1
|
White IS, Canniffe DP, Hitchcock A. The diversity of physiology and metabolism in chlorophototrophic bacteria. Adv Microb Physiol 2025; 86:1-98. [PMID: 40404267 DOI: 10.1016/bs.ampbs.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Photosynthesis by (bacterio)chlorophyll-producing organisms ("chlorophototrophy") sustains virtually all life on Earth, providing the biosphere with food and energy. The oxygenic process carried out by plants, algae and cyanobacteria also generates the oxygen we breathe, and ancient cyanobacteria were responsible for oxygenating the atmosphere, creating the conditions that allowed the evolution of complex life. Cyanobacteria were also the endosymbiotic progenitors of chloroplasts, play major roles in biogeochemical cycles and as primary producers in aquatic ecosystems, and act as genetically tractable model organisms for studying oxygenic photosynthesis. In addition to the Cyanobacteriota, eight other bacterial phyla, namely Proteobacteria/Pseudomonadota, Chlorobiota, Chloroflexota, Bacillota, Acidobacteriota, Gemmatimonadota, Vulcanimicrobiota and Myxococcota contain at least one putative chlorophototrophic species, all of which perform a variant of anoxygenic photosynthesis, which does not yield oxygen as a by-product. These chlorophototrophic organisms display incredible diversity in the habitats that they colonise, and in their biochemistry, physiology and metabolism, with variation in the light-harvesting complexes and pigments they produce to utilise solar energy. Whilst some are very well understood, such as the proteobacterial 'purple bacteria', others have only been identified in the last few years and therefore relatively little is known about them - especially those that have not yet been isolated and cultured. In this chapter, we aim to summarise and compare the photosynthetic physiology and central metabolic processes of chlorophototrophic members from the nine phyla in which they are found, giving both a short historical perspective and highlighting gaps in our understanding.
Collapse
Affiliation(s)
- Isaac S White
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel P Canniffe
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Liu FYL, Twible LE, Colenbrander Nelson TE, Whaley-Martin K, Yan Y, Arrey JLS, Warren LA. Microbial sulfur cycling determinants and implications for environmental impacts. CHEMOSPHERE 2025; 372:144084. [PMID: 39798717 DOI: 10.1016/j.chemosphere.2025.144084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Sulfur-oxidizing bacteria (SOB) play a vital role in the occurrence of sulfur oxidation intermediate (SOI) compounds often recalcitrant to currently available, abiotic treatment within metal mine tailings impoundments (TI). As inadvertent SOI discharge post-treatment can lead to the uncontrolled acidification of receiving environments, it becomes increasingly important to elucidate the environmental controls on SOB identities and sulfur cycling within these relatively unstudied systems. Here, results identified controlling factors on SOB community differentiation and associated metabolic pathway occurrence through integrated physicochemical, geochemical, and microbial field and experimental investigation across three summers (2016, 2017, 2021) in a stratified Northern Ontario base metal TI. Dynamic shifts in SOB communities and sulfur oxidation pathways were primarily driven by [S2O32-] and further influenced by pH, [O2], and conductivity. At [S2O32-] above 0.03 mM, Halothiobacillus spp. was observed to dominate in lower pH, higher conductivity conditions where complete SOI oxidation, mediated through the complete Sox pathway, is suggested to reduced [SOI] in treated discharge waters. At [S2O32-] below 0.03 mM, an SOB assemblage (Thiovirga spp., Thiobacillus spp., and Sediminibacterium spp.) was observed to collectively dominate under higher pH and lower conductivity, associated with SOI persistence due to SOI recycling pathways (incomplete Sox, rDSR, S4I). Targeted SOB enrichment cultures confirmed the importance of S2O32- availability in driving SOB community shifts and the capability of Halothiobacillus to outcompete other SOB under oxygenated, high [S2O32-] conditions. Trends observed here for mine TI associated SOB were found to also occur across a broader suite of contexts using literature data, indicating their wider ecological relevance in interpreting outcomes associated with SOB activity. Results also provide new insights into improved, biologically informed management of sulfur associated risks with potential SOB manipulation through [S2O32-], pH, and/or [O2] controls.
Collapse
Affiliation(s)
- Felicia Y L Liu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Lauren E Twible
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Tara E Colenbrander Nelson
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Kelly Whaley-Martin
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Yunyun Yan
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - James L S Arrey
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Lesley A Warren
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
3
|
Akram M, Hauser D, Dietl A, Steigleder M, Ullmann GM, Barends TRM. Redox potential tuning by calcium ions in a novel c-type cytochrome from an anammox organism. J Biol Chem 2025; 301:108082. [PMID: 39675707 PMCID: PMC11791136 DOI: 10.1016/j.jbc.2024.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
The electrochemical potentials of redox-active proteins need to be tuned accurately to the correct values for proper biological function. Here, we describe a diheme cytochrome c with high heme redox potentials of about +350 mV, despite having a large overall negative charge, which typically reduces redox potentials. High-resolution crystal structures, spectroelectrochemical measurements, and high-end computational methods show how this is achieved: each heme iron has a calcium cation positioned next to it at a distance of only 6.9 Å, raising their redox potentials by several hundred millivolts through electrostatic interaction. We suggest that this has evolved to provide the protein with a high redox potential despite its large negative surface charge, which it likely requires for interactions with redox partners.
Collapse
Affiliation(s)
- Mohd Akram
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - David Hauser
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andreas Dietl
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Matthias Steigleder
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - G Matthias Ullmann
- Computational Biochemistry Group, Fakultät für Chemie, Biologie und Geowissenschaften, Bayreuth, Germany.
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
4
|
Terahata T, Shimada Y, Maki C, Muroga S, Sakurai R, Kunichika K, Fujishiro T. Cysteine-Persulfide Sulfane Sulfur-Ligated Zn Complex of Sulfur-Carrying SufU in the SufCDSUB System for Fe-S Cluster Biosynthesis. Inorg Chem 2024; 63:19607-19618. [PMID: 39384553 DOI: 10.1021/acs.inorgchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
SufU, a component of the SufCDSUB Fe-S cluster biosynthetic system, serves as a Zn-dependent sulfur-carrying protein that delivers inorganic sulfur in the form of cysteine persulfide from SufS to SufBCD. To understand this sulfur delivery mechanism, we studied the X-ray crystal structure of SufU and its sulfur-carrying state (persulfurated SufU) and performed functional analysis of the conserved amino acid residues around the Zn sites. Interestingly, sulfur-carrying SufU with Cys41-persulfide (Cys41-Sγ-Sδ-) exhibited a unique Zn coordination structure, in which electrophilic Sγ is ligated to Zn and nucleophilic/anionic Sδ is bound to distally conserved Arg125. This structure is distinct from those of other Cys-persulfide-Sδ-ligated metals of metalloproteins, such as hybrid cluster proteins and SoxAX. Functional analysis of SufU variants with Zn-ligand and Arg125 substitutions revealed that both Zn and Arg125 are critical for the function of SufU with SufS. The Zn-persulfide structure of SufU provides insight into the sulfur-transfer process, suggesting that persulfide-Sδ- is stabilized via bridging by Zn and Arg125 of SufU.
Collapse
Affiliation(s)
- Takuya Terahata
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yukino Shimada
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Chisato Maki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Suguru Muroga
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Rina Sakurai
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kouhei Kunichika
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
5
|
Li K, Zakharov LN, Pluth MD. Synthesis, Characterization, and Reactivity of a Synthetic End-On Cobalt(II) Alkyl Persulfide Complex as a Model Platform for Thiolate Persulfidation. J Am Chem Soc 2024; 146:21999-22007. [PMID: 39044627 DOI: 10.1021/jacs.4c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Persulfides (RSS-) are ubiquitous source of sulfides (S2-) in biology, and interactions between RSS- and bioinorganic metal centers play critical roles in biological hydrogen sulfide (H2S) biogenesis, signaling, and catabolism. Here, we report the use of contact-ion stabilized [Na(15-crown-5)][tBuSS] (1) as a simple synthon to access rare metal alkyl persulfide complexes and to investigate the reactivity of RSS- with transition metal centers to provide insights into metal thiolate persulfidation, including the fundamental difference between alkyl persulfides and alkyl thiolates. Reaction of 1 with [CoII(TPA)(OTf)]+ afforded the η1-alkyl persulfide complex [CoII(TPA)(SStBu)]+ (2), which was characterized by X-ray crystallography, UV-vis spectroscopy, and Raman spectroscopy. RSS- coordination to the Lewis acidic Co2+ center provided additional stability to the S-S bond, as evidenced by a significant increase in the Raman stretching frequency for 2 (vS-S = 522 cm-1, ΔvS-S = 66 cm-1). The effect of persulfidation on metal center redox potentials was further elucidated using cyclic voltammetry, in which the Co2+ → Co3+ oxidation potential of 2 (Ep,a = +89 mV vs SCE) is lowered by nearly 700 mV when compared to the corresponding thiolate complex [CoII(TPA)(StBu)]+ (3) (Ep,a = +818 mV vs SCE), despite persulfidation being generally seen as an oxidative post-translational modification. The reactivity of 2 toward reducing agents including PPh3, BH4-, and biologically relevant thiol reductant DTT led to different S2- output pathways, including formation of a dinuclear 2Co-2SH complex [CoII2(TPA)2(μ2-SH)2]2+(4).
Collapse
Affiliation(s)
- Keyan Li
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lev N Zakharov
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
6
|
Twible LE, Whaley-Martin K, Chen LX, Colenbrander Nelson T, Arrey JL, Jarolimek CV, King JJ, Ramilo L, Sonnenberg H, Banfield JF, Apte SC, Warren LA. pH and thiosulfate dependent microbial sulfur oxidation strategies across diverse environments. Front Microbiol 2024; 15:1426584. [PMID: 39101034 PMCID: PMC11294248 DOI: 10.3389/fmicb.2024.1426584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (sox, rdsr, and S4I) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete sox (csox) dominant SOB (e.g., Halothiobacillus spp., Thiomonas spp.) drove acidity generation and S2O3 2- consumption via the csox pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-csox dominant SOB (hosting the incomplete sox, rdsr, and/or other S oxidation reactions; e.g. Thiobacillus spp., Sulfuriferula spp.) were associated with higher [S2O3 2-] and limited acidity generation. The S4I pathway part 1 (tsdA; S2O3 2- to S4O6 2-), was not constrained by pH, while S4I pathway part 2 (S4O6 2- disproportionation via tetH) was limited to Thiobacillus spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of csox dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, S2O3 2- availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [S2O3 2-] manipulation.
Collapse
Affiliation(s)
- Lauren E. Twible
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Kelly Whaley-Martin
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | | | - James L.S. Arrey
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Chad V. Jarolimek
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Josh J. King
- Commonwealth Scientific Industrial and Research Organization, Black Mountain, ACT, Australia
| | | | | | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States
| | - Simon C. Apte
- Commonwealth Scientific Industrial and Research Organization, Clayton, VIC, Australia
| | - Lesley A. Warren
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Barbosa ACC, Venceslau SS, Pereira IAC. DsrMKJOP is the terminal reductase complex in anaerobic sulfate respiration. Proc Natl Acad Sci U S A 2024; 121:e2313650121. [PMID: 38285932 PMCID: PMC10861901 DOI: 10.1073/pnas.2313650121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.
Collapse
Affiliation(s)
- Ana C. C. Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| |
Collapse
|
8
|
Srivastava A, De Corte D, Garcia JAL, Swan BK, Stepanauskas R, Herndl GJ, Sintes E. Interplay between autotrophic and heterotrophic prokaryotic metabolism in the bathypelagic realm revealed by metatranscriptomic analyses. MICROBIOME 2023; 11:239. [PMID: 37925458 PMCID: PMC10625248 DOI: 10.1186/s40168-023-01688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/02/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Heterotrophic microbes inhabiting the dark ocean largely depend on the settling of organic matter from the sunlit ocean. However, this sinking of organic materials is insufficient to cover their demand for energy and alternative sources such as chemoautotrophy have been proposed. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. METHODS Seawater samples were collected from Labrador Sea Water (LSW, ~ 2000 m depth) in the North Atlantic and incubated in the dark at in situ temperature unamended, amended with 1 µM thiosulfate, or with 1 µM thiosulfate plus 10 µM glucose and 10 µM acetate (thiosulfate plus dissolved organic matter, DOM). Inorganic carbon fixation was measured in the different treatments and samples for metatranscriptomic analyses were collected after 1 h and 72 h of incubation. RESULTS Amendment of LSW with thiosulfate and thiosulfate plus DOM enhanced prokaryotic inorganic carbon fixation. The energy generated via chemoautotrophy and heterotrophy in the amended prokaryotic communities was used for the biosynthesis of glycogen and phospholipids as storage molecules. The addition of thiosulfate stimulated unclassified bacteria, sulfur-oxidizing Deltaproteobacteria (SAR324 cluster bacteria), Epsilonproteobacteria (Sulfurimonas sp.), and Gammaproteobacteria (SUP05 cluster bacteria), whereas, the amendment with thiosulfate plus DOM stimulated typically copiotrophic Gammaproteobacteria (closely related to Vibrio sp. and Pseudoalteromonas sp.). CONCLUSIONS The gene expression pattern of thiosulfate utilizing microbes specifically of genes involved in energy production via sulfur oxidation and coupled to CO2 fixation pathways coincided with the change in the transcriptional profile of the heterotrophic prokaryotic community (genes involved in promoting energy storage), suggesting a fine-tuned metabolic interplay between chemoautotrophic and heterotrophic microbes in the dark ocean. Video Abstract.
Collapse
Affiliation(s)
- Abhishek Srivastava
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160, Vienna, Austria.
| | - Daniele De Corte
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University, Oldenburg, Germany
- Currently at Ocean Technology and Engineering Department, National Oceanography Centre, Southampton, UK
| | - Juan A L Garcia
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Informatics, INS La Ferreria, 08110, Montcada i Reixach, Spain
| | - Brandon K Swan
- National Biodefense Analysis and Countermeasures Center, Frederick, MD, 21702, USA
| | | | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Eva Sintes
- Ecosystem Oceanography Group (GRECO), Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Baleares, Palma, Spain.
| |
Collapse
|
9
|
Nosalova L, Piknova M, Kolesarova M, Pristas P. Cold Sulfur Springs-Neglected Niche for Autotrophic Sulfur-Oxidizing Bacteria. Microorganisms 2023; 11:1436. [PMID: 37374938 DOI: 10.3390/microorganisms11061436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Since the beginning of unicellular life, dissimilation reactions of autotrophic sulfur bacteria have been a crucial part of the biogeochemical sulfur cycle on Earth. A wide range of sulfur oxidation states is reflected in the diversity of metabolic pathways used by sulfur-oxidizing bacteria. This metabolically and phylogenetically diverse group of microorganisms inhabits a variety of environments, including extreme environments. Although they have been of interest to microbiologists for more than 150 years, meso- and psychrophilic chemolithoautotrophic sulfur-oxidizing microbiota are less studied compared to the microbiota of hot springs. Several recent studies suggested that cold sulfur waters harbor unique, yet not described, bacterial taxa.
Collapse
Affiliation(s)
- Lea Nosalova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Maria Piknova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Mariana Kolesarova
- Department of Microbiology, Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia
| | - Peter Pristas
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| |
Collapse
|
10
|
Barrows JK, Van Dyke MW. A CsoR family transcriptional regulator, TTHA1953, controls the sulfur oxidation pathway in Thermus thermophilus HB8. J Biol Chem 2023; 299:104759. [PMID: 37116710 DOI: 10.1016/j.jbc.2023.104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Transcription regulation is a critical means by which microorganisms sense and adapt to their environments. Bacteria contain a wide range of highly conserved families of transcription factors that have evolved to regulate diverse sets of genes. It is increasingly apparent that structural similarities between transcription factors do not always equate to analogous transcription regulatory networks. For example, transcription factors within the CsoR/RcnR family have been found to repress a wide range of gene targets, including various metal efflux genes, as well as genes involved in sulfide and formaldehyde detoxification machinery. In this study, we identify the preferred DNA binding sequence for the CsoR-like protein, TTHA1953, from the model extremophile Thermus thermophilus HB8 using the iterative selection approach, restriction endonuclease, protection, selection and amplification (REPSA). By mapping significant DNA motifs to the T. thermophilus HB8 genome, we identify potentially regulated genes that we validate with in vitro and in vivo methodologies. We establish TTHA1953 as a master regulator of the sulfur oxidation (Sox) pathway, providing the first link between CsoR-like proteins and Sox regulation.
Collapse
Affiliation(s)
- John K Barrows
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA
| | - Michael W Van Dyke
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA.
| |
Collapse
|
11
|
Xin Y, Wang Y, Zhang H, Wu Y, Xia Y, Li H, Qu X. Cupriavidus pinatubonensis JMP134 Alleviates Sulfane Sulfur Toxicity after the Loss of Sulfane Dehydrogenase through Oxidation by Persulfide Dioxygenase and Hydrogen Sulfide Release. Metabolites 2023; 13:metabo13020218. [PMID: 36837837 PMCID: PMC9959259 DOI: 10.3390/metabo13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
An incomplete Sox system lacking sulfane dehydrogenase SoxCD may produce and accumulate sulfane sulfur when oxidizing thiosulfate. However, how bacteria alleviate the pressure of sulfane sulfur accumulation remains largely unclear. In this study, we focused on the bacterium Cupriavidus pinatubonensis JMP134, which contains a complete Sox system. When soxCD was deleted, this bacterium temporarily produced sulfane sulfur when oxidizing thiosulfate. Persulfide dioxygenase (PDO) in concert with glutathione oxidizes sulfane sulfur to sulfite. Sulfite can spontaneously react with extra persulfide glutathione (GSSH) to produce thiosulfate, which can feed into the incomplete Sox system again and be oxidized to sulfate. Furthermore, the deletion strain lacking PDO and SoxCD produced volatile H2S gas when oxidizing thiosulfate. By comparing the oxidized glutathione (GSSG) between the wild-type and deletion strains, we speculated that H2S is generated during the interaction between sulfane sulfur and the glutathione/oxidized glutathione (GSH/GSSG) redox couple, which may reduce the oxidative stress caused by the accumulation of sulfane sulfur in bacteria. Thus, PDO and H2S release play a critical role in alleviating sulfane sulfur toxicity after the loss of soxCD in C. pinatubonensis JMP134.
Collapse
Affiliation(s)
- Yufeng Xin
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence: (Y.X.); (X.Q.); Tel.: +86-15562345068 (Y.X.)
| | - Yaxin Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honglin Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yu Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huanjie Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohua Qu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence: (Y.X.); (X.Q.); Tel.: +86-15562345068 (Y.X.)
| |
Collapse
|
12
|
Switzer CH, Fukuto JM. The antioxidant and oxidant properties of hydropersulfides (RSSH) and polysulfide species. Redox Biol 2022; 57:102486. [PMID: 36201912 PMCID: PMC9535303 DOI: 10.1016/j.redox.2022.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022] Open
Abstract
It has become apparent that hydrogen sulfide (H2S), hydropersulfides (RSSH) and other polysulfide species are all intimately linked biochemically. Indeed, at least some of the biological activity attributed to hydrogen sulfide (H2S) may actually be due to its conversion to RSSH and derived polysulfur species (and vice-versa). The unique chemistry associated with the hydropersulfide functional group (-SSH) predicts that it possesses possible protective properties that can help a cell contend with oxidative and/or electrophilic stress. However, since RSSH and polysulfides possess chemical properties akin to disulfides (RSSR), they can also be sources of oxidative/electrophilic stress/signaling as well. Herein are discussed the unique chemistry, possible biochemistry and the physiological implications of RSSH (and polysulfides), especially as it pertains to their putative cellular protection properties against a variety of stresses and/or as possible stressors/signaling agents themselves.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jon M Fukuto
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
13
|
Jenner LP, Crack JC, Kurth JM, Soldánová Z, Brandt L, Sokol KP, Reisner E, Bradley JM, Dahl C, Cheesman MR, Butt JN. Reaction of Thiosulfate Dehydrogenase with a Substrate Mimic Induces Dissociation of the Cysteine Heme Ligand Giving Insights into the Mechanism of Oxidative Catalysis. J Am Chem Soc 2022; 144:18296-18304. [PMID: 36173876 PMCID: PMC9562282 DOI: 10.1021/jacs.2c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/29/2022]
Abstract
Thiosulfate dehydrogenases are bacterial cytochromes that contribute to the oxidation of inorganic sulfur. The active sites of these enzymes contain low-spin c-type heme with Cys-/His axial ligation. However, the reduction potentials of these hemes are several hundred mV more negative than that of the thiosulfate/tetrathionate couple (Em, +198 mV), making it difficult to rationalize the thiosulfate oxidizing capability. Here, we describe the reaction of Campylobacter jejuni thiosulfate dehydrogenase (TsdA) with sulfite, an analogue of thiosulfate. The reaction leads to stoichiometric conversion of the active site Cys to cysteinyl sulfonate (Cα-CH2-S-SO3-) such that the protein exists in a form closely resembling a proposed intermediate in the pathway for thiosulfate oxidation that carries a cysteinyl thiosulfate (Cα-CH2-S-SSO3-). The active site heme in the stable sulfonated protein displays an Em approximately 200 mV more positive than the Cys-/His-ligated state. This can explain the thiosulfate oxidizing activity of the enzyme and allows us to propose a catalytic mechanism for thiosulfate oxidation. Substrate-driven release of the Cys heme ligand allows that side chain to provide the site of substrate binding and redox transformation; the neighboring heme then simply provides a site for electron relay to an appropriate partner. This chemistry is distinct from that displayed by the Cys-ligated hemes found in gas-sensing hemoproteins and in enzymes such as the cytochromes P450. Thus, a further class of thiolate-ligated hemes is proposed, as exemplified by the TsdA centers that have evolved to catalyze the controlled redox transformations of inorganic oxo anions of sulfur.
Collapse
Affiliation(s)
- Leon P. Jenner
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Jason C. Crack
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julia M. Kurth
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Zuzana Soldánová
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Linda Brandt
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Katarzyna P. Sokol
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, CambridgeCB2 1EW, United Kingdom
| | - Justin M. Bradley
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Christiane Dahl
- Institut
für Mikrobiologie & Biotechnologie, Friedrich Wilhelms
Universität Bonn, D-53115Bonn, Germany
| | - Myles R. Cheesman
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| | - Julea N. Butt
- Centre
for Molecular and Structural Biochemistry, School of Chemistry and
School of Biological Sciences, University
of East Anglia, Norwich Research Park, NorwichNR4 7TJ, United Kingdom
| |
Collapse
|
14
|
Guan Y, Hou T, Li X, Feng L, Wang Z. Metagenomic insights into comparative study of nitrogen metabolic potential and microbial community between primitive and urban river sediments. ENVIRONMENTAL RESEARCH 2022; 212:113592. [PMID: 35654160 DOI: 10.1016/j.envres.2022.113592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 05/27/2023]
Abstract
As a result of anthropogenic pollution, the nitrogen nutrients load in urban rivers has increased, potentially raising the risk of river eutrophication. Here, we studied how anthropogenic impacts alter nitrogen metabolism in river sediments by comparing the metagenomic function of microbial communities between relatively primitive and human-disturbed sediments. The contents of organic matter (OM), total nitrogen (TN), NO3--N and NO2--N were higher in primitive site than in polluted sites, which might be due to vegetation density, sediment type, hydrology, etc. Whereas, NH4+-N content was higher in midstream and downstream, indicating that nitrogen loading increased in the anthropogenic regions and subsequently leading higher NH4+-N. Hierarchical cluster analyses revealed significant changes in the community structure and functional potential between the primitive and human-affected sites. Metagenomic analysis demonstrated that Demequina, Streptomyces, Rubrobacter and Dechloromonas were the predominant denitrifiers. Ardenticatena and Dechloromonas species were the most important contributors to dissimilatory nitrate reduction. Furthermore, anthropogenic pollution significantly increased their abundance, and resulting in a decrease in NO3-, NO2--N and an increase in NH4+-N contents. Additionally, the SOX metabolism of Dechloromonas and Sulfuritalea may involve in the sulfur-dependent autotrophic denitrification process by coupling the conversion of thiosulfate to sulfate with the reduction of NO3--N to N2. From pristine to anthropogenic pollution sediments, the major nitrifying bacteria harboring Hao transitioned from Nitrospira to Nitrosomonas. This study sheds light on the consequences of anthropogenic activities on nitrogen metabolism in river sediments, allowing for better management of nitrogen pollution and eutrophication in river.
Collapse
Affiliation(s)
- Yongjing Guan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Leilei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
15
|
Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiontic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea vent environments. Protein Expr Purif 2022; 200:106157. [PMID: 35987324 DOI: 10.1016/j.pep.2022.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Candidatus Vesicomyosocius okutanii is a currently uncultured endosymbiotic bacterium of the clam Pheragena okutanii, which lives in deep-sea vent environments. The genome of Ca. V. okutanii encodes a sulfur-oxidizing (Sox) enzyme complex, presumably generating biological energy for the host from inorganic sulfur compounds. Here, Ca. V. okutanii SoxX (VoSoxX), a mono-heme cytochrome c component of the Sox complex, was shown to be phylogenetically related to its homologous counterpart (HcSoxX) from a free-living deep-sea vent bacterium, Hydrogenovibrio crunogenus. Both proteins were heterologously expressed in Escherichia coli cells with co-expressing cytochrome c maturation genes. Biochemical analysis using the recombinant proteins showed that VoSoxX had a significantly lower thermal stability than HcSoxX, possibly due to structural differences. For example, the Asn-60 residue in VoSoxX may be hydrophobically disadvantageous compared with the spatially corresponding Val-73 residue in HcSoxX. This study represents the first successful case of heterologous expression of genes from Ca. V. okutanii, suggesting that the endosymbiotic VoSoxX protein does not require stabilization, unlike the free-living HcSoxX protein.
Collapse
|
16
|
Ferreira P, Fernandes P, Ramos M. The archaeal non-heme iron-containing Sulfur Oxygenase Reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Modularity of membrane-bound charge-translocating protein complexes. Biochem Soc Trans 2021; 49:2669-2685. [PMID: 34854900 DOI: 10.1042/bst20210462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
Energy transduction is the conversion of one form of energy into another; this makes life possible as we know it. Organisms have developed different systems for acquiring energy and storing it in useable forms: the so-called energy currencies. A universal energy currency is the transmembrane difference of electrochemical potential (Δμ~). This results from the translocation of charges across a membrane, powered by exergonic reactions. Different reactions may be coupled to charge-translocation and, in the majority of cases, these reactions are catalyzed by modular enzymes that always include a transmembrane subunit. The modular arrangement of these enzymes allows for different catalytic and charge-translocating modules to be combined. Thus, a transmembrane charge-translocating module can be associated with different catalytic subunits to form an energy-transducing complex. Likewise, the same catalytic subunit may be combined with a different membrane charge-translocating module. In this work, we analyze the modular arrangement of energy-transducing membrane complexes and discuss their different combinations, focusing on the charge-translocating module.
Collapse
|
18
|
Tong T, Chen X, Hu G, Wang XL, Liu GQ, Liu L. Engineering microbial metabolic energy homeostasis for improved bioproduction. Biotechnol Adv 2021; 53:107841. [PMID: 34610353 DOI: 10.1016/j.biotechadv.2021.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Metabolic energy (ME) homeostasis is essential for the survival and proper functioning of microbial cell factories. However, it is often disrupted during bioproduction because of inefficient ME supply and excessive ME consumption. In this review, we propose strategies, including reinforcement of the capacity of ME-harvesting systems in autotrophic microorganisms; enhancement of the efficiency of ME-supplying pathways in heterotrophic microorganisms; and reduction of unessential ME consumption by microbial cells, to address these issues. This review highlights the potential of biotechnology in the engineering of microbial ME homeostasis and provides guidance for the higher efficient bioproduction of microbial cell factories.
Collapse
Affiliation(s)
- Tian Tong
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Calisto F, Pereira MM. The Ion-Translocating NrfD-Like Subunit of Energy-Transducing Membrane Complexes. Front Chem 2021; 9:663706. [PMID: 33928068 PMCID: PMC8076601 DOI: 10.3389/fchem.2021.663706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Several energy-transducing microbial enzymes have their peripheral subunits connected to the membrane through an integral membrane protein, that interacts with quinones but does not have redox cofactors, the so-called NrfD-like subunit. The periplasmic nitrite reductase (NrfABCD) was the first complex recognized to have a membrane subunit with these characteristics and consequently provided the family's name: NrfD. Sequence analyses indicate that NrfD homologs are present in many diverse enzymes, such as polysulfide reductase (PsrABC), respiratory alternative complex III (ACIII), dimethyl sulfoxide (DMSO) reductase (DmsABC), tetrathionate reductase (TtrABC), sulfur reductase complex (SreABC), sulfite dehydrogenase (SoeABC), quinone reductase complex (QrcABCD), nine-heme cytochrome complex (NhcABCD), group-2 [NiFe] hydrogenase (Hyd-2), dissimilatory sulfite-reductase complex (DsrMKJOP), arsenate reductase (ArrC) and multiheme cytochrome c sulfite reductase (MccACD). The molecular structure of ACIII subunit C (ActC) and Psr subunit C (PsrC), NrfD-like subunits, revealed the existence of ion-conducting pathways. We performed thorough primary structural analyses and built structural models of the NrfD-like subunits. We observed that all these subunits are constituted by two structural repeats composed of four-helix bundles, possibly harboring ion-conducting pathways and containing a quinone/quinol binding site. NrfD-like subunits may be the ion-pumping module of several enzymes. Our data impact on the discussion of functional implications of the NrfD-like subunit-containing complexes, namely in their ability to transduce energy.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universdade de Lisboa, Lisboa, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universdade de Lisboa, Lisboa, Portugal
| |
Collapse
|
20
|
Molecular and Physiological Adaptations to Low Temperature in Thioalkalivibrio Strains Isolated from Soda Lakes with Different Temperature Regimes. mSystems 2021; 6:6/2/e01202-20. [PMID: 33906913 PMCID: PMC8092127 DOI: 10.1128/msystems.01202-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Thioalkalivibrio comprises sulfur-oxidizing bacteria thriving in soda lakes at high pH and salinity. Depending on the geographical location and the season, these lakes can strongly vary in temperature. To obtain a comprehensive understanding of the molecular and physiological adaptations to low temperature, we compared the responses of two Thioalkalivibrio strains to low (10°C) and high (30°C) temperatures. For this, the strains were grown under controlled conditions in chemostats and analyzed for their gene expression (RNA sequencing [RNA-Seq]), membrane lipid composition, and glycine betaine content. The strain Thioalkalivibrio versutus AL2T originated from a soda lake in southeast Siberia that is exposed to strong seasonal temperature differences, including freezing winters, whereas Thioalkalivibrio nitratis ALJ2 was isolated from an East African Rift Valley soda lake with a constant warm temperature the year round. The strain AL2T grew faster than ALJ2 at 10°C, likely due to its 3-fold-higher concentration of the osmolyte glycine betaine. Moreover, significant changes in the membrane lipid composition were observed for both strains, leading to an increase in their unsaturated fatty acid content via the Fab pathway to avoid membrane stiffness. Genes for the transcriptional and translational machinery, as well as for counteracting cold-induced hampering of nucleotides and proteins, were upregulated. Oxidative stress was reduced by induction of vitamin B12 biosynthesis genes, and growth at 10°C provoked downregulation of genes involved in the second half of the sulfur oxidation pathway. Genes for intracellular signal transduction were differentially expressed, and interestingly, AL2T upregulated flagellin expression, whereas ALJ2 downregulated it. IMPORTANCE In addition to their haloalkaline conditions, soda lakes can also harbor a variety of other extreme parameters, to which their microbial communities need to adapt. However, for most of these supplementary stressors, it is not well known yet how haloalkaliphiles adapt and resist. Here, we studied the strategy for adaptation to low temperature in the haloalkaliphilic genus Thioalkalivibrio by using two strains isolated from soda lakes with different temperature regimes. Even though the strains showed a strong difference in growth rate at 10°C, they exhibited similar molecular and physiological adaptation responses. We hypothesize that they take advantage of resistance mechanisms against other stressors commonly found in soda lakes, which are therefore maintained in the bacteria living in the absence of low-temperature pressure. A major difference, however, was detected for their glycine betaine content at 10°C, highlighting the power of this osmolyte to also act as a key compound in cryoprotection. Author Video: An author video summary of this article is available.
Collapse
|
21
|
Lian FB, Chen XY, Jiang S, Li GY, Du ZJ. Marinobacter orientalis sp. nov., a thiosulfate-oxidizing bacterium isolated from a marine solar saltern. Antonie Van Leeuwenhoek 2021; 114:765-775. [PMID: 33751321 DOI: 10.1007/s10482-021-01556-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/06/2021] [Indexed: 11/25/2022]
Abstract
A facultatively anaerobic bacterium, strain W62T, was isolated from the marine solar saltern in Weihai, China. Cells of the novel strain were Gram-stain negative, non-flagellated, non-gliding, rod-shaped and around 0.3-0.5 × 2.5-3.9 µm in size. Optimum growth occurred at 33-37 °C, with 3-5% (w/v) NaCl and at pH 7.0-7.5. On the basis of phylogenetic analysis of the 16S rRNA gene sequence, strain W62T had close relationship with Marinobacter vulgaris F01T (98.6%), Marinobacter confluentis KCTC 42705T (98.4%) and Marinobacter halotolerans NBRC 110910T (97.7%). Genome sequencing revealed a genome size of 4,050,555 bp, a G+C content of 57.3% and a complete sox system related to thiosulfate oxidization. Strain W62T had ubiquinone-9 as the sole respiratory quinone and possessed Summed Features 3 (C16:1 ω7c/C16:1 ω6c), C16:0 and C18:1 ω9c as the major fatty acids. The major polar lipids of strain W62T were identified as aminophospholipid, phosphatidylglycerol and phosphatidylethanolamine. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain W62T should represent a novel specie of the genus Marinobacter, for which the name Marinobacter orientalis sp. nov. is proposed. The type strain is W62T (= MCCC 1H00317T = KCTC 62593T).
Collapse
Affiliation(s)
- Feng-Bai Lian
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Xu-Yang Chen
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Shan Jiang
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Guang-Yu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361000, Fujian, People's Republic of China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
22
|
Lian FB, Li YQ, Zhang J, Jiang S, Du ZJ. Sulfitobacter maritimus sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2021; 71. [PMID: 33502295 DOI: 10.1099/ijsem.0.004659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A facultatively anaerobic bacterium, strain S0837T, was isolated from the marine sediment of Jingzi Wharf, Weihai, China. Cells of the novel strain were Gram-stain-negative, non-flagellated, non-gliding, non-pigmented and rod-shaped. Cells were around 0.3-0.5×1.0-1.4 µm in size and often appeared singly. Optimum growth occurred at 33 °C, with 2 % (w/v) NaCl and at pH 7.0-7.5. On the basis of the results of 16S rRNA gene sequences, stain S0837T had the closest relative with Sulfitobacter delicatus KCTC 32183T (98.0 %). Genome sequencing revealed a genome size of 3 785 026 bp, a G+C content of 59.8 mol% and several genes related with sulphur oxidation. The strain shared 98.0 % 16S rRNA sequence similarities with closely related type species and shared ANI value below 95-96 %, dDDH value of showed relatedness of 27.4, 25.2 and 25.2 % respectively with the closely related type species. Strain S0837T had ubiquinone-10 as the sole respiratory quinone, and possessed summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c) as the major fatty acid. The major polar lipids were phosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain S0837T should represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter maritimus sp. nov. is proposed. The type strain is S0837T (=MCCC 1K04635T=KCTC 72860T).
Collapse
Affiliation(s)
- Feng-Bai Lian
- Marine College, Shandong University, Weihai 264209, Shandong, PR China
| | - Yong-Qin Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, PR China
| | - Jing Zhang
- Marine College, Shandong University, Weihai 264209, Shandong, PR China
| | - Shan Jiang
- Marine College, Shandong University, Weihai 264209, Shandong, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, Shandong, PR China
| |
Collapse
|
23
|
Calisto F, Sousa FM, Sena FV, Refojo PN, Pereira MM. Mechanisms of Energy Transduction by Charge Translocating Membrane Proteins. Chem Rev 2021; 121:1804-1844. [PMID: 33398986 DOI: 10.1021/acs.chemrev.0c00830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Life relies on the constant exchange of different forms of energy, i.e., on energy transduction. Therefore, organisms have evolved in a way to be able to harvest the energy made available by external sources (such as light or chemical compounds) and convert these into biological useable energy forms, such as the transmembrane difference of electrochemical potential (Δμ̃). Membrane proteins contribute to the establishment of Δμ̃ by coupling exergonic catalytic reactions to the translocation of charges (electrons/ions) across the membrane. Irrespectively of the energy source and consequent type of reaction, all charge-translocating proteins follow two molecular coupling mechanisms: direct- or indirect-coupling, depending on whether the translocated charge is involved in the driving reaction. In this review, we explore these two coupling mechanisms by thoroughly examining the different types of charge-translocating membrane proteins. For each protein, we analyze the respective reaction thermodynamics, electron transfer/catalytic processes, charge-translocating pathways, and ion/substrate stoichiometries.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, University of Lisboa, Faculty of Sciences, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
24
|
Gretarsdottir JM, Jonsdottir S, Lewis W, Hambley TW, Suman SG. Water-Soluble α-Amino Acid Complexes of Molybdenum as Potential Antidotes for Cyanide Poisoning: Synthesis and Catalytic Studies of Threonine, Methionine, Serine, and Leucine Complexes. Inorg Chem 2020; 59:18190-18204. [PMID: 33249838 DOI: 10.1021/acs.inorgchem.0c02672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Water-soluble complexes are desirable for the aqueous detoxification of cyanide. Molybdenum complexes with α-amino acid and disulfide ligands with the formula K[(L)Mo2O2(μ-S)2(S2)] (L = leu (1), met (2), thr (3), and ser (4)) were synthesized in a reaction of [(DMF)3MoO(μ-S)2(S2)] with deprotonated α-amino acids; leu, met, thr, and ser are the carboxylate anions of l-leucine, l-methionine, l-threonine, and l-serine, respectively. Potassium salts of α-amino acids (leu (1a), met (2a), thr (3a), and ser (4a)) were prepared as precursors for complexes 1-4, respectively, by employing a nonaqueous synthesis route. The ligand exchange reaction of [Mo2O2(μ-S)2(DMF)6](I)2 with deprotonated α-amino acids afforded bis-α-amino acid complexes, [(L)2Mo2O2(μ-S)2] (6-8). A tris-α-amino acid complex, [(leu)2Mo2O2(μ-S)2(μ-leu + H)] (5; leu + H is the carboxylate anion of l-leucine with the amine protonated), formed in the reaction with leucine. 5 crystallized from methanol with a third weakly bonded leucine as a bridging bidentate carboxylate. An adduct of 8 with SCN- coordinated, 9, crystallized and was structurally characterized. Complexes 1-4 are air stable and highly water-soluble chiral molecules. Cytotoxicity studies in the A549 cell line gave IC50 values that range from 80 to 400 μM. Cyclic voltammetry traces of 1-8 show solvent-dependent irreversible electrochemical behavior. Complexes 1-4 demonstrated the ability to catalyze the reaction of thiosulfate and cyanide in vitro to exhaustively transform cyanide to thiocyanate in less than 1 h.
Collapse
Affiliation(s)
| | | | - William Lewis
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Trevor W Hambley
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sigridur G Suman
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
25
|
Fukuto JM, Lin J, Khodade VS, Toscano JP. Predicting the Possible Physiological/Biological Utility of the Hydropersulfide Functional Group Based on Its Chemistry: Similarities Between Hydropersulfides and Selenols. Antioxid Redox Signal 2020; 33:1295-1307. [PMID: 32103674 DOI: 10.1089/ars.2020.8079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Hydropersulfides (RSSH) and related polysulfide species (RSnR, n > 2, R = alkyl, H) are highly biologically prevalent with likely important physiological functions. Due to their prevalence, many labs have begun to investigate their possible roles, especially with regards to their protective, redox, and signaling properties. Recent Advances: A significant amount of work has been performed while delineating the chemical reactivity/chemical properties of hydropersulfides, and it is clear that their overall chemistry is distinct from all other biologically relevant sulfur species (e.g., thiols, disulfides, sulfenic acids, etc.). Critical Issues: One way to predict and ultimately understand the biological functions of hydropersulfides is to focus on their unique chemistry, which should provide the rationale for why this unique functionality is present. Interestingly, some of the chemical properties of RSSH are strikingly similar to those of selenols (RSeH). Therefore, it may be important to consider the known functions of selenoproteins when speculating about the possible functions of RSSH species. Future Directions: Currently, many of the inherent chemical differences between hydropersulfides and other biological sulfur species have been established. It remains to be determined, however, whether and how these differences are utilized to accomplish specific biochemical/physiological goals. A significant aspect of elucidating the biological utility of hydropersulfides will be to determine the mechanisms of regulation of their formation and/or biosynthesis, that is, based on whether it can be determined under what cellular conditions hydropersulfides are made, more meaningful speculation regarding their functions/roles can be developed.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry and Sonoma State University, Rohnert Park, California, USA.,Department of Chemistry, John Hopkins University, Baltimore, Maryland, USA
| | - Joseph Lin
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | - Vinayak S Khodade
- Department of Chemistry, John Hopkins University, Baltimore, Maryland, USA
| | - John P Toscano
- Department of Chemistry, John Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Jungen S, Chen P. Synthesis, Isolation, and Characterization of a Phenylsulfane-Selenolate Compound. Inorg Chem 2020; 59:13315-13319. [PMID: 32878442 DOI: 10.1021/acs.inorgchem.0c01685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first example of a stable phenylsulfaneselenolate species was synthesized in a one-step process and isolated as the tetraphenylphosphonium salt [PPh4][PhSSe] as indicated by X-ray crystal structure analysis. Electrospray ionization mass spectrometry and NMR studies in solution showed the compound to enter a complex system of equilibria when dissolved. Computations suggested a high barrier for rotation around the C-S bond, indicating a π-system conjugated over the whole molecule. In general, the compound is closely related to the recently isolated [PPh4][PhS2] perthiolate salt.
Collapse
Affiliation(s)
- Stefan Jungen
- Laboratorium für organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Peter Chen
- Laboratorium für organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Jungen S, Paenurk E, Chen P. Synthesis, Spectroscopic, and Structural Characterization of Organyl Disulfanides and a Tetrasulfanide. Inorg Chem 2020; 59:12322-12336. [PMID: 32790993 DOI: 10.1021/acs.inorgchem.0c01426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various room-temperature-stable monoorganylpolysulfanides of the form [X][RSn] (X = [PPh4]+, [PNP]+, [NEt4]+; R = Ph, t-Bu, n ≥ 2) were synthesized in a simple and versatile one-step process starting from sodium thiolates and elemental sulfur. The compounds were characterized by X-ray crystal structure analysis, NMR spectroscopy, microelemental analysis, and electrospray mass ionization spectrometry including collision-induced dissociation experiments. While these salts are well-defined species as crystals, they undergo complex equilibria in solution. In one case, compounds ranging from n = 1-8 have been observed in solution. Structural features, dynamics in solution, as well as thermochromic properties of one of the compounds, [PPh4][PhS2], are investigated in detail by temperature- and pressure-dependent X-ray crystal structure analysis. The experimental data are complemented by periodic boundary density functional theory calculations on the crystal structures, as well as energy decomposition analyses.
Collapse
Affiliation(s)
- Stefan Jungen
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2 8093 Zürich, Switzerland
| | - Eno Paenurk
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2 8093 Zürich, Switzerland
| | - Peter Chen
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2 8093 Zürich, Switzerland
| |
Collapse
|
28
|
Xue CX, Liu J, Lea-Smith DJ, Rowley G, Lin H, Zheng Y, Zhu XY, Liang J, Ahmad W, Todd JD, Zhang XH. Insights into the Vertical Stratification of Microbial Ecological Roles across the Deepest Seawater Column on Earth. Microorganisms 2020; 8:microorganisms8091309. [PMID: 32867361 PMCID: PMC7565560 DOI: 10.3390/microorganisms8091309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Earth's oceans are a huge body of water with physicochemical properties and microbial community profiles that change with depth, which in turn influences their biogeochemical cycling potential. The differences between microbial communities and their functional potential in surface to hadopelagic water samples are only beginning to be explored. Here, we used metagenomics to investigate the microbial communities and their potential to drive biogeochemical cycling in seven different water layers down the vertical profile of the Challenger Deep (0-10,500 m) in the Mariana Trench, the deepest natural point in the Earth's oceans. We recovered 726 metagenome-assembled genomes (MAGs) affiliated to 27 phyla. Overall, biodiversity increased in line with increased depth. In addition, the genome size of MAGs at ≥4000 m layers was slightly larger compared to those at 0-2000 m. As expected, surface waters were the main source of primary production, predominantly from Cyanobacteria. Intriguingly, microbes conducting an unusual form of nitrogen metabolism were identified in the deepest waters (>10,000 m), as demonstrated by an enrichment of genes encoding proteins involved in dissimilatory nitrate to ammonia conversion (DNRA), nitrogen fixation and urea transport. These likely facilitate the survival of ammonia-oxidizing archaea α lineage, which are typically present in environments with a high ammonia concentration. In addition, the microbial potential for oxidative phosphorylation and the glyoxylate shunt was enhanced in >10,000 m waters. This study provides novel insights into how microbial communities and their genetic potential for biogeochemical cycling differs through the Challenger deep water column, and into the unique adaptive lifestyle of microbes in the Earth's deepest seawater.
Collapse
Affiliation(s)
- Chun-Xu Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (C.-X.X.); (J.L.); (Y.Z.); (X.-Y.Z.); (J.L.); (W.A.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (C.-X.X.); (J.L.); (Y.Z.); (X.-Y.Z.); (J.L.); (W.A.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - David J. Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (D.J.L.-S.); (G.R.); (J.D.T.)
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (D.J.L.-S.); (G.R.); (J.D.T.)
| | - Heyu Lin
- School of Earth Sciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Yanfen Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (C.-X.X.); (J.L.); (Y.Z.); (X.-Y.Z.); (J.L.); (W.A.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiao-Yu Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (C.-X.X.); (J.L.); (Y.Z.); (X.-Y.Z.); (J.L.); (W.A.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jinchang Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (C.-X.X.); (J.L.); (Y.Z.); (X.-Y.Z.); (J.L.); (W.A.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Waqar Ahmad
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (C.-X.X.); (J.L.); (Y.Z.); (X.-Y.Z.); (J.L.); (W.A.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; (D.J.L.-S.); (G.R.); (J.D.T.)
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (C.-X.X.); (J.L.); (Y.Z.); (X.-Y.Z.); (J.L.); (W.A.)
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
- Correspondence:
| |
Collapse
|
29
|
Wu Y, Li YH, Shang JY, Wang ET, Chen L, Huo B, Sui XH, Tian CF, Chen WF, Chen WX. Multiple Genes of Symbiotic Plasmid and Chromosome in Type II Peanut Bradyrhizobium Strains Corresponding to the Incompatible Symbiosis With Vigna radiata. Front Microbiol 2020; 11:1175. [PMID: 32655513 PMCID: PMC7324677 DOI: 10.3389/fmicb.2020.01175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/07/2020] [Indexed: 11/19/2022] Open
Abstract
Rhizobia are capable of establishing compatible symbiosis with their hosts of origin and plants in the cross-nodulation group that the hosts of origin belonged to. However, different from the normal peanut Bradyrhizobium (Type I strains), the Type II strains showed incompatible symbiosis with Vigna radiata. Here, we employed transposon mutagenesis to identify the genetic loci related to this incompatibility in Type II strain CCBAU 53363. As results, seven Tn5 transposon insertion mutants resulted in an increase in nodule number on V. radiata. By sequencing analysis of the sequence flanking Tn5 insertion, six mutants were located in the chromosome of CCBAU 53363, respectively encoding acyltransferase (L265) and hypothetical protein (L615)—unique to CCBAU 53363, two hypothetical proteins (L4 and L82), tripartite tricarboxylate transporter substrate binding protein (L373), and sulfur oxidation c-type cytochrome SoxA (L646), while one mutant was in symbiotic plasmid encoding alanine dehydrogenase (L147). Significant differences were observed in L147 gene sequences and the deduced protein 3D structures between the Type II (in symbiotic plasmid) and Type I strains (in chromosome). Conversely, strains in both types shared high homologies in the chromosome genes L373 and L646 and in their protein 3D structures. These data indicated that the symbiotic plasmid gene in Type II strains might have directly affected their symbiosis incompatibility, whereas the chromosome genes might be indirectly involved in this process by regulating the plasmid symbiosis genes. The seven genes may initially explain the complication associated with symbiotic incompatibility.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yong Hua Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiao Ying Shang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - La Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bin Huo
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Feng Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Mandal S, Rameez MJ, Chatterjee S, Sarkar J, Pyne P, Bhattacharya S, Shaw R, Ghosh W. Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium Pusillimonas ginsengisoli SBSA. MICROBIOLOGY-SGM 2020; 166:386-397. [PMID: 31999239 DOI: 10.1099/mic.0.000890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemolithotrophic sulfur oxidation represents a significant part of the biogeochemical cycling of this element. Due to its long evolutionary history, this ancient metabolism is well known for its extensive mechanistic and phylogenetic diversification across a diverse taxonomic spectrum. Here we carried out whole-genome sequencing and analysis of a new betaproteobacterial isolate, Pusillimonas ginsengisoli SBSA, which is found to oxidize thiosulfate via the formation of tetrathionate as an intermediate. The 4.7 Mb SBSA genome was found to encompass a soxCDYZAXOB operon, plus single thiosulfate dehydrogenase (tsdA) and sulfite : acceptor oxidoreductase (sorAB) genes. Recombination-based knockout of tsdA revealed that the entire thiosulfate is first converted to tetrathionate by the activity of thiosulfate dehydrogenase (TsdA) and the Sox pathway is not functional in this bacterium despite the presence of all necessary sox genes. The ∆soxYZ and ∆soxXA knockout mutants exhibited a wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB, ∆soxCD and soxO::KanR mutants only oxidized thiosulfate up to tetrathionate intermediate and had complete impairment in tetrathionate oxidation. The substrate-dependent O2 consumption rate of whole cells and the sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. The present findings collectively indicate that the potential glutathione : tetrathionate coupling in P. ginsengisoli involves a novel enzymatic component, which is different from the dual-functional thiol dehydrotransferase (ThdT), while subsequent oxidation of the sulfur intermediates produced (e.g. glutathione : sulfodisulfane molecules) may proceed via the iterative action of soxBCD .
Collapse
Affiliation(s)
- Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Prosenjit Pyne
- Present address: National Institute of Cholera and Enteric Diseases (NICED), P- C.I.T. Scheme XM, Beleghata, 33, CIT Rd, Beleghata, Kolkata - 700054, India.,Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | | | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| |
Collapse
|
31
|
Fukuto JM, Vega VS, Works C, Lin J. The chemical biology of hydrogen sulfide and related hydropersulfides: interactions with biologically relevant metals and metalloproteins. Curr Opin Chem Biol 2020; 55:52-58. [PMID: 31940509 DOI: 10.1016/j.cbpa.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide and related/derived persulfides (RSnH, RSSnR, n > 1) have been the subject of recent research interest because of their reported physiological signaling roles. In spite of their described actions, the chemical/biochemical mechanisms of activity have not been established. From a chemical perspective, it is likely that metals and metalloproteins are possible biological targets for the actions of these species. Thus, the chemical biology of hydrogen sulfide and persulfides with metals and metalloproteins will be discussed as a prelude to future speculation regarding their physiological function and utility.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA.
| | - Valeria Suarez Vega
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Carmen Works
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, USA
| | - Joseph Lin
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA
| |
Collapse
|
32
|
Bacterial Intracellular Sulphur Globules. BACTERIAL ORGANELLES AND ORGANELLE-LIKE INCLUSIONS 2020. [DOI: 10.1007/978-3-030-60173-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Rameez MJ, Pyne P, Mandal S, Chatterjee S, Alam M, Bhattacharya S, Mondal N, Sarkar J, Ghosh W. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST. Microbiol Res 2019; 230:126345. [PMID: 31585234 DOI: 10.1016/j.micres.2019.126345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/08/2019] [Accepted: 09/21/2019] [Indexed: 02/02/2023]
Abstract
Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy involves direct oxidation of thiosulfate (S2O32-) to sulfate (SO42-) without any free intermediate. This pathway mediated by SoxXAYZBCD is apparently the exclusive mechanism of thiosulfate oxidation in facultatively chemolithotrophic alphaproteobacteria. Here we explore the molecular mechanisms of sulfur oxidation in the thiosulfate- and tetrathionate(S4O62-)-oxidizing alphaproteobacterium Paracoccus thiocyanatus SST, and compare them with the prototypical Sox process of Paracoccus pantotrophus. Our results reveal a unique case where an alphaproteobacterium has Sox as its secondary pathway of thiosulfate oxidation converting ∼10% of the thiosulfate supplied, whilst ∼90% of the substrate is oxidized via a pathway that produces tetrathionate as an intermediate. Sulfur oxidation kinetics of a deletion mutant showed that thiosulfate-to-tetrathionate conversion, in SST, is catalyzed by a thiosulfate dehydrogenase (TsdA) homolog that has far-higher substrate-affinity than the Sox system of this bacterium, which in turn is also less efficient than the P. pantotrophus Sox. Deletion of soxB abolished sulfate-formation from thiosulfate/tetrathionate, while thiosulfate-to-tetrathionate conversion remained unperturbed. Physiological studies revealed the involvement of glutathione in SST tetrathionate oxidation. However, zero impact of the insertional mutation of a thiol dehydrotransferase (thdT) homolog, together with the absence of sulfite as an intermediate, indicated that SST tetrathionate oxidation is mechanistically novel, and distinct from its betaproteobacterial counterpart mediated by glutathione, ThdT, SoxBCD and sulfite:acceptor oxidoreductase. The present findings highlight extensive functional diversification of sulfur-oxidizing enzymes across phylogenetically close, as well as distant, bacteria.
Collapse
Affiliation(s)
- Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Prosenjit Pyne
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Masrure Alam
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | | | - Nibendu Mondal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| |
Collapse
|
34
|
Lamiable A, Bitard-Feildel T, Rebehmed J, Quintus F, Schoentgen F, Mornon JP, Callebaut I. A topology-based investigation of protein interaction sites using Hydrophobic Cluster Analysis. Biochimie 2019; 167:68-80. [PMID: 31525399 DOI: 10.1016/j.biochi.2019.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
Hydrophobic clusters, as defined by Hydrophobic Cluster Analysis (HCA), are conditioned binary patterns, made of hydrophobic and non-hydrophobic positions, whose limits fit well those of regular secondary structures. They were proved to be useful for predicting secondary structures in proteins from the only information of a single amino acid sequence and have permitted to assess, in a comprehensive way, the leading role of binary patterns in secondary structure preference towards a particular state. Here, we considered the available experimental 3D structures of protein globular domains to enlarge our previously reported hydrophobic cluster database (HCDB), almost doubling the number of hydrophobic cluster species (each species being defined by a unique binary pattern) that represent the most frequent structural bricks encountered within protein globular domains. We then used this updated HCDB to show that the hydrophobic amino acids of discordant clusters, i.e. those less abundant clusters for which the observed secondary structure is in disagreement with the binary pattern preference of the species to which they belong, are more exposed to solvent and are more involved in protein interfaces than the hydrophobic amino acids of concordant clusters. As amino acid composition differs between concordant/discordant clusters, considering binary patterns may be used to gain novel insights into key features of protein globular domain cores and surfaces. It can also provide useful information on possible conformational plasticity, including disorder to order transitions.
Collapse
Affiliation(s)
- Alexis Lamiable
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Tristan Bitard-Feildel
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Joseph Rebehmed
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France; Lebanese American University, Department of Computer Science and Mathematics, Beirut, Lebanon
| | - Flavien Quintus
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Françoise Schoentgen
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Jean-Paul Mornon
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005, Paris, France.
| |
Collapse
|
35
|
Jenner LP, Kurth JM, van Helmont S, Sokol KP, Reisner E, Dahl C, Bradley JM, Butt JN, Cheesman MR. Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes. J Biol Chem 2019; 294:18002-18014. [PMID: 31467084 PMCID: PMC6879331 DOI: 10.1074/jbc.ra119.010084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Thiosulfate dehydrogenases (TsdAs) are bidirectional bacterial di-heme enzymes that catalyze the interconversion of tetrathionate and thiosulfate at measurable rates in both directions. In contrast to our knowledge of TsdA activities, information on the redox properties in the absence of substrates is rather scant. To address this deficit, we combined magnetic CD (MCD) spectroscopy and protein film electrochemistry (PFE) in a study to resolve heme ligation and redox chemistry in two representative TsdAs. We examined the TsdAs from Campylobacter jejuni, a microaerobic human pathogen, and from the purple sulfur bacterium Allochromatium vinosum. In these organisms, the enzyme functions as a tetrathionate reductase and a thiosulfate oxidase, respectively. The active site Heme 1 in both enzymes has His/Cys ligation in the ferric and ferrous states and the midpoint potentials (Em) of the corresponding redox transformations are similar, −185 mV versus standard hydrogen electrode (SHE). However, fundamental differences are observed in the properties of the second, electron transferring, Heme 2. In C. jejuni, TsdA Heme 2 has His/Met ligation and an Em of +172 mV. In A. vinosum TsdA, Heme 2 reduction triggers a switch from His/Lys ligation (Em, −129 mV) to His/Met (Em, +266 mV), but the rates of interconversion are such that His/Lys ligation would be retained during turnover. In summary, our findings have unambiguously assigned Em values to defined axial ligand sets in TsdAs, specified the rates of Heme 2 ligand exchange in the A. vinosum enzyme, and provided information relevant to describing their catalytic mechanism(s).
Collapse
Affiliation(s)
- Leon P Jenner
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julia M Kurth
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Sebastian van Helmont
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Katarzyna P Sokol
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich Wilhelms Universität Bonn, D-53115 Bonn, Germany
| | - Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
36
|
Chen JH, Yu LJ, Boussac A, Wang-Otomo ZY, Kuang T, Shen JR. Properties and structure of a low-potential, penta-heme cytochrome c 552 from a thermophilic purple sulfur photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2019; 139:281-293. [PMID: 29691716 DOI: 10.1007/s11120-018-0507-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
The thermophilic purple sulfur bacterium Thermochromatium tepidum possesses four main water-soluble redox proteins involved in the electron transfer behavior. Crystal structures have been reported for three of them: a high potential iron-sulfur protein, cytochrome c', and one of two low-potential cytochrome c552 (which is a flavocytochrome c) have been determined. In this study, we purified another low-potential cytochrome c552 (LPC), determined its N-terminal amino acid sequence and the whole gene sequence, characterized it with absorption and electron paramagnetic spectroscopy, and solved its high-resolution crystal structure. This novel cytochrome was found to contain five c-type hemes. The overall fold of LPC consists of two distinct domains, one is the five heme-containing domain and the other one is an Ig-like domain. This provides a representative example for the structures of multiheme cytochromes containing an odd number of hemes, although the structures of multiheme cytochromes with an even number of hemes are frequently seen in the PDB database. Comparison of the sequence and structure of LPC with other proteins in the databases revealed several characteristic features which may be important for its functioning. Based on the results obtained, we discuss the possible intracellular function of this LPC in Tch. tepidum.
Collapse
Affiliation(s)
- Jing-Hua Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- University of Chinese Academy of Sciences, Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Long-Jiang Yu
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Alain Boussac
- I2BC, SB2SM, CNRS UMR 9198, CEA Saclay, 91191, Gif-sur-Yvette, France
| | | | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20, Nanxincun, Xiangshan, Beijing, 100093, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
37
|
Watanabe T, Kojima H, Umezawa K, Hori C, Takasuka TE, Kato Y, Fukui M. Genomes of Neutrophilic Sulfur-Oxidizing Chemolithoautotrophs Representing 9 Proteobacterial Species From 8 Genera. Front Microbiol 2019; 10:316. [PMID: 30858836 PMCID: PMC6397845 DOI: 10.3389/fmicb.2019.00316] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Even in the current era of metagenomics, the interpretation of nucleotide sequence data is primarily dependent on knowledge obtained from a limited number of microbes isolated in pure culture. Thus, it is of fundamental importance to expand the variety of strains available in pure culture, to make reliable connections between physiological characteristics and genomic information. In this study, two sulfur oxidizers that potentially represent two novel species were isolated and characterized. They were subjected to whole-genome sequencing together with 7 neutrophilic and chemolithoautotrophic sulfur-oxidizing bacteria. The genes for sulfur oxidation in the obtained genomes were identified and compared with those of isolated sulfur oxidizers in the classes Betaproteobacteria and Gammaproteobacteria. Although the combinations of these genes in the respective genomes are diverse, typical combinations corresponding to three types of core sulfur oxidation pathways were identified. Each pathway involves one of three specific sets of proteins, SoxCD, DsrABEFHCMKJOP, and HdrCBAHypHdrCB. All three core pathways contain the SoxXYZAB proteins, and a cytoplasmic sulfite oxidase encoded by soeABC is a conserved component in the core pathways lacking SoxCD. Phylogenetically close organisms share same core sulfur oxidation pathway, but a notable exception was observed in the family ‘Sulfuricellaceae’. In this family, some strains have either core pathway involving DsrABEFHCMKJOP or HdrCBAHypHdrCB, while others have both pathways. A proteomics analysis showed that proteins constituting the core pathways were produced at high levels. While hypothesized function of HdrCBAHypHdrCB is similar to that of Dsr system, both sets of proteins were detected with high relative abundances in the proteome of a strain possessing genes for these proteins. In addition to the genes for sulfur oxidation, those for arsenic metabolism were searched for in the sequenced genomes. As a result, two strains belonging to the families Thiobacillaceae and Sterolibacteriaceae were observed to harbor genes encoding ArxAB, a type of arsenite oxidase that has been identified in a limited number of bacteria. These findings were made with the newly obtained genomes, including those from 6 genera from which no genome sequence of an isolated organism was previously available. These genomes will serve as valuable references to interpret nucleotide sequences.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yukako Kato
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
38
|
Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. Front Microbiol 2019; 9:3290. [PMID: 30687275 PMCID: PMC6335251 DOI: 10.3389/fmicb.2018.03290] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
39
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
40
|
Pyne P, Alam M, Rameez MJ, Mandal S, Sar A, Mondal N, Debnath U, Mathew B, Misra AK, Mandal AK, Ghosh W. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation. Mol Microbiol 2018; 109:169-191. [DOI: 10.1111/mmi.13972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Prosenjit Pyne
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Masrure Alam
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Moidu Jameela Rameez
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Subhrangshu Mandal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Abhijit Sar
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Nibendu Mondal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Utsab Debnath
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Anup Kumar Misra
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Wriddhiman Ghosh
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| |
Collapse
|
41
|
Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems. ADVANCES IN SOIL MICROBIOLOGY: RECENT TRENDS AND FUTURE PROSPECTS 2018. [DOI: 10.1007/978-981-10-6178-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
A novel soxO gene, encoding a glutathione disulfide reductase, is essential for tetrathionate oxidation in Advenella kashmirensis. Microbiol Res 2017; 205:1-7. [DOI: 10.1016/j.micres.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/19/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
|
43
|
Branco Dos Santos F, Olivier BG, Boele J, Smessaert V, De Rop P, Krumpochova P, Klau GW, Giera M, Dehottay P, Teusink B, Goffin P. Probing the Genome-Scale Metabolic Landscape of Bordetella pertussis, the Causative Agent of Whooping Cough. Appl Environ Microbiol 2017; 83:e01528-17. [PMID: 28842544 PMCID: PMC5648915 DOI: 10.1128/aem.01528-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022] Open
Abstract
Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis Despite widespread vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm, and experimental data to probe the full metabolic potential of this pathogen, using B. pertussis strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine, using inorganic sulfur sources, such as thiosulfate, and it can grow on organic acids, such as citrate or lactate, as sole carbon sources, providing in vivo demonstration that its tricarboxylic acid (TCA) cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three strains were shown to grow on substrate combinations requiring a functional TCA cycle, but only one strain could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with >2-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology and highlights the potential, but also the limitations, of models based solely on metabolic gene content.IMPORTANCE The metabolic capabilities of Bordetella pertussis, the causative agent of whooping cough, were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions and allowed us to rationally design novel growth media with >2-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears to be crucial for a comprehensive understanding of B. pertussis's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension.
Collapse
Affiliation(s)
- Filipe Branco Dos Santos
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Brett G Olivier
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
| | - Joost Boele
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | | | | | - Petra Krumpochova
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Gunnar W Klau
- Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
- Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany
| | - Martin Giera
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bas Teusink
- Systems Bioinformatics/AIMMS, Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Philippe Goffin
- GSK Vaccines, Rixensart, Belgium
- Laboratoire de Génétique et Physiologie Bactérienne, IBMM, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
44
|
Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:323-344. [PMID: 28419734 PMCID: PMC5573963 DOI: 10.1111/1758-2229.12538] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| | - Marc Mußmann
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| |
Collapse
|
45
|
Meinert C, Brandt U, Heine V, Beyert J, Schmidl S, Wübbeler JH, Voigt B, Riedel K, Steinbüchel A. Proteomic analysis of organic sulfur compound utilisation in Advenella mimigardefordensis strain DPN7T. PLoS One 2017; 12:e0174256. [PMID: 28358882 PMCID: PMC5373536 DOI: 10.1371/journal.pone.0174256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/06/2017] [Indexed: 01/07/2023] Open
Abstract
2-Mercaptosuccinate (MS) and 3,3´-ditiodipropionate (DTDP) were discussed as precursor substance for production of polythioesters (PTE). Therefore, degradation of MS and DTDP was investigated in Advenella mimigardefordensis strain DPN7T, applying differential proteomic analysis, gene deletion and enzyme assays. Protein extracts of cells cultivated with MS, DTDP or 3-sulfinopropionic acid (SP) were compared with those cultivated with propionate (P) and/or succinate (S). The chaperone DnaK (ratio DTDP/P 9.2, 3SP/P 4.0, MS/S 6.1, DTDP/S 6.2) and a Do-like serine protease (DegP) were increased during utilization of all organic sulfur compounds. Furthermore, a putative bacterioferritin (locus tag MIM_c12960) showed high abundance (ratio DTDP/P 5.3, 3SP/P 3.2, MS/S 4.8, DTDP/S 3.9) and is probably involved in a thiol-specific stress response. The deletion of two genes encoding transcriptional regulators (LysR (MIM_c31370) and Xre (MIM_c31360)) in the close proximity of the relevant genes of DTDP catabolism (acdA, mdo and the genes encoding the enzymes of the methylcitric acid cycle; prpC,acnD, prpF and prpB) showed that these two regulators are essential for growth of A. mimigardefordensis strain DPN7T with DTDP and that they most probably regulate transcription of genes mandatory for this catabolic pathway. Furthermore, proteome analysis revealed a high abundance (ratio MS/S 10.9) of a hypothetical cupin-2-domain containing protein (MIM_c37420). This protein shows an amino acid sequence similarity of 60% to a newly identified MS dioxygenase from Variovorax paradoxus strain B4. Deletion of the gene and the adjacently located transcriptional regulator LysR, as well as heterologous expression of MIM_c37420, the putative mercaptosuccinate dioxygenase (Msdo) from A. mimigardefordensis, showed that this protein is the key enzyme of MS degradation in A. mimigardefordensis strain DPN7T (KM 0.2 mM, specific activity 17.1 μmol mg-1 min-1) and is controlled by LysR (MIM_c37410).
Collapse
Affiliation(s)
- Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ulrike Brandt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jessica Beyert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sina Schmidl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
46
|
Grabarczyk DB, Berks BC. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ. PLoS One 2017; 12:e0173395. [PMID: 28257465 PMCID: PMC5336275 DOI: 10.1371/journal.pone.0173395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/20/2017] [Indexed: 01/04/2023] Open
Abstract
The Sox pathway found in many sulfur bacteria oxidizes thiosulfate to sulfate. Pathway intermediates are covalently bound to a cysteine residue in the carrier protein SoxYZ. We have used biochemical complementation by SoxYZ-conjugates to probe the identity of the intermediates in the Sox pathway. We find that unconjugated SoxYZ and SoxYZ-S-sulfonate are unlikely to be intermediates during normal turnover in disagreement with current models. By contrast, conjugates with multiple sulfane atoms are readily metabolised by the Sox pathway. The most parsimonious interpretation of these data is that the true carrier species in the Sox pathway is a SoxYZ-S-sulfane adduct.
Collapse
Affiliation(s)
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 2017; 617:9-25. [DOI: 10.1016/j.abb.2016.09.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 02/08/2023]
|
48
|
Sun Y, Zhang Y, Hollibaugh JT, Luo H. Ecotype diversification of an abundant Roseobacter lineage. Environ Microbiol 2017; 19:1625-1638. [PMID: 28142225 DOI: 10.1111/1462-2920.13683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 11/29/2022]
Abstract
The Roseobacter DC5-80-3 cluster (also known as the RCA clade) is among the most abundant bacterial lineages in temperate and polar oceans. Previous studies revealed two phylotypes within this cluster that are distinctly distributed in the Antarctic and other ocean provinces. Here, we report a nearly complete genome co-assembly of three closely related single cells co-occurring in the Antarctic, and compare it to the available genomes of the other phylotype from ocean regions where iron is more accessible but phosphorus and nitrogen are less. The Antarctic phylotype exclusively contains an operon structure consisting of a dicitrate transporter fecBCDE and an upstream regulator likely for iron uptake, whereas the other phylotype consistently carry a high-affinity phosphate pst transporter and the phoB-phoR regulatory system, a high-affinity ammonium amtB transporter, urea and taurine utilization systems. Moreover, the Antarctic phylotype uses proteorhodopsin to acquire light, whereas the other uses bacteriochlorophyll-a and the sulfur-oxidizing sox cluster for energy acquisition. This is potentially an iron-saving strategy for the Antarctic phylotype because only the latter two pathways have iron-requiring cytochromes. Therefore, the two DC5-80-3 phylotypes, while diverging by only 1.1% in their 16S rRNA genes, have evolved systematic differences in metabolism to support their distinct ecologies.
Collapse
Affiliation(s)
- Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiang'an, Xiamen, 361101, China
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China.,Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
49
|
Galardon E, Huguet F, Herrero C, Ricoux R, Artaud I, Padovani D. Reactions of persulfides with the heme cofactor of oxidized myoglobin and microperoxidase 11: reduction or coordination. Dalton Trans 2017; 46:7939-7946. [DOI: 10.1039/c7dt01638g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Persulfides reduce both met- and ferryl-oxidized forms of myoglobin, and coordinate to N-acetylated microperoxidase-11.
Collapse
Affiliation(s)
- Erwan Galardon
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Florian Huguet
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | - Christian Herrero
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Rémy Ricoux
- UMR 8182
- ICMMO
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Université Paris-Sud
- 91405 Orsay Cedex
| | - Isabelle Artaud
- UMR 8601
- LCBPT
- CNRS-Université Paris Descartes
- 75006 Paris
- France
| | | |
Collapse
|
50
|
Kurth JM, Brito JA, Reuter J, Flegler A, Koch T, Franke T, Klein EM, Rowe SF, Butt JN, Denkmann K, Pereira IAC, Archer M, Dahl C. Electron Accepting Units of the Diheme Cytochrome c TsdA, a Bifunctional Thiosulfate Dehydrogenase/Tetrathionate Reductase. J Biol Chem 2016; 291:24804-24818. [PMID: 27694441 DOI: 10.1074/jbc.m116.753863] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from -300 to +150 mV, TsdB is redox active between -100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.
Collapse
Affiliation(s)
- Julia M Kurth
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - José A Brito
- the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal, and
| | - Jula Reuter
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Alexander Flegler
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Tobias Koch
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Thomas Franke
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Eva-Maria Klein
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Sam F Rowe
- the Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- the Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Kevin Denkmann
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Inês A C Pereira
- the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal, and
| | - Margarida Archer
- the Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), 2780-157 Oeiras, Portugal, and
| | - Christiane Dahl
- From the Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany,
| |
Collapse
|