1
|
Mannherz W, Crompton A, Lampl N, Agarwal S. Metabolic constraint of human telomere length by nucleotide salvage efficiency. Nat Commun 2025; 16:3000. [PMID: 40148339 PMCID: PMC11950188 DOI: 10.1038/s41467-025-58221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Human telomere length is tightly regulated and associated with diseases at either extreme, but how these bounds are established remains incompletely understood. Here, we developed a rapid cell-based telomere synthesis assay and found that nucleoside salvage bidirectionally constrains human telomere length. Metabolism of deoxyguanosine (dG) or guanosine via purine nucleoside phosphorylase (PNP) and hypoxanthine-guanine phosphoribosyltransferase to form guanine ribonucleotides strongly inhibited telomerase and shortened telomeres. Conversely, salvage of dG to its nucleotide forms via deoxycytidine kinase drove potent telomerase activation, the extent of which was controlled by the dNTPase SAMHD1. Circumventing limits on salvage by expressing Drosophila melanogaster deoxynucleoside kinase or augmenting dG metabolism using the PNP inhibitor ulodesine robustly lengthened telomeres in human cells, including those from patients with lethal telomere diseases. Our results provide an updated paradigm for telomere length control, wherein telomerase reverse transcriptase activity is actively and bidirectionally constrained by the availability of its dNTP substrates, in a manner that may be therapeutically actionable.
Collapse
Affiliation(s)
- William Mannherz
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, MA, USA
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Andrew Crompton
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, MA, USA
| | - Noah Lampl
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Initiative for RNA Medicine, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Biological and Biomedical Sciences PhD Program, Harvard Medical School, Boston, MA, USA.
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Koplūnaitė M, Butkutė K, Stankevičiūtė J, Meškys R. Exploring the Mutated Kinases for Chemoenzymatic Synthesis of N4-Modified Cytidine Monophosphates. Molecules 2024; 29:3767. [PMID: 39202847 PMCID: PMC11357392 DOI: 10.3390/molecules29163767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.
Collapse
Affiliation(s)
| | | | | | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (K.B.); (J.S.)
| |
Collapse
|
3
|
Ni J, Zhuang J, Shi Y, Chiang YC, Cheng GJ. Discovery and substrate specificity engineering of nucleotide halogenases. Nat Commun 2024; 15:5254. [PMID: 38898020 PMCID: PMC11186838 DOI: 10.1038/s41467-024-49147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
C2'-halogenation has been recognized as an essential modification to enhance the drug-like properties of nucleotide analogs. The direct C2'-halogenation of the nucleotide 2'-deoxyadenosine-5'-monophosphate (dAMP) has recently been achieved using the Fe(II)/α-ketoglutarate-dependent nucleotide halogenase AdaV. However, the limited substrate scope of this enzyme hampers its broader applications. In this study, we report two halogenases capable of halogenating 2'-deoxyguanosine monophosphate (dGMP), thereby expanding the family of nucleotide halogenases. Computational studies reveal that nucleotide specificity is regulated by the binding pose of the phosphate group. Based on these findings, we successfully engineered the substrate specificity of these halogenases by mutating second-sphere residues. This work expands the toolbox of nucleotide halogenases and provides insights into the regulation mechanism of nucleotide specificity.
Collapse
Affiliation(s)
- Jie Ni
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Yiming Shi
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
4
|
Gan D, Ying J, Zhao Y. Prebiotic Chemistry: The Role of Trimetaphosphate in Prebiotic Chemical Evolution. Front Chem 2022; 10:941228. [PMID: 35910738 PMCID: PMC9326000 DOI: 10.3389/fchem.2022.941228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Life’s origins have always been a scientific puzzle. Understanding the production of biomolecules is crucial for understanding the evolution of life on Earth. Numerous studies on trimetaphosphate have been conducted in the field of prebiotic chemistry. However, its role in prebiotic chemistry has been documented infrequently in the review literature. The goal of this thesis is to review the role of trimetaphosphate in the early Earth’s biomolecule synthesis and phosphorylation. Additionally, various trimetaphosphate-mediated reaction pathways are discussed, as well as the role of trimetaphosphate in prebiotic chemistry. Finally, in our opinion, interactions between biomolecules should be considered in prebiotic synthesis scenarios since this may result in some advances in subsequent research on this subject. The research establishes an essential and opportune foundation for an in-depth examination of the “mystery of life".
Collapse
Affiliation(s)
- Dingwei Gan
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- *Correspondence: Jianxi Ying,
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Molina-Granada D, González-Vioque E, Dibley MG, Cabrera-Pérez R, Vallbona-Garcia A, Torres-Torronteras J, Sazanov LA, Ryan MT, Cámara Y, Martí R. Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit. Commun Biol 2022; 5:620. [PMID: 35739187 PMCID: PMC9226000 DOI: 10.1038/s42003-022-03568-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance.
Collapse
Affiliation(s)
- David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Emiliano González-Vioque
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Biochemistry, Hospital Universitario Puerta del Hierro-Majadahonda, Madrid, Spain
| | - Marris G Dibley
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Vallbona-Garcia
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Kang M, Doddapaneni K, Sarni S, Heppner Z, Wysocki V, Wu Z. Solution structure of the nucleotide hydrolase BlsM: Implication of its substrate specificity. Protein Sci 2021; 29:1760-1773. [PMID: 31876335 DOI: 10.1002/pro.3812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 11/06/2022]
Abstract
Biosynthesis of the peptidyl nucleoside antifungal agent blasticidin S in Streptomyces griseochromogenes requires the hydrolytic function of a nucleotide hydrolase, BlsM, to excise the free cytosine from the 5'-monophosphate cytosine nucleotide. In addition to its hydrolytic activity, interestingly, BlsM has also been shown to possess a novel cytidine deaminase activity, converting cytidine, and deoxycytidine to uridine and deoxyuridine. To gain insight into the substrate specificity of BlsM and the mechanism by which it performs these dual function, the solution structure of BlsM was determined by multi-dimensional nuclear magnetic resonance approaches. BlsM displays a nucleoside deoxyribosyltransferase-like dimeric topology, with each monomer consisting of a five-stranded β-sheet that is sandwiched by five α-helixes. Compared with the purine nucleotide hydrolase RCL, each monomer of BlsM has a smaller active site pocket, enclosed by a group of conserved hydrophobic residues from both monomers. The smaller size of active site is consistent with its substrate specificity for a pyrimidine, whereas a much more open active site, as in RCL might be required to accommodate a larger purine ring. In addition, BlsM confers its substrate specificity for a ribosyl-nucleotide through a key residue, Phe19. When mutated to a tyrosine, F19Y reverses its substrate preference. While significantly impaired in its hydrolytic capability, F19Y exhibited a pronounced deaminase activity on CMP, presumably due to an altered substrate orientation as a result of a steric clash between the 2'-hydroxyl of CMP and the ζ-OH group of F19Y. Finally, Glu105 appears to be critical for the dual function of BlsM.
Collapse
Affiliation(s)
- Minhee Kang
- Chemistry and Biochemistry Department, Ohio State University, Columbus, Ohio
| | - Kiran Doddapaneni
- Chemistry and Biochemistry Department, Ohio State University, Columbus, Ohio
| | - Samantha Sarni
- Chemistry and Biochemistry Department, Ohio State University, Columbus, Ohio
| | - Zach Heppner
- Chemistry and Biochemistry Department, Ohio State University, Columbus, Ohio
| | - Vicki Wysocki
- Chemistry and Biochemistry Department, Ohio State University, Columbus, Ohio
| | - Zhengrong Wu
- Chemistry and Biochemistry Department, Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Grosjean N, Blaby-Haas CE. Leveraging computational genomics to understand the molecular basis of metal homeostasis. THE NEW PHYTOLOGIST 2020; 228:1472-1489. [PMID: 32696981 DOI: 10.1111/nph.16820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Genome-based data is helping to reveal the diverse strategies plants and algae use to maintain metal homeostasis. In addition to acquisition, distribution and storage of metals, acclimating to feast or famine can involve a wealth of genes that we are just now starting to understand. The fast-paced acquisition of genome-based data, however, is far outpacing our ability to experimentally characterize protein function. Computational genomic approaches are needed to fill the gap between what is known and unknown. To avoid misconstruing bioinformatically derived data, which is the root cause of the inaccurate functional annotations that plague databases, functional inferences from diverse sources and contextualization of that evidence with a robust understanding of protein family evolution is needed. Phylogenomic- and comparative-genomic-based studies can aid in the interpretation of experimental data or provide a spark for the discovery of a new function. These analyses not only lead to novel insight into a target protein's function but can generate thought-provoking insights across protein families.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | |
Collapse
|
8
|
Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant. PLoS One 2017; 12:e0174163. [PMID: 28323896 PMCID: PMC5360312 DOI: 10.1371/journal.pone.0174163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/03/2017] [Indexed: 11/23/2022] Open
Abstract
One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1’-b-d-2’-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1’-b-d-2’-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo.
Collapse
|
9
|
Matsuura MF, Winiger CB, Shaw RW, Kim MJ, Kim MS, Daugherty AB, Chen F, Moussatche P, Moses JD, Lutz S, Benner SA. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System. ACS Synth Biol 2017; 6:388-394. [PMID: 27935283 DOI: 10.1021/acssynbio.6b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of an artificially expanded genetic information system (AEGIS). By shuffling hydrogen bonding groups on the nucleobases, AEGIS adds potentially as many as four additional nucleobase pairs to the genetic "alphabet". Specifically, we show that DmdNK Q81E creates the monophosphates from the AEGIS nucleosides dP, dZ, dX, and dK (respectively 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, dP; 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one, dZ; 8-(1'β-d-2'-deoxy-ribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione, dX; and 2,4-diamino-5-(1'-β-d-2'-deoxyribofuranosyl)-pyrimidine, dK). Using a coupled enzyme assay, in vitro kinetic parameters were obtained for three of these nucleosides (dP, dX, and dK; the UV absorbance of dZ made it impossible to get its precise kinetic parameters). Thus, DmdNK Q81E appears to be a suitable enzyme to catalyze the first step in the biosynthesis of AEGIS 2'-deoxynucleoside triphosphates in vitro and, perhaps, in vivo, in a cell able to manage plasmids containing AEGIS DNA.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christian B. Winiger
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ashley B. Daugherty
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Fei Chen
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Patricia Moussatche
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Stefan Lutz
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven A. Benner
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
10
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
11
|
|
12
|
Slot Christiansen L, Munch-Petersen B, Knecht W. Non-Viral Deoxyribonucleoside Kinases--Diversity and Practical Use. J Genet Genomics 2015; 42:235-48. [PMID: 26059771 DOI: 10.1016/j.jgg.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of great medical interest. However, during the last 20 years, research on dNKs has gone into non-mammalian organisms. In this review, we focus on non-viral dNKs, in particular their diversity and their practical applications. The diversity of this enzyme family in different organisms has proven to be valuable in studying the evolution of enzymes. Some of these newly discovered enzymes have been useful in numerous practical applications in medicine and biotechnology, and have contributed to our understanding of the structural basis of nucleoside and nucleoside analogue activation.
Collapse
Affiliation(s)
| | - Birgitte Munch-Petersen
- Department of Biology, Lund University, Lund 22362, Sweden; Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; Lund Protein Production Platform, Lund University, Lund 22362, Sweden.
| |
Collapse
|
13
|
Konrad A, Lai J, Mutahir Z, Piškur J, Liberles DA. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa. J Mol Evol 2014; 78:202-16. [PMID: 24500774 DOI: 10.1007/s00239-014-9611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to the two different enzyme classes. The structural models showed that the carboxyl terminus of the ancestral sequence is more helical than dNK, in common with TK2, although any implications of this for enzyme specificity will require biochemical validation. Finally, rate-shift and conservation-shift analysis between clades with different specificities uncovered candidate residues outside the active site pocket which may have contributed to differentiation in substrate specificity between enzyme clades.
Collapse
Affiliation(s)
- Anke Konrad
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA,
| | | | | | | | | |
Collapse
|
14
|
Serra I, Conti S, Piškur J, Clausen AR, Munch-Petersen B, Terreni M, Ubiali D. ImmobilizedDrosophila melanogasterDeoxyribonucleoside Kinase (DmdNK) as a High Performing Biocatalyst for the Synthesis of Purine Arabinonucleotides. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Mutahir Z, Clausen AR, Andersson KM, Wisen SM, Munch-Petersen B, Piškur J. Thymidine kinase 1 regulatory fine-tuning through tetramer formation. FEBS J 2013; 280:1531-41. [PMID: 23351158 DOI: 10.1111/febs.12154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/30/2022]
Abstract
Thymidine kinase 1 (TK1) provides a crucial precursor, deoxythymidine monophosphate, for nucleic acid synthesis, and the activity of TK1 increases by up to 200-fold during the S-phase of cell division in humans. An important part of the regulatory checkpoints is the ATP and enzyme concentration-dependent transition of TK1 from a dimer with low catalytic efficiency to a tetramer with high catalytic efficiency. This regulatory fine-tuning serves as an additional control to provide a balanced pool of nucleic acid precursors in the cell. We subcloned and over-expressed 10 different TK1s, originating from widely different organisms, and characterized their kinetic and oligomerization properties. Whilst bacteria, plants and Dictyostelium only exhibited dimeric TK1, we found that all animals had a tetrameric TK1. However, a clear ATP-dependent switch between dimer and tetramer was found only in higher vertebrates and was especially pronounced in mammalian and bird TK1s. We suggest that the dimer form is the original form and that the tetramer originated in the animal lineage after the split of Dictyostelium and the lineages leading to invertebrates and vertebrates. The efficient switching mechanism was probably first established in warm-blooded animals when they separated from the rest of the vertebrates.
Collapse
|
16
|
Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H, Li Q, Freitag L, Zarogoulidis K, Malecki M. Suicide Gene Therapy for Cancer - Current Strategies. ACTA ACUST UNITED AC 2013; 4. [PMID: 24294541 DOI: 10.4172/2157-7412.1000139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current cancer treatments may create profound iatrogenic outcomes. The adverse effects of these treatments still remain, as the serious problems that practicing physicians have to cope with in clinical practice. Although, non-specific cytotoxic agents constitute an effective treatment modality against cancer cells, they also tend to kill normal, quickly dividing cells. On the other hand, therapies targeting the genome of the tumors are both under investigation, and some others are already streamlined to clinical practice. Several approaches have been investigated in order to find a treatment targeting the cancer cells, while not affecting the normal cells. Suicide gene therapy is a therapeutic strategy, in which cell suicide inducing transgenes are introduced into cancer cells. The two major suicide gene therapeutic strategies currently pursued are: cytosine deaminase/5-fluorocytosine and the herpes simplex virus/ganciclovir. The novel strategies include silencing gene expression, expression of intracellular antibodies blocking cells' vital pathways, and transgenic expression of caspases and DNases. We analyze various elements of cancer cells' suicide inducing strategies including: targets, vectors, and mechanisms. These strategies have been extensively investigated in various types of cancers, while exploring multiple delivery routes including viruses, non-viral vectors, liposomes, nanoparticles, and stem cells. We discuss various stages of streamlining of the suicide gene therapy into clinical oncology as applied to different types of cancer. Moreover, suicide gene therapy is in the center of attention as a strategy preventing cancer from developing in patients participating in the clinical trials of regenerative medicine. In oncology, these clinical trials are aimed at regenerating, with the aid of stem cells, of the patients' organs damaged by pathologic and/or iatrogenic factors. However, the stem cells carry the risk of neoplasmic transformation. We discuss cell suicide inducing strategies aimed at preventing stem cell-originated cancerogenesis.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, "G. Papanikolaou" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece, EU ; Department of Interventional Pneumology, Ruhrlandklinik, West German Lung Center, University Hospital, University Duisburg-Essen, Essen, Germany, EU
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
ZHANG NIANQU, DONG XIAOSHEN, SUN YIQUN, CAI XIAOPENG, ZHENG CAIWEI, HE ANNING, XU KE, ZHENG XINYU. Cytotoxic effects of adenovirus- and lentivirus-mediated expression of Drosophila melanogaster deoxyribonucleoside kinase on Bcap37 breast cancer cells. Oncol Rep 2012; 29:960-6. [DOI: 10.3892/or.2012.2194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/02/2012] [Indexed: 11/05/2022] Open
|
18
|
Ardiani A, Johnson AJ, Ruan H, Sanchez-Bonilla M, Serve K, Black ME. Enzymes to die for: exploiting nucleotide metabolizing enzymes for cancer gene therapy. Curr Gene Ther 2012; 12:77-91. [PMID: 22384805 DOI: 10.2174/156652312800099571] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 11/22/2022]
Abstract
Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects.
Collapse
Affiliation(s)
- Andressa Ardiani
- School of Molecular Biosciences, Washington State University, Pullman, 99164-7520, USA
| | | | | | | | | | | |
Collapse
|
19
|
ZHANG NIANQU, ZHAO LEI, MA SHUAI, GU MING, ZHENG XINYU. Lentivirus-mediated expression of Drosophila melanogaster deoxyribonucleoside kinase driven by the hTERT promoter combined with gemcitabine: A potential strategy for cancer therapy. Int J Mol Med 2012; 30:659-65. [DOI: 10.3892/ijmm.2012.1033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/28/2012] [Indexed: 11/05/2022] Open
|
20
|
Zhang NQ, Zhao L, Ma S, Gu M, Zheng XY. Potent Anticancer Effects of Lentivirus Encoding a Drosophila Melanogaster Deoxyribonucleoside Kinase Mutant Combined with Brivudine. Asian Pac J Cancer Prev 2012; 13:2121-7. [DOI: 10.7314/apjcp.2012.13.5.2121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Skovgaard T, Uhlin U, Munch-Petersen B. Comparative active-site mutation study of human and Caenorhabditis elegans thymidine kinase 1. FEBS J 2012; 279:1777-87. [DOI: 10.1111/j.1742-4658.2012.08554.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Ma S, Zhao L, Zhu Z, Liu Q, Xu H, Johansson M, Karlsson A, Zheng X. The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster as a therapeutic suicide gene of breast cancer cells. J Gene Med 2011; 13:305-11. [PMID: 21674733 DOI: 10.1002/jgm.1573] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) was investigated for its broader substrate specificity and higher catalytic rate as a suicide gene in a combined gene/chemotherapy of cancer. METHODS To evaluate the effects of nucleoside analog phosphorylation by Dm-dNK in vitro and in vivo, we generated a replication-deficient retroviral vector expressing Dm-dNK to transduce human breast cancer cells MCF7 (ER+) and MDA-MB-231 (ER-). We further determined the enzymatic activity and the sensitivity of the nontransduced and Dm-dNK-transduced 231/dNK and MCF7/dNK cells to the pyrimidine nucleoside analogs araC and araT. RESULTS The data obtained show that Dm-dNK is enzymatically active and its overexpression in the nuclei of breast cancer cells results in an increased sensitivity to the nucleoside analogs araC and araT in vitro. Furthermore, subcutaneously transplanted 231/dNK cells were significantly inhibited after araC treatment, whereas nontransduced cancer cells continued to grow and develop in vivo. CONCLUSIONS These results suggest that the Dm-dNK/nucleoside analog system could be a novel therapeutic strategy for treating breast cancer and improving anti-tumor efficacy, as well as for optimizing approaches for suicide gene therapy.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tyynismaa H, Sun R, Ahola-Erkkilä S, Almusa H, Pöyhönen R, Korpela M, Honkaniemi J, Isohanni P, Paetau A, Wang L, Suomalainen A. Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum Mol Genet 2011; 21:66-75. [PMID: 21937588 DOI: 10.1093/hmg/ddr438] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autosomal-inherited progressive external ophthalmoplegia (PEO) is an adult-onset disease characterized by the accumulation of multiple mitochondrial DNA (mtDNA) deletions in post-mitotic tissues. Mutations in six different genes have been described to cause the autosomal dominant form of the disease, but only mutations in the DNA polymerase gamma gene are known to cause autosomal recessive PEO (arPEO), leaving the genetic background of arPEO mostly unknown. Here we used whole-exome sequencing and identified compound heterozygous mutations, leading to two amino acid alterations R225W and a novel T230A in thymidine kinase 2 (TK2) in arPEO patients. TK2 is an enzyme of the mitochondrial nucleotide salvage pathway and its loss-of-function mutations have previously been shown to underlie the early-infantile myopathic form of mtDNA depletion syndrome (MDS). Our TK2 activity measurements of patient fibroblasts and mutant recombinant proteins show that the combination of the identified arPEO variants, R225W and T230A, leads to a significant reduction in TK2 activity, consistent with the late-onset phenotype, whereas homozygosity for R225W, previously associated with MDS, leads to near-total loss of activity. Our finding identifies a new genetic cause of arPEO with multiple mtDNA deletions. Furthermore, MDS and multiple mtDNA deletion disorders are manifestations of the same pathogenic pathways affecting mtDNA replication and repair, indicating that MDS-associated genes should be studied when searching for genetic background of PEO disorders.
Collapse
Affiliation(s)
- Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tomoike F, Nakagawa N, Kuramitsu S, Masui R. A single amino acid limits the substrate specificity of Thermus thermophilus uridine-cytidine kinase to cytidine. Biochemistry 2011; 50:4597-607. [PMID: 21539325 DOI: 10.1021/bi102054n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The salvage pathways of nucleotide biosynthesis are more diverse and are less well understood as compared with de novo pathways. Uridine-cytidine kinase (UCK) is the rate-limiting enzyme in the pyrimidine-nucleotide salvage pathway. In this study, we have characterized a UCK homologue of Thermus thermophilus HB8 (ttCK) biochemically and structurally. Unlike other UCKs, ttCK had substrate specificity toward only cytidine and showed no inhibition by UTP, suggesting uridine does not bind to ttCK as substrate. Structural analysis revealed that the histidine residue located near the functional group at position 4 of cytidine or uridine in most UCKs is substituted with tyrosine, Tyr93, in ttCK. Replacement of Tyr93 by histidine or glutamine endowed ttCK with phosphorylation activity toward uridine. These results suggested that a single amino acid residue, Tyr93, gives cytidine-limited specificity to ttCK. However, replacement of Tyr93 by Phe or Leu did not change the substrate specificity of ttCK. Therefore, we conclude that a residue at this position is essential for the recognition of uridine by UCK. In addition, thymidine phosphorylase from T. thermophilus HB8 was equally active with thymidine and uridine, which indicates that this protein is the sole enzyme metabolizing uridine in T. Thermophilus HB8. On the basis of these results, we discuss the pyrimidine-salvage pathway in T. thermophilus HB8.
Collapse
Affiliation(s)
- Fumiaki Tomoike
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
25
|
Clausen AR, Al Meani SAL, Piskur J. Pasteurella multocida thymidine kinase 1 efficiently activates pyrimidine nucleoside analogs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:359-62. [PMID: 20544520 DOI: 10.1080/15257771003729716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the Pasteurella multocida genome only one putative deoxyribonucleoside kinase encoding gene, for thymidine kinase 1 (PmTK1), was identified. The PmTK1 gene was sub-cloned into Escherichia coli KY895 and it sensitized the host towards 2',2'-difluoro-deoxycytidine (gemcitabine, dFdC), 3'-azido-thymidine (AZT) and 5-fluoro-deoxyuridine (5F-dU). PmTK1 was over-expressed and purified with two different tags. Apparently, deoxyuridine (dU), and not thymidine (dT), is the preferred substrate. We suggest that PmTK1s could be employed as a species-specific activator of uracil-based nucleoside antibiotics.
Collapse
Affiliation(s)
- A R Clausen
- Department of Cell and Organism Biology, Lund University, Solvegatan, Lund, Sweden.
| | | | | |
Collapse
|
26
|
Christoffersen S, Serra I, Terreni M, Piskur J. Nucleoside phosphorylases from clostridium perfringens in the synthesis of 2',3'-dideoxyinosine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:445-8. [PMID: 20544534 DOI: 10.1080/15257771003741422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Four Clostridium perfringens phosphorylases were subcloned, overexpressed and analyzed for their substrate specificity. DeoD(1) and PunA could use a variety of purine substrates, including an antiviral drug 2',3'-dideoxyinosine (ddI). In one-pot synthesis using Clostridium phosphorylases, 2',3'-dideoxyuridine and hypoxanthine were converted to ddI at yield of about 30%.
Collapse
Affiliation(s)
- S Christoffersen
- Department of Cell and Organism Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
27
|
Hazra S, Konrad M, Lavie A. The sugar ring of the nucleoside is required for productive substrate positioning in the active site of human deoxycytidine kinase (dCK): implications for the development of dCK-activated acyclic guanine analogues. J Med Chem 2010; 53:5792-800. [PMID: 20684612 DOI: 10.1021/jm1005379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The low toxicity of acyclovir (ACV) is mainly due to the fact that human nucleoside kinases have undetectable phosphorylation rates with this acyclic guanine analogue. In contrast, herpes virus thymidine kinase (HSV1-TK) readily activates ACV. We wanted to understand why human deoxycytidine kinase (dCK), which is related to HSV1-TK and phosphorylates deoxyguanosine, does not accept acyclic guanine analogues as substrates. Therefore, we crystallized dCK in complex with ACV at the nucleoside phosphoryl acceptor site and UDP at the phosphoryl donor site. The structure reveals that while ACV does bind at the dCK active site, it does so adopting a nonproductive conformation. Despite binding ACV, the enzyme remains in the open, inactive state. In comparison to ACV binding to HSV1-TK, in dCK, the nucleoside base adopts a different orientation related by about a 60 degrees rotation. Our analysis suggests that dCK would phosphorylate acyclic guanine analogues if they can induce a similar rotation.
Collapse
Affiliation(s)
- Saugata Hazra
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
28
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
29
|
Lutz S, Liu L, Liu Y. Engineering Kinases to Phosphorylate Nucleoside Analogs for Antiviral and Cancer Therapy. Chimia (Aarau) 2009; 63:737-744. [PMID: 20305804 DOI: 10.2533/chimia.2009.737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enzyme engineering by directed evolution presents a powerful strategy for tailoring the function and physicochemical properties of biocatalysts to therapeutic and industrial applications. Our laboratory's research focuses on developing novel molecular tools for protein engineering, as well as on utilizing these methods to customize enzymes and to study fundamental aspects of their structure and function. Specifically, we are interested in nucleoside and nucleotide kinases which are responsible for the intracellular phosphorylation of nucleoside analog (NA) prodrugs to their biologically active triphosphates. The high substrate specificity of the cellular kinases often interferes with prodrug activation and consequently lowers the potency of NAs as antiviral and cancer therapeutics. A working solution to the problem is the co-adminstration of a promiscuous kinase from viruses, bacteria, and other mammals. However, further therapeutic enhancements of NAs depend on the selective and efficient prodrug phosphorylation. In the absence of true NA kinases in nature, we are pursuing laboratory evolution strategies to generate efficient phosphoryl-transfer catalysts. This review summarizes some of our recent work in the field and outlines future challenges.
Collapse
|
30
|
Acidic residues in the purine binding site govern the 6-oxopurine specificity of the Leishmania donovani xanthine phosphoribosyltransferase. Int J Biochem Cell Biol 2009; 42:253-62. [PMID: 19861168 DOI: 10.1016/j.biocel.2009.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/08/2009] [Accepted: 10/16/2009] [Indexed: 11/22/2022]
Abstract
Leishmania possess distinct xanthine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase enzymes that mediate purine salvage, an obligatory nutritional function for these pathogenic parasites. The xanthine phosphoribosyltransferase preferentially uses xanthine as a substrate, while the hypoxanthine-guanine phosphoribosyltransferase phosphoribosylates only hypoxanthine and guanine. These related phosphoribosyltransferases were used as model system to investigate the molecular determinants regulating the 6-oxopurine specificity of these enzymes. Analysis of the purine binding domains showed two conserved acidic amino acids; glutamate residues in the xanthine phosphoribosyltransferase (E198 and E215) and aspartate residues in the hypoxanthine-guanine phosphoribosyltransferase (D168 and D185). Genetic and biochemical analysis established that the single E198D and E215D mutations increased the turnover rates of the xanthine phosphoribosyltransferase without altering purine nucleobase specificity. However, the E215Q and E198,215D mutations converted the Leishmania xanthine phosphoribosyltransferase into a broad-specificity enzyme capable of utilizing guanine, hypoxanthine, and xanthine as substrates. Similarly, the D168,185E double mutation transformed the Leishmania hypoxanthine-guanine phosphoribosyltransferase into a mutant enzyme capable phosphoribosylating only xanthine, albeit with a much lower catalytic efficiency. These studies established that these conserved acidic residues play an important role in governing the nucleobase selectivity of the Leishmania 6-oxopurine phosphoribosyltransferases.
Collapse
|
31
|
Hazra S, Sabini E, Ort S, Konrad M, Lavie A. Extending thymidine kinase activity to the catalytic repertoire of human deoxycytidine kinase. Biochemistry 2009; 48:1256-63. [PMID: 19159229 DOI: 10.1021/bi802062w] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Salvage of nucleosides in the cytosol of human cells is carried out by deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1). Whereas TK1 is only responsible for thymidine phosphorylation, dCK is capable of converting dC, dA, and dG into their monophosphate forms. Using structural data on dCK, we predicted that select mutations at the active site would, in addition to making the enzyme faster, expand the catalytic repertoire of dCK to include thymidine. Specifically, we hypothesized that steric repulsion between the methyl group of the thymine base and Arg104 is the main factor preventing the phosphorylation of thymidine by wild-type dCK. Here we present kinetic data on several dCK variants where Arg104 has been replaced by select residues, all performed in combination with the mutation of Asp133 to an alanine. We show that several hydrophobic residues at position 104 endow dCK with thymidine kinase activity. Depending on the exact nature of the mutations, the enzyme's substrate preference is modified. The R104M-D133A double mutant is a pyrimidine-specific enzyme due to large K(m) values with purines. The crystal structure of the double mutant R104M-D133A in complex with the L-form of thymidine supplies a structural explanation for the ability of this variant to phosphorylate thymidine and thymidine analogs. The replacement of Arg104 by a smaller residue allows L-dT to bind deeper into the active site, making space for the C5-methyl group of the thymine base. The unique catalytic properties of several of the mutants make them good candidates for suicide-gene/protein-therapy applications.
Collapse
Affiliation(s)
- Saugata Hazra
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland (M/C 669), Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
32
|
Liu L, Li Y, Liotta D, Lutz S. Directed evolution of an orthogonal nucleoside analog kinase via fluorescence-activated cell sorting. Nucleic Acids Res 2009; 37:4472-81. [PMID: 19474348 PMCID: PMC2715250 DOI: 10.1093/nar/gkp400] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nucleoside analogs (NAs) represent an important category of prodrugs for the treatment of viral infections and cancer, yet the biological potency of many analogs is compromised by their inefficient activation through cellular 2′-deoxyribonucleoside kinases (dNKs). We herein report the directed evolution and characterization of an orthogonal NA kinase for 3′-deoxythymidine (ddT), using a new FACS-based screening protocol in combination with a fluorescent analog of ddT. Four rounds of random mutagenesis and DNA shuffling of Drosophila melanogaster 2′-deoxynucleoside kinase, followed by FACS analysis, yielded an orthogonal ddT kinase with a 6-fold higher activity for the NA and a 20-fold kcat/KM preference for ddT over thymidine, an overall 10 000-fold change in substrate specificity. The contributions of individual amino acid substitutions in the ddT kinase were evaluated by reverse engineering, enabling a detailed structure–function analysis to rationalize the observed changes in performance. Based on our results, kinase engineering with fluorescent NAs and FACS should prove a highly versatile method for evolving selective kinase:NA pairs and for studying fundamental aspects of the structure–function relationship in dNKs.
Collapse
Affiliation(s)
- Lingfeng Liu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
33
|
Development of gene therapy in association with clinically used cytotoxic deoxynucleoside analogues. Cancer Gene Ther 2009; 16:541-50. [PMID: 19343063 DOI: 10.1038/cgt.2009.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical use of cytotoxic deoxynucleoside analogues is often limited by resistance mechanisms due to enzymatic deficiency, or high toxicity in nontumor tissues. To improve the use of these drugs, gene therapy approaches have been proposed and studied, associating clinically used deoxynucleoside analogues such as araC and gemcitabine and suicide genes or myeloprotective genes. In this review, we provide an update of recent results in this area, with particular emphasis on human deoxycytidine kinase, the deoxyribonucleoside kinase from Drosophila melanogaster, purine nucleoside phosphorylase from Escherichia coli, and human cytidine deaminase. Data from literature clearly show the feasibility of these systems, and clinical trials are warranted to conclude on their use in the treatment of cancer patients.
Collapse
|
34
|
Knecht W, Mikkelsen NE, Clausen AR, Willer M, Eklund H, Gojković Z, Piskur J. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine. Biochem Biophys Res Commun 2009; 382:430-3. [PMID: 19285960 DOI: 10.1016/j.bbrc.2009.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/07/2009] [Indexed: 11/15/2022]
Abstract
Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.
Collapse
Affiliation(s)
- Wolfgang Knecht
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
35
|
Mikkelsen NE, Munch-Petersen B, Eklund H. Structural studies of nucleoside analog and feedback inhibitor binding to Drosophila melanogaster multisubstrate deoxyribonucleoside kinase. FEBS J 2008; 275:2151-60. [PMID: 18384378 DOI: 10.1111/j.1742-4658.2008.06369.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (dNK; EC 2.7.1.145) has a high turnover rate and a wide substrate range that makes it a very good candidate for gene therapy. This concept is based on introducing a suicide gene into malignant cells in order to activate a prodrug that eventually may kill the cell. To be able to optimize the function of dNK, it is vital to have structural information of dNK complexes. In this study we present crystal structures of dNK complexed with four different nucleoside analogs (floxuridine, brivudine, zidovudine and zalcitabine) and relate them to the binding of substrate and feedback inhibitors. dCTP and dGTP bind with the base in the substrate site, similarly to the binding of the feedback inhibitor dTTP. All nucleoside analogs investigated bound in a manner similar to that of the pyrimidine substrates, with many interactions in common. In contrast, the base of dGTP adopted a syn-conformation to adapt to the available space of the active site.
Collapse
Affiliation(s)
- Nils E Mikkelsen
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden
| | | | | |
Collapse
|
36
|
Iyidogan P, Lutz S. Systematic exploration of active site mutations on human deoxycytidine kinase substrate specificity. Biochemistry 2008; 47:4711-20. [PMID: 18361501 DOI: 10.1021/bi800157e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human deoxycytidine kinase (dCK) is responsible for the phosphorylation of a number of clinically important nucleoside analogue prodrugs in addition to its natural substrates, 2'-deoxycytidine, 2'-deoxyguanosine, and 2'-deoxyadenosine. To improve the low catalytic activity and tailor the substrate specificity of dCK, we have constructed libraries of mutant enzymes and tested them for thymidine kinase (tk) activity. Random mutagenesis was employed to probe for amino acid positions with an impact on substrate specificity throughout the entire enzyme structure, identifying positions Arg104 and Asp133 in the active site as key residues for substrate specificity. Kinetic analysis indicates that Arg104Gln/Asp133Gly creates a "generalist" kinase with broader specificity and elevated turnover for natural and prodrug substrates. In contrast, the substitutions of Arg104Met/Asp133Thr, obtained via site-saturation mutagenesis, yielded a mutant with reversed substrate specificity, elevating the specific constant for thymidine phosphorylation by over 1000-fold while eliminating activity for dC, dA, and dG under physiological conditions. The results illuminate the key contributions of these two amino acid positions to enzyme function by demonstrating their ability to moderate substrate specificity.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | |
Collapse
|
37
|
Abstract
Laccase catalyzes the polymerization of pyrrole into a conducting polymer using dioxygen as the terminal oxidant. This finding is significant, because it identifies an enzymatic route, and thus an environmentally benign method, for preparing a technologically important polymer. In addition, the rate of oxidation of pyrrole increases when the redox molecule, ABTS [2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate)], is included in a reaction medium that contains laccase. This increase in rate occurs because laccase catalyzes the oxidation of ABTS to ABTS*. In addition to laccase, the biocatalytically generated ABTS* oxidizes pyrrole to its corresponding radical cation to yield polypyrrole. Moreover, oxidation of pyrrole by ABTS* regenerates ABTS for subsequent biocatalytic turnover. Including ABTS in the reaction medium has two important consequences for the final product: (a) The reaction proceeds rapidly enough to form polymeric films instead of oligomeric precipitates, and (b) ABTS remains within the polymeric film as a redox-active dopant. The charge transport properties of the resulting polymers, both with and without ABTS as the counteranion, are compared to those of other conducting materials including polypyrrole prepared electrochemically or chemically.
Collapse
Affiliation(s)
- Hyun-Kon Song
- Division of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
38
|
Knecht W, Rozpedowska E, Le Breton C, Willer M, Gojkovic Z, Sandrini MPB, Joergensen T, Hasholt L, Munch-Petersen B, Piskur J. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs. Gene Ther 2007; 14:1278-86. [PMID: 17581598 DOI: 10.1038/sj.gt.3302982] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transduced deoxyribonucleoside kinases (dNK) can be used to kill recipient cells in combination with nucleoside prodrugs. The Drosophila melanogaster multisubstrate dNK (Dm-dNK) displays a superior turnover rate and has a great plasticity regarding its substrates. We used directed evolution to create Dm-dNK mutants with increased specificity for several nucleoside analogs (NAs) used as anticancer or antiviral drugs. Four mutants were characterized for the ability to sensitize Escherichia coli toward analogs and for their substrate specificity and kinetic parameters. The mutants had a reduced ability to phosphorylate pyrimidines, while the ability to phosphorylate purine analogs was relatively similar to the wild-type enzyme. We selected two mutants, for expression in the osteosarcoma 143B, the glioblastoma U-87M-G and the breast cancer MCF7 cell lines. The sensitivities of the transduced cell lines in the presence of the NAs fludarabine (F-AraA), cladribine (CdA), vidarabine and cytarabine were compared to the parental cell lines. The sensitivity of 143B cells was increased by 470-fold in the presence of CdA and of U-87M-G cells by 435-fold in the presence of F-AraA. We also show that a choice of the selection and screening system plays a crucial role when optimizing suicide genes by directed evolution.
Collapse
Affiliation(s)
- W Knecht
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Egeblad-Welin L, Sonntag Y, Eklund H, Munch-Petersen B. Functional studies of active-site mutants from Drosophila melanogaster deoxyribonucleoside kinase. Investigations of the putative catalytic glutamate-arginine pair and of residues responsible for substrate specificity. FEBS J 2007; 274:1542-51. [PMID: 17302737 DOI: 10.1111/j.1742-4658.2007.05701.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The catalytic reaction mechanism and binding of substrates was investigated for the multisubstrate Drosophila melanogaster deoxyribonucleoside kinase. Mutation of E52 to D, Q and H plus mutations of R105 to K and H were performed to investigate the proposed catalytic reaction mechanism, in which E52 acts as an initiating base and R105 is thought to stabilize the transition state of the reaction. Mutant enzymes (E52D, E52H and R105H) showed a markedly decreased k(cat), while the catalytic activity of E52Q and R105K was abolished. The E52D mutant was crystallized with its feedback inhibitor dTTP. The backbone conformation remained unchanged, and coordination between D52 and the dTTP-Mg complex was observed. The observed decrease in k(cat) for E52D was most likely due to an increased distance between the catalytic carboxyl group and 5'-OH of deoxythymidine (dThd) or deoxycytidine (dCyd). Mutation of Q81 to N and Y70 to W was carried out to investigate substrate binding. The mutations primarily affected the K(m) values, whereas the k(cat) values were of the same magnitude as for the wild-type. The Y70W mutation made the enzyme lose activity towards purines and negative cooperativity towards dThd and dCyd was observed. The Q81N mutation showed a 200- and 100-fold increase in K(m), whereas k(cat) was decreased five- and twofold for dThd and dCyd, respectively, supporting a role in substrate binding. These observations give insight into the mechanisms of substrate binding and catalysis, which is important for developing novel suicide genes and drugs for use in gene therapy.
Collapse
Affiliation(s)
- Louise Egeblad-Welin
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
40
|
Gerth ML, Lutz S. Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities. J Mol Biol 2007; 370:742-51. [PMID: 17543337 PMCID: PMC1986717 DOI: 10.1016/j.jmb.2007.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 04/29/2007] [Accepted: 05/02/2007] [Indexed: 11/26/2022]
Abstract
In antiviral and cancer therapy, deoxyribonucleoside kinases (dNKs) are often the rate-limiting step in activating nucleoside analog (NA) prodrugs into their cytotoxic, phosphorylated forms. We have constructed libraries of hybrid enzymes by non-homologous recombination of the pyrimidine-specific human thymidine kinase 2 and the broad-specificity dNK from Drosophila melanogaster; their low sequence identity has precluded engineering by conventional, homology-dependent shuffling techniques. From these libraries, we identified chimeras that phosphorylate nucleoside analogs with higher activity than either parental enzyme, and that possess new activity towards the anti-HIV prodrug 2',3'-didehydro-3'-deoxythymidine (d4T). These results demonstrate the potential of non-homologous recombination within the dNK family for creating enzymes with new and improved activities towards nucleoside analogs. In addition, our results exposed a previously unknown role for the C-terminal regions of these dNKs in determining substrate selectivity.
Collapse
|
41
|
Gerth ML, Lutz S. Mutagenesis of non-conserved active site residues improves the activity and narrows the specificity of human thymidine kinase 2. Biochem Biophys Res Commun 2007; 354:802-7. [PMID: 17266931 PMCID: PMC1853344 DOI: 10.1016/j.bbrc.2007.01.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 01/16/2007] [Indexed: 11/26/2022]
Abstract
Human thymidine kinase 2 (TK2) is critical for the nucleotide salvage pathway and phosphorylation of nucleoside analog prodrugs in vivo; however, it remains poorly studied because of difficulties in expressing it heterologously. TK2 is strictly pyrimidine-specific, whereas its phylogenetic relative, the Drosophila melanogaster deoxyribonucleoside kinase (DmdNK), shows higher activity and broader specificity towards both pyrimidines and purines. These differences are counterintuitive, as only two of 29 active site residues differ in the two enzymes: F80 and M118 in DmdNK are L78 and L116 in TK2. In addition to reporting an optimized protocol for the expression and purification of TK2, we have used site-directed mutagenesis to introduce the DmdNK-like amino acids into TK2, and characterized the three resulting enzymes (L78F-TK2, L116M-TK2, and L78F/L116M-TK2). These mutations improve the K(M) for thymidine, increasing the catalytic activity of L78F/L116M-TK2 4.4-fold, yet leaving the activity for deoxycytidine or the purine nucleosides unchanged.
Collapse
Affiliation(s)
- Monica L Gerth
- Chemistry Department, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
42
|
Sandrini MPB, Clausen AR, Munch-Petersen B, Piskur J. Thymidine kinase diversity in bacteria. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1153-8. [PMID: 17065081 DOI: 10.1080/15257770600894469] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria.
Collapse
Affiliation(s)
- M P B Sandrini
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
43
|
Kosinska U, Carnrot C, Sandrini MPB, Clausen AR, Wang L, Piskur J, Eriksson S, Eklund H. Structural studies of thymidine kinases from Bacillus anthracis and Bacillus cereus provide insights into quaternary structure and conformational changes upon substrate binding. FEBS J 2006; 274:727-37. [PMID: 17288553 DOI: 10.1111/j.1742-4658.2006.05617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidine kinase (TK) is the key enzyme in salvaging thymidine to produce thymidine monophosphate. Owing to its ability to phosphorylate nucleoside analogue prodrugs, TK has gained attention as a rate-limiting drug activator. We describe the structures of two bacterial TKs, one from the pathogen Bacillus anthracis in complex with the substrate dT, and the second from the food-poison-associated Bacillus cereus in complex with the feedback inhibitor dTTP. Interestingly, in contrast with previous structures of TK in complex with dTTP, in this study dTTP occupies the phosphate donor site and not the phosphate acceptor site. This results in several conformational changes compared with TK structures described previously. One of the differences is the way tetramers are formed. Unlike B. anthracis TK, B. cereus TK shows a loose tetramer. Moreover, the lasso-domain is in open conformation in B. cereus TK without any substrate in the active site, whereas in B. anthracis TK the loop conformation is closed and thymidine occupies the active site. Another conformational difference lies within a region of 20 residues that we refer to as phosphate-binding beta-hairpin. The phosphate-binding beta-hairpin seems to be a flexible region of the enzyme which becomes ordered upon formation of hydrogen bonds to the alpha-phosphate of the phosphate donor, dTTP. In addition to descriptions of the different conformations that TK may adopt during the course of reaction, the oligomeric state of the enzyme is investigated.
Collapse
Affiliation(s)
- Urszula Kosinska
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Solaroli N, Johansson M, Balzarini J, Karlsson A. Enhanced toxicity of purine nucleoside analogs in cells expressing Drosophila melanogaster nucleoside kinase mutants. Gene Ther 2006; 14:86-92. [PMID: 16885999 DOI: 10.1038/sj.gt.3302835] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) is investigated for possible use as a suicide gene in combined gene/chemotherapy of cancer. The enzyme has broader substrate specificity and higher catalytic rate compared to herpes simplex type 1 thymidine kinase and other known dNKs. Although the enzyme has broad substrate specificity, it has a preference for pyrimidine nucleosides and nucleoside analogs. We have evaluated the substrate specificity and kinetic properties of Dm-dNK proteins containing M88R, V84A+M88R or V84A+M88R+A110D mutations in the amino-acid sequence. These engineered enzymes showed a relative increase in phosphorylation of purine nucleoside analogs such as ganciclovir, 9-beta-D-arabinofuranosylguanine and 2',2'-difluorodeoxyguanosine compared to the wild-type enzyme. The mutant enzymes were expressed in an osteosarcoma thymidine kinase-deficient cell line and the sensitivity of the cell line to nucleoside analogs was determined. The cells expressing the M88R mutant enzyme showed the highest increased sensitivity to purine nucleoside analogs with 8- to 80-fold decreased inhibition constant IC(50) compared to untransduced control cells or cells expressing the wild-type nucleoside kinase. In summary, our data show that enzyme engineering can be used to shift the substrate specificity of the Dm-dNK to selectively increase the sensitivity of cells expressing the enzyme to purine nucleoside analogs.
Collapse
Affiliation(s)
- N Solaroli
- Department of Laboratory Medicine, Division of Metabolic Diseases, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
45
|
Topalis D, Collinet B, Gasse C, Dugué L, Balzarini J, Pochet S, Deville-Bonne D. Substrate specificity of vaccinia virus thymidylate kinase. FEBS J 2006; 272:6254-65. [PMID: 16336263 DOI: 10.1111/j.1742-4658.2005.05006.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anti-poxvirus therapies are currently limited to cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine], but drug-resistant strains have already been characterized. In the aim of finding a new target, the thymidylate (TMP) kinase from vaccinia virus, the prototype of Orthopoxvirus, has been overexpressed in Escherichia coli after cloning the gene (A48R). Specific inhibitors and alternative substrates of pox TMP kinase should contribute to virus replication inhibition. Biochemical characterization of the enzyme revealed distinct catalytic features when compared to its human counterpart. Sharing 42% identity with human TMP kinase, the vaccinia virus enzyme was assumed to adopt the common fold of nucleoside monophosphate kinases. The enzyme was purified to homogeneity and behaves as a homodimer, like all known TMP kinases. Initial velocity studies showed that the Km for ATP-Mg2+ and dTMP were 0.15 mm and 20 microM, respectively. Vaccinia virus TMP kinase was found to phosphorylate dTMP, dUMP and also dGMP from any purine and pyrimidine nucleoside triphosphate. 5-Halogenated dUMP such as 5-iodo-2'-deoxyuridine 5'-monophosphate (5I-dUMP) and 5-bromo-2'-deoxyuridine 5'-monophosphate (5Br-dUMP) were also efficient alternative substrates. Using thymidine-5'-(4-N'-methylanthraniloyl-aminobutyl)phosphoramidate as a fluorescent probe of the dTMP binding site, we detected an ADP-induced conformational change enhancing the binding affinity of dTMP and analogues. Several thymidine and dTMP derivatives were found to bind the enzyme with micromolar affinities. The present study provides the basis for the design of specific inhibitors or substrates for poxvirus TMP kinase.
Collapse
Affiliation(s)
- Dimitri Topalis
- Laboratoire d'Enzymologie Moléculaire et Fonctionnelle, FRE 2852 CNRS, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Jestin JL, Vichier-Guerre S. How to broaden enzyme substrate specificity: strategies, implications and applications. Res Microbiol 2005; 156:961-6. [PMID: 16293399 DOI: 10.1016/j.resmic.2005.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/13/2005] [Accepted: 09/13/2005] [Indexed: 11/20/2022]
Abstract
For identification of mutations associated with the broadening of enzyme substrate specificity, three strategies, including directed enzyme evolution, are described for selected examples. Implications concerning enzyme models are highlighted. Applications to the field of biocatalysis are discussed. A bidimensional map for the classification of enzyme activities is suggested so as to improve genome annotations.
Collapse
Affiliation(s)
- Jean-Luc Jestin
- Unité de Chimie Organique URA 2128 CNRS, Département de Biologie Structurale et Chimie, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris 15, France.
| | | |
Collapse
|
47
|
Sandrini MPB, Piskur J. Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction. Trends Biochem Sci 2005; 30:225-8. [PMID: 15896737 DOI: 10.1016/j.tibs.2005.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mammals have four deoxyribonucleoside kinases, the cytoplasmic (TK1) and mitochondrial (TK2) thymidine kinases, and the deoxycytidine (dCK) and deoxyguanosine (dGK) kinases, which salvage the precursors for nucleic acids synthesis. In addition to the native deoxyribonucleoside substrates, the kinases can phosphorylate and thereby activate a variety of anti-cancer and antiviral prodrugs. Recently, the crystal structure of human TK1 has been solved and has revealed that enzymes with fundamentally different origins and folds catalyze similar, crucial cellular reactions.
Collapse
Affiliation(s)
- Michael P B Sandrini
- Cell and Organism Biology, Lund University, Sölvegatan 35, SE-22732 Lund, Sweden
| | | |
Collapse
|
48
|
Solaroli N, Bjerke M, Johansson M, Karlsson A. Investigation of the substrate recognition of Drosophila melanogaster nucleoside kinase by site directed mutagenesis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1527-9. [PMID: 15571291 DOI: 10.1081/ncn-200027744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) has a broad substrate specificity and a higher catalytic rate than other known deoxyribonucleoside kinases. Therefore it is a natural candidate for possible use as a suicide gene in combined gene/chemotherapy of cancer. We have performed site directed mutagenesis and tested different truncated forms of the enzyme in order to increase the affinity for ganciclovir.
Collapse
Affiliation(s)
- N Solaroli
- Division of Clinical Virology F68, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
49
|
Welin M, Kosinska U, Mikkelsen NE, Carnrot C, Zhu C, Wang L, Eriksson S, Munch-Petersen B, Eklund H. Structures of thymidine kinase 1 of human and mycoplasmic origin. Proc Natl Acad Sci U S A 2004; 101:17970-5. [PMID: 15611477 PMCID: PMC539776 DOI: 10.1073/pnas.0406332102] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 11/18/2022] Open
Abstract
Cytosolic thymidine kinase 1, TK1, is a well known cell-cycle-regulated enzyme of importance in nucleotide metabolism as well as an activator of antiviral and anticancer drugs such as 3'-azido-3'-deoxythymidine (AZT). We have now determined the structures of the TK1 family, the human and Ureaplasma urealyticum enzymes, in complex with the feedback inhibitor dTTP. The TK1s have a tetrameric structure in which each subunit contains an alpha/beta-domain that is similar to ATPase domains of members of the RecA structural family and a domain containing a structural zinc. The zinc ion connects beta-structures at the root of a beta-ribbon that forms a stem that widens to a lasso-type loop. The thymidine of dTTP is hydrogen-bonded to main-chain atoms predominantly coming from the lasso loop. This binding is in contrast to other deoxyribonucleoside kinases where specific interactions occur with side chains. The TK1 structure differs fundamentally from the structures of the other deoxyribonucleoside kinases, indicating a different evolutionary origin.
Collapse
Affiliation(s)
- Martin Welin
- Department of Molecular Biology, Swedish University of Agricultural Sciences, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Martin G, Möglich A, Keller W, Doublié S. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. J Mol Biol 2004; 341:911-25. [PMID: 15328606 DOI: 10.1016/j.jmb.2004.06.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 11/27/2022]
Abstract
Polyadenylation of messenger RNA precursors is an essential process in eukaryotes. Poly(A) polymerase (PAP), a member of the nucleotidyltransferase family that includes DNA polymerase beta, incorporates ATP at the 3' end of mRNAs in a template-independent manner. Although the structures of mammalian and yeast PAPs are known, their mechanism of ATP selection has remained elusive. In a recent bovine PAP structure complexed with an analog of ATP and Mn2+, strictly conserved residues interact selectively with the adenine base, but the nucleotide was found in a "non-productive" conformation. Here we report a second bovine crystal structure, obtained in the presence of Mg2+, where 3'-dATP adopts a "productive" conformation similar to that seen in yeast PAP or DNA polymerase beta. Mutational analysis and activity assays with ATP analogs suggest a role in catalysis for one of the two adenine-binding sites revealed by our structural data. The other site might function to prevent futile hydrolysis of ATP. In order to investigate the role of metals in catalysis we performed steady state kinetics experiments under distributive polymerization conditions. These tests suggest a sequential random mechanism in vitro in the presence of ATP and RNA, without preference for a particular order of binding of the two substrates. In vivo, however, where polyadenylation is processive and the primer does not dissociate from the enzyme, an ordered mechanism with the primer as the leading substrate is more likely.
Collapse
Affiliation(s)
- Georges Martin
- Department of Cell Biology Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|