylated and specific sites were unmethylated. DNA gel blot analysis with the cloned specifically unmethylated regions (SUMs) showed that some SUMs were methylated differentially in bacteroids compared to free-living bacteria. SUMs have also been identified in other symbiotic and parasitic bacteria. These results suggest that DNA adenine methylation may contribute to the establishment and/or maintenance of symbiotic and parasitic relationships.
Collapse
Affiliation(s)
- Hiroyuki Ichida
- Graduate School of Science and Technology, Chiba University, Matsudo, Japan.
| | | | | | | |
Collapse
|
45
|
Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, Jagannath C, Madiraju MVVS, Rajagopalan M. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 2006; 60:643-57. [PMID: 16629667 DOI: 10.1111/j.1365-2958.2006.05137.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paired two-component regulatory systems consisting of a sensor kinase and a response regulator are the major means by which bacteria sense and respond to different stimuli. The role of essential response regulator, MtrA, in Mycobacterium tuberculosis proliferation is unknown. We showed that elevating the intracellular levels of MtrA prevented M. tuberculosis from multiplying in macrophages, mice lungs and spleens, but did not affect its growth in broth. Intracellular trafficking analysis revealed that a vast majority of MtrA overproducing merodiploids were associated with lysosomal associated membrane protein (LAMP-1) positive vacuoles, indicating that intracellular growth attenuation is, in part, due to an impaired ability to block phagosome-lysosome fusion. A merodiploid strain producing elevated levels of phosphorylation-defective MtrA (MtrA(D53N)) was partially replicative in macrophages, but was attenuated in mice. Quantitative real-time PCR analyses revealed that expression of dnaA, an essential replication gene, was sharply upregulated during intramacrophage growth in the MtrA overproducer in a phosphorylation-dependent manner. Chromatin immunoprecipitation using anti-MtrA antibodies provided direct evidence that MtrA regulator binds to dnaA promoter in vivo indicating that dnaA promoter is a MtrA target. Simultaneous overexpression of mtrA regulator and its cognate mtrB kinase neither inhibited growth nor sharply increased the expression levels of dnaA in macrophages. We propose that proliferation of M. tuberculosis in vivo depends, in part, on the optimal ratio of phosphorylated to non-phosphorylated MtrA response regulator.
Collapse
Affiliation(s)
- Marek Fol
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 U.S. Hwy @271, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
A genetic regulatory circuit recently described in the bacterium Caulobacter crescentus generates reciprocal oscillations in the abundance of two key transcription factors to control landmark events in the cell cycle.
Collapse
Affiliation(s)
- Craig Stephens
- Biology Department, Santa Clara University, Santa Clara, California 95053, USA.
| |
Collapse
|
47
|
Ausmees N, Jacobs-Wagner C. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 2004; 57:225-47. [PMID: 14527278 DOI: 10.1146/annurev.micro.57.030502.091006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dimorphic and intrinsically asymmetric bacterium Caulobacter crescentus has become an important model organism to study the bacterial cell cycle, cell polarity, and polar differentiation. A multifaceted regulatory network orchestrates the precise coordination between the development of polar organelles and the cell cycle. One master response regulator, CtrA, directly controls the initiation of chromosome replication as well as several aspects of polar morphogenesis and cell division. CtrA activity is temporally and spatially regulated by multiple partially redundant control mechanisms, such as transcription, phosphorylation, and targeted proteolysis. A multicomponent signal transduction network upstream CtrA, containing histidine kinases CckA, PleC, DivJ, and DivL and the essential response regulator DivK, contributes to the control of CtrA activity in response to cell cycle and developmental cues. An intriguing feature of this signaling network is the dynamic cell cycle-dependent polar localization of its components, which is believed to have a novel regulatory function.
Collapse
Affiliation(s)
- Nora Ausmees
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.
| | | |
Collapse
|
48
|
Siam R, Brassinga AKC, Marczynski GT. A dual binding site for integration host factor and the response regulator CtrA inside the Caulobacter crescentus replication origin. J Bacteriol 2003; 185:5563-72. [PMID: 12949109 PMCID: PMC193745 DOI: 10.1128/jb.185.18.5563-5572.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator CtrA controls chromosome replication by binding to five sites, a, b, c, d, and e, inside the Caulobacter crescentus replication origin (Cori). In this study, we demonstrate that integration host factor (IHF) binds Cori over the central CtrA binding site c. Surprisingly, IHF and CtrA share DNA recognition sequences. Rather than promoting cooperative binding, IHF binding hinders CtrA binding to site c and nearby site d. Unlike other CtrA binding sites, DNA mutations in the CtrA c/IHF site uniquely impair autonomous Cori plasmid replication. These mutations also alter transcription from distant promoters more than 100 bp away. When the CtrA c/IHF site was deleted from the chromosome, these cells grew slowly and became selectively intolerant to a CtrA phosphor-mimic allele (D51E). Since CtrA protein concentration decreases during the cell cycle as IHF protein concentration increases, we propose a model in which IHF displaces CtrA in order to bend Cori and promote efficient chromosome replication.
Collapse
Affiliation(s)
- Rania Siam
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | |
Collapse
|
49
|
Judd EM, Ryan KR, Moerner WE, Shapiro L, McAdams HH. Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci U S A 2003; 100:8235-40. [PMID: 12824468 PMCID: PMC166212 DOI: 10.1073/pnas.1433105100] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asymmetric cell division in Caulobacter crescentus yields daughter cells that have different cell fates. Compartmentalization of the predivisional cell is a critical event in the establishment of the differential distribution of regulatory factors that specify cell fate. To determine when during the cell cycle the cytoplasm is compartmentalized so that cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, we designed a fluorescence loss in photobleaching assay. Individual cells containing enhanced GFP were exposed to a bleaching laser pulse tightly focused at one cell pole. In compartmentalized cells, fluorescence disappears only in the compartment receiving the bleaching beam; in noncompartmentalized cells, fluorescence disappears from the entire cell. In a 135-min cell cycle, the cells were compartmentalized 18 +/- 5 min before the progeny cells separated. Clearance of the 22000 CtrA master transcriptional regulator molecules from the stalked portion of the predivisional cell is a controlling element of Caulobacter asymmetry. Monitoring of a fluorescent marker for CtrA showed that the differential degradation of CtrA in the nascent stalk cell compartment occurs only after the cytoplasm is compartmentalized.
Collapse
Affiliation(s)
- Ellen M. Judd
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - Kathleen R. Ryan
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - W. E. Moerner
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
| | - Harley H. McAdams
- Department of Developmental Biology, Stanford
University School of Medicine, 300 Beckman Center, Stanford, CA 94305;
Department of Chemistry, Stanford University,
375 North-South Mall, MC 5080, Stanford, CA 94305; and
Department of Applied Physics, Stanford
University, Stanford, CA 94305
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Siam R, Marczynski GT. Glutamate at the phosphorylation site of response regulator CtrA provides essential activities without increasing DNA binding. Nucleic Acids Res 2003; 31:1775-9. [PMID: 12626719 PMCID: PMC152873 DOI: 10.1093/nar/gkg271] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 01/16/2003] [Accepted: 01/16/2003] [Indexed: 11/12/2022] Open
Abstract
The essential response regulator CtrA controls the Caulobacter crescentus cell cycle and phosphorylated CtrA approximately P preferentially binds target DNA in vitro. The CtrA aspartate to glutamate (D51E) mutation mimics phosphorylated CtrA approximately P in vivo and rescues non-viable C.crescentus cells. However, we observe that the CtrA D51E and the unphosphorylated CtrA wild-type proteins have identical DNA affinities and produce identical DNase I protection footprints inside the C.crescentus replication origin. There fore, D51E promotes essential CtrA activities separate from increased DNA binding. Accordingly, we argue that CtrA protein recruitment to target DNA is not sufficient to regulate cell cycle progression.
Collapse
Affiliation(s)
- Rania Siam
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| | | |
Collapse
|