1
|
Siguier P, Rousseau P, Cornet F, Chandler M. A subclass of the IS1202 family of bacterial insertion sequences targets XerCD recombination sites. Plasmid 2023; 127:102696. [PMID: 37302728 DOI: 10.1016/j.plasmid.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
We describe here a new family of IS which are related to IS1202, originally isolated from Streptococcus pneumoniae in the mid-1990s and previously tagged as an emerging IS family in the ISfinder database. Members of this family have impacted some important properties of their hosts. We describe here another potentially important property of certain family members: specific targeting of xrs recombination sites. The family could be divided into three subgroups based on their transposase sequences and the length on the target repeats (DR) they generate on insertion: subgroup IS1202 (24-29 bp); ISTde1 (15-18 bp); and ISAba32 (5-6 bp). Members of the ISAba32 subgroup were repeatedly found abutting Xer recombinase recombination sites (xrs), separated by an intervening copy of a DR. These xrs sites, present in multiple copies in a number of Acinetobacter plasmids flanking antibiotic resistance genes, were proposed to form a new type of mobile genetic element using the chromosomally-encoded XerCD recombinase for mobility. Transposase alignments identified subgroup-specific indels which may be responsible for the differences in the transposition properties of the three subgroups (i.e. DR length and target specificity). We propose that this collection of IS be classed as a new insertion sequence family: the IS1202 family composed of three subgroups, only one of which specifically targets plasmid-borne xrs. We discuss the implications of xrs targeting for gene mobility.
Collapse
Affiliation(s)
- Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France.
| | - Philippe Rousseau
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France
| | - François Cornet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, France
| | - Michael Chandler
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
2
|
Miele S, Provan JI, Vergne J, Possoz C, Ochsenbein F, Barre FX. The Xer activation factor of TLCΦ expands the possibilities for Xer recombination. Nucleic Acids Res 2022; 50:6368-6383. [PMID: 35657090 PMCID: PMC9226527 DOI: 10.1093/nar/gkac429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The chromosome dimer resolution machinery of bacteria is generally composed of two tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific site, dif. The reaction depends on a cell division protein, FtsK, which activates XerD by protein-protein interactions. The toxin-linked cryptic satellite phage (TLCΦ) of Vibrio cholerae, which participates in the emergence of cholera epidemic strains, carries a dif-like attachment site (attP). TLCΦ exploits the Xer machinery to integrate into the dif site of its host chromosomes. The TLCΦ integration reaction escapes the control of FtsK because TLCΦ encodes for its own XerD-activation factor, XafT. Additionally, TLCΦ attP is a poor substrate for XerD binding, in apparent contradiction with the high integration efficiency of the phage. Here, we present a sequencing-based methodology to analyse the integration and excision efficiency of thousands of synthetic mini-TLCΦ plasmids with differing attP sites in vivo. This methodology is applicable to the fine-grained analyses of DNA transactions on a wider scale. In addition, we compared the efficiency with which XafT and the XerD-activation domain of FtsK drive recombination reactions in vitro. Our results suggest that XafT not only activates XerD-catalysis but also helps form and/or stabilize synaptic complexes between imperfect Xer recombination sites.
Collapse
Affiliation(s)
- Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - James Iain Provan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Justine Vergne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Maintenance and gene electrotransfer efficiency of antibiotic resistance gene-free plasmids encoding mouse, canine and human interleukin-12 orthologues. Heliyon 2022; 8:e08879. [PMID: 35265755 PMCID: PMC8899673 DOI: 10.1016/j.heliyon.2022.e08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin 12 (IL-12) is a cytokine used as a therapeutic molecule in cancer immunotherapy. Gene electrotransfer mediated delivery of IL-12 gene has reached clinical evaluation in the USA using a plasmid that in addition to IL-12 gene also carry an antibiotic resistance gene needed for its production in bacteria. In Europe however, European Medicines Agency recommends against the use of antibiotics during the production of clinical grade plasmids. We have prepared several antibiotic resistance gene-free plasmids using an antibiotic-free selection strategy called operator-repressor titration, including plasmids encoding mouse, canine and human IL-12 orthologues. The aim of this study was to evaluate the maintenance of these plasmids in bacterial culture and test their transfection efficiency using gene electrotransfer. Plasmid maintenance was evaluated by determining plasmid yields and topologies after subculturing transformed bacteria. Transfection efficiency was evaluated by determining the plasmid copy number, expression and cytotoxicity after gene electrotransfer to mouse, canine and human melanoma cells. The results demonstrated that our IL-12 plasmids without an antibiotic resistance gene are stably maintained in bacteria and provide sufficient IL-12 expression after in vitro gene electrotransfer; therefore, they have the potential to proceed to further in vivo evaluation studies.
Collapse
|
4
|
Midonet C, Miele S, Paly E, Guerois R, Barre FX. The TLCΦ satellite phage harbors a Xer recombination activation factor. Proc Natl Acad Sci U S A 2019; 116:18391-18396. [PMID: 31420511 PMCID: PMC6744903 DOI: 10.1073/pnas.1902905116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The circular chromosomes of bacteria can be concatenated into dimers by homologous recombination. Dimers are solved by the addition of a cross-over at a specific chromosomal site, dif, by 2 related tyrosine recombinases, XerC and XerD. Each enzyme catalyzes the exchange of a specific pair of strands. Some plasmids exploit the Xer machinery for concatemer resolution. Other mobile elements exploit it to integrate into the genome of their host. Chromosome dimer resolution is initiated by XerD. The reaction is under the control of a cell-division protein, FtsK, which activates XerD by a direct contact. Most mobile elements exploit FtsK-independent Xer recombination reactions initiated by XerC. The only notable exception is the toxin-linked cryptic satellite phage of Vibrio cholerae, TLCΦ, which integrates into and excises from the dif site of the primary chromosome of its host by a reaction initiated by XerD. However, the reaction remains independent of FtsK. Here, we show that TLCΦ carries a Xer recombination activation factor, XafT. We demonstrate in vitro that XafT activates XerD catalysis. Correspondingly, we found that XafT specifically interacts with XerD. We further show that integrative mobile elements exploiting Xer (IMEXs) encoding a XafT-like protein are widespread in gamma- and beta-proteobacteria, including human, animal, and plant pathogens.
Collapse
Affiliation(s)
- Caroline Midonet
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Evelyne Paly
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - Raphaël Guerois
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Université Paris Sud, 91198 Gif sur Yvette, France
| |
Collapse
|
5
|
Jo M, Murayama Y, Tsutsui Y, Iwasaki H. In vitro site-specific recombination mediated by the tyrosine recombinase XerA of Thermoplasma acidophilum. Genes Cells 2017; 22:646-661. [PMID: 28557347 DOI: 10.1111/gtc.12503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/24/2017] [Indexed: 11/27/2022]
Abstract
In organisms with circular chromosomes, such as bacteria and archaea, an odd number of homologous recombination events can generate a chromosome dimer. Such chromosome dimers cannot be segregated unless they are converted to monomers before cell division. In Escherichia coli, dimer-to-monomer conversion is mediated by the paralogous XerC and XerD recombinases at a specific dif site in the replication termination region. Dimer resolution requires the highly conserved cell division protein/chromosome translocase FtsK, and this site-specific chromosome resolution system is present or predicted in most bacteria. However, most archaea have only XerA, a homologue of the bacterial XerC/D proteins, but no homologues of FtsK. In addition, the molecular mechanism of XerA-mediated chromosome resolution in archaea has been less thoroughly elucidated than those of the corresponding bacterial systems. In this study, we identified two XerA-binding sites (dif1 and dif2) in the Thermoplasma acidophilum chromosome. In vitro site-specific recombination assays showed that dif2, but not dif1, serves as a target site for XerA-mediated chromosome resolution. Mutational analysis indicated that not only the core consensus sequence of dif2, but also its flanking regions play important roles in the recognition and recombination reactions mediated by XerA.
Collapse
Affiliation(s)
- Minji Jo
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuto Murayama
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yasuhiro Tsutsui
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hiroshi Iwasaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
6
|
Abstract
Tyrosine site-specific recombinases (YRs) are widely distributed among prokaryotes and their viruses, and were thought to be confined to the budding yeast lineage among eukaryotes. However, YR-harboring retrotransposons (the DIRS and PAT families) and DNA transposons (Cryptons) have been identified in a variety of eukaryotes. The YRs utilize a common chemical mechanism, analogous to that of type IB topoisomerases, to bring about a plethora of genetic rearrangements with important physiological consequences in their respective biological contexts. A subset of the tyrosine recombinases has provided model systems for analyzing the chemical mechanisms and conformational features of the recombination reaction using chemical, biochemical, topological, structural, and single molecule-biophysical approaches. YRs with simple reaction requirements have been utilized to bring about programmed DNA rearrangements for addressing fundamental questions in developmental biology. They have also been employed to trace the topological features of DNA within high-order DNA interactions established by protein machines. The directed evolution of altered specificity YRs, combined with their spatially and temporally regulated expression, heralds their emergence as vital tools in genome engineering projects with wide-ranging biotechnological and medical applications.
Collapse
|
7
|
Jo CH, Kim J, Han AR, Park SY, Hwang KY, Nam KH. Crystal structure of Thermoplasma acidophilum XerA recombinase shows large C-shape clamp conformation and cis-cleavage mode for nucleophilic tyrosine. FEBS Lett 2016; 590:848-56. [PMID: 26919387 DOI: 10.1002/1873-3468.12109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/08/2022]
Abstract
Site-specific Xer recombination plays a pivotal role in reshuffling genetic information. Here, we report the 2.5 Å crystal structure of XerA from the archaean Thermoplasma acidophilum. Crystallographic data reveal a uniquely open conformational state, resulting in a C-shaped clamp with an angle of ~ 48° and a distance of 57 Å between the core-binding and the catalytic domains. The catalytic nucleophile, Tyr264, is positioned in cis-cleavage mode by XerA's C-term tail that interacts with the CAT domain of a neighboring monomer without DNA substrate. Structural comparisons of tyrosine recombinases elucidate the dynamics of Xer recombinase.
Collapse
Affiliation(s)
- Chang Hwa Jo
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Junsoo Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ah-reum Han
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Sam Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Kwang Yeon Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ki Hyun Nam
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Kyungbuk, Korea
| |
Collapse
|
8
|
Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2016; 2. [PMID: 26104463 DOI: 10.1128/microbiolspec.mdna3-0056-2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two related tyrosine recombinases, XerC and XerD, are encoded in the genome of most bacteria where they serve to resolve dimers of circular chromosomes by the addition of a crossover at a specific site, dif. From a structural and biochemical point of view they belong to the Cre resolvase family of tyrosine recombinases. Correspondingly, they are exploited for the resolution of multimers of numerous plasmids. In addition, they are exploited by mobile DNA elements to integrate into the genome of their host. Exploitation of Xer is likely to be advantageous to mobile elements because the conservation of the Xer recombinases and of the sequence of their chromosomal target should permit a quite easy extension of their host range. However, it requires means to overcome the cellular mechanisms that normally restrict recombination to dif sites harbored by a chromosome dimer and, in the case of integrative mobile elements, to convert dedicated tyrosine resolvases into integrases.
Collapse
|
9
|
Abstract
One of the disadvantages of circular plasmids and chromosomes is their high sensitivity to rearrangements caused by homologous recombination. Odd numbers of crossing-over occurring during or after replication of a circular replicon result in the formation of a dimeric molecule in which the two copies of the replicon are fused. If they are not converted back to monomers, the dimers of replicons may fail to correctly segregate at the time of cell division. Resolution of multimeric forms of circular plasmids and chromosomes is mediated by site-specific recombination, and the enzymes that catalyze this type of reaction fall into two families of proteins: the serine and tyrosine recombinase families. Here we give an overview of the variety of site-specific resolution systems found on circular plasmids and chromosomes.
Collapse
|
10
|
Abstract
Xer site-specific recombination at cer and psi converts bacterial plasmid multimers into monomers so that they can be efficiently segregated to both daughter cells at cell division. Recombination is catalysed by the XerC and XerD recombinases acting at ~30 bp core sites, and is regulated by the action of accessory proteins bound to accessory DNA sequences adjacent to the core sites. Recombination normally occurs only between sites in direct repeat in a negatively supercoiled circular DNA molecule, and yields two circular products linked together in a right-handed four-node catenane with antiparallel sites. These and other topological results are explained by a model in which the accessory DNA sequences are interwrapped around the accessory proteins, trapping three negative supercoils so that strand exchange by the XerC and XerD yields the observed four-node catenane.
Collapse
|
11
|
Das B, Martínez E, Midonet C, Barre FX. Integrative mobile elements exploiting Xer recombination. Trends Microbiol 2012; 21:23-30. [PMID: 23127381 DOI: 10.1016/j.tim.2012.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/30/2022]
Abstract
Integrative mobile genetic elements directly participate in the rapid response of bacteria to environmental challenges. They generally encode their own dedicated recombination machineries. CTXφ, a filamentous bacteriophage that harbors the genes encoding cholera toxin in Vibrio cholerae provided the first notable exception to this rule: it hijacks XerC and XerD, two chromosome-encoded tyrosine recombinases for lysogenic conversion. XerC and XerD are highly conserved in bacteria because of their role in the topological maintenance of circular chromosomes and, with the advent of high throughput sequencing, numerous other integrative mobile elements exploiting them have been discovered. Here, we review our understanding of the molecular mechanisms of integration of the different integrative mobile elements exploiting Xer (IMEXs) so far described.
Collapse
Affiliation(s)
- Bhabatosh Das
- CNRS, Centre de Génétique Moléculaire, 91198 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
12
|
Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 2012; 31:3757-67. [PMID: 22863778 PMCID: PMC3442271 DOI: 10.1038/emboj.2012.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/13/2012] [Indexed: 02/02/2023] Open
Abstract
Integration of toxin-producing phage into the Vibrio cholerae genome co-opts not only bacterial recombinases, but also a host excision repair enzyme, assigning it an unsuspected structural role. Toxigenic conversion of Vibrio cholerae bacteria results from the integration of a filamentous phage, CTXϕ. Integration is driven by the bacterial Xer recombinases, which catalyse the exchange of a single pair of strands between the phage single-stranded DNA and the host double-stranded DNA genomes; replication is thought to convert the resulting pseudo-Holliday junction (HJ) intermediate into the final recombination product. The natural tendency of the Xer recombinases to recycle HJ intermediates back into substrate should thwart this integration strategy, which prompted a search for additional co-factors aiding directionality of the process. Here, we show that Endo III, a ubiquitous base excision repair enzyme, facilitates CTXϕ-integration in vivo. In vitro, we show that it prevents futile Xer recombination cycles by impeding new rounds of strand exchanges once the pseudo-HJ is formed. We further demonstrate that this activity relies on the unexpected ability of Endo III to bind to HJs even in the absence of the recombinases. These results explain how tandem copies of the phage genome can be created, which is crucial for subsequent virion production.
Collapse
|
13
|
Nolivos S, Pages C, Rousseau P, Le Bourgeois P, Cornet F. Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase. Nucleic Acids Res 2010. [PMID: 20542912 DOI: 10.1093/nar/gkq507.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteria harbouring circular chromosomes have a Xer site-specific recombination system that resolves chromosome dimers at division. In Escherichia coli, the activity of the XerCD/dif system is controlled and coupled with cell division by the FtsK DNA translocase. Most Xer systems, as XerCD/dif, include two different recombinases. However, some, as the Lactococcus lactis XerS/dif(SL) system, include only one recombinase. We investigated the functional effects of this difference by studying the XerS/dif(SL) system. XerS bound and recombined dif(SL) sites in vitro, both activities displaying asymmetric characteristics. Resolution of chromosome dimers by XerS/dif(SL) required translocation by division septum-borne FtsK. The translocase domain of L. lactis FtsK supported recombination by XerCD/dif, just as E. coli FtsK supports recombination by XerS/dif(SL). Thus, the FtsK-dependent coupling of chromosome segregation with cell division extends to non-rod-shaped bacteria and outside the phylum Proteobacteria. Both the XerCD/dif and XerS/dif(SL) recombination systems require the control activities of the FtsKγ subdomain. However, FtsKγ activates recombination through different mechanisms in these two Xer systems. We show that FtsKγ alone activates XerCD/dif recombination. In contrast, both FtsKγ and the translocation motor are required to activate XerS/dif(SL) recombination. These findings have implications for the mechanisms by which FtsK activates recombination.
Collapse
Affiliation(s)
- Sophie Nolivos
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS and Université de Toulouse, Université Paul Sabatier, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
14
|
Abstract
A remarkable feature of the serine resolvases is their regulation: the wild-type enzymes will catalyse intra- but not inter-molecular recombination, can sense the relative orientation of their sites and can exchange strands directionally, despite the fact that there is no net release of chemical bond energy. The key to this regulation is that they are only active within a large intertwined complex called the 'synaptosome'. Because substrate topology greatly facilitates (or, in other cases, inhibits) formation of the synaptosome, it acts as a 'topological filter'. Within the defined topology of the synaptosome, strand exchange releases supercoiling tension, providing an energy source to bias the reaction direction. The regulatory portion of this complex contains additional copies of the recombinase and sometimes other DNA-bending proteins. We are using a combination of X-ray crystallography, biochemistry and genetics to model the full synaptic complex and to understand how the regulatory portion activates the crossover-site-bound recombinases.
Collapse
|
15
|
Nolivos S, Pages C, Rousseau P, Le Bourgeois P, Cornet F. Are two better than one? Analysis of an FtsK/Xer recombination system that uses a single recombinase. Nucleic Acids Res 2010; 38:6477-89. [PMID: 20542912 PMCID: PMC2965235 DOI: 10.1093/nar/gkq507] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacteria harbouring circular chromosomes have a Xer site-specific recombination system that resolves chromosome dimers at division. In Escherichia coli, the activity of the XerCD/dif system is controlled and coupled with cell division by the FtsK DNA translocase. Most Xer systems, as XerCD/dif, include two different recombinases. However, some, as the Lactococcus lactis XerS/dif(SL) system, include only one recombinase. We investigated the functional effects of this difference by studying the XerS/dif(SL) system. XerS bound and recombined dif(SL) sites in vitro, both activities displaying asymmetric characteristics. Resolution of chromosome dimers by XerS/dif(SL) required translocation by division septum-borne FtsK. The translocase domain of L. lactis FtsK supported recombination by XerCD/dif, just as E. coli FtsK supports recombination by XerS/dif(SL). Thus, the FtsK-dependent coupling of chromosome segregation with cell division extends to non-rod-shaped bacteria and outside the phylum Proteobacteria. Both the XerCD/dif and XerS/dif(SL) recombination systems require the control activities of the FtsKγ subdomain. However, FtsKγ activates recombination through different mechanisms in these two Xer systems. We show that FtsKγ alone activates XerCD/dif recombination. In contrast, both FtsKγ and the translocation motor are required to activate XerS/dif(SL) recombination. These findings have implications for the mechanisms by which FtsK activates recombination.
Collapse
Affiliation(s)
- Sophie Nolivos
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS and Université de Toulouse, Université Paul Sabatier, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
16
|
Vanhooff V, Normand C, Galloy C, Segall AM, Hallet B. Control of directionality in the DNA strand-exchange reaction catalysed by the tyrosine recombinase TnpI. Nucleic Acids Res 2009; 38:2044-56. [PMID: 20044348 PMCID: PMC2847244 DOI: 10.1093/nar/gkp1187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1–IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1–DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed.
Collapse
Affiliation(s)
- Virginie Vanhooff
- Unité de Génétique, Institut des Sciences de la Vie, UCLouvain, 5/6 Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
17
|
Arsuaga J, Diao Y, Vazquez M. Mathematical Methods in Dna Topology: Applications to Chromosome Organization and Site-Specific Recombination. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4419-0670-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
18
|
Mouw KW, Rowland SJ, Gajjar MM, Boocock MR, Stark WM, Rice PA. Architecture of a serine recombinase-DNA regulatory complex. Mol Cell 2008; 30:145-55. [PMID: 18439894 PMCID: PMC2428073 DOI: 10.1016/j.molcel.2008.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/12/2008] [Accepted: 02/28/2008] [Indexed: 01/07/2023]
Abstract
An essential feature of many site-specific recombination systems is their ability to regulate the direction and topology of recombination. Resolvases from the serine recombinase family assemble an interwound synaptic complex that harnesses negative supercoiling to drive the forward reaction and promote recombination between properly oriented sites. To better understand the interplay of catalytic and regulatory functions within these synaptic complexes, we have solved the structure of the regulatory site synapse in the Sin resolvase system. It reveals an unexpected synaptic interface between helix-turn-helix DNA-binding domains that is also highlighted in a screen for synapsis mutants. The tetramer defined by this interface provides the foundation for a robust model of the synaptic complex, assembled entirely from available crystal structures, that gives insight into how the catalytic activity of Sin and other serine recombinases may be regulated.
Collapse
Affiliation(s)
- Kent W. Mouw
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sally-J. Rowland
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Mark M. Gajjar
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Martin R. Boocock
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - W. Marshall Stark
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author
| |
Collapse
|
19
|
Grainge I, Bregu M, Vazquez M, Sivanathan V, Ip SCY, Sherratt DJ. Unlinking chromosome catenanes in vivo by site-specific recombination. EMBO J 2007; 26:4228-38. [PMID: 17805344 PMCID: PMC2230843 DOI: 10.1038/sj.emboj.7601849] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/14/2007] [Indexed: 11/08/2022] Open
Abstract
A challenge for chromosome segregation in all domains of life is the formation of catenated progeny chromosomes, which arise during replication as a consequence of the interwound strands of the DNA double helix. Topoisomerases play a key role in DNA unlinking both during and at the completion of replication. Here we report that chromosome unlinking can instead be accomplished by multiple rounds of site-specific recombination. We show that step-wise, site-specific recombination by XerCD-dif or Cre-loxP can unlink bacterial chromosomes in vivo, in reactions that require KOPS-guided DNA translocation by FtsK. Furthermore, we show that overexpression of a cytoplasmic FtsK derivative is sufficient to allow chromosome unlinking by XerCD-dif recombination when either subunit of TopoIV is inactivated. We conclude that FtsK acts in vivo to simplify chromosomal topology as Xer recombination interconverts monomeric and dimeric chromosomes.
Collapse
Affiliation(s)
- Ian Grainge
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Migena Bregu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Mariel Vazquez
- Department of Mathematics, San Francisco State University, San Francisco, CA, USA
| | | | - Stephen C Y Ip
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK. Tel.: +44 1865 275296; Fax: +44 1865 275297; E-mail:
| |
Collapse
|
20
|
Abstract
Integration, excision, and inversion of defined DNA segments commonly occur through site-specific recombination, a process of DNA breakage and reunion that requires no DNA synthesis or high-energy cofactor. Virtually all identified site-specific recombinases fall into one of just two families, the tyrosine recombinases and the serine recombinases, named after the amino acid residue that forms a covalent protein-DNA linkage in the reaction intermediate. Their recombination mechanisms are distinctly different. Tyrosine recombinases break and rejoin single strands in pairs to form a Holliday junction intermediate. By contrast, serine recombinases cut all strands in advance of strand exchange and religation. Many natural systems of site-specific recombination impose sophisticated regulatory mechanisms on the basic recombinational process to favor one particular outcome of recombination over another (for example, excision over inversion or deletion). Details of the site-specific recombination processes have been revealed by recent structural and biochemical studies of members of both families.
Collapse
Affiliation(s)
- Nigel D F Grindley
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
| | | | | |
Collapse
|
21
|
Bui D, Ramiscal J, Trigueros S, Newmark JS, Do A, Sherratt DJ, Tolmasky ME. Differences in resolution of mwr-containing plasmid dimers mediated by the Klebsiella pneumoniae and Escherichia coli XerC recombinases: potential implications in dissemination of antibiotic resistance genes. J Bacteriol 2006; 188:2812-20. [PMID: 16585742 PMCID: PMC1446988 DOI: 10.1128/jb.188.8.2812-2820.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xer-mediated dimer resolution at the mwr site of the multiresistance plasmid pJHCMW1 is osmoregulated in Escherichia coli containing either the Escherichia coli Xer recombination machinery or Xer recombination elements from K. pneumoniae. In the presence of K. pneumoniae XerC (XerC(Kp)), the efficiency of recombination is lower than that in the presence of the E. coli XerC (XerC(Ec)) and the level of dimer resolution is insufficient to stabilize the plasmid, even at low osmolarity. This lower efficiency of recombination at mwr is observed in the presence of E. coli or K. pneumoniae XerD proteins. Mutagenesis experiments identified a region near the N terminus of XerC(Kp) responsible for the lower level of recombination catalyzed by XerC(Kp) at mwr. This region encompasses the second half of the predicted alpha-helix B and the beginning of the predicted alpha-helix C. The efficiencies of recombination at other sites such as dif or cer in the presence of XerC(Kp) or XerC(Ec) are comparable. Therefore, XerC(Kp) is an active recombinase whose action is impaired on the mwr recombination site. This characteristic may result in restriction of the host range of plasmids carrying this site, a phenomenon that may have important implications in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Duyen Bui
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Gunderson CW, Segall AM. DNA repair, a novel antibacterial target: Holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Mol Microbiol 2006; 59:1129-48. [PMID: 16430689 DOI: 10.1111/j.1365-2958.2005.05009.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Holliday junction intermediates arise in several central pathways of DNA repair, replication fork restart, and site-specific recombination catalysed by tyrosine recombinases. Previously identified hexapeptide inhibitors of phage lambda integrase-mediated recombination block the resolution of Holliday junction intermediates in vitro and thereby inhibit recombination, but have no DNA cleavage activity themselves. The most potent peptides are specific for the branched DNA structure itself, as opposed to the integrase complex. Based on this activity, the peptides inhibit several unrelated Holliday junction-processing enzymes in vitro, including the RecG helicase and RuvABC junction resolvase complex. We have found that some of these hexapeptides are potent bactericidal antimicrobials, effective against both Gm+ and Gm- bacteria. Using epifluorescence microscopy and flow cytometry, we have characterized extensively the physiology of bacterial cells treated with these peptides. The hexapeptides cause DNA segregation abnormalities, filamentation and DNA damage. Damage caused by the peptides induces the SOS response, and is synergistic with damage caused by UV and mitomycin C. Our results are consistent with the model that the hexapeptides affect DNA targets that arise during recombination-dependent repair. We propose that the peptides trap intermediates in the repair of collapsed replication forks, preventing repair and resulting in bacterial death. Inhibition of DNA repair constitutes a novel target of antibiotic therapy. The peptides affect targets that arise in multiple pathways, and as expected, are quite resistant to the development of spontaneous antibiotic resistance.
Collapse
Affiliation(s)
- Carl W Gunderson
- Center for Microbial Sciences and Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | | |
Collapse
|
23
|
Akopian A, Gourlay S, James H, Colloms SD. Communication between accessory factors and the Cre recombinase at hybrid psi-loxP sites. J Mol Biol 2006; 357:1394-408. [PMID: 16487975 DOI: 10.1016/j.jmb.2006.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 11/19/2022]
Abstract
By placing loxP adjacent to the accessory sequences from the Xer/psi multimer resolution system, we have imposed topological selectivity and specificity on Cre/loxP recombination. In this hybrid recombination system, the Xer accessory protein PepA binds to psi accessory sequences, interwraps them, and brings the loxP sites together such that the product of recombination is a four-node catenane. Here, we investigate communication between PepA and Cre by varying the distance between loxP and the accessory sequences, and by altering the orientation of loxP. The yield of four-node catenane and the efficiency of recombination in the presence of PepA varied with the helical phase of loxP with respect to the accessory sequences. When the orientation of loxP was reversed, or when half a helical turn was added between the accessory sequences and loxP, PepA reversed the preferred order of strand exchange by Cre at loxP. The results imply that PepA and the accessory sequences define precisely the geometry of the synapse formed by the loxP sites, and that this overcomes the innate preference of Cre to initiate recombination on the bottom strand of loxP. Further analysis of our results demonstrates that PepA can stimulate strand exchange by Cre in two distinct synaptic complexes, with the C-terminal domains of Cre facing either towards or away from PepA. Thus, no specific PepA-recombinase interaction is required, and correct juxtaposition of the loxP sites is sufficient to activate Cre in this system.
Collapse
Affiliation(s)
- Aram Akopian
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, Anderson College, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
24
|
Kilbride EA, Burke ME, Boocock MR, Stark WM. Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system. J Mol Biol 2005; 355:185-95. [PMID: 16303133 DOI: 10.1016/j.jmb.2005.10.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 10/16/2005] [Accepted: 10/18/2005] [Indexed: 11/29/2022]
Abstract
Many natural DNA site-specific recombination systems achieve directionality and/or selectivity by making recombinants with a specific DNA topology. This property requires that the DNA architecture of the synapse and the mechanism of strand exchange are both under strict control. Previously we reported that Tn3 resolvase-mediated synapsis of the accessory binding sites from the Tn3 recombination site res can impose topological selectivity on Cre/loxP recombination. Here, we show that the topology of these reactions is profoundly affected by subtle changes in the hybrid recombination site les. Reversing the orientation of loxP relative to the res accessory sequence, or adding 4 bp to the DNA between loxP and the accessory sequence, can switch between two-noded and four-noded catenane products. By analysing Holliday junction intermediates, we show that the innate bias in the order of strand exchanges at loxP is maintained despite the changes in topology. We conclude that a specific synaptic structure formed by resolvase and the res accessory sequences permits Cre to align the adjoining loxP sites in several distinct ways, and that resolvase-mediated intertwining of the accessory sequences may be less than has been assumed previously.
Collapse
Affiliation(s)
- Elizabeth A Kilbride
- Institute of Biomedical & Life Sciences, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK
| | | | | | | |
Collapse
|
25
|
Lesterlin C, Barre FX, Cornet F. Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 2005; 54:1151-60. [PMID: 15554958 DOI: 10.1111/j.1365-2958.2004.04356.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic recombination is central to DNA metabolism. It promotes sequence diversity and maintains genome integrity in all organisms. However, it can have perverse effects and profoundly influence the cell cycle. In bacteria harbouring circular chromosomes, recombination frequently has an unwanted outcome, the formation of chromosome dimers. Dimers form by homologous recombination between sister chromosomes and are eventually resolved by the action of two site-specific recombinases, XerC and XerD, at their target site, dif, located in the replication terminus of the chromosome. Studies of the Xer system and of the modalities of dimer formation and resolution have yielded important knowledge on how both homologous and site-specific recombination are controlled and integrated in the cell cycle. Here, we briefly review these advances and highlight the important questions they raise.
Collapse
Affiliation(s)
- Christian Lesterlin
- Laboratoire de Microbiologie et de Génétique Moléculaire, 118, route de Narbonne, F-31062 Toulouse Cedex, France.
| | | | | |
Collapse
|
26
|
Vazquez M, Colloms SD, Sumners DW. Tangle Analysis of Xer Recombination Reveals only Three Solutions, all Consistent with a Single Three-dimensional Topological Pathway. J Mol Biol 2005; 346:493-504. [PMID: 15670599 DOI: 10.1016/j.jmb.2004.11.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 11/12/2004] [Accepted: 11/22/2004] [Indexed: 11/25/2022]
Abstract
The product of Xer recombination at directly repeated psi sites on a circular unknotted DNA molecule is a right-hand four-noded catenane. Here, we use tangle equations to analyze the topological changes associated with Xer recombination at psi. This mathematical method allows computation of all possible topological pathways consistent with the experimental data. We give a rigorous mathematical proof that, under reasonable biological assumptions, there are only three solutions to the tangle equations. One of the solutions corresponds to a synaptic complex with antiparallel alignment of recombination core sites, the other two correspond to parallel alignment of cores. We show that all three solutions can be unified into a single three-dimensional model for Xer recombination. Thus the three distinct mathematical solutions do not necessarily represent distinct three-dimensional pathways, and in this case the three distinct tangle solutions are different planar projections of the same three-dimensional configuration.
Collapse
Affiliation(s)
- Mariel Vazquez
- Department of Mathematics, University of California at Berkeley, Berkeley CA 94720-3840, USA.
| | | | | |
Collapse
|
27
|
Lee L, Sadowski PD. Strand Selection by the Tyrosine Recombinases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:1-42. [PMID: 16164971 DOI: 10.1016/s0079-6603(05)80001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Linda Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
28
|
Massey TH, Aussel L, Barre FX, Sherratt DJ. Asymmetric activation of Xer site-specific recombination by FtsK. EMBO Rep 2004; 5:399-404. [PMID: 15031713 PMCID: PMC1299027 DOI: 10.1038/sj.embor.7400116] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 01/10/2004] [Accepted: 01/27/2004] [Indexed: 11/08/2022] Open
Abstract
Chromosome dimers, which frequently form in Escherichia coli, are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific site on the chromosome, dif, together with the cell division protein FtsK. The C-terminal domain of FtsK (FtsK(C)) is a DNA translocase implicated in helping synapsis of the dif sites and in locally promoting XerD strand exchanges after synapse formation. Here we show that FtsK(C) ATPase activity is directly involved in the local activation of Xer recombination at dif, by using an intermolecular recombination assay that prevents significant DNA translocation, and we confirm that FtsK acts before Holliday junction formation. We show that activation only occurs with a DNA segment adjacent to the XerD-binding site of dif. Only one such DNA extension is required. Taken together, our data suggest that FtsK needs to contact the XerD recombinase to switch its activity on using ATP hydrolysis.
Collapse
Affiliation(s)
- Thomas H Massey
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Laurent Aussel
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Present address: Laboratoire de Chimie Bactérienne (CNRS),31 chemin Joseph Aiguier, 13402 Marseille, Cedex 20,France
| | - François-Xavier Barre
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Laboratoire de Microbiologie et de Génétique Moléculaire, 118 route de Narbonne, 31062 Toulouse, Cedex 4, France
- Tel: +33 561 335 986; Fax: +33 561 335 886; E-mail:
| | - David J Sherratt
- Division of Molecular Genetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Tel: +44 186 527 5296; Fax: +44 186 527 5297; E-mail:
| |
Collapse
|
29
|
Gourlay SC, Colloms SD. Control of Cre recombination by regulatory elements from Xer recombination systems. Mol Microbiol 2004; 52:53-65. [PMID: 15049810 DOI: 10.1111/j.1365-2958.2003.03962.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-specific recombination by the Cre recombinase takes place at a simple DNA site (loxP), requires no additional proteins and gives topologically simple recombination products. In contrast, cer and psi sites for Xer recombination contain approximately 150 bp of accessory sequences, require accessory proteins PepA, ArgR and ArcA, and the products are specifically linked to form a four-noded catenane. Here, we use hybrid sites consisting of accessory sequences of cer or psi fused to loxP to probe the function of accessory proteins in site-specific recombination. We show that PepA instructs Cre to produce four-noded catenane, but is not required for recombination at these hybrid sites. Mutants of Cre that require PepA and accessory sequences for efficient recombination were selected. PepA-dependent Cre gave products with a specific topology and displayed resolution selectivity. Our results reveal that PepA acts autonomously in the synapsis of psi and cer accessory sequences and is the main architectural element responsible for intertwining accessory site DNA. We suggest that accessory proteins can activate recombinases simply by synapsing the regulatory DNA sequences, thus bringing the recombination sites together with a specific geometry. This may occur without the need for protein-protein interactions between accessory proteins and the recombinases.
Collapse
Affiliation(s)
- Sarah C Gourlay
- Institute of Biomedical and Life Sciences, Division of Molecular Genetics, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | |
Collapse
|
30
|
Ip SCY, Bregu M, Barre FX, Sherratt DJ. Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 2004; 22:6399-407. [PMID: 14633998 PMCID: PMC291834 DOI: 10.1093/emboj/cdg589] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA replication results in interlinked (catenated) sister duplex molecules as a consequence of the intertwined helices that comprise duplex DNA. DNA topoisomerases play key roles in decatenation. We demonstrate a novel, efficient and directional decatenation process in vitro, which uses the combination of the Escherichia coli XerCD site-specific recombination system and a protein, FtsK, which facilitates simple synapsis of dif recombination sites during its translocation along DNA. We propose that the FtsK-XerCD recombination machinery, which converts chromosomal dimers to monomers, may also function in vivo in removing the final catenation links remaining upon completion of DNA replication.
Collapse
Affiliation(s)
- Stephen C Y Ip
- University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | |
Collapse
|
31
|
Ferreira H, Butler-Cole B, Burgin A, Baker R, Sherratt DJ, Arciszewska LK. Functional analysis of the C-terminal domains of the site-specific recombinases XerC and XerD. J Mol Biol 2003; 330:15-27. [PMID: 12818199 DOI: 10.1016/s0022-2836(03)00558-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The tyrosine family site-specific recombinases XerC and XerD convert dimers of the Escherichia coli chromosome and many natural plasmids to monomers. The heterotetrameric recombination complex contains two molecules of XerC and two of XerD, with each recombinase mediating one pair of DNA strand exchanges. The two pairs of strand exchanges are separated in time and space. This demands that the catalytic activity of the four recombinase molecules be controlled so that only XerC or XerD is active at any given time, there being a switch in the recombinase activity state at the Holliday junction intermediate stage. Here, we analyse chimeras and deletion variants within the recombinase C-terminal domains in order to probe determinants that may be specific to either XerC or XerD, and to further understand how XerC-XerD interactions control catalysis in a recombining heterotetramer. The data confirm that the C-terminal "end" region of each recombinase plays an important role in coordinating catalysis within the XerCD heterotetramer and suggest that the interactions between the end regions of XerC and XerD and their cognate receptors within the partner recombinase are structurally and functionally different. The results support the hypothesis that the "normal" state in the heterotetrameric complex, in which XerC is catalytically active and XerD is inactive, depends on the interactions between the C-terminal end region of XerC and its receptor region within the C-terminal domain of XerD; interference with these interactions leads to a switch in the catalytic state, so that XerD is now preferentially active.
Collapse
Affiliation(s)
- Henrique Ferreira
- Division of Molecular Genetics, Biochemistry Department, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|