1
|
Thomas H, Alix T, Renard É, Renaud M, Wourms J, Zuily S, Leheup B, Geneviève D, Dreumont N, Schmitt E, Bronner M, Muller M, Divoux M, Wandzel M, Ravel JM, Dexheimer M, Becker A, Roth V, Willems M, Coubes C, Vieville G, Devillard F, Schaefer É, Baer S, Piton A, Gérard B, Vincent M, Nizon M, Cogné B, Ruaud L, Couque N, Putoux A, Edery P, Lesca G, Chatron N, Till M, Faivre L, Tran-Mau-Them F, Alessandri JL, Lebrun M, Quélin C, Odent S, Dubourg C, David V, Faoucher M, Mignot C, Keren B, Pisan É, Afenjar A, Julia S, Bieth É, Banneau G, Goldenberg A, Husson T, Campion D, Lecoquierre F, Nicolas G, Charbonnier C, De Saint Martin A, Naudion S, Degoutin M, Rondeau S, Michot C, Cormier-Daire V, Oussalah A, Pourié C, Lambert L, Bonnet C. Expanding the genetic and clinical spectrum of Tatton-Brown-Rahman syndrome in a series of 24 French patients. J Med Genet 2024; 61:878-885. [PMID: 38937076 DOI: 10.1136/jmg-2024-110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Tatton-Brown-Rahman syndrome (TBRS; OMIM 615879), also known as DNA methyltransferase 3 alpha (DNMT3A)-overgrowth syndrome (DOS), was first described by Tatton-Brown in 2014. This syndrome is characterised by overgrowth, intellectual disability and distinctive facial features and is the consequence of germline loss-of-function variants in DNMT3A, which encodes a DNA methyltransferase involved in epigenetic regulation. Somatic variants of DNMT3A are frequently observed in haematological malignancies, including acute myeloid leukaemia (AML). To date, 100 individuals with TBRS with de novo germline variants have been described. We aimed to further characterise this disorder clinically and at the molecular level in a nationwide series of 24 French patients and to investigate the correlation between the severity of intellectual disability and the type of variant. METHODS We collected genetic and medical information from 24 individuals with TBRS using a questionnaire released through the French National AnDDI-Rares Network. RESULTS Here, we describe the first nationwide French cohort of 24 individuals with germline likely pathogenic/pathogenic variants in DNMT3A, including 17 novel variants. We confirmed that the main phenotypic features were intellectual disability (100% of individuals), distinctive facial features (96%) and overgrowth (87%). We highlighted novel clinical features, such as hypertrichosis, and further described the neurological features and EEG results. CONCLUSION This study of a nationwide cohort of individuals with TBRS confirms previously published data and provides additional information and clarifies clinical features to facilitate diagnosis and improve care. This study adds value to the growing body of knowledge on TBRS and broadens its clinical and molecular spectrum.
Collapse
Affiliation(s)
- Hortense Thomas
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
| | - Tom Alix
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Émeline Renard
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Endocrinologie pédiatrique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Mathilde Renaud
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Service de Neurologie, CHRU de Nancy, Nancy, France
| | - Justine Wourms
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
| | - Stéphane Zuily
- Médecine Vasculaire, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- UMR_S 916 DCAC, INSERM, Vandœuvre-lès-Nancy, France
| | - Bruno Leheup
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - David Geneviève
- Centre de référence anomalies du développement et syndromes malformatifs, Département de Génétique Medicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
- Inserm U1183, Université Montpellier 1, Faculté de Médecine Montpellier-Nîmes, Montpellier, France
| | - Natacha Dreumont
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Myriam Bronner
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Marc Muller
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Marion Divoux
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marion Wandzel
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Jean-Marie Ravel
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Mylène Dexheimer
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Aurélie Becker
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Virginie Roth
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Marjolaine Willems
- Centre de référence anomalies du développement et syndromes malformatifs, Département de Génétique Medicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Christine Coubes
- Centre de référence anomalies du développement et syndromes malformatifs, Département de Génétique Medicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Gaëlle Vieville
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Françoise Devillard
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Élise Schaefer
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Sarah Baer
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Bénédicte Gérard
- Service de Génétique médicale, Institut de Génétique Médicale d'Alsace, CHU de Strasbourg, Strasbourg, France
| | - Marie Vincent
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- CNRS, INSERM, Institut du thorax, Nantes Université, Nantes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- CNRS, INSERM, Institut du thorax, Nantes Université, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- CNRS, INSERM, Institut du thorax, Nantes Université, Nantes, France
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert Debré, APHP Nord, Paris, France
| | - Nathalie Couque
- Département de Génétique, Hôpital Robert Debré, APHP Nord, Paris, France
| | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Gaëtan Lesca
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Marianne Till
- Service de Génétique, Hospices Civils de Lyon, Groupe Hospitalier Est, Bron, France
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGene PNMG, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurence Faivre
- Centre de référence anomalies du développement et syndromes malformatifs et Centre de référence Déficiences Intellectuelles de causes rares, FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm, Université Bourgogne Franche-Comté, Dijon, France
| | - Frédéric Tran-Mau-Them
- UMR1231 GAD, Inserm, Université Bourgogne Franche-Comté, Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Jean-Luc Alessandri
- Service de génétique médicale, CHU de La Réunion, Hôpital Félix Guyon, Bellepierre, Saint-Denis, Réunion
| | - Marine Lebrun
- Département de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Chloé Quélin
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Sylvie Odent
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Christèle Dubourg
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Véronique David
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Marie Faoucher
- Département de génétique moléculaire et génomique, CHU Rennes, Rennes, France
| | - Cyril Mignot
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Boris Keren
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Élise Pisan
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Alexandra Afenjar
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Sophie Julia
- Département de Génétique médicale, CHU Toulouse, Toulouse, France
| | - Éric Bieth
- Département de Génétique médicale, CHU Toulouse, Toulouse, France
| | | | - Alice Goldenberg
- Department of Genetics and Reference Center for Developmental Disorders, CHU de Rouen, Rouen, France
- Inserm U1245, Université de Rouen Normandie, Rouen, France
| | - Thomas Husson
- Inserm U1245, Université de Rouen Normandie, Rouen, France
- Department of Psychiatry, CHU de Rouen, Rouen, France
- Department of Research, Centre hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | - Dominique Campion
- Inserm U1245, Université de Rouen Normandie, Rouen, France
- Department of Psychiatry, CHU de Rouen, Rouen, France
- Department of Research, Centre hospitalier du Rouvray, Sotteville-Lès-Rouen, France
| | - François Lecoquierre
- Department of Genetics and Reference Center for Developmental Disorders, CHU de Rouen, Rouen, France
- Inserm U1245, Université de Rouen Normandie, Rouen, France
| | - Gaël Nicolas
- Department of Genetics and Reference Center for Developmental Disorders, CHU de Rouen, Rouen, France
- Inserm U1245, Université de Rouen Normandie, Rouen, France
| | - Camille Charbonnier
- Inserm U1245, Université de Rouen Normandie, Rouen, France
- Department of Biotatistics, CHU de Rouen, Rouen, France
| | - Anne De Saint Martin
- Centre de Référence des épilepsies Rares, Hopitaux universitaires de Strasbourg, Strasbourg, France
| | - Sophie Naudion
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Groupe hospitalier Pellegrin, Bordeaux, France
| | - Manon Degoutin
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Groupe hospitalier Pellegrin, Bordeaux, France
| | - Sophie Rondeau
- Centre de référence des maladies osseuses constitutionnelles, Necker-Enfants Malades Hospitals, Paris, France
- INSERM UMR 1163, Imagine Institute, Paris, France
| | - Caroline Michot
- Centre de référence des maladies osseuses constitutionnelles, Necker-Enfants Malades Hospitals, Paris, France
- INSERM UMR 1163, Imagine Institute, Paris, France
| | - Valérie Cormier-Daire
- Centre de référence des maladies osseuses constitutionnelles, Necker-Enfants Malades Hospitals, Paris, France
- INSERM UMR 1163, Imagine Institute, Paris, France
| | - Abderrahim Oussalah
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, and Nutrition, CHRU de Nancy, Nancy, France
| | - Carine Pourié
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laëtitia Lambert
- Service de Génétique Clinique, CHRU de Nancy, Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Céline Bonnet
- Laboratoire de Génétique, CHRU de Nancy, Vandœuvre-lès-Nancy, France
- INSERM NGERE U1256, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
2
|
AlSabah AA, Alsalmi M, Massie R, Bilodeau MC, Campeau PM, McGraw S, D'Agostino MD. An adult patient with Tatton-Brown-Rahman syndrome caused by a novel DNMT3A variant and axonal polyneuropathy. Am J Med Genet A 2024; 194:e63484. [PMID: 38041495 DOI: 10.1002/ajmg.a.63484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Tatton-Brown-Rahman syndrome (TBRS) is a rare autosomal dominant overgrowth syndrome first reported in 2014 and caused by pathogenic variants in the DNA methyltransferase 3A (DNMT3A) gene. All individuals reported to date share a phenotype of somatic overgrowth, dysmorphic features, and intellectual disability. Peripheral neuropathy was not described in these cases. We report an adult patient with TBRS caused by a novel pathogenic DNMT3A variant (NM_175629.2: c.2036G>A, p.(Arg688His)) harboring an axonal length-dependent sensory-motor polyneuropathy. Extensive laboratory and molecular genetic work-up failed to identify alternative causes for this patient's neuropathy. We propose that axonal neuropathy may be a novel, age-dependent phenotypic feature in adults with TBRS and suggest that this syndrome should be considered in the differential diagnosis of patients with overgrowth, cognitive and psychiatric difficulties, and peripheral neuropathy.
Collapse
Affiliation(s)
- Al-Alya AlSabah
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Mohammed Alsalmi
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Rami Massie
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Marie-Claude Bilodeau
- Clinique de Psychiatrie, Santé Mentale et Dépendances, CIUSSS MCQ, Hôpital Sainte-Croix, Drummondville, Quebec, Canada
| | - Philippe M Campeau
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Serge McGraw
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Université de Montreal, Montreal, Quebec, Canada
| | - Maria Daniela D'Agostino
- Division of Medical Genetics, Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Zhang Q, Shi Y, Liu S, Yang W, Chen H, Guo N, Sun W, Zhao Y, Ren Y, Ren Y, Jia L, Yang J, Yun Y, Chen G, Wang L, Wu C. EZH2/G9a interact to mediate drug resistance in non-small-cell lung cancer by regulating the SMAD4/ERK/c-Myc signaling axis. Cell Rep 2024; 43:113714. [PMID: 38306271 DOI: 10.1016/j.celrep.2024.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/18/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
Drug resistance is the leading problem in non-small-cell lung cancer (NSCLC) therapy. The contribution of histone methylation in mediating malignant phenotypes of NSCLC is well known. However, the role of histone methylation in NSCLC drug-resistance mechanisms remains unclear. Here, our data show that EZH2 and G9a, two histone methyltransferases, are involved in the drug resistance of NSCLC. Gene manipulation results indicate that the combination of EZH2 and G9a promotes tumor growth and mediates drug resistance in a complementary manner. Importantly, clinical study demonstrates that co-expression of both enzymes predicts a poor outcome in patients with NSCLC. Mechanistically, G9a and EZH2 interact and promote the silencing of the tumor-suppressor gene SMAD4, activating the ERK/c-Myc signaling pathway. Finally, SU08, a compound targeting both EZH2 and G9a, is demonstrated to sensitize resistant cells to therapeutic drugs by regulating the SMAD4/ERK/c-Myc signaling axis. These findings uncover the resistance mechanism and a strategy for reversing NSCLC drug resistance.
Collapse
Affiliation(s)
- Qiuyue Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yajie Shi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen Liu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiming Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiping Chen
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Guo
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wanyu Sun
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuxiang Ren
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430070, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Yun
- Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Han W, Wang W, Wang Q, Maduray K, Hao L, Zhong J. A review on regulation of DNA methylation during post-myocardial infarction. Front Pharmacol 2024; 15:1267585. [PMID: 38414735 PMCID: PMC10896928 DOI: 10.3389/fphar.2024.1267585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Myocardial infarction (MI) imposes a huge medical and economic burden on society, and cardiac repair after MI involves a complex series of processes. Understanding the key mechanisms (such as apoptosis, autophagy, inflammation, and fibrosis) will facilitate further drug development and patient treatment. Presently, a substantial body of evidence suggests that the regulation of epigenetic processes contributes to cardiac repair following MI, with DNA methylation being among the notable epigenetic factors involved. This article will review the research on the mechanism of DNA methylation regulation after MI to provide some insights for future research and development of related drugs.
Collapse
Affiliation(s)
- Wenqiang Han
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenxin Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qinhong Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Kellina Maduray
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Mukund AX, Tycko J, Allen SJ, Robinson SA, Andrews C, Sinha J, Ludwig CH, Spees K, Bassik MC, Bintu L. High-throughput functional characterization of combinations of transcriptional activators and repressors. Cell Syst 2023; 14:746-763.e5. [PMID: 37543039 PMCID: PMC10642976 DOI: 10.1016/j.cels.2023.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/07/2023]
Abstract
Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation. In contrast, repressors combine linearly and produce full gene silencing, and repressor domains often overpower activation domains. We use this information to build a synthetic transcription factor whose function can be tuned between repression and activation independent of recruitment to target genes by using a small-molecule drug. Altogether, we outline the basic principles of how effector domains combine to regulate gene expression and demonstrate their value in building precise and flexible synthetic biology tools. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Adi X Mukund
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sage J Allen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | - Cecelia Andrews
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Connor H Ludwig
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Regmi S, Giha L, Ali A, Siebels-Lindquist C, Davis TL. Methylation is maintained specifically at imprinting control regions but not other DMRs associated with imprinted genes in mice bearing a mutation in the Dnmt1 intrinsically disordered domain. Front Cell Dev Biol 2023; 11:1192789. [PMID: 37601113 PMCID: PMC10436486 DOI: 10.3389/fcell.2023.1192789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Differential methylation of imprinting control regions in mammals is essential for distinguishing the parental alleles from each other and regulating their expression accordingly. To ensure parent of origin-specific expression of imprinted genes and thereby normal developmental progression, the differentially methylated states that are inherited at fertilization must be stably maintained by DNA methyltransferase 1 throughout subsequent somatic cell division. Further epigenetic modifications, such as the acquisition of secondary regions of differential methylation, are dependent on the methylation status of imprinting control regions and are important for achieving the monoallelic expression of imprinted genes, but little is known about how imprinting control regions direct the acquisition and maintenance of methylation at these secondary sites. Recent analysis has identified mutations that reduce DNA methyltransferase 1 fidelity at some genomic sequences but not at others, suggesting that it may function differently at different loci. We examined the impact of the mutant DNA methyltransferase 1 P allele on methylation at imprinting control regions as well as at secondary differentially methylated regions and non-imprinted sequences. We found that while the P allele results in a major reduction in DNA methylation levels across the mouse genome, methylation is specifically maintained at imprinting control regions but not at their corresponding secondary DMRs. This result suggests that DNA methyltransferase 1 may work differently at imprinting control regions or that there is an alternate mechanism for maintaining methylation at these critical regulatory regions and that maintenance of methylation at secondary DMRs is not solely dependent on the methylation status of the ICR.
Collapse
Affiliation(s)
| | | | | | | | - Tamara L. Davis
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| |
Collapse
|
7
|
Dar MS, Mensah IK, He M, McGovern S, Sohal IS, Whitlock HC, Bippus NE, Ceminsky M, Emerson ML, Tan HJ, Hall MC, Gowher H. Dnmt3bas coordinates transcriptional induction and alternative exon inclusion to promote catalytically active Dnmt3b expression. Cell Rep 2023; 42:112587. [PMID: 37294637 PMCID: PMC10592478 DOI: 10.1016/j.celrep.2023.112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/16/2023] [Accepted: 05/16/2023] [Indexed: 06/11/2023] Open
Abstract
Embryonic expression of DNMT3B is critical for establishing de novo DNA methylation. This study uncovers the mechanism through which the promoter-associated long non-coding RNA (lncRNA) Dnmt3bas controls the induction and alternative splicing of Dnmt3b during embryonic stem cell (ESC) differentiation. Dnmt3bas recruits the PRC2 (polycomb repressive complex 2) at cis-regulatory elements of the Dnmt3b gene expressed at a basal level. Correspondingly, Dnmt3bas knockdown enhances Dnmt3b transcriptional induction, whereas overexpression of Dnmt3bas dampens it. Dnmt3b induction coincides with exon inclusion, switching the predominant isoform from the inactive Dnmt3b6 to the active Dnmt3b1. Intriguingly, overexpressing Dnmt3bas further enhances the Dnmt3b1:Dnmt3b6 ratio, attributed to its interaction with hnRNPL (heterogeneous nuclear ribonucleoprotein L), a splicing factor that promotes exon inclusion. Our data suggest that Dnmt3bas coordinates alternative splicing and transcriptional induction of Dnmt3b by facilitating the hnRNPL and RNA polymerase II (RNA Pol II) interaction at the Dnmt3b promoter. This dual mechanism precisely regulates the expression of catalytically active DNMT3B, ensuring fidelity and specificity of de novo DNA methylation.
Collapse
Affiliation(s)
- Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ikjot Singh Sohal
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Nina Elise Bippus
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Madison Ceminsky
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Martin L Emerson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Hern J Tan
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
8
|
Coordinated transcriptional and post-transcriptional epigenetic regulation during skeletal muscle development and growth in pigs. J Anim Sci Biotechnol 2022; 13:146. [PMID: 36457054 PMCID: PMC9714148 DOI: 10.1186/s40104-022-00791-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) and DNA 5-methylcytosine (5mC) methylation plays crucial roles in diverse biological processes, including skeletal muscle development and growth. Recent studies unveiled a potential link between these two systems, implicating the potential mechanism of coordinated transcriptional and post-transcriptional regulation in porcine prenatal myogenesis and postnatal skeletal muscle growth. METHODS Immunofluorescence and co-IP assays were carried out between the 5mC writers and m6A writers to investigate the molecular basis underneath. Large-scale in-house transcriptomic data were compiled for applying weighted correlation network analysis (WGCNA) to identify the co-expression patterns of m6A and 5mC regulators and their potential role in pig myogenesis. Whole-genome bisulfite sequencing (WGBS) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) were performed on the skeletal muscle samples from Landrace pigs at four postnatal growth stages (days 30, 60, 120 and 180). RESULTS Significantly correlated expression between 5mC writers and m6A writers and co-occurrence of 5mC and m6A modification were revealed from public datasets of C2C12 myoblasts. The protein-protein interactions between the DNA methylase and the m6A methylase were observed in mouse myoblast cells. Further, by analyzing transcriptome data comprising 81 pig skeletal muscle samples across 27 developmental stages, we identified a 5mC/m6A epigenetic module eigengene and decoded its potential functions in pre- or post-transcriptional regulation in postnatal skeletal muscle development and growth of pigs. Following integrative multi-omics analyses on the WGBS methylome data and MeRIP-seq data for both m6A and gene expression profiles revealed a genome/transcriptome-wide correlated dynamics and co-occurrence of 5mC and m6A modifications as a consequence of 5mC/m6A crosstalk in the postnatal myogenesis progress of pigs. Last, we identified a group of myogenesis-related genes collaboratively regulated by both 5mC and m6A modifications in postnatal skeletal muscle growth in pigs. CONCLUSIONS Our study discloses a potential epigenetic mechanism in skeletal muscle development and provides a novel direction for animal breeding and drug development of related human muscle-related diseases.
Collapse
|
9
|
Estève PO, Sen S, Vishnu US, Ruse C, Chin HG, Pradhan S. Poly ADP-ribosylation of SET8 leads to aberrant H4K20 methylation in mammalian nuclear genome. Commun Biol 2022; 5:1292. [PMID: 36434141 PMCID: PMC9700808 DOI: 10.1038/s42003-022-04241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
In mammalian cells, SET8 mediated Histone H4 Lys 20 monomethylation (H4K20me1) has been implicated in regulating mitotic condensation, DNA replication, DNA damage response, and gene expression. Here we show SET8, the only known enzyme for H4K20me1 is post-translationally poly ADP-ribosylated by PARP1 on lysine residues. PARP1 interacts with SET8 in a cell cycle-dependent manner. Poly ADP-ribosylation on SET8 renders it catalytically compromised, and degradation via ubiquitylation pathway. Knockdown of PARP1 led to an increase of SET8 protein levels, leading to aberrant H4K20me1 and H4K20me3 domains in the genome. H4K20me1 is associated with higher gene transcription levels while the increase of H4K20me3 levels was predominant in DNA repeat elements. Hence, SET8 mediated chromatin remodeling in mammalian cells are modulated by poly ADP-ribosylation by PARP1.
Collapse
Affiliation(s)
- Pierre-Olivier Estève
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Sagnik Sen
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Udayakumar S. Vishnu
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Cristian Ruse
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA ,grid.479574.c0000 0004 1791 3172Present Address: Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139 USA
| | - Hang Gyeong Chin
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| | - Sriharsa Pradhan
- grid.273406.40000 0004 0376 1796New England Biolabs Inc, 240 County Road, Ipswich, MA 01938 USA
| |
Collapse
|
10
|
Li J, Xu J, Yang T, Chen J, Li F, Shen B, Fan C. Genome-wide methylation analyses of human sperm unravel novel differentially methylated regions in asthenozoospermia. Epigenomics 2022; 14:951-964. [PMID: 36004499 DOI: 10.2217/epi-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims & objectives: To investigate DNA methylation patterns in asthenozoospermic and normozoospermic sperm and to explore the potential roles of differential methylations in the etiology of the disease. Materials & methods: The authors performed whole-genome bisulfite sequencing analysis between normozoospermic controls and asthenozoospermic individuals. Results: The authors identified 238 significant differentially methylated regions. These differentially methylated regions were annotated to 114 protein-coding genes, with many genes showing associations with spermatogenesis, sperm motility etc. Conclusion: There are plenty of genomic regions exhibiting altered DNA methylation in asthenozoospermia, a number of which are located within or adjacent to sperm-related genes, suggesting novel methylation markers of asthenozoospermia and potential epigenetic regulation mechanisms through DNA methylation in the disease.
Collapse
Affiliation(s)
- Jingjing Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Jinyan Xu
- Human Sperm Bank, Key Laboratory of Birth Defects & Related Diseases of Women & Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Tingting Yang
- Human Sperm Bank, Key Laboratory of Birth Defects & Related Diseases of Women & Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuping Li
- Human Sperm Bank, Key Laboratory of Birth Defects & Related Diseases of Women & Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
11
|
Duan J, Zhong B, Fan Z, Zhang H, Xu M, Zhang X, Sanders YY. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med 2022; 16:519-528. [PMID: 35673969 DOI: 10.1080/17476348.2022.2085091] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihua Fan
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Mengmeng Xu
- Xiangya Medical school of Central South University, Changsha, Hunan, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19 Street South, BMRII Room 408, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells. PLoS One 2022; 17:e0262277. [PMID: 34986190 PMCID: PMC8730390 DOI: 10.1371/journal.pone.0262277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.
Collapse
|
13
|
Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H, Song J. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:45-68. [PMID: 36350506 PMCID: PMC11025882 DOI: 10.1007/978-3-031-11454-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammals, three major DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains. For instance, Dnmt3a and Dnmt3b each contain a Pro-Trp-Trp-Pro (PWWP) domain that recognizes the histone H3K36me2/3 mark, an Atrx-Dnmt3-Dnmt3l (ADD) domain that recognizes unmodified histone H3 tail, and a catalytic domain that methylates CpG sites. Dnmt1 contains an N-terminal independently folded domain (NTD) that interacts with a variety of regulatory factors, a replication foci-targeting sequence (RFTS) domain that recognizes the histone H3K9me3 mark and H3 ubiquitylation, a CXXC domain that recognizes unmodified CpG DNA, two tandem Bromo-Adjacent-homology (BAH1 and BAH2) domains that read the H4K20me3 mark with BAH1, and a catalytic domain that preferentially methylates hemimethylated CpG sites. In this chapter, the structures and functions of these domains are described.
Collapse
Affiliation(s)
- Shoji Tajima
- Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Isao Suetake
- Department of Nutritional Sciences, Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | | | - Atsushi Nakagawa
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hironobu Kimura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jikui Song
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
14
|
Yang T, Liu X, Kumar SK, Jin F, Dai Y. Decoding DNA methylation in epigenetics of multiple myeloma. Blood Rev 2022; 51:100872. [PMID: 34384602 DOI: 10.1016/j.blre.2021.100872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Dysregulation of DNA methylation in B cells has been observed during their neoplastic transformation and therefore closely associated with various B-cell malignancies including multiple myeloma (MM), a malignancy of terminally differentiated plasma cells. Emerging evidence has unveiled pronounced alterations in DNA methylation in MM, including both global and gene-specific changes that can affect genome stability and gene transcription. Moreover, dysregulated expression of DNA methylation-modifying enzymes has been related with myelomagenesis, disease progression, and poor prognosis. However, the functional roles of the epigenetic abnormalities involving DNA methylation in MM remain elusive. In this article, we review current understanding of the alterations in DNA methylome and DNA methylation modifiers in MM, particularly focusing on DNA methyltransferases (DNMTs) and tet methylcytosine dioxygenases (TETs). We also discuss how these DNA methylation modifiers may be regulated and function in MM cells, therefore providing a rationale for developing novel epigenetic therapies targeting DNA methylation in MM.
Collapse
Affiliation(s)
- Ting Yang
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130012, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, 519 Dongminzhu Street, Changchun, Jilin 130061, China.
| |
Collapse
|
15
|
Singh V, Kushwaha S, Ansari JA, Gangopadhyay S, Mishra SK, Dey RK, Giri AK, Patnaik S, Ghosh D. MicroRNA-129-5p-regulated microglial expression of the surface receptor CD200R1 controls neuroinflammation. J Biol Chem 2021; 298:101521. [PMID: 34952004 PMCID: PMC8762073 DOI: 10.1016/j.jbc.2021.101521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
CD200R1 is an inhibitory surface receptor expressed in microglia and blood macrophages. Microglial CD200R1 is known to control neuroinflammation by keeping the microglia in resting state, and therefore, tight regulation of its expression is important. CCAAT/enhancer-binding protein β (CEBPβ) is the known regulator of CD200R1 transcription. In the present study, our specific intention was to find a possible posttranscriptional regulatory mechanism of CD200R1 expression. Here we investigated a novel regulatory mechanism of CD200R1 expression following exposure to an environmental stressor, arsenic, combining in silico analysis, in vitro, and in vivo experiments, as well as validation in human samples. The in silico analysis and in vitro studies with primary neonatal microglia and BV2 microglia revealed that arsenic demethylates the promoter of a microRNA, miR-129-5p, thereby increasing its expression, which subsequently represses CD200R1 by binding to its 3′-untranslated region and shuttling the CD200R1 mRNA to the cytoplasmic-processing body in mouse microglia. The role of miR-129-5p was further validated in BALB/c mouse by stereotaxically injecting anti-miR-129. We found that anti-miR-129 reversed the expression of CD200R1, as well as levels of inflammatory molecules IL-6 and TNF-α. Experiments with a CD200R1 siRNA-induced loss-of-function mouse model confirmed an miR-129-5p→CD200R1→IL-6/TNF-α signaling axis. These main findings were replicated in a human cell line and validated in human samples. Taken together, our study revealed miR-129-5p as a novel posttranscriptional regulator of CD200R1 expression with potential implications in neuroinflammation and related complications.
Collapse
Affiliation(s)
- Vikas Singh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shaivya Kushwaha
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamal Ahmad Ansari
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Siddhartha Gangopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Shubhendra K Mishra
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Rajib K Dey
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok K Giri
- CSIR-Indian Institute of Chemical Biology, 4, Raja Subodh Chandra Mallick Rd, Poddar Nagar, Jadavpur, Kolkata, West Bengal 700032, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Water Analysis Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226001, India
| | - Debabrata Ghosh
- Immunotoxicology Laboratory, Food, Drug & Chemical Toxicology Group and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Lin Z, Chang J, Li X, Wang J, Wu X, Liu X, Zhu Y, Yu XY. Association of DNA methylation and transcriptome reveals epigenetic etiology of heart failure. Funct Integr Genomics 2021; 22:89-112. [PMID: 34870779 DOI: 10.1007/s10142-021-00813-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications viz. DNA methylation, histone modifications, and RNA-based alterations play a crucial role in the development of cardiovascular diseases. In this study, we investigated DNA methylation with an aim to reveal the epigenetic etiology of heart failure. Sprague-Dawley rats surviving myocardial infarction developed acute heart failure in 1 week. Genomic DNA methylation changes were profiled by bisulfite sequencing, and gene expression levels were analyzed by RNA-seq in failing and sham-operation hearts. A total of 3480 differentially methylated genes in the promoter regions including transcriptional start site and 1934 transcriptome-altered genes were identified in the defected hearts. Common differential genes were enriched by the gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction for HF phenotypes. Among these, Mettl11b, HDAC3, HDAC11, ubiquitination-related genes, and snoRNAs are new epigenetic classifiers that had not been reported yet, which may be important regulators in HF.
Collapse
Affiliation(s)
- Zhongxiao Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- South China Center for Drug Clinical Evaluation and Guangzhou Medical University New Drug Research and Development Co., Ltd, Guangzhou, 511436, China
| | - Jishuo Chang
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- South China Center for Drug Clinical Evaluation and Guangzhou Medical University New Drug Research and Development Co., Ltd, Guangzhou, 511436, China
| | - Xinzhi Li
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jianglin Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaodan Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyan Liu
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 58, Pu Yu Dong Road, Shanghai, 200011, China
| | - YiZhun Zhu
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
- South China Center for Drug Clinical Evaluation and Guangzhou Medical University New Drug Research and Development Co., Ltd, Guangzhou, 511436, China.
| |
Collapse
|
17
|
Li F, Jing J, Movahed M, Cui X, Cao Q, Wu R, Chen Z, Yu L, Pan Y, Shi H, Shi H, Xue B. Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat. Nat Commun 2021; 12:6838. [PMID: 34824202 PMCID: PMC8617140 DOI: 10.1038/s41467-021-27141-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
Brown adipocytes share the same developmental origin with skeletal muscle. Here we find that a brown adipocyte-to-myocyte remodeling also exists in mature brown adipocytes, and is induced by prolonged high fat diet (HFD) feeding, leading to brown fat dysfunction. This process is regulated by the interaction of epigenetic pathways involving histone and DNA methylation. In mature brown adipocytes, the histone demethylase UTX maintains persistent demethylation of the repressive mark H3K27me3 at Prdm16 promoter, leading to high Prdm16 expression. PRDM16 then recruits DNA methyltransferase DNMT1 to Myod1 promoter, causing Myod1 promoter hypermethylation and suppressing its expression. The interaction between PRDM16 and DNMT1 coordinately serves to maintain brown adipocyte identity while repressing myogenic remodeling in mature brown adipocytes, thus promoting their active brown adipocyte thermogenic function. Suppressing this interaction by HFD feeding induces brown adipocyte-to-myocyte remodeling, which limits brown adipocyte thermogenic capacity and compromises diet-induced thermogenesis, leading to the development of obesity.
Collapse
Affiliation(s)
- Fenfen Li
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Jia Jing
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Miranda Movahed
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Xin Cui
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Qiang Cao
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Rui Wu
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Ziyue Chen
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA
| | - Liqing Yu
- grid.411024.20000 0001 2175 4264Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Yi Pan
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA ,grid.458489.c0000 0001 0483 7922Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P.R. China
| | - Huidong Shi
- grid.410427.40000 0001 2284 9329Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA ,grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hang Shi
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Bingzhong Xue
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
18
|
Gao W, Liu JL, Lu X, Yang Q. Epigenetic regulation of energy metabolism in obesity. J Mol Cell Biol 2021; 13:480-499. [PMID: 34289049 PMCID: PMC8530523 DOI: 10.1093/jmcb/mjab043] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity has reached epidemic proportions globally. Although modern adoption of a sedentary lifestyle coupled with energy-dense nutrition is considered to be the main cause of obesity epidemic, genetic preposition contributes significantly to the imbalanced energy metabolism in obesity. However, the variants of genetic loci identified from large-scale genetic studies do not appear to fully explain the rapid increase in obesity epidemic in the last four to five decades. Recent advancements of next-generation sequencing technologies and studies of tissue-specific effects of epigenetic factors in metabolic organs have significantly advanced our understanding of epigenetic regulation of energy metabolism in obesity. The epigenome, including DNA methylation, histone modifications, and RNA-mediated processes, is characterized as mitotically or meiotically heritable changes in gene function without alteration of DNA sequence. Importantly, epigenetic modifications are reversible. Therefore, comprehensively understanding the landscape of epigenetic regulation of energy metabolism could unravel novel molecular targets for obesity treatment. In this review, we summarize the current knowledge on the roles of DNA methylation, histone modifications such as methylation and acetylation, and RNA-mediated processes in regulating energy metabolism. We also discuss the effects of lifestyle modifications and therapeutic agents on epigenetic regulation of energy metabolism in obesity.
Collapse
Affiliation(s)
- Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing 211166, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
19
|
Sugita E, Hayashi K, Hishikawa A, Itoh H. Epigenetic Alterations in Podocytes in Diabetic Nephropathy. Front Pharmacol 2021; 12:759299. [PMID: 34630127 PMCID: PMC8497789 DOI: 10.3389/fphar.2021.759299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
Recently, epigenetic alterations have been shown to be involved in the pathogenesis of diabetes and its complications. Kidney podocytes, which are glomerular epithelial cells, are important cells that form a slit membrane—a barrier for proteinuria. Podocytes are terminally differentiated cells without cell division or replenishment abilities. Therefore, podocyte damage is suggested to be one of the key factors determining renal prognosis. Recent studies, including ours, suggest that epigenetic changes in podocytes are associated with chronic kidney disease, including diabetic nephropathy. Furthermore, the association between DNA damage repair and epigenetic changes in diabetic podocytes has been demonstrated. Detection of podocyte DNA damage and epigenetic changes using human samples, such as kidney biopsy and urine-derived cells, may be a promising strategy for estimating kidney damage and renal prognoses in patients with diabetes. Targeting epigenetic podocyte changes and associated DNA damage may become a novel therapeutic strategy for preventing progression to end-stage renal disease (ESRD) and provide a possible prognostic marker in diabetic nephropathy. This review summarizes recent advances regarding epigenetic changes, especially DNA methylation, in podocytes in diabetic nephropathy and addresses detection of these alterations in human samples. Additionally, we focused on DNA damage, which is increased under high-glucose conditions and associated with the generation of epigenetic changes in podocytes. Furthermore, epigenetic memory in diabetes is discussed. Understanding the role of epigenetic changes in podocytes in diabetic nephropathy may be of great importance considering the increasing diabetic nephropathy patient population in an aging society.
Collapse
Affiliation(s)
- Erina Sugita
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kaori Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
20
|
Koenig MJ, Agana BA, Kaufman JM, Sharpnack MF, Wang WZ, Weigel C, Navarro FCP, Amann JM, Cacciato N, Arasada RR, Gerstein MB, Wysocki VH, Oakes C, Carbone DP. STK11/LKB1 Loss of Function Is Associated with Global DNA Hypomethylation and S-Adenosyl-Methionine Depletion in Human Lung Adenocarcinoma. Cancer Res 2021; 81:4194-4204. [PMID: 34045189 DOI: 10.1158/0008-5472.can-20-3199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/14/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
STK11 (liver kinase B1, LKB1) is the fourth most frequently mutated gene in lung adenocarcinoma, with loss of function observed in up to 30% of all cases. Our previous work identified a 16-gene signature for LKB1 loss of function through mutational and nonmutational mechanisms. In this study, we applied this genetic signature to The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples and discovered a novel association between LKB1 loss and widespread DNA demethylation. LKB1-deficient tumors showed depletion of S-adenosyl-methionine (SAM-e), which is the primary substrate for DNMT1 activity. Lower methylation following LKB1 loss involved repetitive elements (RE) and altered RE transcription, as well as decreased sensitivity to azacytidine. Demethylated CpGs were enriched for FOXA family consensus binding sites, and nuclear expression, localization, and turnover of FOXA was dependent upon LKB1. Overall, these findings demonstrate that a large number of lung adenocarcinomas exhibit global hypomethylation driven by LKB1 loss, which has implications for both epigenetic therapy and immunotherapy in these cancers. SIGNIFICANCE: Lung adenocarcinomas with LKB1 loss demonstrate global genomic hypomethylation associated with depletion of SAM-e, reduced expression of DNMT1, and increased transcription of repetitive elements.
Collapse
Affiliation(s)
- Michael J Koenig
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| | - Bernice A Agana
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Jacob M Kaufman
- Department of Medicine, Duke University, Durham, North Carolina
| | | | - Walter Z Wang
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Christoph Weigel
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Fabio C P Navarro
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Joseph M Amann
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Nicole Cacciato
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | | | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.,Department of Computer Science, Yale University, New Haven, Connecticut
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Christopher Oakes
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
21
|
Hegde M, Joshi MB. Comprehensive analysis of regulation of DNA methyltransferase isoforms in human breast tumors. J Cancer Res Clin Oncol 2021; 147:937-971. [PMID: 33604794 PMCID: PMC7954751 DOI: 10.1007/s00432-021-03519-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Significant reprogramming of epigenome is widely described during pathogenesis of breast cancer. Transformation of normal cell to hyperplastic cell and to neoplastic phenotype is associated with aberrant DNA (de)methylation, which, through promoter and enhancer methylation changes, activates oncogenes and silence tumor suppressor genes in variety of tumors including breast. DNA methylation, one of the major epigenetic mechanisms is catalyzed by evolutionarily conserved isoforms namely, DNMT1, DNMT3A and DNMT3B in humans. Over the years, studies have demonstrated intricate and complex regulation of DNMT isoforms at transcriptional, translational and post-translational levels. The recent findings of allosteric regulation of DNMT isoforms and regulation by other interacting chromatin modifying proteins emphasizes functional integrity and their contribution for the development of breast cancer and progression. DNMT isoforms are regulated by several intrinsic and extrinsic parameters. In the present review, we have extensively performed bioinformatics analysis of expression of DNMT isoforms along with their transcriptional and post-transcriptional regulators such as transcription factors, interacting proteins, hormones, cytokines and dietary elements along with their significance during pathogenesis of breast tumors. Our review manuscript provides a comprehensive understanding of key factors regulating DNMT isoforms in breast tumor pathology and documents unsolved issues.
Collapse
Affiliation(s)
- Mangala Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India
| | - Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, 576104, India.
| |
Collapse
|
22
|
Lasri A, Sturrock M. The influence of methylation status on a stochastic model of MGMT dynamics in glioblastoma: Phenotypic selection can occur with and without a downshift in promoter methylation status. J Theor Biol 2021; 521:110662. [PMID: 33684406 DOI: 10.1016/j.jtbi.2021.110662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma originates in the brain and is one of the most aggressive cancer types. Glioblastoma represents 15% of all brain tumours, with a median survival of 15 months. Although the current standard of care for such a tumour (the Stupp protocol) has shown positive results for the prognosis of patients, O-6-methylguanine-DNA methyltransferase (MGMT) driven drug resistance has been an issue of increasing concern and hence requires innovative approaches. In addition to the well established drug resistance factors such as tumour location and blood brain barriers, it is also important to understand how the genetic and epigenetic dynamics of the glioblastoma cells can play a role. One important aspect of this is the study of methylation status of MGMT following administration of temozolomide. In this paper, we extend our previously published model that simulated MGMT expression in glioblastoma cells to incorporate the promoter methylation status of MGMT. This methylation status has clinical significance and is used as a marker for patient outcomes. Using this model, we investigate the causative relationship between temozolomide treatment and the methylation status of the MGMT promoter in a population of cells. In addition by constraining the model to relevant biological data using Approximate Bayesian Computation, we were able to identify parameter regimes that yield different possible modes of resistances, namely, phenotypic selection of MGMT, a downshift in the methylation status of the MGMT promoter or both simultaneously. We analysed each of the parameter sets associated with the different modes of resistance, presenting representative solutions as well as discovering some similarities between them as well as unique requirements for each of them. Finally, we used them to devise optimal strategies for inhibiting MGMT expression with the aim of minimising live glioblastoma cell numbers.
Collapse
Affiliation(s)
- Ayoub Lasri
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York house, Dublin, Ireland.
| | - Marc Sturrock
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, York house, Dublin, Ireland
| |
Collapse
|
23
|
Yin W, Liang Y, Sun L, Yin Y, Zhang W. Maternal intermittent fasting before mating alters hepatic DNA methylation in offspring. Epigenomics 2021; 13:341-356. [PMID: 33504196 DOI: 10.2217/epi-2020-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Our aim was to explore how maternal intermittent fasting (IF) influences offspring metabolism. Materials & methods: A model of female C57BL/6J mice alternate-day feeding before mating was established and alteration of hepatic DNA methylation in offspring analyzed by whole genome bisulfite sequencing. Results: IF dams weighed less (p = 0.03) and had lower random blood glucose levels (p = 0.04). Lower birth weight (p = 0.0031) and impaired glucose metabolism were also observed in the offspring of the IF mice. The hepatic genome-wide DNA methylation maps showed a correlation between maternal IF and decreased hepatic global DNA methylation of adult offspring. In the offspring liver, 2869 differentially methylated DNA regions were altered. Conclusions: Our finding suggests that maternal IF before mating significantly alters hepatic DNA methylation in offspring.
Collapse
Affiliation(s)
- Wenzhen Yin
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yuan Liang
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lijun Sun
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhen Zhang
- Department of Physiology & Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
24
|
Kores K, Konc J, Bren U. Mechanistic Insights into Side Effects of Troglitazone and Rosiglitazone Using a Novel Inverse Molecular Docking Protocol. Pharmaceutics 2021; 13:315. [PMID: 33670968 PMCID: PMC7997210 DOI: 10.3390/pharmaceutics13030315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
Thiazolidinediones form drugs that treat insulin resistance in type 2 diabetes mellitus. Troglitazone represents the first drug from this family, which was removed from use by the FDA due to its hepatotoxicity. As an alternative, rosiglitazone was developed, but it was under the careful watch of FDA for a long time due to suspicion, that it causes cardiovascular diseases, such as heart failure and stroke. We applied a novel inverse molecular docking protocol to discern the potential protein targets of both drugs. Troglitazone and rosiglitazone were docked into predicted binding sites of >67,000 protein structures from the Protein Data Bank and examined. Several new potential protein targets with successfully docked troglitazone and rosiglitazone were identified. The focus was devoted to human proteins so that existing or new potential side effects could be explained or proposed. Certain targets of troglitazone such as 3-oxo-5-beta-steroid 4-dehydrogenase, neutrophil collagenase, stromelysin-1, and VLCAD were pinpointed, which could explain its hepatoxicity, with additional ones indicating that its application could lead to the treatment/development of cancer. Results for rosiglitazone discerned its interaction with members of the matrix metalloproteinase family, which could lead to cancer and neurodegenerative disorders. The concerning cardiovascular side effects of rosiglitazone could also be explained. We firmly believe that our results deepen the mechanistic understanding of the side effects of both drugs, and potentially with further development and research maybe even help to minimize them. On the other hand, the novel inverse molecular docking protocol on the other hand carries the potential to develop into a standard tool to predict possible cross-interactions of drug candidates potentially leading to adverse side effects.
Collapse
Affiliation(s)
- Katarina Kores
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (J.K.)
| | - Janez Konc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (J.K.)
- Laboratory for Molecular Modeling, Theory Department, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (J.K.)
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
25
|
Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG, Lieberman HB. DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis 2021; 42:220-231. [PMID: 32780107 PMCID: PMC7905840 DOI: 10.1093/carcin/bgaa088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.
Collapse
Affiliation(s)
- Aiping Zhu
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Joshua D Bernstock
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
26
|
Tycko J, DelRosso N, Hess GT, Aradhana, Banerjee A, Mukund A, Van MV, Ego BK, Yao D, Spees K, Suzuki P, Marinov GK, Kundaje A, Bassik MC, Bintu L. High-Throughput Discovery and Characterization of Human Transcriptional Effectors. Cell 2020; 183:2020-2035.e16. [PMID: 33326746 PMCID: PMC8178797 DOI: 10.1016/j.cell.2020.11.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.
Collapse
Affiliation(s)
- Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nicole DelRosso
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Gaelen T Hess
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Aradhana
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Aditya Mukund
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Mike V Van
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Braeden K Ego
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Peter Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Ait Boujmia OK, Nadifi S, Dehbi H, Lamchahab M, Quessar A. The influence of DNMT3A and DNMT3B gene polymorphisms on acute myeloid leukemia risk in a Moroccan population. Curr Res Transl Med 2020; 68:191-195. [PMID: 32912818 DOI: 10.1016/j.retram.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/22/2020] [Accepted: 08/15/2020] [Indexed: 01/04/2023]
Abstract
Acute myeloid leukemia (AML) is a very complex disease that is linked to environmental, genetic and epigenetic factors. Several Studies have found that aberrations in DNA methylation process play a crucial role in leukemogenesis. The aim of this case control study was to evaluate the association between rs1569686, rs2424913 polymorphisms located in DNMT3B gene and rs7590760 polymorphism located in DNMT3A gene and AML risk in a Moroccan population. MATERIALS AND METHODS The present study was conducted in 142 cases of AML and 179 control subjects from the Moroccan population. Genomic DNA was isolated from whole blood samples by salting-out method and the genotype of the three polymorphisms was determined by the PCR-RFLP technique. RESULTS The study results indicated that rs1569686 polymorphism was significantly associated with the risk of AML in dominant model (OR=1.72, 95 % CI 1.01-2.95, P=0.04), but not in recessive model. In stratified analysis by gender, statistically significant association between the rs2424913 CT genotype and AML was found among males (OR=2.05, 95 % CI 1.00-4.19, P=0.04). Similarly, the rs1569686 TT genotype was associated with an increase risk of AML (OR=3.21, 95 % CI 1.15-8. 98, P=0.02), this association was also found under dominant genetic model (OR=2.47, 95 % CI 1.07-5. 67, P=0.03) among males. However, the rs2424913 polymorphism was not associated with AML. CONCLUSION Our findings have shown that rs1569686 polymorphism might be a risk factor of AML in males. While, the rs2424913 polymorphism was not associated with AML. Further studies with a large sample size are needed to validate our results.
Collapse
Affiliation(s)
- Oum Kaltoum Ait Boujmia
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco.
| | - Sellama Nadifi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Mouna Lamchahab
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Asma Quessar
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco; Department of Onco-Hematology, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
28
|
Wang JW, Qian Y, Wu CS, Zhao NH, Fang Y, Yuan XD, Gao S, Fan YC, Wang K. Combined use of murine double minute-2 promoter methylation and serum AFP improves diagnostic efficiency in hepatitis B virus-related hepatocellular carcinoma. Int J Med Sci 2020; 17:3190-3199. [PMID: 33173438 PMCID: PMC7646102 DOI: 10.7150/ijms.47003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/07/2020] [Indexed: 11/05/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) accounts for approximately 85% of all cases of liver cancer. In China, chronic hepatitis B virus-related HCC (HBV-related HCC) is the most common type of HCC. However, the majority of HBV-related HCC patients are asymptomatic, and the best opportunities for treating these patients are missed. The precise diagnosis of HBV-related HCC is crucial. The main purpose of this study was to evaluate the diagnostic value of murine double minute-2 (MDM2) promoter methylation in HBV-related HCC patients. Methods: The methylation status of the MDM2 promoter was detected by methylation-specific PCR. The MDM2 expression levels were validated by quantitative real-time PCR. Enzyme-linked immunosorbent assay was used to determine the levels of interleukin-6 (IL-6) and tumor-necrosis factor-α (TNF-α) in plasma. Results: The methylation frequency of the MDM2 promoter was decreased in HBV-related HCC patients. The MDM2 mRNA levels of patients with HBV-related HCC were higher than those of patients with liver cirrhosis and chronic hepatitis B. The plasma levels of IL-6 and TNF-α were significantly higher in HBV-related HCC patients than that in liver cirrhosis and chronic hepatitis B patients. The TNF-α levels were higher in the unmethylated MDM2 promoter group than in the methylated MDM2 promoter group in HBV-related HCC patients. Moreover, the combination of MDM2 promoter methylation and alpha-fetoprotein (AFP) improved the diagnosis of HBV-related HCC. Conclusions: Our study indicates, for the first time, that MDM2 promoter hypomethylation is present in HBV-related HCC patients. The combination of MDM2 promoter methylation and AFP can greatly improve diagnostic efficiency in HBV-related HCC, which might provide a new method for HBV-related HCC diagnosis.
Collapse
MESH Headings
- Adult
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/virology
- DNA Methylation
- Diagnosis, Differential
- Early Detection of Cancer/methods
- Female
- Hepatitis B, Chronic/blood
- Hepatitis B, Chronic/diagnosis
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/virology
- Humans
- Liver/pathology
- Liver/virology
- Liver Cirrhosis/blood
- Liver Cirrhosis/diagnosis
- Liver Cirrhosis/genetics
- Liver Cirrhosis/virology
- Liver Neoplasms/blood
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/virology
- Male
- Middle Aged
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Proteins c-mdm2/genetics
- alpha-Fetoproteins/analysis
Collapse
Affiliation(s)
- Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Qian
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chen-Si Wu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ning-Hui Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Fang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiao-Dong Yuan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
- Institute of Hepatology, Shandong University, Jinan 250012, China
| |
Collapse
|
29
|
Wang J, Yang J, Li D, Li J. Technologies for targeting DNA methylation modifications: Basic mechanism and potential application in cancer. Biochim Biophys Acta Rev Cancer 2020; 1875:188454. [PMID: 33075468 DOI: 10.1016/j.bbcan.2020.188454] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
DNA methylation abnormalities are regarded as critical event for cancer initiation and development. Tumor-associated genes encompassing aberrant DNA methylation alterations at specific locus are correlated with chromatin remodeling and dysregulation of gene expression in various malignancies. Thus, technologies designed to manipulate DNA methylation at specific loci of genome are necessary for the functional study and therapeutic application in the context of cancer management. Traditionally, the method for DNA methylation modifications demonstrates an unspecific feature, adversely causing global-genome epigenetic alterations and confusing the function of desired gene. Novel approaches for targeted DNA methylation regulation have a great advantage of manipulating gene epigenetic alterations in a more specific and efficient method. In this review, we described different targeting DNA methylation techniques, including both their advantages and limitations. Through a comprehensive understanding of these targeting tools, we hope to open a new perspective for cancer treatment.
Collapse
Affiliation(s)
- Jie Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jing Yang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P.R. China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
30
|
Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2020; 35:1025-1044. [PMID: 32748033 PMCID: PMC8452583 DOI: 10.1007/s10557-020-07019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological remodelling of the myocardium, including inflammation, fibrosis and hypertrophy, in response to acute or chronic injury is central in the development and progression of heart failure (HF). While both resident and infiltrating cardiac cells are implicated in these pathophysiological processes, recent evidence has suggested that endothelial cells (ECs) may be the principal cell type responsible for orchestrating pathological changes in the failing heart. Epigenetic modification of nucleic acids, including DNA, and more recently RNA, by methylation is essential for physiological development due to their critical regulation of cellular gene expression. As accumulating evidence has highlighted altered patterns of DNA and RNA methylation in HF at both the global and individual gene levels, much effort has been directed towards defining the precise role of such cell-specific epigenetic changes in the context of HF. Considering the increasingly apparent crucial role that ECs play in cardiac homeostasis and disease, this article will specifically focus on nucleic acid methylation (both DNA and RNA) in the failing heart, emphasising the key influence of these epigenetic mechanisms in governing EC function. This review summarises current understanding of DNA and RNA methylation alterations in HF, along with their specific role in regulating EC function in response to stress (e.g. hyperglycaemia, hypoxia). Improved appreciation of this important research area will aid in further implicating dysfunctional ECs in HF pathogenesis, whilst informing development of EC-targeted strategies and advancing potential translation of epigenetic-based therapies for specific targeting of pathological cardiac remodelling in HF.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Denis O'Dwyer
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
31
|
Saravanaraman P, Selvam M, Ashok C, Srijyothi L, Baluchamy S. De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020; 176:85-102. [PMID: 32659446 DOI: 10.1016/j.biochi.2020.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Epigenetic modifications govern gene expression by guiding the human genome on 'what to express and what not to'. DNA methyltransferases (DNMTs) establish methylation patterns on DNA, particularly in CpG islands, and such patterns play a major role in gene silencing. DNMTs are a family of proteins/enzymes (DNMT1, 2, 3A, 3B, and 3L), among which, DNMT1 (maintenance methyltransferase) and DNMT3 (de novo methyltransferases) that direct mammalian development and genome imprinting are highly investigated. In recent decades, many studies revealed a strong association of DNA methylation patterns with gene expression in various clinical conditions. Differential expression of DNMT3 family proteins and their splice variants result in changes in methylation patterns and such alterations have been associated with the initiation and progression of various diseases, especially cancer. This review will discuss the aberrant modifications generated by DNMT3 proteins under various clinical conditions, suggesting a potential signature for de novo methyltransferases in targeted disease therapy. Further, this review discusses the possibility of using 'CpG island methylation signatures' as promising biomarkers and emphasizes 'targeted hypomethylation' by disrupting the interaction of specific DNMT-protein complexes as the future of cancer therapeutics.
Collapse
Affiliation(s)
- Ponne Saravanaraman
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Murugan Selvam
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Loudu Srijyothi
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India
| | - Sudhakar Baluchamy
- Department of Biotechnology, Pondicherry Central University, Pondicherry, 605014, India.
| |
Collapse
|
32
|
Storey K, Leder K, Hawkins-Daarud A, Swanson K, Ahmed AU, Rockne RC, Foo J. Glioblastoma Recurrence and the Role of O 6-Methylguanine-DNA Methyltransferase Promoter Methylation. JCO Clin Cancer Inform 2020; 3:1-12. [PMID: 30758983 DOI: 10.1200/cci.18.00062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tumor recurrence in glioblastoma multiforme (GBM) is often attributed to acquired resistance to the standard chemotherapeutic agent, temozolomide (TMZ). Promoter methylation of the DNA repair gene MGMT (O6-methylguanine-DNA methyltransferase) has been associated with sensitivity to TMZ, whereas increased expression of MGMT has been associated with TMZ resistance. Clinical studies have observed a downward shift in MGMT methylation percentage from primary to recurrent stage tumors; however, the evolutionary processes that drive this shift and more generally the emergence and growth of TMZ-resistant tumor subpopulations are still poorly understood. Here, we develop a mathematical model, parameterized using clinical and experimental data, to investigate the role of MGMT methylation in TMZ resistance during the standard treatment regimen for GBM-surgery, chemotherapy, and radiation. We first found that the observed downward shift in MGMT promoter methylation status between detection and recurrence cannot be explained solely by evolutionary selection. Next, our model suggests that TMZ has an inhibitory effect on maintenance methylation of MGMT after cell division. Finally, incorporating this inhibitory effect, we study the optimal number of TMZ doses per adjuvant cycle for patients with GBM with high and low levels of MGMT methylation at diagnosis.
Collapse
Affiliation(s)
- Katie Storey
- University of Minnesota Twin Cities, Minneapolis, MN
| | - Kevin Leder
- University of Minnesota Twin Cities, Minneapolis, MN
| | | | | | - Atique U Ahmed
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Jasmine Foo
- University of Minnesota Twin Cities, Minneapolis, MN
| |
Collapse
|
33
|
Epigenetic Factors That Control Pericentric Heterochromatin Organization in Mammals. Genes (Basel) 2020; 11:genes11060595. [PMID: 32481609 PMCID: PMC7349813 DOI: 10.3390/genes11060595] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Pericentric heterochromatin (PCH) is a particular form of constitutive heterochromatin that is localized to both sides of centromeres and that forms silent compartments enriched in repressive marks. These genomic regions contain species-specific repetitive satellite DNA that differs in terms of nucleotide sequences and repeat lengths. In spite of this sequence diversity, PCH is involved in many biological phenomena that are conserved among species, including centromere function, the preservation of genome integrity, the suppression of spurious recombination during meiosis, and the organization of genomic silent compartments in the nucleus. PCH organization and maintenance of its repressive state is tightly regulated by a plethora of factors, including enzymes (e.g., DNA methyltransferases, histone deacetylases, and histone methyltransferases), DNA and histone methylation binding factors (e.g., MECP2 and HP1), chromatin remodeling proteins (e.g., ATRX and DAXX), and non-coding RNAs. This evidence helps us to understand how PCH organization is crucial for genome integrity. It then follows that alterations to the molecular signature of PCH might contribute to the onset of many genetic pathologies and to cancer progression. Here, we describe the most recent updates on the molecular mechanisms known to underlie PCH organization and function.
Collapse
|
34
|
Zhang H, Ying H, Wang X. Methyltransferase DNMT3B in leukemia. Leuk Lymphoma 2020; 61:263-273. [PMID: 31547729 DOI: 10.1080/10428194.2019.1666377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
Abstract
DNA methyltransferases (DNMTs) are highly conserved DNA-modifying enzymes that play important roles in epigenetic regulation and they are involved in cell proliferation, differentiation, and apoptosis. In mammalian cells, three active DNMTs have been identified: DNMT1 acts as a maintenance methyltransferase to replicate preexisting methylation patterns, whereas DNMT3A and DNMT3B primarily act as de novo methyltransferases that are responsible for establishing DNA methylation patterns by adding a methyl group to cytosine bases. The expression of DNMT3B is widespread in a variety of hematological cells and it is altered in each type of leukemia, which is associated with its pathogenesis, progression, treatment, and prognosis. Here, we review current information on DNMT3B in leukemia, including its expression, single-nucleotide polymorphisms, mutations, regulation, function, and clinical value for anti-leukemic therapy and prognosis.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Houqun Ying
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
35
|
Mishima Y, Brueckner L, Takahashi S, Kawakami T, Otani J, Shinohara A, Takeshita K, Garvilles RG, Watanabe M, Sakai N, Takeshima H, Nachtegael C, Nishiyama A, Nakanishi M, Arita K, Nakashima K, Hojo H, Suetake I. Enhanced processivity of Dnmt1 by monoubiquitinated histone H3. Genes Cells 2019; 25:22-32. [DOI: 10.1111/gtc.12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Yuichi Mishima
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Laura Brueckner
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Saori Takahashi
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Toru Kawakami
- Laboratory of Organic Chemistry Institute for Protein Research Osaka University Suita Japan
| | - Junji Otani
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
| | - Akira Shinohara
- Laboratory of Genome‐Chromosome Function Institute for Protein Research Osaka University Suita Japan
| | | | | | - Mikio Watanabe
- Center for Twin Research Graduate School of Medicine Osaka University Suita Japan
| | - Norio Sakai
- Center for Twin Research Graduate School of Medicine Osaka University Suita Japan
| | - Hideyuki Takeshima
- Division of Epigenomics National Cancer Center Research Institute Tokyo Japan
| | - Charlotte Nachtegael
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
- Interuniversity Institute of Bioinformatics in Brussels Universite Libre de Bruxelles‐Vrije Universiteit Brussel Brussels Belgium
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Kyohei Arita
- Graduate School of Medical Life Science Yokohama City University Yokohama Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hironobu Hojo
- Laboratory of Organic Chemistry Institute for Protein Research Osaka University Suita Japan
| | - Isao Suetake
- Laboratory of Epigenetics Institute for Protein Research Osaka University Suita Japan
- Center for Twin Research Graduate School of Medicine Osaka University Suita Japan
- College of Nutrition Koshien University Takarazuka Japan
| |
Collapse
|
36
|
Zeng JD, Wu WKK, Wang HY, Li XX. Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacol Res 2019; 149:104352. [PMID: 31323332 DOI: 10.1016/j.phrs.2019.104352] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022]
Abstract
Mammalian / mechanistic target of rapamycin (mTOR) is a critical sensor of environmental cues that regulates cellular macromolecule synthesis and metabolism in eukaryotes. DNA methylation is the most well-studied epigenetic modification that is capable of regulating gene transcription and affecting genome stability. Both dysregulation of mTOR signaling and DNA methylation patterns have been shown to be closely linked to tumor progression and serve as promising targets for cancer therapy. Although their respective roles in tumorigenesis have been extensively studied, whether molecular interplay exists between them is still largely unknown. In this review, we provide a brief overview of mTOR signaling, DNA methylation as well as related serine and one-carbon metabolism, one of the most critical aspects of metabolic reprogramming in cancer. Based on the latest understanding regarding the regulation of metabolic processes by mTOR signaling as well as interaction between metabolism and epigenetics, we further discuss how serine and one-carbon metabolism may serve as a bridge that links mTOR signaling and DNA methylation to promote tumor growth. Elucidating their relationship may provide novel insight for cancer therapy in the future.
Collapse
Affiliation(s)
- Ju-Deng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China; Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China.
| | - Xiao-Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation center for Cancer Medicine, Sun Yat-sen University cancer center, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Silva Morales M, Mueller D. Anergy into T regulatory cells: an integration of metabolic cues and epigenetic changes at the Foxp3 conserved non-coding sequence 2. F1000Res 2018; 7. [PMID: 30613389 PMCID: PMC6305231 DOI: 10.12688/f1000research.16551.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Peripheral immune self-tolerance relies on protective mechanisms to control autoreactive T cells that escape deletion in the thymus. Suppression of autoreactive lymphocytes is necessary to avoid autoimmunity and immune cell–mediated damage of healthy tissues. An intriguing relationship has emerged between two mechanisms of peripheral tolerance—induction of anergy and Foxp3
+ regulatory T (Treg) cells—and is not yet well understood. A subpopulation of autoreactive anergic CD4 T cells is a precursor of Treg cells. We now hypothesize that phenotypic and mechanistic features of Treg cells can provide insights to understand the mechanisms behind anergy-derived Treg cell differentiation. In this short review, we will highlight several inherent similarities between the anergic state in conventional CD4 T cells as compared with fully differentiated natural Foxp3
+ Treg cells and then propose a model whereby modulations in metabolic programming lead to changes in DNA methylation at the Foxp3 locus to allow
Foxp3 expression following the reversal of anergy.
Collapse
Affiliation(s)
- Milagros Silva Morales
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, and the University of Minnesota Medical School, Minneapolis, USA
| | - Daniel Mueller
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, and the University of Minnesota Medical School, Minneapolis, USA
| |
Collapse
|
38
|
Ren W, Gao L, Song J. Structural Basis of DNMT1 and DNMT3A-Mediated DNA Methylation. Genes (Basel) 2018; 9:genes9120620. [PMID: 30544982 PMCID: PMC6316889 DOI: 10.3390/genes9120620] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
DNA methylation, one of the major epigenetic mechanisms, plays critical roles in regulating gene expression, genomic stability and cell lineage commitment. The establishment and maintenance of DNA methylation in mammals is achieved by two groups of DNA methyltransferases (DNMTs): DNMT3A and DNMT3B, which are responsible for installing DNA methylation patterns during gametogenesis and early embryogenesis, and DNMT1, which is essential for propagating DNA methylation patterns during replication. Both groups of DNMTs are multi-domain proteins, containing a large N-terminal regulatory region in addition to the C-terminal methyltransferase domain. Recent structure-function investigations of the individual domains or large fragments of DNMT1 and DNMT3A have revealed the molecular basis for their substrate recognition and specificity, intramolecular domain-domain interactions, as well as their crosstalk with other epigenetic mechanisms. These studies highlight a multifaceted regulation for both DNMT1 and DNMT3A/3B, which is essential for the precise establishment and maintenance of lineage-specific DNA methylation patterns in cells. This review summarizes current understanding of the structure and mechanism of DNMT1 and DNMT3A-mediated DNA methylation, with emphasis on the functional cooperation between the methyltransferase and regulatory domains.
Collapse
Affiliation(s)
- Wendan Ren
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | - Linfeng Gao
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
- Environmental Toxicology Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
39
|
Wang JW, Wang JW, Zhang J, Wu CS, Fang Y, Su WW, Fan YC, Wang K. Decreased Methylation of IFNAR Gene Promoter from Peripheral Blood Mononuclear Cells Is Associated with Oxidative Stress in Chronic Hepatitis B. J Interferon Cytokine Res 2018; 38:480-490. [PMID: 30383464 DOI: 10.1089/jir.2018.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Type I interferons (IFNs) play an antiviral effect by binding to type I interferon receptor (IFNAR). Oxidative stress might induce the gene promoter methylation. The purpose of our study was to evaluate the potential relationship between the methylation of IFNAR promoter and the status of oxidative stress in chronic hepatitis B (CHB). The methylation level of the IFNAR promoter in patients with CHB and healthy controls (HCs) was determined by methylation-specific polymerase chain reaction (MS-PCR). The quantitative real-time PCR (RT-qPCR) was used to evaluate the IFNAR mRNA status in peripheral blood mononuclear cells from CHB and HCs. Level of plasma-soluble IFNAR and oxidative stress parameters, including malondialdehyde (MDA) and glutathione (GSH) were determined by enzyme-linked immunosorbent assay (ELISA). The frequency of IFNAR promoter methylation in CHB patients was significantly lower than that of HCs. The IFNAR mRNA level of patients with CHB was higher than HCs. MDA level was higher in CHB patients, whereas GSH level was lower in CHB patients than that of HCs. In CHB patients, plasma MDA level was significantly higher with IFNAR promoter methylation than unmethylation, and soluble IFNAR in the circulation of methylated patients with CHB was decreased than unmethylated patients with CHB. Our results indicated that the IFNAR promoter methylation might have a potential relationship with the status of oxidative stress.
Collapse
Affiliation(s)
- Jing-Wen Wang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Jing-Wei Wang
- 2 Department of Infectious Diseases, Qilu Hospital of Shandong University (Qingdao) , Qingdao, China
| | - Jun Zhang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Chen-Si Wu
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Yu Fang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Wei-Wei Su
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
| | - Yu-Chen Fan
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
- 3 Institute of Hepatology, Shandong University , Jinan, China
| | - Kai Wang
- 1 Department of Hepatology, Qilu Hospital of Shandong University , Jinan, China
- 3 Institute of Hepatology, Shandong University , Jinan, China
| |
Collapse
|
40
|
Gagliardi M, Strazzullo M, Matarazzo MR. DNMT3B Functions: Novel Insights From Human Disease. Front Cell Dev Biol 2018; 6:140. [PMID: 30406101 PMCID: PMC6204409 DOI: 10.3389/fcell.2018.00140] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/02/2018] [Indexed: 11/13/2022] Open
Abstract
DNA methylation plays important roles in gene expression regulation and chromatin structure. Its proper establishment and maintenance are essential for mammalian development and cellular differentiation. DNMT3B is the major de novo DNA methyltransferase expressed and active during the early stage of embryonic development, including implantation. In addition to its well-known role to methylate centromeric, pericentromeric, and subtelomeric repeats, recent observations suggest that DNMT3B acts as the main enzyme methylating intragenic regions of active genes. Although largely studied, much remains unknown regarding how these specific patterns of de novo CpG methylation are established in mammalian cells, and which are the rules governing DNMT3B recruitment and activity. Latest evidence indicates that DNMT3B recruitment is regulated by numerous mechanisms including chromatin modifications, transcription levels, non-coding RNAs, and the presence of DNA-binding factors. DNA methylation abnormalities are a common mark of human diseases involving chromosomal and genomic instabilities, such as inherited disease and cancer. The autosomal recessive Immunodeficiency, Centromeric instability and Facial anomalies syndrome, type I (ICF-1), is associated to hypomorphic mutations in DNMT3B gene, while its altered expression has been correlated with the development of tumors. In both cases, this implies that abnormal DNA hypomethylation and hypermethylation patterns affect gene expression and genomic architecture contributing to the pathological states. We will provide an overview of the most recent research aimed at deciphering the molecular mechanisms by which DNMT3B abnormalities are associated with the onset and progression of these pathologies.
Collapse
Affiliation(s)
- Miriam Gagliardi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Strazzullo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| | - Maria R Matarazzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| |
Collapse
|
41
|
Seiler CL, Fernandez J, Koerperich Z, Andersen MP, Kotandeniya D, Nguyen ME, Sham YY, Tretyakova NY. Maintenance DNA Methyltransferase Activity in the Presence of Oxidized Forms of 5-Methylcytosine: Structural Basis for Ten Eleven Translocation-Mediated DNA Demethylation. Biochemistry 2018; 57:6061-6069. [PMID: 30230311 DOI: 10.1021/acs.biochem.8b00683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A precise balance of DNA methylation and demethylation is required for epigenetic control of cell identity, development, and growth. DNA methylation marks are introduced by de novo DNA methyltransferases DNMT3a/b and are maintained throughout cell divisions by DNA methyltransferase 1 (DNMT1), which adds methyl groups to hemimethylated CpG dinucleotides generated during DNA replication. Ten eleven translocation (TET) dioxygenases oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxylcytosine (caC), a process known to induce DNA demethylation and gene reactivation. In this study, we investigated the catalytic activity of human DNMT1 in the presence of oxidized forms of mC. A mass spectrometry-based assay was employed to study the kinetics of DNMT1-mediated cytosine methylation in CG dinucleotides containing C, mC, hmC, fC, or caC across from the target cytosine. Homology modeling, coupled with molecular dynamics simulations, was used to explore the structural consequences of mC oxidation with regard to the geometry of protein-DNA complexes. The DNMT1 enzymatic activity was strongly affected by the oxidation status of mC, with the catalytic efficiency decreasing in the following order: mC > hmC > fC > caC. Molecular dynamics simulations revealed that DNMT1 forms an unproductive complex with DNA duplexes containing oxidized forms of mC as a consequence of altered interactions of the target recognition domain of the protein with the C-5 substituent on cytosine. Our results provide new structural and mechanistic insight into TET-mediated DNA demethylation.
Collapse
Affiliation(s)
- Christopher L Seiler
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jenna Fernandez
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Zoe Koerperich
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Molly P Andersen
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Delshanee Kotandeniya
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Megin E Nguyen
- Bioinformatics and Computational Biology Program , University of Minnesota-Rochester , Rochester , Minnesota 55904 , United States
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology and University of Minnesota Informatics Institute , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Bioinformatics and Computational Biology Program , University of Minnesota-Rochester , Rochester , Minnesota 55904 , United States
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
42
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
43
|
Dagar V, Hutchison W, Muscat A, Krishnan A, Hoke D, Buckle A, Siswara P, Amor DJ, Mann J, Pinner J, Colley A, Wilson M, Sachdev R, McGillivray G, Edwards M, Kirk E, Collins F, Jones K, Taylor J, Hayes I, Thompson E, Barnett C, Haan E, Freckmann ML, Turner A, White S, Kamien B, Ma A, Mackenzie F, Baynam G, Kiraly-Borri C, Field M, Dudding-Byth T, Algar EM. Genetic variation affecting DNA methylation and the human imprinting disorder, Beckwith-Wiedemann syndrome. Clin Epigenetics 2018; 10:114. [PMID: 30165906 PMCID: PMC6117921 DOI: 10.1186/s13148-018-0546-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022] Open
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with a population frequency of approximately 1 in 10,000. The most common epigenetic defect in BWS is a loss of methylation (LOM) at the 11p15.5 imprinting centre, KCNQ1OT1 TSS-DMR, and affects 50% of cases. We hypothesised that genetic factors linked to folate metabolism may play a role in BWS predisposition via effects on methylation maintenance at KCNQ1OT1 TSS-DMR. Results Single nucleotide variants (SNVs) in the folate pathway affecting methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), 5-methyltetrahydrofolate-homocysteine S-methyltransferase (MTR), cystathionine beta-synthase (CBS) and methionine adenosyltransferase (MAT1A) were examined in 55 BWS patients with KCNQ1OT1 TSS-DMR LOM and in 100 unaffected cases. MTHFR rs1801133: C>T was more prevalent in BWS with KCNQ1OT1 TSS-DMR LOM (p < 0.017); however, the relationship was not significant when the Bonferroni correction for multiple testing was applied (significance, p = 0.0036). None of the remaining 13 SNVs were significantly different in the two populations tested. The DNMT1 locus was screened in 53 BWS cases, and three rare missense variants were identified in each of three patients: rs138841970: C>T, rs150331990: A>G and rs757460628: G>A encoding NP_001124295 p.Arg136Cys, p.His1118Arg and p.Arg1223His, respectively. These variants have population frequencies of less than 1 in 1000 and were absent from 100 control cases. Functional characterization using a hemimethylated DNA trapping assay revealed a reduced methyltransferase activity relative to wild-type DNMT1 for each variant ranging from 40 to 70% reduction in activity. Conclusions This study is the first to examine folate pathway genetics in BWS and to identify rare DNMT1 missense variants in affected individuals. Our data suggests that reduced DNMT1 activity could affect maintenance of methylation at KCNQ1OT1 TSS-DMR in some cases of BWS, possibly via a maternal effect in the early embryo. Larger cohort studies are warranted to further interrogate the relationship between impaired MTHFR enzymatic activity attributable to MTHFR rs1801133: C>T, dietary folate intake and BWS. Electronic supplementary material The online version of this article (10.1186/s13148-018-0546-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinod Dagar
- Department of Paediatrics, University of Melbourne, Parkville, 3052, Australia
| | | | - Andrea Muscat
- School of Medicine, Deakin University, Geelong, 3216, Australia
| | - Anita Krishnan
- Victorian Comprehensive Cancer Centre, Parkville, 3052, Australia
| | - David Hoke
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia
| | - Ashley Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia
| | | | - David J Amor
- Department of Paediatrics, University of Melbourne, Parkville, 3052, Australia.,Murdoch Children's Research Institute, Parkville, 3052, Australia
| | - Jeffrey Mann
- Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, Australia
| | - Jason Pinner
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown, 2050, Australia
| | - Alison Colley
- Clinical Genetics, Liverpool Hospital, Liverpool, 2170, Australia
| | - Meredith Wilson
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia
| | - Rani Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, 2031, Australia
| | | | - Matthew Edwards
- School of Medicine, University of Western Sydney, Penrith, 2751, Australia
| | - Edwin Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, 2031, Australia
| | - Felicity Collins
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia
| | - Kristi Jones
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia.,School of Medicine, University of Sydney, Camperdown, 2006, Australia
| | - Juliet Taylor
- Auckland District Health Board, Auckland, 1023, New Zealand
| | - Ian Hayes
- Auckland District Health Board, Auckland, 1023, New Zealand
| | - Elizabeth Thompson
- South Australian (SA) Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, 5000, Australia
| | - Christopher Barnett
- South Australian (SA) Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, 5000, Australia
| | - Eric Haan
- South Australian (SA) Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, 5000, Australia
| | - Mary-Louise Freckmann
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, 2065, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, 2031, Australia.,School of Women's and Children's Health, University of NSW, Kensington, 2052, Australia
| | - Susan White
- Murdoch Children's Research Institute, Parkville, 3052, Australia
| | - Ben Kamien
- Hunter Genetics, Hunter New England Local Health District, New Lambton, 2305, Australia
| | - Alan Ma
- Clinical Genetics, Children's Hospital at Westmead, Westmead, 2145, Australia
| | - Fiona Mackenzie
- Genetics Services of Western Australia, Crawley, 6009, Australia
| | - Gareth Baynam
- Genetics Services of Western Australia, Crawley, 6009, Australia
| | | | - Michael Field
- Hunter Genetics, Hunter New England Local Health District, New Lambton, 2305, Australia
| | - Tracey Dudding-Byth
- Hunter Genetics, Hunter New England Local Health District, New Lambton, 2305, Australia.,University of Newcastle GrowUpWell Priority Research Centre, Callaghan, 2308, Australia
| | - Elizabeth M Algar
- Department of Paediatrics, University of Melbourne, Parkville, 3052, Australia. .,Pathology, Monash Health, Clayton, 3168, Australia. .,Hudson Institute of Medical Research, Clayton, 3168, Australia. .,Department of Translational Medicine, Monash University, Clayton, 3168, Australia.
| |
Collapse
|
44
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
45
|
Boosani CS, Gunasekar P, Block M, Jiang W, Zhang Z, Radwan MM, Agrawal DK. Inhibition of DNA methyltransferase-1 instigates the expression of DNA methyltransferase-3a in angioplasty-induced restenosis. Can J Physiol Pharmacol 2018; 96:1030-1039. [PMID: 30067080 DOI: 10.1139/cjpp-2018-0111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increased expression of DNA methyltransferase-1 (DNMT1) associates with the progression of many human diseases. Because DNMT1 induces cell proliferation, drugs that inhibit DNMT1 have been used to treat proliferative diseases. Because these drugs are nonspecific inhibitors of DNMT1, subsidiary events or the compensatory mechanisms that are activated in the absence of DNMT1 limit their therapeutic application. Here, we studied the molecular mechanisms that occur during angioplasty-induced restenosis and found that DNMT1 inhibition in both in vitro and in vivo approaches resulted in the induction of DNA methyltransferase-3a (DNMT3a) expression. In vascular smooth muscle cells (VSMCs), the microRNA hsa-miR-1264 mimic, specifically inhibiting DNMT1, induced nuclear expression of DNMT3a. On the contrary, there was no induced expression of DNMT3a in VSMCs that were transfected with hsa-miR-1264 inhibitor. Further, ectopic expression of suppressor of cytokine signaling 3 (SOCS3) through adeno-associated virus (AAV)-mediated gene delivery in the coronary arteries of Yucatan microswine showed inhibition of both DNMT1 and DNMT3a in vivo. These findings show the existence of an inter-regulatory mechanism between DNMT1 and DNMT3a where, in the absence of DNMT1, induction of DNMT3a compensates for the loss of DNMT1 functions, suggesting that the inhibition of both DNMT1 and DNMT3a are required to prevent restenosis.
Collapse
Affiliation(s)
- Chandra S Boosani
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.,Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Palanikumar Gunasekar
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.,Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Megan Block
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.,Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Wanlin Jiang
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.,Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Zefu Zhang
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.,Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Mohamed M Radwan
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.,Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
46
|
Meyer KN, Lacey MR. Modeling Methylation Patterns with Long Read Sequencing Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1379-1389. [PMID: 28682263 DOI: 10.1109/tcbb.2017.2721943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Variation in cytosine methylation at CpG dinucleotides is often observed in genomic regions, and analysis typically focuses on estimating the proportion of methylated sites observed in a given region and comparing these levels across samples to determine association with conditions of interest. While sites are tacitly treated as independent, when observed at the level of individual molecules methylation patterns exhibit strong evidence of local spatial dependence. We previously developed a neighboring sites model to account for correlation and clustering behavior observed in two tandem repeat regions in a collection of ovarian carcinomas. We now introduce extensions of the model that account for the effect of distance between sites as well as asymmetric correlation in de novo methylation and demethylation rates. We apply our models to published data from a whole genome bisulfite sequencing experiment using long reads, estimating model parameters for a selection of CpG-dense regions spanning between 21 and 67 sites. Our methods detect evidence of local spatial correlation as a function of site-to-site distance and demonstrate the added value of employing long read sequencing data in epigenetic research.
Collapse
|
47
|
Abstract
Since every cell of a multicellular organism contains the same genome, it is intriguing to understand why genetically homogenous cells are different from each other and what controls this. Several observations indicate that DNA methylation has an essential regulatory function in mammalian development, which is to establish the correct pattern of gene expression, and that DNA methylation pattern is tightly correlated with chromatin structure. Various physiological processes are controlled by specific DNA methylation patterns including genomic imprinting, inactivation of the X chromosome, regulation of tissue-specific gene expression and repression of transposons. Moreover, aberrant methylation could confer a selective advantage to cells, leading to cancerous growth. In this review we focus on the epigenetic molecular mechanisms during normal development and discuss how DNA methylation could affect the expression of genes leading to cancer transformation.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
48
|
Ramsawhook A, Ruzov A, Coyle B. Wilms' Tumor Protein 1 and Enzymatic Oxidation of 5-Methylcytosine in Brain Tumors: Potential Perspectives. Front Cell Dev Biol 2018; 6:26. [PMID: 29623275 PMCID: PMC5874295 DOI: 10.3389/fcell.2018.00026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/05/2018] [Indexed: 12/24/2022] Open
Abstract
The patterns of 5-methylcytosine (5mC) and its oxidized derivatives, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine (5caC) are reportedly altered in a range of cancers. Likewise, Wilms' Tumor protein 1 (WT1), a transcription factor essential for urogenital, epicardium, and kidney development exhibits aberrant expression in multiple tumors. Interestingly, WT1 directly interacts with TET proteins that catalyze the enzymatic oxidation of 5mC and exhibits high affinity for 5caC-containing DNA substrates in vitro. Here we review recent developments in the fields of Tet-dependent 5mC oxidation and WT1 biology and explore potential perspectives for studying the interplay between TETs and WT1 in brain tumors.
Collapse
Affiliation(s)
- Ashley Ramsawhook
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey Ruzov
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
49
|
Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 2018; 10:17. [PMID: 29449903 PMCID: PMC5807744 DOI: 10.1186/s13148-018-0450-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Our current view of DNA methylation processes is strongly moving: First, even if it was generally admitted that DNMT3A and DNMT3B are associated with de novo methylation and DNMT1 is associated with inheritance DNA methylation, these distinctions are now not so clear. Secondly, since one decade, many partners of DNMTs have been involved in both the regulation of DNA methylation activity and DNMT recruitment on DNA. The high diversity of interactions and the combination of these interactions let us to subclass the different DNMT-including complexes. For example, the DNMT3L/DNMT3A complex is mainly related to de novo DNA methylation in embryonic states, whereas the DNMT1/PCNA/UHRF1 complex is required for maintaining global DNA methylation following DNA replication. On the opposite to these unspecific DNA methylation machineries (no preferential DNA sequence), some recently identified DNMT-including complexes are recruited on specific DNA sequences. The coexistence of both types of DNA methylation (un/specific) suggests a close cooperation and an orchestration between these systems to maintain genome and epigenome integrities. Deregulation of these systems can lead to pathologic disorders.
Collapse
Affiliation(s)
- Eric Hervouet
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | - Paul Peixoto
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | | | | | - Pierre-François Cartron
- 3INSERM unit S1232, University of Nantes, Nantes, France.,4Institut de cancérologie de l'Ouest, Nantes, France.,REpiCGO (Cancéropole Grand-Ouest), Nantes, France.,EpiSAVMEN Networks, Nantes, Région Pays de la Loire France
| |
Collapse
|
50
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|