1
|
Yang J, Palsule G, Jiao X, Messenger JS, Hart RP, Kiledjian M. Creatine mitigates neurogenesis impairment caused by defective DcpS decapping. Sci Rep 2025; 15:17915. [PMID: 40410278 PMCID: PMC12102192 DOI: 10.1038/s41598-025-02961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 05/16/2025] [Indexed: 05/25/2025] Open
Abstract
Biallelic mutations in the DCPS gene disrupting the decapping activity of the scavenger decapping protein DcpS, leads to neurodevelopmental deficiencies and intellectual disability. However, the molecular basis for the neurogenesis defects in these individuals remains unknown. Here we show that cells derived from individuals with a DCPS mutation harbor a creatine deficiency and a corresponding elevation of the creatine precursor, guanidinoacetate (GAA). The altered metabolite levels are a consequence of a reduction in both the mRNA and protein levels for the enzyme that converts GAA into creatine, guanidinoacetate methyltransferase. Importantly, the compromised neurogenesis and neurite outgrowth phenotypes observed during the differentiation of DcpS mutant patient derived induced pluripotent stem cells into neurons was reversed upon supplementation of creatine monohydrate. These findings suggest creatine deficiency as an underlying factor for the neurogenetic defect detected in DcpS mutant cells and a potential driver of the neurological deficiencies in affected individuals.
Collapse
Affiliation(s)
- Jun Yang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Geeta Palsule
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Jaime S Messenger
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Nozaki H, Sakakibara N, Hanafusa H, Inoki Y, Tanaka Y, Kitakado H, Ueda C, Nagano C, Horinouchi T, Yamamura T, Ishimori S, Yamaguchi H, Nozu K, Morisada N. The first case of Al-Raqad syndrome in Japan is associated with a homozygous DCPS exonic variant resulting in aberrant splicing. Brain Dev 2025; 47:104366. [PMID: 40344930 DOI: 10.1016/j.braindev.2025.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/06/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Cases of unexplained neurodevelopmental disorder (NDD) are often accompanied by multiple congenital anomalies. With recent advances in genetic analysis technology, whole-exome sequencing (WES) has become a powerful diagnostic tool for unexplained NDD patients, but variants of unknown significance are sometimes detected in them. METHODS WES identified a variant in a 2-year-old boy with NDD associated with multiple congenital anomalies who had no abnormal findings in G-banding and array comparative genomic hybridization (array CGH). mRNA analysis was performed on the variant using the patient's peripheral blood leukocytes following in silico analysis to confirm its effect on splicing. RESULTS WES revealed a novel homozygous single base substituting variant of unknown significance (VUS), which was carried heterozygously by the patient's parents (DCPS, NM_014026.6: c.200A>G, p.(Lys67Arg)). In silico analysis predicted that this variant may cause aberrant splicing, and mRNA analysis revealed a 48-bp deletion from the 3' end of exon 1. Biallelic variants of DCPS are known to cause Al-Raqad syndrome, a quite rare disorder which presents NDD with multiple malformations. This disease has been reported in only eight individuals from five Middle Eastern or Caucasian families but never in the Japanese but the symptoms of the present case were similar to reported cases of this syndrome. DISCUSSION We successfully diagnosed a case of unexplained NDD as Al-Raqad syndrome by WES along with mRNA analysis. Single base substitution with judged VUS can be pathogenic by causing aberrant splicing and, therefore, in silico analysis and subsequent RNA sequence are necessary to prove its pathogenicity.
Collapse
Affiliation(s)
- Haruka Nozaki
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan; Kobe University School of Medicine, Kobe, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hiroaki Hanafusa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuta Inoki
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu Tanaka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideaki Kitakado
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chika Ueda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Ishimori
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yamaguchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| |
Collapse
|
3
|
Darzynkiewicz ZM, Kiledjian M, Antosiewicz JM. Analysis of ligand binding mechanism by dimeric receptors using stopped-flow fluorimetry-application to the human decapping scavenger enzyme. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2025; 54:171-184. [PMID: 40285819 DOI: 10.1007/s00249-025-01748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Association of a ligand with the binding site of a receptor is usually at least a two-step process - formation of an initial encounter complex followed by a conformational transition of the complex. Consequently, the description of binding by dimeric receptors requires a two-dimensional reaction scheme. An interesting example of a dimeric receptor is the decapping scavenger enzyme, DcpS. It is a critical determinant of mRNA metabolism that hydrolyses the 5'-end m 7 GpppN cap following 3'-end mRNA decay. The DcpS family of proteins function as homodimers with one active site in each protomer. We investigate the binding of substrate and product analogues of the mRNA cap, m 7 Gp( CH 2 )ppG and m 7 GMP, respectively, by human DcpS wild-type ( DcpS WT / WT ) and its one-site compromised mutant ( DcpS WT / BC ) using stopped-flow fluorimetry. Based on observations for the mutant DcpS WT / BC , binding by each active site and for each ligand proceeds through the formation of an encounter complex followed by conformational transitions. In the case of DcpS WT / WT , we show that only two association rate constants, one for the apo-enzyme with both sites empty and the second for the enzyme with one site already occupied, can be determined with satisfactory accuracy from experimental progress curves, even for experimental data with a high signal-to-noise ratio. An interesting and biologically relevant observation is that binding of substrate analogue by one site prevents binding by the remaining empty site, whereas in the case of the m 7 GMP product both sites bind ligand independently of the binding state of the other site.
Collapse
Affiliation(s)
- Zbigniew M Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
- Center of New Technologies, University of Warsaw, 2c Stefana Banacha St., 02-097, Warsaw, Poland.
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, 08854-8082, USA.
| | - Jan M Antosiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
| |
Collapse
|
4
|
Grab K, Fido M, Spiewla T, Warminski M, Jemielity J, Kowalska J. Aptamer-based assay for high-throughput substrate profiling of RNA decapping enzymes. Nucleic Acids Res 2024; 52:e100. [PMID: 39445825 PMCID: PMC11602136 DOI: 10.1093/nar/gkae919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Recent years have led to the identification of a number of enzymes responsible for RNA decapping. This has provided a basis for further research to identify their role, dependency and substrate specificity. However, the multiplicity of these enzymes and the complexity of their functions require advanced tools to study them. Here, we report a high-throughput fluorescence intensity assay based on RNA aptamers designed as substrates for decapping enzymes. Using a library of differently capped RNA probes we generated a decapping susceptibility heat map, which confirms previously reported substrate specificities of seven tested hydrolases and uncovers novel. We have also demonstrated the utility of our assay for evaluating inhibitors of viral decapping enzymes and performed kinetic studies of the decapping process. The assay may accelerate the characterization of new decapping enzymes, enable high-throughput screening of inhibitors and facilitate the development of molecular tools for a better understanding of RNA degradation pathways.
Collapse
Affiliation(s)
- Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Mateusz Fido
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
5
|
He X, Yan C, Yang Y, Wang W, Liu X, Wu C, Zhou Z, Huang X, Fu W, Hu J, Yang P, Wang J, Zhu M, Liu Y, Zhang W, Li S, Dong G, Yuan X, Lin Y, Jing H, Zhang W. Prognostic significance and biological implications of SM-like genes in mantle cell lymphoma. Blood Res 2024; 59:33. [PMID: 39417944 PMCID: PMC11486876 DOI: 10.1007/s44313-024-00037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND SM-like (LSM) genes a family of RNA-binding proteins, are involved in mRNA regulation and can function as oncogenes by altering mRNA stability. However, their roles in B-cell progression and tumorigenesis remain poorly understood. METHODS We analyzed gene expression profiles and overall survival data of 123 patients with mantle cell lymphoma (MCL). The LSM index was developed to assess its potential as a prognostic marker of MCL survival. RESULTS Five of the eight LSM genes were identified as potential prognostic markers for survival in MCL, with particular emphasis on the LSM.index. The expression levels of these LSM genes demonstrated their potential utility as classifiers of MCL. The LSM.index-high group exhibited both poorer survival rates and lower RNA levels than did the overall transcript profile. Notably, LSM1 and LSM8 were overexpressed in the LSM.index-high group, with LSM1 showing 2.5-fold increase (p < 0.001) and LSM8 depicting 1.8-fold increase (p < 0.01) than those in the LSM.index-low group. Furthermore, elevated LSM gene expression was associated with increased cell division and RNA splicing pathway activity. CONCLUSIONS The LSM.index demonstrates potential as a prognostic marker for survival in patients with MCL. Elevated expression of LSM genes, particularly LSM1 and LSM8, may be linked to poor survival outcomes through their involvement in cell division and RNA splicing pathways. These findings suggest that LSM genes may contribute to the aggressive behavior of MCL and represent potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xue He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yaru Yang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weijia Wang
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaoni Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Chaoling Wu
- Department of Respiratory Medicine, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Zimu Zhou
- Gannan Medical University, Ganzhou, 341000, China
| | - Xin Huang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Fu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Hu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Liu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shaoxiang Li
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoliang Yuan
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yuansheng Lin
- Department of Intensive Care Unit, Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China.
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
6
|
Warminski M, Depaix A, Ziemkiewicz K, Spiewla T, Zuberek J, Drazkowska K, Kedzierska H, Popielec A, Baranowski M, Sklucka M, Bednarczyk M, Smietanski M, Wolosewicz K, Majewski B, Serwa R, Nowis D, Golab J, Kowalska J, Jemielity J. Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Res 2024; 52:10788-10809. [PMID: 39248095 PMCID: PMC11472058 DOI: 10.1093/nar/gkae763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
The recent COVID-19 pandemics have demonstrated the great therapeutic potential of in vitro transcribed (IVT) mRNAs, but improvements in their biochemical properties, such as cellular stability, reactogenicity and translational activity, are critical for further practical applications in gene replacement therapy and anticancer immunotherapy. One of the strategies to overcome these limitations is the chemical modification of a unique mRNA 5'-end structure, the 5'-cap, which is responsible for regulating translation at multiple levels. This could be achieved by priming the in vitro transcription reaction with synthetic cap analogs. In this study, we combined a highly efficient trinucleotide IVT capping technology with several modifications of the 5' cap triphosphate bridge to synthesize a series of 16 new cap analogs. We also combined these modifications with epigenetic marks (2'-O-methylation and m6Am) characteristic of mRNA 5'-ends in higher eukaryotes, which was not possible with dinucleotide caps. All analogs were compared for their effect on the interactions with eIF4E protein, IVT priming, susceptibility to decapping, and mRNA translation efficiency in model cell lines. The most promising α-phosphorothiolate modification was also evaluated in an in vivo mouse model. Unexpected differences between some of the analogs were analyzed using a protein cell extract pull-down assay.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Anais Depaix
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Karolina Drazkowska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Hanna Kedzierska
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Agnieszka Popielec
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Marek R Baranowski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Marta Sklucka
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | | | - Miroslaw Smietanski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Karol Wolosewicz
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Bartosz Majewski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Remigiusz A Serwa
- Proteomics Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Dominika Nowis
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
- Laboratory of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Jakub Golab
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
Firdous Z, Kalra S, Chattopadhyay R, Bari VK. Current insight into the role of mRNA decay pathways in fungal pathogenesis. Microbiol Res 2024; 283:127671. [PMID: 38479232 DOI: 10.1016/j.micres.2024.127671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Pathogenic fungal species can cause superficial and mucosal infections, to potentially fatal systemic or invasive infections in humans. These infections are more common in immunocompromised or critically ill patients and have a significant morbidity and fatality rate. Fungal pathogens utilize several strategies to adapt the host environment resulting in efficient and comprehensive alterations in their cellular metabolism. Fungal virulence is regulated by several factors and post-transcriptional regulation mechanisms involving mRNA molecules are one of them. Post-transcriptional controls have emerged as critical regulatory mechanisms involved in the pathogenesis of fungal species. The untranslated upstream and downstream regions of the mRNA, as well as RNA-binding proteins, regulate morphogenesis and virulence by controlling mRNA degradation and stability. The limited number of available therapeutic drugs, the emergence of multidrug resistance, and high death rates associated with systemic fungal illnesses pose a serious risk to human health. Therefore, new antifungal treatments that specifically target mRNA pathway components can decrease fungal pathogenicity and when combined increase the effectiveness of currently available antifungal drugs. This review summarizes the mRNA degradation pathways and their role in fungal pathogenesis.
Collapse
Affiliation(s)
- Zulikha Firdous
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Sapna Kalra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda 151401, India.
| |
Collapse
|
8
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Jan Dimberg, Shamoun L, Johansson G, Landerholm K, Wågsäter D. Emerging role and clinical implication of mRNA scavenger decapping enzyme in colorectal cancer. Pathol Res Pract 2024; 253:155009. [PMID: 38064867 DOI: 10.1016/j.prp.2023.155009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Turnover of RNA is a regulated process that in part controls gene expression. This process is partly controlled by the scavenger decapping enzyme (DcpS). This study aimed to investigate the expression of DcpS in colorectal cancer (CRC) tissue, to evaluate its prognostic significance in patients with CRC and to investigate potentially targeted genes by DcpS. METHODS Immunohistochemical analysis was used to determine localization of DcpS in normal and CRC tissue, western blot analysis for quantification of protein expression and qPCR for mRNA expression in normal and CRC tissue and expression in cell lines after silencing using siRNA. Gene array analysis was used to study regulation of genes after silencing of DcpS. Proliferation was studied using BRDU. RESULTS DcpS expression was localized to the epithelial cells of both control and cancer tissue. Tumor and paired control tissue samples from 100 patients who underwent surgical resection for primary colorectal adenocarcinomas were utilized. mRNA and protein of DcpS was significantly up-regulated in the patients with CRC and the mRNA level was higher in rectal cancer tissue compared to colon cancer tissue (p < 0.05). Lowest tertile levels of DcpS mRNA in cancer tissue was associated with a decreased cancer-specific survival rate with a hazard ratio (HR) of 4.7 (95% CI=1.02-12.3), independent of disease stage. The low level of DcpS mRNA was a predictor of poorer survival in patients with rectal and disseminated cancer and in patients receiving adjuvant treatment (p < 0.05). After silencing DcpS in Caco-2 cancer cells, altered expression of several genes associated with RNA, cell cycle regulation, alternative splicing and microRNA was observed and resulted in 23% increase in proliferation. CONCLUSIONS These results indicate that DcpS has potential as a prognostic factor for CRC but further studies in a broader cohort are warranted to evaluate the significance of the findings in the clinic.
Collapse
Affiliation(s)
- Jan Dimberg
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Levar Shamoun
- Department of Laboratory Medicine and Pathology, Region Jönköping County, Jönköping, Sweden
| | - Gustaf Johansson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kalle Landerholm
- Department of Surgery, Region Jönköping County, Jönköping and Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Law MCY, Zhang K, Tan YB, Nguyen TM, Luo D. Chikungunya virus nonstructural protein 1 is a versatile RNA capping and decapping enzyme. J Biol Chem 2023; 299:105415. [PMID: 37918803 PMCID: PMC10687048 DOI: 10.1016/j.jbc.2023.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023] Open
Abstract
Chikungunya virus (CHIKV) nonstructural protein 1 (nsP1) contains both the N7-guanine methyltransferase and guanylyltransferase activities and catalyzes the 5' end cap formation of viral RNAs. To further understand its catalytic activity and role in virus-host interaction, we demonstrate that purified recombinant CHIKV nsP1 can reverse the guanylyl transfer reaction and remove the m7GMP from a variety of capped RNA substrates including host mRNAs. We then provide the structural basis of this function with a high-resolution cryo-EM structure of nsP1 in complex with the unconventional cap-1 substrate RNA m7GpppAmU. We show that the 5'ppRNA species generated by decapping can trigger retinoic acid-inducible gene I-mediated interferon response. We further demonstrate that the decapping activity is conserved among the alphaviral nsP1s. To our knowledge, this is a new mechanism through which alphaviruses activate the antiviral immune response. This decapping activity could promote cellular mRNA degradation and facilitate viral gene expression, which is functionally analogous to the cap-snatching mechanism by influenza virus.
Collapse
Affiliation(s)
- Michelle Cheok Yien Law
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Kuo Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Yaw Bia Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Trinh Mai Nguyen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore; National Centre for Infectious Diseases, Singapore, Singapore.
| |
Collapse
|
11
|
Alagar Boopathy LR, Beadle E, Garcia-Bueno Rico A, Vera M. Proteostasis regulation through ribosome quality control and no-go-decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1809. [PMID: 37488089 DOI: 10.1002/wrna.1809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/26/2023]
Abstract
Cell functionality relies on the existing pool of proteins and their folding into functional conformations. This is achieved through the regulation of protein synthesis, which requires error-free mRNAs and ribosomes. Ribosomes are quality control hubs for mRNAs and proteins. Problems during translation elongation slow down the decoding rate, leading to ribosome halting and the eventual collision with the next ribosome. Collided ribosomes form a specific disome structure recognized and solved by ribosome quality control (RQC) mechanisms. RQC pathways orchestrate the degradation of the problematic mRNA by no-go decay and the truncated nascent peptide, the repression of translation initiation, and the recycling of the stalled ribosomes. All these events maintain protein homeostasis and return valuable ribosomes to translation. As such, cell homeostasis and function are maintained at the mRNA level by preventing the production of aberrant or unnecessary proteins. It is becoming evident that the crosstalk between RQC and the protein homeostasis network is vital for cell function, as the absence of RQC components leads to the activation of stress response and neurodegenerative diseases. Here, we review the molecular events of RQC discovered through well-designed stalling reporters. Given the impact of RQC in proteostasis, we discuss the relevance of identifying endogenous mRNA regulated by RQC and their preservation in stress conditions. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms Translation > Regulation.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
13
|
Lukaszewicz M, Mrozek AF, Bojarska E, Stelmach J, Stepinski J, Darzynkiewicz E. Contribution of Nudt12 enzyme to differentially methylated dinucleotides of 5'RNA cap structure. Biochim Biophys Acta Gen Subj 2023:130400. [PMID: 37301333 DOI: 10.1016/j.bbagen.2023.130400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Aleksandra-Ferenc Mrozek
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Elzbieta Bojarska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Joanna Stelmach
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Janusz Stepinski
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Edward Darzynkiewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
14
|
Wojtczak BA, Bednarczyk M, Sikorski PJ, Wojtczak A, Surynt P, Kowalska J, Jemielity J. Synthesis and Evaluation of Diguanosine Cap Analogs Modified at the C8-Position by Suzuki-Miyaura Cross-Coupling: Discovery of 7-Methylguanosine-Based Molecular Rotors. J Org Chem 2023. [PMID: 37209102 DOI: 10.1021/acs.joc.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chemical modifications of the mRNA cap structure can enhance the stability, translational properties, and half-life of mRNAs, thereby altering the therapeutic properties of synthetic mRNA. However, cap structure modification is challenging because of the instability of the 5'-5'-triphosphate bridge and N7-methylguanosine. The Suzuki-Miyaura cross-coupling reaction between boronic acid and halogen compound is a mild, convenient, and potentially applicable approach for modifying biomolecules. Herein, we describe two methods to synthesize C8-modified cap structures using the Suzuki-Miyaura cross-coupling reaction. Both methods employed phosphorimidazolide chemistry to form the 5',5'-triphosphate bridge. However, in the first method, the introduction of the modification via the Suzuki-Miyaura cross-coupling reaction at the C8 position occurs postsynthetically, at the dinucleotide level, whereas in the second method, the modification was introduced at the level of the nucleoside 5'-monophosphate, and later, the triphosphate bridge was formed. Both methods were successfully applied to incorporate six different groups (methyl, cyclopropyl, phenyl, 4-dimethylaminophenyl, 4-cyanophenyl, and 1-pyrene) into either the m7G or G moieties of the cap structure. Aromatic substituents at the C8-position of guanosine form a push-pull system that exhibits environment-sensitive fluorescence. We demonstrated that this phenomenon can be harnessed to study the interaction with cap-binding proteins, e.g., eIF4E, DcpS, Nudt16, and snurportin.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Marcelina Bednarczyk
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Wojtczak
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Piotr Surynt
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- Faculty of Physics, University of Warsaw; L. Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw; S. Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Bollu A, Klöcker N, Špaček P, P Weissenboeck F, Hüwel S, Rentmeister A. Light-Activated Translation of Different mRNAs in Cells via Wavelength-Dependent Photouncaging. Angew Chem Int Ed Engl 2023; 62:e202209975. [PMID: 36417319 PMCID: PMC10107135 DOI: 10.1002/anie.202209975] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/24/2022]
Abstract
The 5' cap is a hallmark of eukaryotic mRNA involved in the initiation of translation. Its modification with a single photo-cleavable group can bring translation of mRNA under the control of light. However, UV irradiation causes cell stress and downregulation of translation. Furthermore, complex processes often involve timed expression of more than one gene. The approach would thus greatly benefit from the ability to photo-cleave by blue light and to control more than one mRNA at a time. We report the synthesis of a 5' cap modified with a 7-(diethylamino)coumarin (CouCap) and adapted conditions for in vitro transcription. Translation of the resulting CouCap-mRNA is muted in vitro and in mammalian cells, and can be initiated by irradiation with 450 nm. The native cap is restored and no non-natural residues nor sequence alterations remain in the mRNA. Multiplexing for two different mRNAs was achieved by combining cap analogs with coumarin- and ortho-nitrobenzyl-based photo-cleavable groups.
Collapse
Affiliation(s)
- Amarnath Bollu
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Klöcker
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Petr Špaček
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Florian P Weissenboeck
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Sabine Hüwel
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, Westfälische Wilhelms Universität Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
16
|
Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol 2022; 13:896958. [PMID: 35928814 PMCID: PMC9345514 DOI: 10.3389/fimmu.2022.896958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vaccines can prevent many millions of illnesses against infectious diseases and save numerous lives every year. However, traditional vaccines such as inactivated viral and live attenuated vaccines cannot adapt to emerging pandemics due to their time-consuming development. With the global outbreak of the COVID-19 epidemic, the virus continues to evolve and mutate, producing mutants with enhanced transmissibility and virulence; the rapid development of vaccines against such emerging global pandemics becomes more and more critical. In recent years, mRNA vaccines have been of significant interest in combating emerging infectious diseases due to their rapid development and large-scale production advantages. However, their development still suffers from many hurdles such as their safety, cellular delivery, uptake, and response to their manufacturing, logistics, and storage. More efforts are still required to optimize the molecular designs of mRNA molecules with increased protein expression and enhanced structural stability. In addition, a variety of delivery systems are also needed to achieve effective delivery of vaccines. In this review, we highlight the advances in mRNA vaccines against various infectious diseases and discuss the molecular design principles and delivery systems of associated mRNA vaccines. The current state of the clinical application of mRNA vaccine pipelines against various infectious diseases and the challenge, safety, and protective effect of associated vaccines are also discussed.
Collapse
Affiliation(s)
- Lu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ming Zhang
- Department of Pathology, Peking University International Hospital, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Chaoyong Liu, ; Ming Zhang,
| |
Collapse
|
17
|
Swartzel JC, Bond MJ, Pintado-Urbanc AP, Daftary M, Krone MW, Douglas T, Carder EJ, Zimmer JT, Maeda T, Simon MD, Crews CM. Targeted Degradation of mRNA Decapping Enzyme DcpS by a VHL-Recruiting PROTAC. ACS Chem Biol 2022; 17:1789-1798. [PMID: 35749470 PMCID: PMC10367122 DOI: 10.1021/acschembio.2c00145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA decapping scavenger protein, DcpS, has recently been identified as a dependency in acute myeloid leukemia (AML). The potent DcpS inhibitor RG3039 attenuates AML cell viability, and shRNA knockdown of DcpS is also antiproliferative. Importantly, DcpS was found to be non-essential in normal human hematopoietic cells, which opens a therapeutic window for AML treatment by DcpS modulation. Considering this strong DcpS dependence in AML cell lines, we explored PROTAC-mediated degradation as an alternative strategy to modulate DcpS activity. Herein, we report the development of JCS-1, a PROTAC exhibiting effective degradation of DcpS at nanomolar concentrations. JCS-1 non-covalently binds DcpS with a RG3039-based warhead and recruits the E3 ligase VHL, which induces potent, rapid, and sustained DcpS degradation in several AML cell lines. JCS-1 serves as a chemical biology tool to interrogate DcpS degradation and associated changes in RNA processes in different cellular contexts, which may be an attractive strategy for the treatment of AML and other DcpS-dependent genetic disorders.
Collapse
Affiliation(s)
- Jake C Swartzel
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Michael J Bond
- Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| | - Andreas P Pintado-Urbanc
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States.,Institute for Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
| | - Mehana Daftary
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Todd Douglas
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Evan J Carder
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Joshua T Zimmer
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Matthew D Simon
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M Crews
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States.,Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States.,Department of Molecular, Cellular, and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06511, United States
| |
Collapse
|
18
|
Photocaged 5' cap analogues for optical control of mRNA translation in cells. Nat Chem 2022; 14:905-913. [PMID: 35725774 PMCID: PMC7613264 DOI: 10.1038/s41557-022-00972-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
The translation of messenger RNA (mRNA) is a fundamental process in gene expression, and control of translation is important to regulate protein synthesis in cells. The primary hallmark of eukaryotic mRNAs is their 5′ cap, whose molecular contacts to the eukaryotic translation initiation factor eIF4E govern the initiation of translation. Here we report 5′ cap analogues with photo-cleavable groups (FlashCaps) that prohibit binding to eIF4E and resist cleavage by decapping enzymes. These compounds are compatible with the general and efficient production of mRNAs by in vitro transcription. In FlashCap-mRNAs, the single photocaging group abrogates translation in vitro and in mammalian cells without increasing immunogenicity. Irradiation restores the native cap, triggering efficient translation. FlashCaps overcome the problem of remaining sequence or structure changes in mRNA after irradiation that limited previous designs. Together, these results demonstrate that FlashCaps offer a route to regulate the expression of any given mRNA and to dose mRNA therapeutics with spatio-temporal control. ![]()
Analogues of mRNA 5′ caps containing a photo-cleavable group have now been developed. These so-called FlashCaps can be used for routine in vitro transcription to make long mRNAs containing a cap. In cells, the capped mRNAs are translationally muted; however, upon irradiation by light, the photo-cleavable group is removed without leaving any remaining modification and mRNA is then translated into the corresponding protein.
Collapse
|
19
|
Bednarczyk M, Peters JK, Kasprzyk R, Starek J, Warminski M, Spiewla T, Mugridge JS, Gross JD, Jemielity J, Kowalska J. Fluorescence-Based Activity Screening Assay Reveals Small Molecule Inhibitors of Vaccinia Virus mRNA Decapping Enzyme D9. ACS Chem Biol 2022; 17:1460-1471. [PMID: 35576528 PMCID: PMC9207806 DOI: 10.1021/acschembio.2c00049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vaccinia virus (VACV) represents a family of poxviruses, which possess their own decapping machinery as a part of their strategy to eliminate host mRNAs and evade the innate immune response. D9 is one of the two encoded VACV decapping enzymes that is responsible for cap removal from the 5' end of both host mRNA transcripts and viral double-stranded RNAs. Little is known about the structural requirements for D9 inhibition by small molecules. Here, we identified a minimal D9 substrate and used it to develop a real-time fluorescence assay for inhibitor discovery and characterization. We screened a panel of nucleotide-derived substrate analogues and pharmacologically active candidates to identify several compounds with nano- and low micromolar IC50 values. m7GpppCH2p was the most potent nucleotide inhibitor (IC50 ∼ 0.08 μM), and seliciclib and CP-100356 were the most potent drug-like compounds (IC50 0.57 and 2.7 μM, respectively). The hits identified through screening inhibited D9-catalyzed decapping of 26 nt RNA substrates but were not active toward VACV D10 or human decapping enzyme, Dcp1/2. The inhibition mode for one of the compounds (CP-100356) was elucidated based on the X-ray cocrystal structure, opening the possibility for structure-based design of novel D9 inhibitors and binding probes.
Collapse
Affiliation(s)
- Marcelina Bednarczyk
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Jessica K. Peters
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Jagoda Starek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| | - Jeffrey S. Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - John D. Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
| |
Collapse
|
20
|
Li H, Hu Y, Liu D, Wang J, Han P, Zhang N, Li Y. Bioinformatic Characterization of Whole Blood Neutrophils in Pelvic Inflammatory Disease: A Potential Prognostic Indicator for Transumbilical Single-Port Laparoscopic Pelvic Abscess Surgery. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2555603. [PMID: 35401780 PMCID: PMC8993565 DOI: 10.1155/2022/2555603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
The purpose of this research is to determine the prognosis of patients treated with transumbilical single-port laparoscopic surgery for acute pelvic inflammatory illness. Postoperative data on 129 patients treated with laparoscopic surgery for acute pelvic inflammatory illness were obtained retrospectively. It was observed that the shorter the time required for postoperative leukocyte recovery to normal, the shorter the time required for postoperative pain and diet recovery, as well as hospital stay, in such individuals. CIBERSORT was used to examine patient data from GEO. The most significant difference between the normal and pelvic inflammatory groups was in neutrophil content. Association study found a substantial positive correlation between the quantity of neutrophils infiltrating the immune system and the abundance of monocyte M0 infiltrating the immune system. Neutrophil immune infiltration was strongly inversely linked with plasma cells, activated CD8+ Tm cells, and active CD4+ Tm cells. Four mRNAs linked with pelvic inflammatory illness were revealed to be strongly associated with neutrophil immune infiltration, notably CALML4, COQ10B, DCPS, and PPP2R1A. The ROC revealed that CALML4 (area under the curve (AUC): 0.769, 95% confidence interval (CI): 0.638-0.881), COQ10B (AUC: 0.742, 95% CI: 0.587-0.881), PPP2R1A (AUC: 0.733 95% CI: 0.593-0.857), and DCPS (AUC: 0.745, 95% CI: 0.571-0.900) were potential markers for predicting pelvic inflammatory disease. CALML4, COQ10B, PPP2R1A, and DCPS may be critical determinants determining the amount of preoperative neutrophil infiltration and the time required for leukocyte recovery after single-port laparoscopy in acute pelvic inflammatory illness.
Collapse
Affiliation(s)
- Haining Li
- General Hospital of Ningxia Medical University, China
| | | | - Dan Liu
- General Hospital of Ningxia Medical University, China
| | | | | | | | - Yan Li
- General Hospital of Ningxia Medical University, China
| |
Collapse
|
21
|
Salamon I, Palsule G, Luo X, Roque A, Tucai S, Khosla I, Volk N, Liu W, Cui H, Pozzo VD, Zalamea P, Jiao X, D’Arcangelo G, Hart RP, Rasin MR, Kiledjian M. mRNA-Decapping Associated DcpS Enzyme Controls Critical Steps of Neuronal Development. Cereb Cortex 2022; 32:1494-1507. [PMID: 34467373 PMCID: PMC8971079 DOI: 10.1093/cercor/bhab302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Homozygous mutations in the gene encoding the scavenger mRNA-decapping enzyme, DcpS, have been shown to underlie developmental delay and intellectual disability. Intellectual disability is associated with both abnormal neocortical development and mRNA metabolism. However, the role of DcpS and its scavenger decapping activity in neuronal development is unknown. Here, we show that human neurons derived from patients with a DcpS mutation have compromised differentiation and neurite outgrowth. Moreover, in the developing mouse neocortex, DcpS is required for the radial migration, polarity, neurite outgrowth, and identity of developing glutamatergic neurons. Collectively, these findings demonstrate that the scavenger mRNA decapping activity contributes to multiple pivotal roles in neural development and further corroborate that mRNA metabolism and neocortical pathologies are associated with intellectual disability.
Collapse
Affiliation(s)
- Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Geeta Palsule
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiaobing Luo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alfonso Roque
- Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shawn Tucai
- Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ishan Khosla
- Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nicole Volk
- Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wendy Liu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Huijuan Cui
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Valentina Dal Pozzo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Petronio Zalamea
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gabriella D’Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers, Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Costa SM, Saramago M, Matos RG, Arraiano CM, Viegas SC. How hydrolytic exoribonucleases impact human disease: Two sides of the same story. FEBS Open Bio 2022. [PMID: 35247037 DOI: 10.1002/2211-5463.13392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 11/05/2022] Open
Abstract
RNAs are extremely important molecules inside the cell which perform many different functions. For example, messenger RNAs, transfer RNAs, and ribosomal RNAs are involved in protein synthesis, whereas non-coding RNAs have numerous regulatory roles. Ribonucleases are the enzymes responsible for the processing and degradation of all types of RNAs, having multiple roles in every aspect of RNA metabolism. However, the involvement of RNases in disease is still not well understood. This review focuses on the involvement of the RNase II/RNB family of 3'-5' exoribonucleases in human disease. This can be attributed to direct effects, whereby mutations in the eukaryotic enzymes of this family (Dis3 (or Rrp44), Dis3L1 (or Dis3L), and Dis3L2) are associated with a disease, or indirect effects, whereby mutations in the prokaryotic counterparts of RNase II/RNB family (RNase II and/or RNase R) affect the physiology and virulence of several human pathogens. In this review, we will compare the structural and biochemical characteristics of the members of the RNase II/RNB family of enzymes. The outcomes of mutations impacting enzymatic function will be revisited, in terms of both the direct and indirect effects on disease. Furthermore, we also describe the SARS-CoV-2 viral exoribonuclease and its importance to combat COVID-19 pandemic. As a result, RNases may be a good therapeutic target to reduce bacterial and viral pathogenicity. These are the two perspectives on RNase II/RNB family enzymes that will be presented in this review.
Collapse
Affiliation(s)
- Susana M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Rute G Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
| |
Collapse
|
24
|
Mulroney L, Wulf MG, Schildkraut I, Tzertzinis G, Buswell J, Jain M, Olsen H, Diekhans M, Corrêa IR, Akeson M, Ettwiller L. Identification of high-confidence human poly(A) RNA isoform scaffolds using nanopore sequencing. RNA (NEW YORK, N.Y.) 2022; 28:162-176. [PMID: 34728536 PMCID: PMC8906549 DOI: 10.1261/rna.078703.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional direct RNA nanopore sequencing, the 5' and 3' ends of poly(A) RNA cannot be identified unambiguously. This is due in part to RNA degradation in vivo and in vitro that can obscure transcription start and end sites. In this study, we aimed to identify individual full-length human RNA isoforms among ∼4 million nanopore poly(A)-selected RNA reads. First, to identify RNA strands bearing 5' m7G caps, we exchanged the biological cap for a modified cap attached to a 45-nt oligomer. This oligomer adaptation method improved 5' end sequencing and ensured correct identification of the 5' m7G capped ends. Second, among these 5'-capped nanopore reads, we screened for features consistent with a 3' polyadenylation site. Combining these two steps, we identified 294,107 individual high-confidence full-length RNA scaffolds from human GM12878 cells, most of which (257,721) aligned to protein-coding genes. Of these, 4876 scaffolds indicated unannotated isoforms that were often internal to longer, previously identified RNA isoforms. Orthogonal data for m7G caps and open chromatin, such as CAGE and DNase-HS seq, confirmed the validity of these high-confidence RNA scaffolds.
Collapse
Affiliation(s)
- Logan Mulroney
- Biomolecular Engineering Department, UC Santa Cruz, California 95064, USA
| | | | | | | | - John Buswell
- New England Biolabs, Ipswich, Massachusetts 01938, USA
| | - Miten Jain
- Biomolecular Engineering Department, UC Santa Cruz, California 95064, USA
| | - Hugh Olsen
- Biomolecular Engineering Department, UC Santa Cruz, California 95064, USA
| | - Mark Diekhans
- Genomics Institute, UC Santa Cruz, California 95064, USA
| | - Ivan R Corrêa
- New England Biolabs, Ipswich, Massachusetts 01938, USA
| | - Mark Akeson
- Biomolecular Engineering Department, UC Santa Cruz, California 95064, USA
| | | |
Collapse
|
25
|
Yan B, Tzertzinis G, Schildkraut I, Ettwiller L. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Res 2021; 32:162-174. [PMID: 34815308 PMCID: PMC8744680 DOI: 10.1101/gr.275784.121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Determination of eukaryotic transcription start sites (TSSs) has been based on methods that require the cap structure at the 5' end of transcripts derived from Pol II RNA polymerase. Consequently, these methods do not reveal TSSs derived from the other RNA polymerases that also play critical roles in various cell functions. To address this limitation, we developed ReCappable-seq, which comprehensively identifies TSS for both Pol II and non-Pol II transcripts at single-nucleotide resolution. The method relies on specific enzymatic exchange of 5' m7G caps and 5' triphosphates with a selectable tag. When applied to human transcriptomes, ReCappable-seq identifies Pol II TSSs that are in agreement with orthogonal methods such as CAGE. Additionally, ReCappable-seq reveals a rich landscape of TSSs associated with Pol III transcripts that have not previously been amenable to study at genome-wide scale. Novel TSS from non-Pol II transcription can be located in the nuclear and mitochondrial genomes. ReCappable-seq interrogates the regulatory landscape of coding and noncoding RNA concurrently and enables the classification of epigenetic profiles associated with Pol II and non-Pol II TSS.
Collapse
Affiliation(s)
- Bo Yan
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Ira Schildkraut
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
26
|
Krüger L, Albrecht CJ, Schammann HK, Stumpf FM, Niedermeier ML, Yuan Y, Stuber K, Wimmer J, Stengel F, Scheffner M, Marx A. Chemical proteomic profiling reveals protein interactors of the alarmones diadenosine triphosphate and tetraphosphate. Nat Commun 2021; 12:5808. [PMID: 34608152 PMCID: PMC8490401 DOI: 10.1038/s41467-021-26075-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotides diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) are formed in prokaryotic and eukaryotic cells. Since their concentrations increase significantly upon cellular stress, they are considered to be alarmones triggering stress adaptive processes. However, their cellular roles remain elusive. To elucidate the proteome-wide interactome of Ap3A and Ap4A and thereby gain insights into their cellular roles, we herein report the development of photoaffinity-labeling probes and their employment in chemical proteomics. We demonstrate that the identified ApnA interactors are involved in many fundamental cellular processes including carboxylic acid and nucleotide metabolism, gene expression, various regulatory processes and cellular response mechanisms and only around half of them are known nucleotide interactors. Our results highlight common functions of these ApnAs across the domains of life, but also identify those that are different for Ap3A or Ap4A. This study provides a rich source for further functional studies of these nucleotides and depicts useful tools for characterization of their regulatory mechanisms in cells. Diadenosine polyphosphates (ApAs) are involved in cellular stress signaling but only a few molecular targets have been characterized so far. Here, the authors develop ApnA-based photoaffinity-labeling probes and use them to identify Ap3A and Ap4A binding proteins in human cell lysates.
Collapse
Affiliation(s)
- Lena Krüger
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Christoph J Albrecht
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Florian M Stumpf
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yizhi Yuan
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Katrin Stuber
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Josua Wimmer
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School-Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
27
|
Borbolis F, Syntichaki P. Biological implications of decapping: beyond bulk mRNA decay. FEBS J 2021; 289:1457-1475. [PMID: 33660392 DOI: 10.1111/febs.15798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
It is well established that mRNA steady-state levels do not directly correlate with transcription rate. This is attributed to the multiple post-transcriptional mechanisms, which control both mRNA turnover and translation within eukaryotic cells. One such mechanism is the removal of the 5' end cap structure of RNAs (decapping). This 5' cap plays a fundamental role in cellular functions related to mRNA processing, transport, translation, quality control, and decay, while its chemical modifications influence the fate of cytoplasmic mRNAs. Decapping is a highly controlled process, performed by multiple decapping enzymes, and regulated by complex cellular networks. In this review, we provide an updated synopsis of 5' end modifications and functions, and give an overview of mRNA decapping enzymes, presenting their enzymatic properties. Focusing on DCP2 decapping enzyme, a major component on the 5'-3' mRNA decay pathway, we describe cis-elements and trans-acting factors that affect its activity, substrate specificity, and cellular localization. Finally, we discuss current knowledge on the biological functions of mRNA decapping and decay factors, highlighting the major questions that remain to be addressed.
Collapse
Affiliation(s)
- Fivos Borbolis
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens, Greece
| | - Popi Syntichaki
- Biomedical Research Foundation of the Academy of Athens, Center of Basic Research, Athens, Greece
| |
Collapse
|
28
|
Kim M, van Hoof A. Suppressors of mRNA Decapping Defects Restore Growth Without Major Effects on mRNA Decay Rates or Abundance. Genetics 2020; 216:1051-1069. [PMID: 32998951 PMCID: PMC7768250 DOI: 10.1534/genetics.120.303641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
Faithful degradation of mRNAs is a critical step in gene expression, and eukaryotes share a major conserved mRNA decay pathway. In this major pathway, the two rate-determining steps in mRNA degradation are the initial gradual removal of the poly(A) tail, followed by removal of the cap structure. Removal of the cap structure is carried out by the decapping enzyme, containing the Dcp2 catalytic subunit. Although the mechanism and regulation of mRNA decay is well understood, the consequences of defects in mRNA degradation are less clear. Dcp2 has been reported as either essential or nonessential. Here, we clarify that Dcp2 is not absolutely required for spore germination and extremely slow growth, but in practical terms it is impossible to continuously culture dcp2∆ under laboratory conditions without suppressors arising. We show that null mutations in at least three different genes are each sufficient to restore growth to a dcp2∆, of which kap123∆ and tl(gag)g∆ appear the most specific. We show that kap123∆ and tl(gag)g∆ suppress dcp2 by mechanisms that are different from each other and from previously isolated dcp2 suppressors. The suppression mechanism for tL(GAG)G is determined by the unique GAG anticodon of this tRNA, and thus likely by translation of some CUC or CUU codons. Unlike previously reported suppressors of decapping defects, these suppressors do not detectably restore decapping or mRNA decay to normal rates, but instead allow survival while only modestly affecting RNA homeostasis. These results provide important new insight into the importance of decapping, resolve previously conflicting publications about the essentiality of DCP2, provide the first phenotype for a tl(gag)g mutant, and show that multiple distinct mechanisms can bypass Dcp2 requirement.
Collapse
Affiliation(s)
- Minseon Kim
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Ambro van Hoof
- Microbiology and Molecular Genetics Department, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
29
|
Molecular basis of the selective processing of short mRNA substrates by the DcpS mRNA decapping enzyme. Proc Natl Acad Sci U S A 2020; 117:19237-19244. [PMID: 32723815 PMCID: PMC7431086 DOI: 10.1073/pnas.2009362117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In eukoryotes, 3′ to 5′ mRNA degradation is a major pathway to reduce mRNA levels and, thus, an important means to regulate gene expression. Herein, messenger RNA (mRNA) is hydrolyzed from the 3′ end by the exosome complex, producing short capped RNA fragments, which are decapped by DcpS. Our data show that DcpS is only active on mRNA that have undergone prior processing by the exosome. This DcpS selection mechanism is conserved from yeast to humans and is caused by the inability of the enzyme to undergo structural changes that are required for the formation of a catalytically active state around long mRNA transcripts. Our work thus reveals the mechanistic basis that ensures an efficient interplay between DcpS and the exosome. The 5′ messenger RNA (mRNA) cap structure enhances translation and protects the transcript against exonucleolytic degradation. During mRNA turnover, this cap is removed from the mRNA. This decapping step is catalyzed by the Scavenger Decapping Enzyme (DcpS), in case the mRNA has been exonucleolyticly shortened from the 3′ end by the exosome complex. Here, we show that DcpS only processes mRNA fragments that are shorter than three nucleotides in length. Based on a combination of methyl transverse relaxation optimized (TROSY) NMR spectroscopy and X-ray crystallography, we established that the DcpS substrate length-sensing mechanism is based on steric clashes between the enzyme and the third nucleotide of a capped mRNA. For longer mRNA substrates, these clashes prevent conformational changes in DcpS that are required for the formation of a catalytically competent active site. Point mutations that enlarge the space for the third nucleotide in the mRNA body enhance the activity of DcpS on longer mRNA species. We find that this mechanism to ensure that the enzyme is not active on translating long mRNAs is conserved from yeast to humans. Finally, we show that the products that the exosome releases after 3′ to 5′ degradation of the mRNA body are indeed short enough to be decapped by DcpS. Our data thus directly confirms the notion that mRNA products of the exosome are direct substrates for DcpS. In summary, we demonstrate a direct relationship between conformational changes and enzyme activity that is exploited to achieve substrate selectivity.
Collapse
|
30
|
Ferenc-Mrozek A, Bojarska E, Stepinski J, Darzynkiewicz E, Lukaszewicz M. Effect of the His-Tag Location on Decapping Scavenger Enzymes and Their Hydrolytic Activity toward Cap Analogs. ACS OMEGA 2020; 5:10759-10766. [PMID: 32455195 PMCID: PMC7240826 DOI: 10.1021/acsomega.0c00304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/08/2020] [Indexed: 05/11/2023]
Abstract
Decapping scavenger enzymes (DcpSs) are important players in mRNA degradation machinery and conserved in eukaryotes. Importantly, human DcpS is the recognized target for spinal muscular atrophy (SMA) and acute myeloid leukemia (AML) therapy, and has recently been connected to development of intellectual disability. Most recombinant DcpSs used in biochemical and biophysical studies are prepared as tagged proteins, with polyhistidine (His-tag) at the N-terminus or C-terminus. Our work is the first report on the parallel characterization of three versions of DcpSs (native and N- or C-terminally tagged) of three species (humans, Caenorhabditis elegans , and Ascaris suum). The native forms of all three enzymes were prepared by N-(His)10 tag cleavage. Protein thermal stability, measured by differential scanning fluorimetry (DSF), was unaffected in the case of native and tagged versions of human and A. suum DcpS; however, the melting temperature (T m) of C. elagans DcpS of was significantly influenced by the presence of the additional N- or C-tag. To investigate the impact of the tag positioning on the catalytic properties of DcpS, we tested the hydrolytic activity of native DcpS and their His-tagged counterparts toward cap dinucleotides (m7GpppG and m3 2,2,7GpppG) and m7GDP. The kinetic data indicate that dinucleotide substrates are hydrolyzed with comparable efficiency by native human and A. suum DcpS and their His-tagged forms. In contrast, both His-tagged C. elegans DcpSs exhibited higher activity toward m7GpppG than the native enzyme. m7GDP is resistant to enzymatic cleavage by all three forms of human and nematode DcpS.
Collapse
Affiliation(s)
- Aleksandra Ferenc-Mrozek
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Centre
of New Technologies, University of Warsaw, 02-093 Warsaw, Poland
| | - Elzbieta Bojarska
- Centre
of New Technologies, University of Warsaw, 02-093 Warsaw, Poland
| | - Janusz Stepinski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Centre
of New Technologies, University of Warsaw, 02-093 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
31
|
Abstract
The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.
Collapse
|
32
|
Anhäuser L, Klöcker N, Muttach F, Mäsing F, Špaček P, Studer A, Rentmeister A. A Benzophenone-Based Photocaging Strategy for the N7 Position of Guanosine. Angew Chem Int Ed Engl 2020; 59:3161-3165. [PMID: 31747109 PMCID: PMC7012642 DOI: 10.1002/anie.201914573] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Selective modification of nucleobases with photolabile caging groups enables the study and control of processes and interactions of nucleic acids. Numerous positions on nucleobases have been targeted, but all involve formal substitution of a hydrogen atom with a photocaging group. Nature, however, also uses ring-nitrogen methylation, such as m7 G and m1 A, to change the electronic structure and properties of RNA and control biomolecular interactions essential for translation and turnover. We report that aryl ketones such as benzophenone and α-hydroxyalkyl ketone are photolabile caging groups if installed at the N7 position of guanosine or the N1 position of adenosine. Common photocaging groups derived from the ortho-nitrobenzyl moiety were not suitable. Both chemical and enzymatic methods for site-specific modification of N7G in nucleosides, dinucleotides, and RNA were developed, thereby opening the door to studying the molecular interactions of m7 G and m1 A with spatiotemporal control.
Collapse
Affiliation(s)
- Lea Anhäuser
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Nils Klöcker
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Fabian Muttach
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Florian Mäsing
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Petr Špaček
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Andrea Rentmeister
- Institut für BiochemieWestfälische Wilhelms-Universität MünsterWilhelm-Klemm-Str. 248149MünsterGermany
| |
Collapse
|
33
|
Anhäuser L, Klöcker N, Muttach F, Mäsing F, Špaček P, Studer A, Rentmeister A. Eine auf dem Benzophenongerüst basierende Strategie für die Photoschützung der N7‐Position des Guanosins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201914573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lea Anhäuser
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Nils Klöcker
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Fabian Muttach
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Florian Mäsing
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Deutschland
| | - Petr Špaček
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstrasse 40 48149 Münster Deutschland
| | - Andrea Rentmeister
- Institut für Biochemie Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Str. 2 48149 Münster Deutschland
| |
Collapse
|
34
|
Wulf MG, Buswell J, Chan SH, Dai N, Marks K, Martin ER, Tzertzinis G, Whipple JM, Corrêa IR, Schildkraut I. The yeast scavenger decapping enzyme DcpS and its application for in vitro RNA recapping. Sci Rep 2019; 9:8594. [PMID: 31197197 PMCID: PMC6565619 DOI: 10.1038/s41598-019-45083-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic mRNAs are modified at their 5′ end early during transcription by the addition of N7-methylguanosine (m7G), which forms the “cap” on the first 5′ nucleotide. Identification of the 5′ nucleotide on mRNA is necessary for determination of the Transcription Start Site (TSS). We explored the effect of various reaction conditions on the activity of the yeast scavenger mRNA decapping enzyme DcpS and examined decapping of 30 chemically distinct cap structures varying the state of methylation, sugar, phosphate linkage, and base composition on 25mer RNA oligonucleotides. Contrary to the generally accepted belief that DcpS enzymes only decap short oligonucleotides, we found that the yeast scavenger decapping enzyme decaps RNA transcripts as long as 1400 nucleotides. Further, we validated the application of yDcpS for enriching capped RNA using a strategy of specifically tagging the 5′ end of capped RNA by first decapping and then recapping it with an affinity-tagged guanosine nucleotide.
Collapse
Affiliation(s)
- Madalee G Wulf
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - John Buswell
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Nan Dai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Katherine Marks
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Evan R Martin
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | - Joseph M Whipple
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Ira Schildkraut
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
35
|
Bozorg Qomi S, Asghari A, Salmaninejad A, Mojarrad M. Spinal Muscular Atrophy and Common Therapeutic Advances. Fetal Pediatr Pathol 2019; 38:226-238. [PMID: 31060440 DOI: 10.1080/15513815.2018.1520374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive destructive motor neuron disease which is characterized primarily by the degeneration of α-motor neurons in the ventral gray horn of the spinal cord. It mainly affects children and represents the most common reason of inherited infant mortality. MATERIAL AND METHODS We provide an overview of the recent therapeutic strategies for the treatment of SMA together with available and developing therapeutic strategies. For this purpose, Google Scholar and PubMed databases were searched for literature on SMA, therapy and treatment. Titles were reviewed and 96 were selected and assessed in this paper. RESULT Over the last two decades, different therapeutic strategies have been proposed for SMA. Some methods are in the pre-clinical, others the clinical phase. CONCLUSION By emergence of the new approaches, especially in gene therapy, effective treatment in the close future is probable.
Collapse
Affiliation(s)
- Saeed Bozorg Qomi
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Asghari
- c Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arash Salmaninejad
- d Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
36
|
Alblova M, Smidova A, Kalabova D, Lentini Santo D, Obsil T, Obsilova VO. Allosteric activation of yeast enzyme neutral trehalase by calcium and 14-3-3 protein. Physiol Res 2019; 68:147-160. [DOI: 10.33549/physiolres.933950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neutral trehalase 1 (Nth1) from Saccharomyces cerevisiae catalyzes disaccharide trehalose hydrolysis and helps yeast to survive adverse conditions, such as heat shock, starvation or oxidative stress. 14-3-3 proteins, master regulators of hundreds of partner proteins, participate in many key cellular processes. Nth1 is activated by phosphorylation followed by 14-3-3 protein (Bmh) binding. The activation mechanism is also potentiated by Ca(2+) binding within the EF-hand-like motif. This review summarizes the current knowledge about trehalases and the molecular and structural basis of Nth1 activation. The crystal structure of fully active Nth1 bound to 14-3-3 protein provided the first high-resolution view of a trehalase from a eukaryotic organism and showed 14-3-3 proteins as structural modulators and allosteric effectors of multi-domain binding partners.
Collapse
Affiliation(s)
- M. Alblova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Kasprzyk R, Starek BJ, Ciechanowicz S, Kubacka D, Kowalska J, Jemielity J. Fluorescent Turn-On Probes for the Development of Binding and Hydrolytic Activity Assays for mRNA Cap-Recognizing Proteins. Chemistry 2019; 25:6728-6740. [PMID: 30801798 DOI: 10.1002/chem.201900051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Indexed: 12/16/2022]
Abstract
The m7 G cap is a unique nucleotide structure at the 5'-end of all eukaryotic mRNAs. The cap specifically interacts with numerous cellular proteins and participates in biological processes that are essential for cell growth and function. To provide small molecular probes to study important cap-recognizing proteins, we synthesized m7 G nucleotides labeled with fluorescent tags via the terminal phosph(on)ate group and studied how their emission properties changed upon protein binding or enzymatic cleavage. Only the pyrene-labeled compounds behaved as sensitive turn-on probes. A pyrene-labeled m7 GTP analogue showed up to eightfold enhanced fluorescence emission upon binding to eukaryotic translation initiation factor 4E (eIF4E) and over 30-fold enhancement upon cleavage by decapping scavenger (DcpS) enzyme. These observations served as the basis for developing binding- and hydrolytic-activity assays. The assay utility was validated with previously characterized libraries of eIF4E ligands and DcpS inhibitors. The DcpS assay was also applied to study hydrolytic activity and inhibition of endogenous enzyme in cytoplasmic extracts from HeLa and HEK cells.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Beata J Starek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Sylwia Ciechanowicz
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.,College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
38
|
Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Mol Ther 2019; 27:803-823. [PMID: 30905577 DOI: 10.1016/j.ymthe.2019.02.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Protein supplementation therapy using in vitro-transcribed (IVT) mRNA for genetic diseases contains huge potential as a new class of therapy. From the early ages of synthetic mRNA discovery, a great number of studies showed the versatile use of IVT mRNA as a novel approach to supplement faulty or absent protein and also as a vaccine. Many modifications have been made to produce high expressions of mRNA causing less immunogenicity and more stability. Recent advancements in the in vivo lung delivery of mRNA complexed with various carriers encouraged the whole mRNA community to tackle various genetic lung diseases. This review gives a comprehensive overview of cells associated with various lung diseases and recent advancements in mRNA-based protein replacement therapy. This review also covers a brief summary of developments in mRNA modifications and nanocarriers toward clinical translation.
Collapse
|
39
|
Jung A, Yun JS, Kim S, Kim SR, Shin M, Cho DH, Choi KS, Chang JH. Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans. Mol Cells 2019; 42:56-66. [PMID: 30622225 PMCID: PMC6354057 DOI: 10.14348/molcells.2018.0377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of 2.5 Å. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (α1-β1) and with the α3 helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.
Collapse
Affiliation(s)
- Ahjin Jung
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
| | - Ji-Sook Yun
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
| | - Shinae Kim
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566,
Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566,
Korea
| | - Dong Hyung Cho
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566,
Korea
| | - Kwang Shik Choi
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566,
Korea
- Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, Daegu 41566,
Korea
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566,
Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566,
Korea
| |
Collapse
|
40
|
Saramago M, da Costa PJ, Viegas SC, Arraiano CM. The Implication of mRNA Degradation Disorders on Human DISease: Focus on DIS3 and DIS3-Like Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:85-98. [PMID: 31342438 DOI: 10.1007/978-3-030-19966-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA degradation is considered a critical posttranscriptional regulatory checkpoint, maintaining the correct functioning of organisms. When a specific RNA transcript is no longer required in the cell, it is signaled for degradation through a number of highly regulated steps. Ribonucleases (or simply RNases) are key enzymes involved in the control of RNA stability. These enzymes can perform the RNA degradation alone or cooperate with other proteins in RNA degradation complexes. Important findings over the last years have shed light into eukaryotic RNA degradation by members of the RNase II/RNB family of enzymes. DIS3 enzyme belongs to this family and represents one of the catalytic subunits of the multiprotein complex exosome. This RNase has a diverse range of functions, mainly within nuclear RNA metabolism. Humans encode two other DIS3-like enzymes: DIS3L (DIS3L1) and DIS3L2. DIS3L1 also acts in association with the exosome but is strictly cytoplasmic. In contrast, DIS3L2 acts independently of the exosome and shows a distinctive preference for uridylated RNAs. These enzymes have been shown to be involved in important cellular processes, such as mitotic control, and associated with human disorders like cancer. This review shows how the impairment of function of each of these enzymes is implicated in human disease.
Collapse
Affiliation(s)
- Margarida Saramago
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J da Costa
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
41
|
Kramer S, McLennan AG. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1511. [PMID: 30345629 DOI: 10.1002/wrna.1511] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
The 5' ends of most RNAs are chemically modified to enable protection from nucleases. In bacteria, this is often achieved by keeping the triphosphate terminus originating from transcriptional initiation, while most eukaryotic mRNAs and small nuclear RNAs have a 5'→5' linked N7 -methyl guanosine (m7 G) cap added. Several other chemical modifications have been described at RNA 5' ends. Common to all modifications is the presence of at least one pyrophosphate bond. To enable RNA turnover, these chemical modifications at the RNA 5' end need to be reversible. Dependent on the direction of the RNA decay pathway (5'→3' or 3'→5'), some enzymes cleave the 5'→5' cap linkage of intact RNAs to initiate decay, while others act as scavengers and hydrolyse the cap element of the remnants of the 3'→5' decay pathway. In eukaryotes, there is also a cap quality control pathway. Most enzymes involved in the cleavage of the RNA 5' ends are pyrophosphohydrolases, with only a few having (additional) 5' triphosphonucleotide hydrolase activities. Despite the identity of their enzyme activities, the enzymes belong to four different enzyme classes. Nudix hydrolases decap intact RNAs as part of the 5'→3' decay pathway, DXO family members mainly degrade faulty RNAs, members of the histidine triad (HIT) family are scavenger proteins, while an ApaH-like phosphatase is the major mRNA decay enzyme of trypanosomes, whose RNAs have a unique cap structure. Many novel cap structures and decapping enzymes have only recently been discovered, indicating that we are only beginning to understand the mechanisms of RNA decapping. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Susanne Kramer
- Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander G McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
42
|
Bednarek S, Madan V, Sikorski PJ, Bartenschlager R, Kowalska J, Jemielity J. mRNAs biotinylated within the 5' cap and protected against decapping: new tools to capture RNA-protein complexes. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0167. [PMID: 30397103 DOI: 10.1098/rstb.2018.0167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
The 5'-terminus of eukaryotic mRNAs comprises a 7-methylguanosine cap linked to the first transcribed nucleotide via a 5'-5' triphosphate bond. This cap structure facilitates numerous interactions with molecules participating in mRNA processing, turnover and RNA translation. Here, we report the synthesis and biochemical properties of a set of biotin-labelled cap analogues modified within the triphosphate bridge and increasing mRNA stability while retaining biological activity. Successful co-transcriptional incorporation of the cap analogues allowed for the quantification of cap-dependent translation efficiency, capping efficiency and the susceptibility to decapping by Dcp2. The utility of such cap-biotinylated RNAs as molecular tool was demonstrated by ultraviolet-cross-linking and affinity capture of protein-RNA complexes. In conclusion, RNAs labelled with biotin via the 5' cap structure can be applied to a variety of biological experiments based on biotin-avidin interaction or by means of biotin-specific antibodies, including protein affinity purification, pull-down assays, in vivo visualization, cellular delivery and many others.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Sylwia Bednarek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Vanesa Madan
- Department of Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Ralf Bartenschlager
- Department of Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
43
|
Alesi V, Capolino R, Genovesea S, Capriati T, Loddo S, Calvieri G, Calacci C, Diociaiuti A, Diamanti A, Novelli A, Dallapiccola B. An additional patient with a homozygous mutation in DCPS contributes to the delination of Al-Raqad syndrome. Am J Med Genet A 2018; 176:2781-2786. [PMID: 30289615 DOI: 10.1002/ajmg.a.40488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/07/2022]
Abstract
DCPS gene encodes for a protein involved in gene expression regulation through promoting cap degradation during mRNA decapping processes. Mutations altering the DCPS function have been associated to a distinct disorder, Al-Raqad syndrome, so far described only in two families. We report on a patient harboring a novel homozygous missense mutation in DCPS, presenting with growth retardation, craniofacial anomalies, skin dyschromia, and neuromuscular defects. This case study explains the molecular spectrum of DCPS mutations and might contribute to the phenotypic delineation of this rare condition.
Collapse
Affiliation(s)
- Viola Alesi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Genovesea
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Capriati
- Artificial Nutrition Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Loddo
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giusy Calvieri
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Calacci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Diamanti
- Artificial Nutrition Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
44
|
Fonseca BD, Lahr RM, Damgaard CK, Alain T, Berman AJ. LARP1 on TOP of ribosome production. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1480. [PMID: 29722158 PMCID: PMC6214789 DOI: 10.1002/wrna.1480] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022]
Abstract
The ribosome is an essential unit of all living organisms that commands protein synthesis, ultimately fuelling cell growth (accumulation of cell mass) and cell proliferation (increase in cell number). The eukaryotic ribosome consists of 4 ribosomal RNAs (rRNAs) and 80 ribosomal proteins (RPs). Despite its fundamental role in every living organism, our present understanding of how higher eukaryotes produce the various ribosome components is incomplete. Uncovering the mechanisms utilized by human cells to generate functional ribosomes will likely have far-reaching implications in human disease. Recent biochemical and structural studies revealed La-related protein 1 (LARP1) as a key new player in RP production. LARP1 is an RNA-binding protein that belongs to the LARP superfamily; it controls the translation and stability of the mRNAs that encode RPs and translation factors, which are characterized by a 5' terminal oligopyrimidine (5'TOP) motif and are thus known as TOP mRNAs. The activity of LARP1 is regulated by the mammalian target of rapamycin complex 1 (mTORC1): a eukaryotic protein kinase complex that integrates nutrient sensing with mRNA translation, particularly that of TOP mRNAs. In this review, we provide an overview of the role of LARP1 in the control of ribosome production in multicellular eukaryotes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
| | | | | | - Tommy Alain
- Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | |
Collapse
|
45
|
Yun JS, Yoon JH, Choi YJ, Son YJ, Kim S, Tong L, Chang JH. Molecular mechanism for the inhibition of DXO by adenosine 3',5'-bisphosphate. Biochem Biophys Res Commun 2018; 504:89-95. [PMID: 30180947 DOI: 10.1016/j.bbrc.2018.08.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Abstract
The decapping exoribonuclease DXO functions in pre-mRNA capping quality control, and shows multiple biochemical activities such as decapping, deNADding, pyrophosphohydrolase, and 5'-3' exoribonuclease activities. Previous studies revealed the molecular mechanisms of DXO based on the structures in complexes with a product, substrate mimic, cap analogue, and 3'-NADP+. Despite several reports on the substrate-specific reaction mechanism, the inhibitory mechanism of DXO remains elusive. Here, we demonstrate that adenosine 3', 5'-bisphosphate (pAp), a known inhibitor of the 5'-3' exoribonuclease Xrn1, inhibits the nuclease activity of DXO based on the results of structural and biochemical experiments. We determined the crystal structure of the DXO-pAp-Mg2+ complex at 1.8 Å resolution. In comparison with the DXO-RNA product complex, the position of pAp is well superimposed with the first nucleotide of the product RNA in the vicinity of two magnesium ions. Furthermore, biochemical assays showed that the inhibition by pAp is comparable between Xrn1 and DXO. Collectively, these structural and biochemical studies reveal that pAp inhibits the activities of DXO by occupying the active site to act as a competitive inhibitor.
Collapse
Affiliation(s)
- Ji-Sook Yun
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Young Jun Choi
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| | - Young Jin Son
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
46
|
Catharina L, Carels N. Specific enzyme functionalities of Fusarium oxysporum compared to host plants. Gene 2018; 676:219-226. [PMID: 29981422 DOI: 10.1016/j.gene.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 05/14/2018] [Accepted: 07/01/2018] [Indexed: 11/29/2022]
Abstract
The genus Fusarium contains some of the most studied and important species of plant pathogens that economically affect world agriculture and horticulture. Fusarium spp. are ubiquitous fungi widely distributed in soil, plants as well as in different organic substrates and are also considered as opportunistic human pathogens. The identification of specific enzymes essential to the metabolism of these fungi is expected to provide molecular targets to control the diseases they induce to their hosts. Through applications of traditional techniques of sequence homology comparison by similarity search and Markov modeling, this report describes the characterization of enzymatic functionalities associated to protein targets that could be considered for the control of root rots induced by Fusarium oxysporum. From the analysis of 318 F. graminearum enzymes, we retrieved 30 enzymes that are specific of F. oxysporum compared to 15 species of host plants. By comparing these 30 specific enzymes of F. oxysporum with the genome of Arabidopsis thaliana, Brassica rapa, Glycine max, Jatropha curcas and Ricinus communis, we found 7 key specific enzymes whose inhibition is expected to affect significantly the development of the fungus and 5 specific enzymes that were considered here to be secondary because they are inserted in pathways with alternative routes.
Collapse
Affiliation(s)
- Larissa Catharina
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036, Prédio da Expansão, 8° andar, sala 814, CEP: 21040-361 Rio de Janeiro, Brazil.
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4036, Prédio da Expansão, 8° andar, sala 814, CEP: 21040-361 Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Wojtczak BA, Sikorski PJ, Fac-Dabrowska K, Nowicka A, Warminski M, Kubacka D, Nowak E, Nowotny M, Kowalska J, Jemielity J. 5'-Phosphorothiolate Dinucleotide Cap Analogues: Reagents for Messenger RNA Modification and Potent Small-Molecular Inhibitors of Decapping Enzymes. J Am Chem Soc 2018; 140:5987-5999. [PMID: 29676910 DOI: 10.1021/jacs.8b02597] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 5' cap consists of 7-methylguanosine (m7G) linked by a 5'-5'-triphosphate bridge to messenger RNA (mRNA) and acts as the master regulator of mRNA turnover and translation initiation in eukaryotes. Cap analogues that influence mRNA translation and turnover (either as small molecules or as part of an RNA transcript) are valuable tools for studying gene expression, which is often also of therapeutic relevance. Here, we synthesized a series of 15 dinucleotide cap (m7GpppG) analogues containing a 5'-phosphorothiolate (5'-PSL) moiety (i.e., an O-to-S substitution within the 5'-phosphoester) and studied their biological properties in the context of three major cap-binding proteins: translation initiation factor 4E (eIF4E) and two decapping enzymes, DcpS and Dcp2. While the 5'-PSL moiety was neutral or slightly stabilizing for cap interactions with eIF4E, it significantly influenced susceptibility to decapping. Replacing the γ-phosphoester with the 5'-PSL moiety (γ-PSL) prevented β-γ-pyrophosphate bond cleavage by DcpS and conferred strong inhibitory properties. Combining the γ-PSL moiety with α-PSL and β-phosphorothioate (PS) moiety afforded first cap-derived hDcpS inhibitor with low nanomolar potency. Susceptibility to Dcp2 and translational properties were studied after incorporation of the new analogues into mRNA transcripts by RNA polymerase. Transcripts containing the γ-PSL moiety were resistant to cleavage by Dcp2. Surprisingly, superior translational properties were observed for mRNAs containing the α-PSL moiety, which were Dcp2-susceptible. The overall protein expression measured in HeLa cells for this mRNA was comparable to mRNA capped with the translation augmenting β-PS analogue reported previously. Overall, our study highlights 5'-PSL as a synthetically accessible cap modification, which, depending on the substitution site, can either reduce susceptibility to decapping or confer superior translational properties on the mRNA. The 5'-PSL-analogues may find application as reagents for the preparation of efficiently expressed mRNA or for investigation of the role of decapping enzymes in mRNA processing or neuromuscular disorders associated with decapping.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Pawel J Sikorski
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Kaja Fac-Dabrowska
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| | - Anna Nowicka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Elzbieta Nowak
- International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Street , 02-109 Warsaw , Poland
| | - Marcin Nowotny
- International Institute of Molecular and Cell Biology in Warsaw , 4 Ks. Trojdena Street , 02-109 Warsaw , Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , Pasteura 5 Street , 02-093 Warsaw , Poland
| | - Jacek Jemielity
- Centre of New Technologies , University of Warsaw , Banacha 2c Street , 02-097 Warsaw , Poland
| |
Collapse
|
48
|
Grzela R, Nasilowska K, Lukaszewicz M, Tyras M, Stepinski J, Jankowska-Anyszka M, Bojarska E, Darzynkiewicz E. Hydrolytic activity of human Nudt16 enzyme on dinucleotide cap analogs and short capped oligonucleotides. RNA (NEW YORK, N.Y.) 2018; 24:633-642. [PMID: 29483298 PMCID: PMC5900562 DOI: 10.1261/rna.065698.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/20/2018] [Indexed: 05/30/2023]
Abstract
Human Nudt16 (hNudt16) is a member of the Nudix family of hydrolases, comprising enzymes catabolizing various substrates including canonical (d)NTPs, oxidized (d)NTPs, nonnucleoside polyphosphates, and capped mRNAs. Decapping activity of the Xenopus laevis (X29) Nudt16 homolog was observed in the nucleolus, with a high specificity toward U8 snoRNA. Subsequent studies have reported cytoplasmic localization of mammalian Nudt16 with cap hydrolysis activity initiating RNA turnover, similar to Dcp2. The present study focuses on hNudt16 and its hydrolytic activity toward dinucleotide cap analogs and short capped oligonucleotides. We performed a screening assay for potential dinucleotide and oligonucleotide substrates for hNudt16. Our data indicate that dinucleotide cap analogs and capped oligonucleotides containing guanine base in the first transcribed nucleotide are more susceptible to enzymatic digestion by hNudt16 than their counterparts containing adenine. Furthermore, unmethylated dinucleotides (GpppG and ApppG) and respective oligonucleotides (GpppG-16nt and GpppA-16nt) were hydrolyzed by hNudt16 with greater efficiency than were m7GpppG and m7GpppG-16nt. In conclusion, we found that hNudt16 hydrolysis of dinucleotide cap analogs and short capped oligonucleotides displayed a broader spectrum specificity than is currently known.
Collapse
Affiliation(s)
- Renata Grzela
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Karolina Nasilowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Tyras
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Janusz Stepinski
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | | - Elzbieta Bojarska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
49
|
Kiss DL, Baez WD, Huebner K, Bundschuh R, Schoenberg DR. Loss of fragile histidine triad (Fhit) protein expression alters the translation of cancer-associated mRNAs. BMC Res Notes 2018. [PMID: 29540221 PMCID: PMC5853088 DOI: 10.1186/s13104-018-3278-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objectives In > 50% of cancers tumor development involves the early loss of Fhit (fragile histidine triad) protein expression, yet the mechanistic pathway(s) by which Fhit mediates its tumor suppressor functions are not fully understood. Earlier attempts to identify a Fhit-deficient gene expression profile relied on total cellular RNA and microarray analysis. The data here used RNA sequencing (RNA-Seq) of Fhit-negative and Fhit-positive cells as proof of principle for the impact of Fhit on specific mRNAs, and to lay the foundation for a study using ribosome profiling to identify mRNAs whose translation is affected by FHIT loss. Data description RNA-Seq was performed on RNA from lines of Fhit-expressing and Fhit-deficient lung cancer cells. This identified changes in the levels of mRNAs for a number of cell survival and cell cycle progression genes. Polysome profile analysis performed on cytoplasmic extracts from Fhit-negative and Fhit-positive cells showed changes in the sedimentation of select mRNAs consistent with changes in translation efficiency. The impact of differential Fhit expression on the turnover of selected cancer-linked mRNAs was determined by RT-qPCR of cytoplasmic RNA isolated at intervals after treating cells with a transcription inhibitor.
Collapse
Affiliation(s)
- Daniel L Kiss
- Center for RNA Biology, The Ohio State University, 484 West 12th Ave., Columbus, OH, 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd., Columbus, OH, 43210, USA
| | - William D Baez
- Center for RNA Biology, The Ohio State University, 484 West 12th Ave., Columbus, OH, 43210, USA.,Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, OH, 43210, USA
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH, 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, 484 West 12th Ave., Columbus, OH, 43210, USA.,Department of Physics, The Ohio State University, 191 West Woodruff Ave., Columbus, OH, 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel R Schoenberg
- Center for RNA Biology, The Ohio State University, 484 West 12th Ave., Columbus, OH, 43210, USA. .,Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd., Columbus, OH, 43210, USA.
| |
Collapse
|
50
|
Abstract
Viruses alter host-cell gene expression at many biochemical levels, such as transcription, translation, mRNA splicing and mRNA decay in order to create a cellular environment suitable for viral replication. In this review, we discuss mechanisms by which viruses manipulate host-gene expression at the level of mRNA decay in order to enable the virus to evade host antiviral responses to allow viral survival and replication. We discuss different cellular RNA decay pathways, including the deadenylation-dependent mRNA decay pathway, and various strategies that viruses exploit to manipulate these pathways in order to create a virus-friendly cellular environment.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|