1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Gao F, Zhang Y, Jin L, Gong H, Zhang X, Zheng Q, Chen Z, Qin X. Motor protein KIF5B inhibition as a novel strategy of controlled reperfusion against myocardial ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167785. [PMID: 40057204 DOI: 10.1016/j.bbadis.2025.167785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
Metabolic dysregulation triggered by nutrient influx at reperfusion onset induces reactive oxygen species (ROS) burst and cellular injury, contributing to the detrimental effects observed in ischemia/reperfusion (I/R) injury. Thus, implementing controlled reperfusion emerges as a superior cardioprotective strategy to alleviate reperfusion injury. Kinesin KIF5B transports GLUT4- and CD36-containing vesicles to the plasma membrane, facilizing the import of glucose and fatty acids into cells, suggesting a role in controlled reperfusion. Herein, we aim to investigate its specific role in myocardial I/R injury. By genetic and pharmacological modulation of KIF5B, we investigated its role in myocardial I/R injury both in vivo and in vitro. During reperfusion, a coordinated inhibition of metabolism-related genes and KIF5B expression occurred, probably mitigating the metabolic stress encountered as a compensatory mechanism. Genetic inhibition of KIF5B using AAV9-shRNA attenuated myocardial I/R injury, as evidenced by reduced infarct size, decreased cardiac biomarkers, and reduced cell apoptosis. Additionally, KIF5B inhibition mitigated post-reperfusion oxidative stress and arrhythmias. Mechanistically, concurrent decrease in CD36 membrane translocation following KIF5B ablation post-reperfusion was confirmed by immunofluorescence double staining, and siRNA knockdown of Kif5b inhibited fatty acids uptake in isolated primary neonatal rat cardiomyocytes. Intraperitoneal administration of rose bengal lactone (RBL, 1 mg/kg), a selective inhibitor of KIF5B, was shown to confer cardioprotective effects against myocardial I/R injury. Our findings demonstrate that the inhibition of KIF5B, as a novel strategy of controlled reperfusion, provides cardioprotection against myocardial I/R injury, and highlights the clinical potential of its inhibitor, RBL, to ameliorate reperfusion injury.
Collapse
Affiliation(s)
- Feng Gao
- Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yudi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Lingyan Jin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haoyu Gong
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Xing Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ziwei Chen
- Research Center for Prevention and Treatment of Respiratory Disease, School of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China.
| | - Xinghua Qin
- Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
3
|
Huang HH, Wang YJ, Jiang HY, Yu HW, Chen YQ, Chiou A, Kuo JC. Sarcopenia-related changes in serum GLP-1 level affect myogenic differentiation. J Cachexia Sarcopenia Muscle 2024; 15:1708-1721. [PMID: 38926763 PMCID: PMC11446708 DOI: 10.1002/jcsm.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia. METHODS We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia. A thorough examination of specific gastrointestinal hormone levels in plasma was conducted to identify the one most closely associated with sarcopenia. Techniques, including immunofluorescence, western blotting, glucose uptake assays, seahorse real-time cell metabolic analysis, flow cytometry analysis, kinesin-1 activity assays and qPCR analysis, were applied to investigate its impacts and mechanisms on myogenic differentiation. RESULTS Individuals in the sarcopenia group exhibited elevated plasma levels of glucagon-like peptide 1 (GLP-1) at 1021.5 ± 313.5 pg/mL, in contrast to non-sarcopenic individuals with levels at 351.1 ± 39.0 pg/mL (P < 0.05). Although it is typical for GLP-1 levels to rise post-meal and subsequently drop naturally, detecting higher GLP-1 levels in starving individuals with sarcopenia raised the possibility of GLP-1 influencing myogenic differentiation in skeletal muscle. Further investigation using a cell model revealed that GLP-1 (1, 10 and 100 ng/mL) dose-dependently suppressed the expression of the myogenic marker, impeding myocyte fusion and the formation of polarized myotubes during differentiation. GLP-1 significantly inhibited the activity of the microtubule motor kinesin-1, interfering with the translocation of glucose transporter 4 (GLUT4) to the cell membrane and the dispersion of mitochondria. These impairments subsequently led to a reduction in glucose uptake to 0.81 ± 0.04 fold (P < 0.01) and mitochondrial adenosine triphosphate (ATP) production from 25.24 ± 1.57 pmol/min to 18.83 ± 1.11 pmol/min (P < 0.05). Continuous exposure to GLP-1, even under insulin induction, attenuated the elevated glucose uptake. CONCLUSIONS The elevated GLP-1 levels observed in individuals with sarcopenia are associated with a reduction in myogenic differentiation. The impact of GLP-1 on both the membrane translocation of GLUT4 and the dispersion of mitochondria significantly hinders glucose uptake and the production of mitochondrial ATP necessary for the myogenic programme. These findings point us towards strategies to establish the muscle-gut axis, particularly in the context of sarcopenia. Additionally, these results present the potential of identifying relevant diagnostic biomarkers.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Jie Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Yu Jiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Sherlock BD, Boon MAA, Vlasiou M, Coster ACF. The Distance Between: An Algorithmic Approach to Comparing Stochastic Models to Time-Series Data. Bull Math Biol 2024; 86:111. [PMID: 39060776 PMCID: PMC11282162 DOI: 10.1007/s11538-024-01331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
While mean-field models of cellular operations have identified dominant processes at the macroscopic scale, stochastic models may provide further insight into mechanisms at the molecular scale. In order to identify plausible stochastic models, quantitative comparisons between the models and the experimental data are required. The data for these systems have small sample sizes and time-evolving distributions. The aim of this study is to identify appropriate distance metrics for the quantitative comparison of stochastic model outputs and time-evolving stochastic measurements of a system. We identify distance metrics with features suitable for driving parameter inference, model comparison, and model validation, constrained by data from multiple experimental protocols. In this study, stochastic model outputs are compared to synthetic data across three scales: that of the data at the points the system is sampled during the time course of each type of experiment; a combined distance across the time course of each experiment; and a combined distance across all the experiments. Two broad categories of comparators at each point were considered, based on the empirical cumulative distribution function (ECDF) of the data and of the model outputs: discrete based measures such as the Kolmogorov-Smirnov distance, and integrated measures such as the Wasserstein-1 distance between the ECDFs. It was found that the discrete based measures were highly sensitive to parameter changes near the synthetic data parameters, but were largely insensitive otherwise, whereas the integrated distances had smoother transitions as the parameters approached the true values. The integrated measures were also found to be robust to noise added to the synthetic data, replicating experimental error. The characteristics of the identified distances provides the basis for the design of an algorithm suitable for fitting stochastic models to real world stochastic data.
Collapse
Affiliation(s)
- Brock D Sherlock
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Marko A A Boon
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Maria Vlasiou
- Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Adelle C F Coster
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
Chiang WY, Yu HW, Wu MC, Huang YM, Chen YQ, Lin JW, Liu YW, You LR, Chiou A, Kuo JC. Matrix mechanics regulates muscle regeneration by modulating kinesin-1 activity. Biomaterials 2024; 308:122551. [PMID: 38593710 DOI: 10.1016/j.biomaterials.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.
Collapse
Affiliation(s)
- Wan-Yu Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Man Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jong-Wei Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
6
|
Antonescu CN, Ishikura S, Bilan PJ, Klip A. Measurement of GLUT4 Traffic to and from the Cell Surface in Muscle Cells. Curr Protoc 2023; 3:e803. [PMID: 37367531 DOI: 10.1002/cpz1.803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Elevated blood glucose following a meal is cleared by insulin-stimulated glucose entry into muscle and fat cells. The hormone increases the amount of the glucose transporter GLUT4 at the plasma membrane in these tissues at the expense of preformed intracellular pools. In addition, muscle contraction also increases glucose uptake via a gain in GLUT4 at the plasma membrane. Regulation of GLUT4 levels at the cell surface could arise from alterations in the rate of its exocytosis, endocytosis, or both. Hence, methods that can independently measure these traffic parameters for GLUT4 are essential to understanding the mechanism of regulation of membrane traffic of the transporter. Here, we describe cell population-based assays to measure the steady-state levels of GLUT4 at the cell surface, as well as to separately measure the rates of GLUT4 endocytosis and endocytosis. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Measuring steady-state cell surface GLUT4myc Basic Protocol 2: Measuring steady-state cell surface GLUT4-HA Basic Protocol 3: Measuring GLUT4myc endocytosis Basic Protocol 4: Measuring GLUT4myc exocytosis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | | | - Philip J Bilan
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Chang YH, Chang SW, Hsu WT, Yang CP, Lo YL, Chen CJ, Tsai HF, Shiau MY. Implication of Adipogenesis-Coupled CRMP2 Functional Profile in Metabolic Homeostasis and Imbalance. Biomedicines 2022; 10:2603. [PMID: 36289868 PMCID: PMC9599587 DOI: 10.3390/biomedicines10102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous studies demonstrated that collapsin response mediator protein 2 (CRMP2) is associated with obesity and, in addition, that hyperglycemia-suppressed CRMP2 augments malignant traits of colorectal cancer and is associated with advanced tumor stage. Regulation of CRMP2 profile was further explored in this study using 3T3-L1 pre-adipocyte adipogenesis as a study model for illustrating the roles of CRMP2 in metabolic homeostasis. Hyperglycemia inhibited expression of CRMP2, adipogenic machinery and adipocyte markers. CRMP2 displayed f-CRMP2 (62~66 kDa) and s-CMRP2 (58 kDa) isoforms at the growth arrest phase. Expression of s-CRMP2 was coupled with the mitotic clonal expansion (MCE) phase to direct cell proliferation and rapidly down-regulated in post-mitotic cells. In the late differentiation phase, f-CRMP2 was co-localized with tubulin in the cortical area. Insulin-enhanced CRMP2-glucose transporter 4 (GLUT4) co-localization and CRMP2 puncta on lipid droplets (LDs) suggested participation of CRMP2 in GLUT4 translocation and LD fusion. Collectively, the CRMP2 functional profile must be finely controlled to adjust cytoskeletal stability for meeting dynamic cellular needs. Manipulating the s-CRMP2/f-CRMP2 ratio and thus the cytoskeleton dynamics is anticipated to improve glucose uptake and insulin sensitivity. In summary, our data provide molecular evidence explaining the functions of CRMP2 in physiological, pathological and disease progression in metabolic homeostasis and disorders related to metabolic abnormalities, including cancer.
Collapse
Affiliation(s)
- Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Wei-Ting Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ching-Ping Yang
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | - Hui-Fang Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
| |
Collapse
|
8
|
Matsui K, Emoto M, Fukuda N, Nomiyama R, Yamada K, Tanizawa Y. SNARE-binding protein synaptosomal-associated protein of 29 kDa (SNAP29) regulates the intracellular sequestration of glucose transporter 4 (GLUT4) vesicles in adipocytes. J Diabetes Investig 2022; 14:19-27. [PMID: 36181414 PMCID: PMC9807150 DOI: 10.1111/jdi.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION Insulin stimulates translocation of glucose transporter 4 (GLUT4) from the perinuclear location to the plasma membrane. In the unstimulated state, intracellular vesicles containing GLUT4 are sequestered into specialized storage vesicles that have come to be known as the insulin-responsive compartment (IRC). The IRC is a functional compartment in the perinuclear region that is a target of the insulin signaling cascade, although its precise nature is unclear. Here, we report a novel molecular mechanism facilitating formation of the IRC. MATERIALS AND METHODS We determined synaptosomal-associated protein of 29 kDa (SNAP29) by mass spectrometry to be an EH domain-containing protein 1 (EHD1)-binding protein. Then, its expression was confirmed by western blotting. Subcellular localization of SNAP29 was determined by immunofluorescent microscopy. Interactions between SNAP29 and syntaxins were determined by immunoprecipitation. We measured glucose uptake and GLUT4 translocation in 3T3-L1 adipocyte expressing SNAP29 or silencing SNAP29. RESULTS We found SNAP29 to be localized in the perinuclear region and to show partial co-localization with GLUT4 under basal conditions. We also found that SNAP29 binds to syntaxin6, a Qc-SNARE, in adipocytes. In SNAP29-expressing cells, vesicles containing GLUT4 were observed to aggregate around the perinuclear region. In contrast, when SNAP29 was silenced, perinuclear GLUT4 vesicles were dispersed throughout the cytosol. Insulin-stimulated glucose uptake was inhibited in both SNAP29-expressing and SNAP29-silenced cells. CONCLUSIONS These data suggest that SNAP29 sequesters and anchors GLUT4-containing vesicles in the perinuclear region, and might have a role in the biogenesis of the perinuclear IRC.
Collapse
Affiliation(s)
- Kumiko Matsui
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Masahiro Emoto
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan,Emoto ClinicUbeJapan
| | - Naofumi Fukuda
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryuta Nomiyama
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Kyoko Yamada
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
9
|
Bogan JS. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle. Front Endocrinol (Lausanne) 2022; 13:1019405. [PMID: 36246906 PMCID: PMC9556833 DOI: 10.3389/fendo.2022.1019405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
In response to insulin stimulation, fat and muscle cells mobilize GLUT4 glucose transporters to the cell surface to enhance glucose uptake. Ubiquitin-like processing of TUG (Aspscr1, UBXD9) proteins is a central mechanism to regulate this process. Here, recent advances in this area are reviewed. The data support a model in which intact TUG traps insulin-responsive "GLUT4 storage vesicles" at the Golgi matrix by binding vesicle cargoes with its N-terminus and matrix proteins with its C-terminus. Insulin stimulation liberates these vesicles by triggering endoproteolytic cleavage of TUG, mediated by the Usp25m protease. Cleavage occurs in fat and muscle cells, but not in fibroblasts or other cell types. Proteolytic processing of intact TUG generates TUGUL, a ubiquitin-like protein modifier, as the N-terminal cleavage product. In adipocytes, TUGUL modifies a single protein, the KIF5B kinesin motor, which carries GLUT4 and other vesicle cargoes to the cell surface. In muscle, this or another motor may be modified. After cleavage of intact TUG, the TUG C-terminal product is extracted from the Golgi matrix by the p97 (VCP) ATPase. In both muscle and fat, this cleavage product enters the nucleus, binds PPARγ and PGC-1α, and regulates gene expression to promote fatty acid oxidation and thermogenesis. The stability of the TUG C-terminal product is regulated by an Ate1 arginyltransferase-dependent N-degron pathway, which may create a feedback mechanism to control oxidative metabolism. Although it is now clear that TUG processing coordinates glucose uptake with other aspects of physiology and metabolism, many questions remain about how this pathway is regulated and how it is altered in metabolic disease in humans.
Collapse
Affiliation(s)
- Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Jonathan S. Bogan,
| |
Collapse
|
10
|
Novel mechanistic role of Kif26b in adipogenic differentiation of murine multipotent stromal cells. Biochem Biophys Res Commun 2021; 592:125-133. [DOI: 10.1016/j.bbrc.2021.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
|
11
|
Martins VF, LaBarge SA, Stanley A, Svensson K, Hung CW, Keinan O, Ciaraldi TP, Banoian D, Park JE, Ha C, Hetrick B, Meyer GA, Philp A, David LL, Henry RR, Aslan JE, Saltiel AR, McCurdy CE, Schenk S. p300 or CBP is required for insulin-stimulated glucose uptake in skeletal muscle and adipocytes. JCI Insight 2021; 7:141344. [PMID: 34813504 PMCID: PMC8765050 DOI: 10.1172/jci.insight.141344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
While current thinking posits that insulin signaling to GLUT4 exocytic translocation and glucose uptake in skeletal muscle and adipocytes is controlled by phosphorylation-based signaling, many proteins in this pathway are acetylated on lysine residues. However, the importance of acetylation and lysine acetyltransferases to insulin-stimulated glucose uptake is incompletely defined. Here, we demonstrate that combined loss of the acetyltransferases E1A binding protein p300 (p300) and cAMP response element binding protein binding protein (CBP) in mouse skeletal muscle causes a complete loss of insulin-stimulated glucose uptake. Similarly, brief (i.e. 1 h) pharmacological inhibition of p300/CBP acetyltransferase activity recapitulates this phenotype in human and rodent myotubes, 3T3-L1 adipocytes, and mouse muscle. Mechanistically, these effects are due to p300/CBP-mediated regulation of GLUT4 exocytic translocation and occurs downstream of Akt signaling. Taken together, we highlight a fundamental role for acetylation and p300/CBP in the direct regulation of insulin-stimulated glucose transport in skeletal muscle and adipocytes.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Samuel A LaBarge
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Alexandra Stanley
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Kristoffer Svensson
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Omer Keinan
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Theodore P Ciaraldi
- Department of Medicine, University of California, San Diego, La Jolla, United States of America
| | - Dion Banoian
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Ji E Park
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Christina Ha
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, United States of America
| | - Andrew Philp
- Mitochondrial Metabolism and Ageing, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States of America
| | - Robert R Henry
- Division of Endocrinology & Metabolism, VA San Diego Healthcare System, San Diego, United States of America
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, United States of America
| | - Alan R Saltiel
- University of California, San Diego, La Jolla, United States of America
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, United States of America
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, United States of America
| |
Collapse
|
12
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
13
|
Habtemichael EN, Li DT, Camporez JP, Westergaard XO, Sales CI, Liu X, López-Giráldez F, DeVries SG, Li H, Ruiz DM, Wang KY, Sayal BS, González Zapata S, Dann P, Brown SN, Hirabara S, Vatner DF, Goedeke L, Philbrick W, Shulman GI, Bogan JS. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nat Metab 2021; 3:378-393. [PMID: 33686286 PMCID: PMC7990718 DOI: 10.1038/s42255-021-00359-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug (Aspscr1)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.
Collapse
Affiliation(s)
- Estifanos N Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Evelo Biosciences, Inc., Cambridge, MA, USA
| | - Don T Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - João Paulo Camporez
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- University of São Paulo, São Paulo, Brazil
| | - Xavier O Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Columbia University, New York, NY, USA
| | - Chloe I Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | | | - Stephen G DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hanbing Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Zhejiang University of Technology, Hangzhou, China
| | - Diana M Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kenny Y Wang
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Bhavesh S Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sofia González Zapata
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Stacey N Brown
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sandro Hirabara
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo, Brazil
| | - Daniel F Vatner
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - William Philbrick
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Brumfield A, Chaudhary N, Molle D, Wen J, Graumann J, McGraw TE. Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10. Mol Biol Cell 2021; 32:57-73. [PMID: 33175605 PMCID: PMC8098823 DOI: 10.1091/mbc.e20-06-0356] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/05/2022] Open
Abstract
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.
Collapse
Affiliation(s)
| | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Dorothee Molle
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Johannes Graumann
- Weill Cornell Medical College in Qatar, Education City, 24144 Doha, State of Qatar
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
15
|
Zhao L, Liu H, Luo S, Moorman PG, Walsh KM, Li W, Wei Q. Associations between genetic variants of KIF5B, FMN1, and MGAT3 in the cadherin pathway and pancreatic cancer risk. Cancer Med 2020; 9:9620-9631. [PMID: 33200553 PMCID: PMC7774717 DOI: 10.1002/cam4.3603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Because the cadherin-mediated signaling pathway promotes cancer progression, we assessed associations between genetic variants in 109 cadherin-related genes and risk of pancreatic cancer (PanC) by using genotyping data from publically available genome-wide association studies (GWAS) datasets comprising 15,423 individuals of European ancestry. After initial single-locus analyses and subsequent meta-analysis with multiple testing correction for 29,963 single-nucleotide polymorphisms (SNPs), 11 SNPs remained statistically significant (p < 0.05). In the stepwise logistic regression analysis, three independent PanC risk-associated SNPs (KIF5B rs211304 C > G, FMN1 rs117648907 C > T, and MGAT3 rs34943118 T > C) remained statistically significant (p < 0.05), with odds ratios of 0.89 (95% confidence interval = 0.82-0.95 and p = 6.93 × 10-4 ), 1.33 (1.13-1.56 and 2.11 × 10-4 ), and 1.11 (1.05-1.17 and 8.10 × 10-5 ), respectively. Combined analysis of unfavorable genotypes of these three independent SNPs showed an upward trend in the genotype-risk association (ptrend < 0.001). Expression quantitative trait loci analyses indicated that the rs211304 G and rs34943118 C alleles were associated with increased mRNA expression levels of KIF5B and MGAT3, respectively (all p < 0.05). Additional bioinformatics prediction suggested that these three SNPs may affect enhancer histone marks that likely have an epigenetic effect on the genes. Our findings provide biological clues for these PanC risk-associated SNPs in cadherin-related genes in European ancestry populations, possibly by regulating the expression of the affected genes. However, our findings need to be validated in additional population, molecular and mechanistic investigations.
Collapse
Affiliation(s)
- Lingling Zhao
- Cancer CenterThe First Hospital of Jilin UniversityChangchunJilinChina
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Hongliang Liu
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| | - Sheng Luo
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNCUSA
| | - Patricia G. Moorman
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Family Medicine and Community HealthDuke University Medical CenterNCUSA
| | - Kyle M. Walsh
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of NeurosurgeryDuke University School of MedicineDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Wei Li
- Cancer CenterThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Qingyi Wei
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
16
|
Gong YJ, Feng Y, Cao YY, Zhao J, Wu W, Zheng YY, Wu JR, Li X, Yang GZ, Zhou X. Huntingtin-associated protein 1 plays an essential role in the pathogenesis of type 2 diabetes by regulating the translocation of GLUT4 in mouse adipocytes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001199. [PMID: 33060070 PMCID: PMC7566288 DOI: 10.1136/bmjdrc-2020-001199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/30/2020] [Accepted: 09/05/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Glucose disposal by insulin-responsive tissues maintains the body glucose homeostasis and insulin resistance leads to a risk of developing type 2 diabetes (T2DM). Insulin stimulates the translocation of glucose transporter isoform 4 (GLUT4) vesicles from intracellular compartments to the plasma membrane to facilitate glucose uptake. However, the underlying mechanisms of GLUT4 vesicle translocation are not well defined. Here we show the role of huntingtin-associated protein 1 (HAP1) in GLUT4 translocation in adipocytes and the pathogenesis of T2DM. RESEARCH DESIGN AND METHODS The parameters for glucose metabolism including body weight, glucose tolerance and insulin tolerance were assessed in wild-type (WT) and Hap1+/- mice. HAP1 protein expression was verified in adipose tissue. Hap1 mRNA and protein expression was monitored in adipose tissue of high-fat diet (HFD)-induced diabetic mice. Insulin-stimulated GLUT4 vesicle translocation and glucose uptake were detected using immunofluorescence techniques and quantified in primary adipocytes from Hap1-/- mice. The interaction between HAP1 and GLUT4 was assessed by immunofluorescence colocalization and co-immunoprecipitation in HEK293 cells and adipose tissue. The role of sortilin in HAP1 and GLUT4 interaction was approved by co-immunoprecipitation and RNA interference. RESULTS The expression of Hap1 mRNA and protein was detected in WT mouse adipose tissue and downregulated in adipose tissue of HFD-induced diabetic mice. Hap1+/- mice exhibited increased body weight, pronounced glucose tolerance and significant insulin intolerance compared with the WT mice. HAP1 colocalized with GLUT4 in mouse adipocytes and cotransfected HEK293 cells. Furthermore, the insulin-stimulated GLUT4 vesicle translocation and glucose uptake were defective in Hap1-/- adipocytes. Finally, sortilin mediated the interaction of HAP1 and GLUT4. CONCLUSIONS Our study showed that HAP1 formed a protein complex with GLUT4 and sortilin, and played a critical role in insulin-stimulated GLUT4 translocation in adipocytes. Its downregulation may contribute to the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Yan-Ju Gong
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuan-Yuan Cao
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jia Zhao
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wu
- Institute of Biology, National Institute of Measurement and Testing Technology, Chengdu, Sichuan, China
| | - Ya-Yun Zheng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jia-Rui Wu
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Gui-Zhi Yang
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Chang YH, Tsai JN, Chang SW, Hsu WT, Yang CP, Hsiao CW, Shiau MY. Regulation of Adipogenesis and Lipid Deposits by Collapsin Response Mediator Protein 2. Int J Mol Sci 2020; 21:ijms21062172. [PMID: 32245267 PMCID: PMC7139951 DOI: 10.3390/ijms21062172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
As emerging evidence suggesting neurodegenerative diseases and metabolic diseases have common pathogenesis, we hypothesized that the neurite outgrowth-controlling collapsin response mediator protein 2 (CRMP2) was involved in energy homeostasis. Therefore, putative roles of CRMP2 in adipocyte differentiation (adipogenesis) and lipid metabolism were explored and addressed in this study. CRMP2 expression profiles were in vitro and in vivo characterized during adipogenic process of 3T3-L1 pre-adipocytes and diet-induced obese (DIO) mice, respectively. Effects of CRMP2 on lipid metabolism and deposits were also analyzed. Our data revealed that CRMP2 expression pattern was coupled with adipogenic stages. CRMP2 overexpression inhibited cell proliferation at MCE phase, and significantly reduced lipid contents by down-regulating adipogenesis-driving transcription factors and lipid-synthesizing enzymes. Interestingly, GLUT4 translocation and the lipid droplets fusion were disturbed in CRMP2-silencing cells by affecting actin polymerization. Moreover, adipose CRMP2 was significantly increased in DIO mice, indicating CRMP2 is associated with obesity. Accordingly, CRMP2 exerts multiple functions in adipogenesis and lipid deposits through mediating cell proliferation, glucose/lipid metabolism and cytoskeleton dynamics. The present study identifies novel roles of CRMP2 in mediating adipogenesis and possible implication in metabolic disorders, as well as provides molecular evidence supporting the link of pathogenesis between neurodegenerative diseases and metabolic abnormalities.
Collapse
Affiliation(s)
- Yih-Hsin Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan;
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shu-Wen Chang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Wei-Ting Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Ching-Ping Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
| | - Chiao-Wan Hsiao
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan; (Y.-H.C.); (S.-W.C.); (W.-T.H.); (C.-P.Y.); (C.-W.H.)
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan
| | - Ming-Yuh Shiau
- Department of Nursing, College of Nursing, Hungkuang University, Taichung 433, Taiwan
- Correspondence: or ; Tel.: +886-4-26318652 (ext. 7090); Fax: +886-4-26331198
| |
Collapse
|
18
|
Alzheimer's Disease and Diabetes: Insulin Signaling as the Bridge Linking Two Pathologies. Mol Neurobiol 2020; 57:1966-1977. [PMID: 31900863 DOI: 10.1007/s12035-019-01858-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's (or Alzheimer) disease (AD) is the most prevalent subset of dementia, affecting elderly populations worldwide. The cumulative costs of the AD care are rapidly accelerating as the average lifespan increases. Onset and risk factors for AD and AD-like dementias have been largely unknown until recently. Studies show that chronic type II diabetes mellitus (DM) is closely associated with neurodegeneration, especially AD. Type II DM is characterized by the cells' inability to take up insulin, as well as chronic hyperglycemia. In the central nervous system, insulin has crucial regulatory roles, while chronic hyperglycemia leads to formation and accumulation of advanced glycation end products (AGEs). AGEs are the major contributor to insulin resistance in diabetic cells, due to their regulatory role on sirtuin expression. Insulin activity in the central nervous system is known to interact with key proteins affected in neurodegenerative conditions, such as amyloid-β precursor protein (AβPP or APP), huntingtin-associated protein-1 (HAP1), Abelson helper integration site-1 (AHI1 or Jouberin), kinesin, and tau. Sirtuins have been theorized to be the mechanism for insulin resistance, and have been found to be affected in neurodegenerative conditions as well. There are hints that all these neuronal proteins may be closely related, although the mechanisms remain unclear. This review will gather existing research on these proteins and highlight the link between neurodegenerative conditions and diabetes mellitus.
Collapse
|
19
|
Satoh T, Takenaka N. A critical role for the small GTPase Rac1 in insulin signaling that regulates glucose uptake in skeletal muscle. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03976-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Vasopressin inactivation: Role of insulin-regulated aminopeptidase. VITAMINS AND HORMONES 2019; 113:101-128. [PMID: 32138946 DOI: 10.1016/bs.vh.2019.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological importance of vasopressin inactivation has long been appreciated, but the mechanisms and potential pathophysiologic roles of this process remain active subjects of research. Human Placental Leucine Aminopeptidase (P-LAP, encoded by the LNPEP gene) is an important determinant of vasopressinase activity during pregnancy and is associated with gestational diabetes insipidus and preeclampsia. Insulin-Regulated Aminopeptidase (IRAP), the rodent homologue of P-LAP, is coregulated with the insulin-responsive glucose transporter, GLUT4, in adipose and muscle cells. Recently, the Tether containing a UBX domain for GLUT4 (TUG) protein was shown to mediate the coordinated regulation of water and glucose homeostasis. TUG sequesters IRAP and GLUT4 intracellularly in the absence of insulin. Insulin and other stimuli cause the proteolytic cleavage of TUG to mobilize these proteins to the cell surface, where IRAP acts to terminate the activity of circulating vasopressin. Intriguingly, genetic variation in LNPEP is associated with the vasopressin response and mortality during sepsis, and increased copeptin, a marker of vasopressin secretion, is associated with cardiovascular and metabolic disease. We propose that in the setting of insulin resistance in muscle, increased cell-surface IRAP and accelerated vasopressin degradation cause a compensatory increase in vasopressin secretion. The increased vasopressin concentrations present at the kidneys then contribute to hypertension in the metabolic syndrome. Further analyses of metabolism and of vasopressin and copeptin may yield novel insights into a unified pathophysiologic mechanism linking insulin resistance and hypertension, and potentially other components of the metabolic syndrome, in humans.
Collapse
|
21
|
Li DT, Habtemichael EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:453-470. [PMID: 31543708 PMCID: PMC6747935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fat and muscle cells contain a specialized, intracellular organelle known as the GLUT4 storage vesicle (GSV). Insulin stimulation mobilizes GSVs, so that these vesicles fuse at the cell surface and insert GLUT4 glucose transporters into the plasma membrane. This example is likely one instance of a broader paradigm for regulated, non-secretory exocytosis, in which intracellular vesicles are translocated in response to diverse extracellular stimuli. GSVs have been studied extensively, yet these vesicles remain enigmatic. Data support the view that in unstimulated cells, GSVs are present as a pool of preformed small vesicles, which are distinct from endosomes and other membrane-bound organelles. In adipocytes, GSVs contain specific cargoes including GLUT4, IRAP, LRP1, and sortilin. They are formed by membrane budding, involving sortilin and probably CHC22 clathrin in humans, but the donor compartment from which these vesicles form remains uncertain. In unstimulated cells, GSVs are trapped by TUG proteins near the endoplasmic reticulum - Golgi intermediate compartment (ERGIC). Insulin signals through two main pathways to mobilize these vesicles. Signaling by the Akt kinase modulates Rab GTPases to target the GSVs to the cell surface. Signaling by the Rho-family GTPase TC10α stimulates Usp25m-mediated TUG cleavage to liberate the vesicles from the Golgi. Cleavage produces a ubiquitin-like protein modifier, TUGUL, that links the GSVs to KIF5B kinesin motors to promote their movement to the cell surface. In obesity, attenuation of these processes results in insulin resistance and contributes to type 2 diabetes and may simultaneously contribute to hypertension and dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Don T. Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Estifanos N. Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Omar Julca
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Chloe I. Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Xavier O. Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Stephen G. DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Diana Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Bhavesh Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT,To whom all correspondence should be addressed: Jonathan S. Bogan, Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020; Tel: 203-785-6319; Fax: 203-785-6462;
| |
Collapse
|
22
|
Parker SS, Krantz J, Kwak EA, Barker NK, Deer CG, Lee NY, Mouneimne G, Langlais PR. Insulin Induces Microtubule Stabilization and Regulates the Microtubule Plus-end Tracking Protein Network in Adipocytes. Mol Cell Proteomics 2019; 18:1363-1381. [PMID: 31018989 PMCID: PMC6601206 DOI: 10.1074/mcp.ra119.001450] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Insulin-stimulated glucose uptake is known to involve microtubules, although the function of microtubules and the microtubule-regulating proteins involved in insulin action are poorly understood. CLASP2, a plus-end tracking microtubule-associated protein (+TIP) that controls microtubule dynamics, was recently implicated as the first +TIP associated with insulin-regulated glucose uptake. Here, using protein-specific targeted quantitative phosphoproteomics within 3T3-L1 adipocytes, we discovered that insulin regulates phosphorylation of the CLASP2 network members G2L1, MARK2, CLIP2, AGAP3, and CKAP5 as well as EB1, revealing the existence of a previously unknown microtubule-associated protein system that responds to insulin. To further investigate, G2L1 interactome studies within 3T3-L1 adipocytes revealed that G2L1 coimmunoprecipitates CLASP2 and CLIP2 as well as the master integrators of +TIP assembly, the end binding (EB) proteins. Live-cell total internal reflection fluorescence microscopy in adipocytes revealed G2L1 and CLASP2 colocalize on microtubule plus-ends. We found that although insulin increases the number of CLASP2-containing plus-ends, insulin treatment simultaneously decreases CLASP2-containing plus-end velocity. In addition, we discovered that insulin stimulates redistribution of CLASP2 and G2L1 from exclusive plus-end tracking to "trailing" behind the growing tip of the microtubule. Insulin treatment increases α-tubulin Lysine 40 acetylation, a mechanism that was observed to be regulated by a counterbalance between GSK3 and mTOR, and led to microtubule stabilization. Our studies introduce insulin-stimulated microtubule stabilization and plus-end trailing of +TIPs as new modes of insulin action and reveal the likelihood that a network of microtubule-associated proteins synergize to coordinate insulin-regulated microtubule dynamics.
Collapse
Affiliation(s)
- Sara S Parker
- From the ‡Department of Cellular & Molecular Medicine
| | - James Krantz
- §Department of Medicine, Division of Endocrinology
| | | | | | - Chris G Deer
- University of Arizona Research Computing, University of Arizona, Tucson, Arizona 85721
| | - Nam Y Lee
- ¶Department of Pharmacology,; ‖Department of Chemistry & Biochemistry, University of Arizona College of Medicine, Tucson, Arizona 85721
| | | | | |
Collapse
|
23
|
Zhang J, Oh E, Merz KE, Aslamy A, Veluthakal R, Salunkhe VA, Ahn M, Tunduguru R, Thurmond DC. DOC2B promotes insulin sensitivity in mice via a novel KLC1-dependent mechanism in skeletal muscle. Diabetologia 2019; 62:845-859. [PMID: 30707251 PMCID: PMC6451670 DOI: 10.1007/s00125-019-4824-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain β (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. METHODS Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. RESULTS We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. CONCLUSIONS/INTERPRETATION These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Anwita Biosciences Inc, San Carlos, CA, USA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Karla E Merz
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
24
|
Habtemichael EN, Li DT, Alcázar-Román A, Westergaard XO, Li M, Petersen MC, Li H, DeVries SG, Li E, Julca-Zevallos O, Wolenski JS, Bogan JS. Usp25m protease regulates ubiquitin-like processing of TUG proteins to control GLUT4 glucose transporter translocation in adipocytes. J Biol Chem 2018; 293:10466-10486. [PMID: 29773651 DOI: 10.1074/jbc.ra118.003021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin stimulates the exocytic translocation of specialized vesicles in adipocytes, which inserts GLUT4 glucose transporters into the plasma membrane to enhance glucose uptake. Previous results support a model in which TUG (Tether containing a UBX domain for GLUT4) proteins trap these GLUT4 storage vesicles at the Golgi matrix and in which insulin triggers endoproteolytic cleavage of TUG to translocate GLUT4. Here, we identify the muscle splice form of Usp25 (Usp25m) as a protease required for insulin-stimulated TUG cleavage and GLUT4 translocation in adipocytes. Usp25m is expressed in adipocytes, binds TUG and GLUT4, dissociates from TUG-bound vesicles after insulin addition, and colocalizes with TUG and insulin-responsive cargoes in unstimulated cells. Previous results show that TUG proteolysis generates the ubiquitin-like protein, TUGUL (for TUGubiquitin-like). We now show that TUGUL modifies the kinesin motor protein, KIF5B, and that TUG proteolysis is required to load GLUT4 onto these motors. Insulin stimulates TUG proteolytic processing independently of phosphatidylinositol 3-kinase. In nonadipocytes, TUG cleavage can be reconstituted by transfection of Usp25m, but not the related Usp25a isoform, together with other proteins present on GLUT4 vesicles. In rodents with diet-induced insulin resistance, TUG proteolysis and Usp25m protein abundance are reduced in adipose tissue. These effects occur soon after dietary manipulation, prior to the attenuation of insulin signaling to Akt. Together with previous data, these results support a model whereby insulin acts through Usp25m to mediate TUG cleavage, which liberates GLUT4 storage vesicles from the Golgi matrix and activates their microtubule-based movement to the plasma membrane. This TUG proteolytic pathway for insulin action is independent of Akt and is impaired by nutritional excess.
Collapse
Affiliation(s)
| | - Don T Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,the Departments of Cell Biology and
| | - Abel Alcázar-Román
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Xavier O Westergaard
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Muyi Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Max C Petersen
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,Cellular and Molecular Physiology, Yale University School of Medicine
| | - Hanbing Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,the Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Stephen G DeVries
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Eric Li
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and
| | - Omar Julca-Zevallos
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and.,the Departments of Cell Biology and
| | - Joseph S Wolenski
- the Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, and
| | - Jonathan S Bogan
- From the Section of Endocrinology and Metabolism, Department of Internal Medicine and .,the Departments of Cell Biology and
| |
Collapse
|
25
|
McIntosh BB, Pyrpassopoulos S, Holzbaur ELF, Ostap EM. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Curr Biol 2018; 28:236-248.e5. [PMID: 29337076 DOI: 10.1016/j.cub.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Microtubule and actin filament molecular motors such as kinesin-1 and myosin-Ic (Myo1c) transport and remodel membrane-bound vesicles; however, it is unclear how they coordinate to accomplish these tasks. We introduced kinesin-1- and Myo1c-bound giant unilamellar vesicles (GUVs) into a micropatterned in vitro cytoskeletal matrix modeled after the subcellular architecture where vesicular sorting and membrane remodeling are observed. This array was composed of sparse microtubules intersecting regions dense with actin filaments, and revealed that Myo1c-dependent tethering of GUVs enabled kinesin-1-driven membrane deformation and tubulation. Membrane remodeling at actin/microtubule intersections was modulated by lipid composition and the addition of the Bin-Amphiphysin-Rvs-domain (BAR-domain) proteins endophilin or FCH-domain-only (FCHo). Myo1c not only tethered microtubule-transported cargo, but also transported, deformed, and tubulated GUVs along actin filaments in a lipid-composition- and BAR-protein-responsive manner. These results suggest a mechanism for actin-based involvement in vesicular transport and remodeling of intracellular membranes, and implicate lipid composition as a key factor in determining whether vesicles will undergo transport, deformation, or tubulation driven by opposing actin and microtubule motors and BAR-domain proteins.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Serapion Pyrpassopoulos
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
26
|
Kruse R, Krantz J, Barker N, Coletta RL, Rafikov R, Luo M, Højlund K, Mandarino LJ, Langlais PR. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein. Mol Cell Proteomics 2017; 16:1718-1735. [PMID: 28550165 DOI: 10.1074/mcp.ra117.000011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/26/2022] Open
Abstract
CLASP2 is a microtubule-associated protein that undergoes insulin-stimulated phosphorylation and co-localization with reorganized actin and GLUT4 at the plasma membrane. To gain insight to the role of CLASP2 in this system, we developed and successfully executed a streamlined interactome approach and built a CLASP2 protein network in 3T3-L1 adipocytes. Using two different commercially available antibodies for CLASP2 and an antibody for epitope-tagged, overexpressed CLASP2, we performed multiple affinity purification coupled with mass spectrometry (AP-MS) experiments in combination with label-free quantitative proteomics and analyzed the data with the bioinformatics tool Significance Analysis of Interactome (SAINT). We discovered that CLASP2 coimmunoprecipitates (co-IPs) the novel protein SOGA1, the microtubule-associated protein kinase MARK2, and the microtubule/actin-regulating protein G2L1. The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and revealed MARK2 can co-IP SOGA1, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and with tubulin, which identifies SOGA1 as a new microtubule-associated protein. These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology.
Collapse
Affiliation(s)
- Rikke Kruse
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - James Krantz
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Natalie Barker
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Richard L Coletta
- ‖School of Life Sciences, Arizona State University, Tempe, Arizona 85787
| | - Ruslan Rafikov
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Moulun Luo
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Kurt Højlund
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Lawrence J Mandarino
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Paul R Langlais
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721;
| |
Collapse
|
27
|
Cui J, Pang J, Lin YJ, Gong H, Wang ZH, Li YX, Li J, Wang Z, Jiang P, Dai DP, Li J, Cai JP, Huang JD, Zhang TM. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. FASEB J 2017; 31:2533-2547. [PMID: 28242773 DOI: 10.1096/fj.201601103r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.
Collapse
Affiliation(s)
- Ju Cui
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jing Pang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ya-Jun Lin
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Huan Gong
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhen-He Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yun-Xuan Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jin Li
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ping Jiang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Da-Peng Dai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian Li
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China; .,Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong, China.,The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Tie-Mei Zhang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China;
| |
Collapse
|
28
|
Tunduguru R, Thurmond DC. Promoting Glucose Transporter-4 Vesicle Trafficking along Cytoskeletal Tracks: PAK-Ing Them Out. Front Endocrinol (Lausanne) 2017; 8:329. [PMID: 29209279 PMCID: PMC5701999 DOI: 10.3389/fendo.2017.00329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Glucose is the principal cellular energy source in humans and maintenance of glucose homeostasis is critical for survival. Glucose uptake into peripheral skeletal muscle and adipose tissues requires the trafficking of vesicles containing glucose transporter-4 (GLUT4) from the intracellular storage compartments to the cell surface. Trafficking of GLUT4 storage vesicles is initiated via the canonical insulin signaling cascade in skeletal muscle and fat cells, as well as via exercise-induced contraction in muscle cells. Recent studies have elucidated steps in the signaling cascades that involve remodeling of the cytoskeleton, a process that underpins the mechanical movement of GLUT4 vesicles. This review is focused upon an alternate phosphoinositide-3 kinase-dependent pathway involving Ras-related C3 botulinum toxin substrate 1 signaling through the p21-activated kinase p21-activated kinase 1 and showcases related signaling events that co-regulate both the depolymerization and re-polymerization of filamentous actin. These new insights provide an enriched understanding into the process of glucose transport and yield potential new targets for interventions aimed to improve insulin sensitivity and remediate insulin resistance, pre-diabetes, and the progression to type 2 diabetes.
Collapse
Affiliation(s)
- Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
- *Correspondence: Debbie C. Thurmond,
| |
Collapse
|
29
|
Juks C, Lorents A, Arukuusk P, Langel Ü, Pooga M. Cell‐penetrating peptides recruit type A scavenger receptors to the plasma membrane for cellular delivery of nucleic acids. FASEB J 2016; 31:975-988. [DOI: 10.1096/fj.201600811r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Carmen Juks
- Institute of Molecular and Cell BiologyUniversity of Tartu Tartu Estonia
| | - Annely Lorents
- Institute of Molecular and Cell BiologyUniversity of Tartu Tartu Estonia
| | - Piret Arukuusk
- Laboratory of Molecular BiotechnologyInstitute of TechnologyUniversity of Tartu Tartu Estonia
| | - Ülo Langel
- Laboratory of Molecular BiotechnologyInstitute of TechnologyUniversity of Tartu Tartu Estonia
- Department of NeurochemistryStockholm University Stockholm Sweden
| | - Margus Pooga
- Institute of Molecular and Cell BiologyUniversity of Tartu Tartu Estonia
| |
Collapse
|
30
|
Hatakeyama H, Nakahata Y, Yarimizu H, Kanzaki M. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol Biol Cell 2016; 28:173-181. [PMID: 28035048 PMCID: PMC5221621 DOI: 10.1091/mbc.e16-06-0413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Quantum dots (QDs) are a powerful tool for quantitative biology, but two challenges are associated with using them to track intracellular molecules in live cells. A simple and convenient method is presented for labeling intracellular molecules by using HaloTag technology and electroporation and is used to successfully track myosins within live cells. Quantum dots (QDs) are a powerful tool for quantitatively analyzing dynamic cellular processes by single-particle tracking. However, tracking of intracellular molecules with QDs is limited by their inability to penetrate the plasma membrane and bind to specific molecules of interest. Although several techniques for overcoming these problems have been proposed, they are either complicated or inconvenient. To address this issue, in this study, we developed a simple, convenient, and nontoxic method for labeling intracellular molecules in cells using HaloTag technology and electroporation. We labeled intracellular myosin motors with this approach and tracked their movement within cells. By simultaneously imaging myosin movement and F-actin architecture, we observed that F-actin serves not only as a rail but also as a barrier for myosin movement. We analyzed the effect of insulin on the movement of several myosin motors, which have been suggested to regulate intracellular trafficking of the insulin-responsive glucose transporter GLUT4, but found no significant enhancement in myosin motor motility as a result of insulin treatment. Our approach expands the repertoire of proteins for which intracellular dynamics can be analyzed at the single-molecule level.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8579, Japan .,Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yoshihito Nakahata
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Hirokazu Yarimizu
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan.,Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
31
|
Cui J, Pang J, Lin YJ, Jiang P, Gong H, Wang Z, Li J, Cai JP, Huang JD, Zhang TM. Conventional kinesin KIF5B mediates adiponectin secretion in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2016; 476:620-626. [DOI: 10.1016/j.bbrc.2016.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
|
32
|
Role of Ostm1 Cytosolic Complex with Kinesin 5B in Intracellular Dispersion and Trafficking. Mol Cell Biol 2015; 36:507-21. [PMID: 26598607 DOI: 10.1128/mcb.00656-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/17/2015] [Indexed: 01/05/2023] Open
Abstract
In humans and in mice, mutations in the Ostm1 gene cause the most severe form of osteopetrosis, a major bone disease, and neuronal degeneration, both of which are associated with early death. To gain insight into Ostm1 function, we first investigated by sequence and biochemical analysis an immature 34-kDa type I transmembrane Ostm1 protein with a unique cytosolic tail. Mature Ostm1 is posttranslationally processed and highly N-glycosylated and has an apparent mass of ∼60 kDa. Analysis the subcellular localization of Ostm1 showed that it is within the endoplasmic reticulum, trans-Golgi network, and endosomes/lysosomes. By a wide protein screen under physiologic conditions, several novel cytosolic Ostm1 partners were identified and validated, for which a direct interaction with the kinesin 5B heavy chains was demonstrated. These results determined that Ostm1 is part of a cytosolic scaffolding multiprotein complex, imparting an adaptor function to Ostm1. Moreover, we uncovered a role for the Ostm1/KIF5B complex in intracellular trafficking and dispersion of cargos from the endoplasmic reticulum to late endosomal/lysosomal subcellular compartments. These Ostm1 molecular and cellular functions could elucidate all of the pathophysiologic mechanisms underlying the wide phenotypic spectrum of Ostm1-deficient mice.
Collapse
|
33
|
Cui J, Li X, Duan Z, Xue W, Wang Z, Lu S, Lin R, Liu M, Zhu G, Huang JD. Analysis of Kif5b expression during mouse kidney development. PLoS One 2015; 10:e0126002. [PMID: 25885434 PMCID: PMC4401754 DOI: 10.1371/journal.pone.0126002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/27/2015] [Indexed: 01/05/2023] Open
Abstract
Recent studies showed that kidney-specific inactivation of Kif3a produces kidney cysts and renal failure, suggesting that kinesin-mediated intracellular transportation is important for the establishement and maintenance of renal epithelial cell polarity and normal nephron functions. Kif5b, one of the most conserved kinesin heavy chain, is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). In order to elucidate the role of Kif5b in kidney development and function, it is essential to establish its expression profile within the organ. Therefore, in this study, we examined the expression pattern of Kif5b in mouse kidney. Kidneys from embryonic (E) 12.5-, 16.5-dpc (days post coitus) mouse fetuses, from postnatal (P) day 0, 10, 20 pups and from adult mice were collected. The distribution of Kif5b was analyzed by immunostaining. The possible involvement of Kif5b in kidney development was investigated in conditional mutant mice by using a Cre-LoxP strategy. This study showed that the distribution of Kif5b displayed spatiotemporal changes during postnatal kidney development. In kidneys of new born mice, Kif5b was strongly expressed in all developing tubules and in the ureteric bud, but not in the glomerulus or in other early-developing structures, such as the cap mesenchyme, the comma-shaped body, and the S-shaped body. In kidneys of postnatal day 20 or of older mice, however, Kif5b was localized selectively in the basolateral domain of epithelial cells of the thick ascending loop of Henle, as well as of the distal convoluted tubule, with little expression being observed in the proximal tubule or in the collecting duct. Conditional knock-down of Kif5b in mouse kidney did not result in detectable morphological defects, but it did lead to a decrease in cell proliferation rate and also to a mislocalization of Na+/K+/-ATPase, indicating that although Kif5b is non-essential for kidney morphogenesis, it is important for nephron maturation.
Collapse
Affiliation(s)
- Ju Cui
- The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing, China
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- * E-mail: (JC); (JDH)
| | - Xiuling Li
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhigang Duan
- Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wenqian Xue
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zai Wang
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Song Lu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Raozhou Lin
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mengfei Liu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guixia Zhu
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Dong Huang
- Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, PR China
- * E-mail: (JC); (JDH)
| |
Collapse
|
34
|
McIntosh BB, Holzbaur ELF, Ostap EM. Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin. Curr Biol 2015; 25:523-9. [PMID: 25660542 DOI: 10.1016/j.cub.2014.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
Abstract
Intracellular transport is largely driven by processive microtubule- and actin-based molecular motors. Nonprocessive motors have also been localized to trafficking cargos, but their roles are not well understood. Myosin-Ic (Myo1c), a nonprocessive actin motor, functions in a variety of exocytic events, although the underlying mechanisms are not yet clear. To investigate the interplay between myosin-I and the canonical long-distance transport motor kinesin-1, we attached both motor types to lipid membrane-coated bead cargo, using an attachment strategy that allows motors to actively reorganize within the membrane in response to the local cytoskeletal environment. We compared the motility of kinesin-1-driven cargos in the absence and presence of Myo1c at engineered actin/microtubule intersections. We found that Myo1c significantly increases the frequency of kinesin-1-driven microtubule-based runs that begin at actin/microtubule intersections. Myo1c also regulates the termination of processive runs. Beads with both motors bound have a significantly higher probability of pausing at actin/microtubule intersections, remaining tethered for an average of 20 s, with some pauses lasting longer than 200 s. The actin-binding protein nonmuscle tropomyosin (Tm) provides spatially specific regulation of interactions between myosin motors and actin filaments in vivo; in the crossed-filament in vitro assay, we found that Tm2-actin abolishes Myo1c-specific effects on both run initiation and run termination. Together, these observations suggest Myo1c is important for the selective initiation and termination of kinesin-1-driven runs along microtubules at specific actin filament populations within the cell.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
35
|
Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. DIABETES & METABOLISM 2014; 40:400-10. [PMID: 24656589 DOI: 10.1016/j.diabet.2014.01.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/28/2023]
|
36
|
Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci 2014; 15:18677-92. [PMID: 25325535 PMCID: PMC4227239 DOI: 10.3390/ijms151018677] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
37
|
Caruso M, Ma D, Msallaty Z, Lewis M, Seyoum B, Al-janabi W, Diamond M, Abou-Samra AB, Højlund K, Tagett R, Draghici S, Zhang X, Horowitz JF, Yi Z. Increased interaction with insulin receptor substrate 1, a novel abnormality in insulin resistance and type 2 diabetes. Diabetes 2014; 63:1933-47. [PMID: 24584551 PMCID: PMC4030113 DOI: 10.2337/db13-1872] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin receptor substrate 1 (IRS1) is a key mediator of insulin signal transduction. Perturbations involving IRS1 complexes may lead to the development of insulin resistance and type 2 diabetes (T2D). Surprisingly little is known about the proteins that interact with IRS1 in humans under health and disease conditions. We used a proteomic approach to assess IRS1 interaction partners in skeletal muscle from lean healthy control subjects (LCs), obese insulin-resistant nondiabetic control subjects (OCs), and participants with T2D before and after insulin infusion. We identified 113 novel endogenous IRS1 interaction partners, which represents the largest IRS1 interactome in humans and provides new targets for studies of IRS1 complexes in various diseases. Furthermore, we generated the first global picture of IRS1 interaction partners in LCs, and how they differ in OCs and T2D patients. Interestingly, dozens of proteins in OCs and/or T2D patients exhibited increased associations with IRS1 compared with LCs under the basal and/or insulin-stimulated conditions, revealing multiple new dysfunctional IRS1 pathways in OCs and T2D patients. This novel abnormality, increased interaction of multiple proteins with IRS1 in obesity and T2D in humans, provides new insights into the molecular mechanism of insulin resistance and identifies new targets for T2D drug development.
Collapse
Affiliation(s)
- Michael Caruso
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Danjun Ma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Zaher Msallaty
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
| | - Monique Lewis
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Berhane Seyoum
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI
| | - Wissam Al-janabi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | - Michael Diamond
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MIDepartment of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA
| | - Abdul B Abou-Samra
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MIDepartment of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Kurt Højlund
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Rebecca Tagett
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI
| | - Sorin Draghici
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| | | | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI
| |
Collapse
|
38
|
Abstract
Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology; Department of Biological Science; Graduate School of Science; Osaka Prefecture University; Osaka, Japan
| |
Collapse
|
39
|
Abstract
Insulin regulates glucose uptake by controlling the subcellular location of GLUT4 glucose transporters. GLUT4 is sequestered within fat and muscle cells during low-insulin states, and is translocated to the cell surface upon insulin stimulation. The TUG protein is a functional tether that sequesters GLUT4 at the Golgi matrix. To stimulate glucose uptake, insulin triggers TUG endoproteolytic cleavage. Cleavage accounts for a large proportion of the acute effect of insulin to mobilize GLUT4 to the cell surface. During ongoing insulin exposure, endocytosed GLUT4 recycles to the plasma membrane directly from endosomes, and bypasses a TUG-regulated trafficking step. Insulin acts through the TC10α GTPase and its effector protein, PIST, to stimulate TUG cleavage. This action is coordinated with insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases, and with other signals to direct overall GLUT4 targeting. Data support the idea that the N-terminal TUG cleavage product, TUGUL, functions as a novel ubiquitin-like protein modifier to facilitate GLUT4 movement to the cell surface. The C-terminal TUG cleavage product is extracted from the Golgi matrix, which vacates an "anchoring" site to permit subsequent cycles of GLUT4 retention and release. Together, GLUT4 vesicle translocation and TUG cleavage may coordinate glucose uptake with physiologic effects of other proteins present in the GLUT4-containing vesicles, and with potential additional effects of the TUG C-terminal product. Understanding this TUG pathway for GLUT4 retention and release will shed light on the regulation of glucose uptake and the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Jonathan P Belman
- Section of Endocrinology and Metabolism, Department of Internal Medicine, and Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, Box 208020, New Haven, CT, 06520-8020, USA
| | | | | |
Collapse
|
40
|
Insulin- and contraction-induced glucose transporter 4 traffic in muscle: insights from a novel imaging approach. Exerc Sport Sci Rev 2014; 41:77-86. [PMID: 23072821 DOI: 10.1097/jes.0b013e318275574c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin- and contraction-mediated glucose transporter 4 (GLUT4) trafficking have different kinetics in mature skeletal muscle. Intravital imaging indicates that insulin-stimulated GLUT4 trafficking differs between t-tubules and sarcolemma. In contrast, contraction-induced GLUT4 trafficking does not differ between membrane surfaces. This distinction likely is caused by differences in the underlying signaling pathways regulating GLUT4 vesicle depletion, GLUT4 membrane fusion, and GLUT4 reinternalization.
Collapse
|
41
|
Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ, Chen HW. Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res 2014; 12:539-49. [PMID: 24391143 DOI: 10.1158/1541-7786.mcr-13-0459] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED Kinesins are a superfamily of motor proteins and often deregulated in different cancers. However, the mechanism of their deregulation has been poorly understood. Through examining kinesin gene family expression in estrogen receptor (ER)-positive breast cancer cells, we found that estrogen stimulation of cancer cell proliferation involves a concerted regulation of specific kinesins. Estrogen strongly induces expression of 19 kinesin genes such as Kif4A/4B, Kif5A/5B, Kif10, Kif11, Kif15, Kif18A/18B, Kif20A/20B, Kif21, Kif23, Kif24, Kif25, and KifC1, whereas suppresses the expression of seven others, including Kif1A, Kif1C, Kif7, and KifC3. Interestingly, the bromodomain protein ANCCA/ATAD2, previously shown to be an estrogen-induced chromatin regulator, plays a crucial role in the up- and downregulation of kinesins by estrogen. Its overexpression drives estrogen-independent upregulation of specific kinesins. Mechanistically, ANCCA (AAA nuclear coregulator cancer associated) mediates E2-dependent recruitment of E2F and MLL1 histone methyltransferase at kinesin gene promoters for gene activation-associated H3K4me3 methylation. Importantly, elevated levels of Kif4A, Kif15, Kif20A, and Kif23 correlate with that of ANCCA in the tumors and with poor relapse-free survival of patients with ER-positive breast cancer. Their knockdown strongly impeded proliferation and induced apoptosis of both tamoxifen-sensitive and resistant cancer cells. Together, the study reveals ANCCA as a key mediator of kinesin family deregulation in breast cancer and the crucial role of multiple kinesins in growth and survival of the tumor cells. IMPLICATIONS These findings support the development of novel inhibitors of cancer-associated kinesins and their regulator ANCCA for effective treatment of cancers including tamoxifen-resistant breast cancers.
Collapse
Affiliation(s)
- June X Zou
- UC Davis Cancer Center/Basic Sciences, University of California, Davis, UCDMC Research III, Room 1400B, 4645 2nd Avenue, Sacramento, CA 95817.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
43
|
Oddoux S, Zaal KJ, Tate V, Kenea A, Nandkeolyar SA, Reid E, Liu W, Ralston E. Microtubules that form the stationary lattice of muscle fibers are dynamic and nucleated at Golgi elements. ACTA ACUST UNITED AC 2013; 203:205-13. [PMID: 24145165 PMCID: PMC3812964 DOI: 10.1083/jcb.201304063] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Live imaging reveals that muscle microtubules are highly dynamic and build a durable network nucleated by static Golgi elements. Skeletal muscle microtubules (MTs) form a nonclassic grid-like network, which has so far been documented in static images only. We have now observed and analyzed dynamics of GFP constructs of MT and Golgi markers in single live fibers and in the whole mouse muscle in vivo. Using confocal, intravital, and superresolution microscopy, we find that muscle MTs are dynamic, growing at the typical speed of ∼9 µm/min, and forming small bundles that build a durable network. We also show that static Golgi elements, associated with the MT-organizing center proteins γ-tubulin and pericentrin, are major sites of muscle MT nucleation, in addition to the previously identified sites (i.e., nuclear membranes). These data give us a framework for understanding how muscle MTs organize and how they contribute to the pathology of muscle diseases such as Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Sarah Oddoux
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Lippincott-Schwartz J. Insulin triggers surface-directed trafficking of sequestered GLUT4 storage vesicles marked by Rab10. Small GTPases 2013; 4:193-7. [PMID: 24030635 PMCID: PMC3976978 DOI: 10.4161/sgtp.26471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Understanding how glucose transporter isoform 4 (GLUT4) redistributes to the plasma membrane during insulin stimulation is a major goal of glucose transporter research. GLUT4 molecules normally reside in numerous intracellular compartments, including specialized storage vesicles and early/recycling endosomes. It is unclear how these diverse compartments respond to insulin stimulation to deliver GLUT4 molecules to the plasma membrane. For example, do they fuse with each other first or remain as separate compartments with different trafficking characteristics? Our recent live cell imaging studies are helping to clarify these issues. Using Rab proteins as specific markers to distinguish between storage vesicles and endosomes containing GLUT4, we demonstrate that it is primarily internal GLUT4 storage vesicles (GSVs) marked by Rab10 that approach and fuse at the plasma membrane and GSVs don’t interact with endosomes on their way to the plasma membrane. These new findings add strong support to the model that GSV release from intracellular retention plays a major role in supplying GLUT4 molecules onto the PM under insulin stimulation.
Collapse
Affiliation(s)
- Yu Chen
- The Eugene Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | - Jennifer Lippincott-Schwartz
- The Eugene Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
45
|
Sadler JBA, Bryant NJ, Gould GW, Welburn CR. Posttranslational modifications of GLUT4 affect its subcellular localization and translocation. Int J Mol Sci 2013; 14:9963-78. [PMID: 23665900 PMCID: PMC3676823 DOI: 10.3390/ijms14059963] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023] Open
Abstract
The facilitative glucose transporter type 4 (GLUT4) is expressed in adipose and muscle and plays a vital role in whole body glucose homeostasis. In the absence of insulin, only ~1% of cellular GLUT4 is present at the plasma membrane, with the vast majority localizing to intracellular organelles. GLUT4 is retained intracellularly by continuous trafficking through two inter-related cycles. GLUT4 passes through recycling endosomes, the trans Golgi network and an insulin-sensitive intracellular compartment, termed GLUT4-storage vesicles or GSVs. It is from GSVs that GLUT4 is mobilized to the cell surface in response to insulin, where it increases the rate of glucose uptake into the cell. As with many physiological responses to external stimuli, this regulated trafficking event involves multiple posttranslational modifications. This review outlines the roles of posttranslational modifications of GLUT4 on its function and insulin-regulated trafficking.
Collapse
Affiliation(s)
| | - Nia J. Bryant
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; E-Mails: (J.B.A.S.); (N.J.B.); (G.W.G.)
| | - Gwyn W. Gould
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; E-Mails: (J.B.A.S.); (N.J.B.); (G.W.G.)
| | - Cassie R. Welburn
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-141-330-6454; Fax: +44-141-330-5481
| |
Collapse
|
46
|
Patil H, Cho KI, Lee J, Yang Y, Orry A, Ferreira PA. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2. Open Biol 2013; 3:120183. [PMID: 23536549 PMCID: PMC3718338 DOI: 10.1098/rsob.120183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein–protein and protein–phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBDn= 1–4) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure–function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260 000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
47
|
A genomic toolkit to investigate kinesin and myosin motor function in cells. Nat Cell Biol 2013; 15:325-34. [PMID: 23417121 DOI: 10.1038/ncb2689] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/10/2013] [Indexed: 12/23/2022]
Abstract
Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein-protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages.
Collapse
|
48
|
Liu LZ, Cheung SCK, Lan LL, Ho SKS, Chan JCN, Tong PCY. Microtubule network is required for insulin-induced signal transduction and actin remodeling. Mol Cell Endocrinol 2013; 365:64-74. [PMID: 22996137 DOI: 10.1016/j.mce.2012.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/14/2012] [Accepted: 09/08/2012] [Indexed: 02/02/2023]
Abstract
Both microtubule and actin are required for insulin-induced glucose uptake. However, the roles of these two cytoskeletons and their relationship in insulin action still remain unclear. In this work, we examined the morphological change of microtubule/actin and their involvement in insulin signal transduction using rat skeletal muscle cells. Insulin rapidly led to microtubule clustering from ventral to dorsal surface of the cell. Microtubule filaments were rearranged to create space where new actin structures formed. Disruption of microtubule prevented insulin-induced actin remodeling and distal insulin signal transduction, with reduction in surface glucose transporter isoform 4 (GLUT4) and glucose uptake. Though microtubule mediated actin remodeling through PKCζ, reorganization of microtubule depended on tyrosine phosphorylation of insulin receptor, the mechanism is different from insulin-induced actin remodeling, which relied on the activity of PI3-kinase and PKCζ. We propose that microtubule network is required for insulin-induced signal transduction and actin remodeling in skeletal muscle cells.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Li Ka Shing Institute of Health, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
49
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Olson AL. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN MOLECULAR BIOLOGY 2012; 2012:856987. [PMID: 27335671 PMCID: PMC4890881 DOI: 10.5402/2012/856987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease.
Collapse
Affiliation(s)
- Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P.O. Box 26901, BMSB 964, Oklahoma City, OK 73190, USA
| |
Collapse
|