1
|
Liu X, Wang Q, Li X, Yang Y, Deng Y, Wang X, Wang P, Chen L, Ma L, Shan G. Fast Degradation of MecciRNAs by SUPV3L1/ELAC2 Provides a Novel Opportunity to Tackle Heart Failure With Exogenous MecciRNA. Circulation 2025; 151:1272-1290. [PMID: 39973625 DOI: 10.1161/circulationaha.124.070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Circular RNAs derived from both nuclear and mitochondrial genomes are identified in animal cells. Mitochondria-encoded circular RNAs (mecciRNAs) are attracting more attention, and several members of mecciRNAs have already been recognized in regulating mitochondrial functions. Mitochondria dysfunctions are well-known to participate in heart failure (HF). This study was designed to investigate the RNA metabolism of mecciRNAs and the relevant roles and potential application of mecciRNAs in HF. METHODS Compared with highly stable nuclear genome-encoded circular RNAs, the fast degradation feature of mecciRNAs is identified by RNA sequencing and a series of molecular, biochemical, and cellular experiments. The substantial protective effects of in vitro synthesized mecciRNAs were tested in both doxorubicin- and pressure overload-induced mouse models of HF. RESULTS We discover that mecciRNAs are promptly degraded by an animal-conserved complex of helicase SUPV3L1 (suppressor of var1, 3-like protein 1) and endoribonuclease ELAC2 (elaC ribonuclease Z 2). MecciRNA degradation complex and mecciRNAs interact with mitochondrial permeability transition pore and its regulators including TRAP1 (TNF receptor-associated protein 1) and CypD (cyclophilin D). MecciRNAs regulate mitochondrial levels of TRAP1 and CypD to modulate the opening of mitochondrial permeability transition pore and the release of mitochondrial reactive oxygen species. Exogenously applied mecciRNAs interact with cytosolic TRAP1 and increase mitochondrial levels of TRAP1, and lead to a more closed state of mitochondrial permeability transition pore to constrain deleterious reactive oxygen species release. HF conditions lead to stimulated mecciRNA degradation, and administration of in vitro synthesized mecciRNAs exhibits substantial protective effects in both doxorubicin- and pressure overload-induced mouse models of HF. CONCLUSIONS This study demonstrates the fast degradation of mecciRNAs and the associated regulations of mitochondrial reactive oxygen species release of mitochondrial permeability transition pore by mecciRNAs. HF conditions lead to dysregulated mecciRNA degradation, and exogenous mecciRNAs demonstrate treatment potential in mouse models of HF.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Qinwei Wang
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Xinya Li
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Yan Yang
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Yuqi Deng
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Xiaolin Wang
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Peipei Wang
- Department of Ultrasound, First Affiliated Hospital of Anhui Medical University, Hefei, China (P.W.)
| | - Liang Chen
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Likun Ma
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
| | - Ge Shan
- Department of Cardiology, Department of Laboratory Medicine, First Affiliated Hospital of University of Science and Technology of China, RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine (X. Liu, Q.W., X. Li, Y.Y., Y.D., X.W., L.C., L.M., G.S.), University of Science and Technology of China, Hefei
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM (G.S.), University of Science and Technology of China, Hefei
| |
Collapse
|
2
|
Li C, Dai H, Guo X, Zhou L, Jiang M. Comprehensive review of non-invasive-treatment-related cardiovascular toxicity in breast cancer. iScience 2025; 28:111759. [PMID: 40207253 PMCID: PMC11980005 DOI: 10.1016/j.isci.2025.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Cardiovascular toxicity is a significant side effect of breast cancer treatment and has emerged as a leading cause of non-tumor-related deaths among breast cancer survivors, emphasizing the critical need for effective monitoring and management of these complications. As breast cancer remains the most prevalent cancer among women, advancements in survival rates have been achieved through treatments such as chemotherapy, targeted therapy, endocrine therapy, immunotherapy, and radiotherapy. This review provides a comprehensive understanding of the cardiovascular toxicity mechanisms associated with both established and emerging breast cancer therapies, identifies potential therapeutic targets and monitoring strategies, and highlights key deficiencies and challenges in the field. By offering insights into the early detection, prevention, and management of cardiovascular complications, this review aims to guide future research directions and clinical practices, ultimately improving outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Cenyu Li
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinning Guo
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Meng Jiang
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| |
Collapse
|
3
|
Zhao M, Fu W, Zhang Y, Ma J, Yang X, Nie H, Wu W, Gao F, Wu F, Xin M, Yang K, He S. Chronic hypoxia-induced upregulation of hsa_circ_0005255 attenuates myocardial injury via targeting hsa-miR-3916/FTO/m6A axis. Int J Biol Macromol 2025; 310:143228. [PMID: 40246114 DOI: 10.1016/j.ijbiomac.2025.143228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Chronic hypoxia initiates compensatory mechanisms to protect the heart. Circular RNAs (circRNAs), a recently identified class of non-coding RNAs, represent a significant portion of mammalian transcriptome. We aimed to explore the underlying mechanisms of circRNA involvement in chronic hypoxia-related cardiovascular diseases. In the presents study, we firstly observed hsa_circ_0005255 was elevated in myocardial samples collected from patients with cyanotic heart disease through using circRNA array sequencing, which was confirmed both in vivo and in vitro. The upregulation of hsa_circ_0005255 reduced the levels of N6-methyladenosine (m6A) modification and protected cardiomyocytes from chronic hypoxia induced injury. Fat mass and obesity-associated protein (FTO), the classic regulator of methylation, was proved to be regulated by hsa_circ_0005255. Further research verified the direct target interactions of hsa_circ_0005255/hsa-miR-3916 and hsa-miR-3916/FTO. Our findings suggested hsa_circ_0005255 played pivotal protective role in cardiomyocytes via hsa-miR-3916/FTO/m6A axis. We also showed that silencing hsa_circ_0005255 increased myocardial apoptosis and worsened ischemia/reperfusion (I/R) injury in vivo. In addition, the expression of hsa_circ_0005255 in clinical myocardial samples showed a significant negative correlation with myocardial enzyme levels and early clinical outcomes. This study elucidates a novel mechanism that hsa_circ_0005255/hsa-miR-3916/FTO-m6A axis is involved in myocardial adaptation to chronic hypoxia, representing a promising therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Maolin Zhao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Weijie Fu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Yaolei Zhang
- Laboratory animal center, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Jianwen Ma
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Xuelin Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Huwei Nie
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Wei Wu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Feng Gao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Fan Wu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Mei Xin
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Ke Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Siyi He
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China.
| |
Collapse
|
4
|
Feng P, Yang F, Zang D, Bai D, Xu L, Fu Y, You R, Liu T, Yang X. Deciphering the roles of cellular and extracellular non-coding RNAs in chemotherapy-induced cardiotoxicity. Mol Cell Biochem 2025; 480:2177-2199. [PMID: 39485641 PMCID: PMC11961477 DOI: 10.1007/s11010-024-05143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Chemotherapy-induced cardiotoxicity is a major adverse effect, driven by multiple factors in its pathogenesis. Notably, RNAs have emerged as significant contributors in both cancer and heart failure (HF). RNAs carry genetic and metabolic information that mirrors the current state of cells, making them valuable as potential biomarkers and therapeutic tools for diagnosing, predicting, and treating a range of diseases, including cardiotoxicity. Over 97% of the genome is transcribed into non-coding RNAs (ncRNAs), including ribosomal RNA (rRNAs), transfer RNAs (tRNAs), and newly identified microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs). NcRNAs function not only within their originating cells but also in recipient cells by being transported through extracellular compartments, referred to as extracellular RNAs (exRNAs). Since ncRNAs were identified as key regulators of gene expression, numerous studies have highlighted their significance in both cancer and cardiovascular diseases. Nevertheless, the role of ncRNAs in cardiotoxicity remains not fully elucidated. The study aims to review the existing knowledge on ncRNAs in Cardio-Oncology and explore the potential of ncRNA-based biomarkers and therapies. These investigations could advance the clinical application of ncRNA research, improving early detection and mitigating of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Pan Feng
- Baoji Hospital of Traditional Chinese Medicine, Baoji, 721000, China
| | - Fan Yang
- Guang'an Men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dongmei Zang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Dapeng Bai
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Liyan Xu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Yueyun Fu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ranran You
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Tao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China.
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China.
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Alabere HO, Taylor AD, Miller BR, Nohoesu R, Nicoletti R, Mogus J, Meadows EM, Hollander JM. Noncoding RNA as potential therapeutics to rescue mitochondrial dysfunction in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2025; 328:H846-H864. [PMID: 40019197 DOI: 10.1152/ajpheart.00774.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
Noncoding RNAs (ncRNAs) are critical regulators of mitochondrial function in cardiovascular diseases. Several studies have explored the manipulation of ncRNAs in mitochondrial dysfunction in different cardiovascular disease contexts, however, there is a dearth of information on the exploration of these noncoding RNAs as actual therapeutics to ameliorate cardiovascular diseases. This systematic review examines the roles of various ncRNAs in modulating mitochondrial dysfunction across major cardiovascular diseases and how they can be targeted to the mitochondria. A comprehensive literature search was conducted using Web of Science and Scopus databases, following the PRISMA guidelines. Original research articles in the English language, focusing on ncRNAs and mitochondrial dysfunction in specific cardiovascular diseases, were eligible for inclusion. A total of 76 studies were included in the systematic review with up to 100 ncRNAs identified as therapeutic biomarkers. The identified ncRNAs participate in regulating mitochondrial processes including oxidative phosphorylation (OXPHOS), fission/fusion dynamics, apoptosis, and calcium handling in cardiovascular diseases. Mitochondrial targeting moieties including mitochondrial targeting cell-penetrating peptides, mitochondrial targeting liposomes, and aptamers can be conjugated to ncRNAs and delivered to the heart via various injection routes including the pericardium or the myocardium. However, significant challenges remain in developing effective delivery methods to modulate these ncRNAs in vivo.
Collapse
Affiliation(s)
- Hafsat O Alabere
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Brianna R Miller
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Remi Nohoesu
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Roxy Nicoletti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Joshua Mogus
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Ethan M Meadows
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - John M Hollander
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia, United States
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
6
|
Yu H, Wei D, Liao W, Shang X, Li D, Liu C, Deng Q, Huangfu H. Exosome-mediated effects of BRCA1 on cardiovascular artery disease. Cell Biol Toxicol 2025; 41:59. [PMID: 40080209 PMCID: PMC11906578 DOI: 10.1007/s10565-025-09996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/28/2025] [Indexed: 03/15/2025]
Abstract
The progression of coronary artery disease atherosclerosis (CAD) is closely associated with cardiomyocyte apoptosis and inflammatory responses. This study focused on investigating the impact of BRCA1 in exosomes (Exo) derived from M1 macrophages on CAD. Through the analysis of single-cell RNA-seq datasets, significant communication between macrophages and cardiomyocytes in CAD patients was observed. BRCA1, identified as a significant apoptosis-related gene, was pinpointed through the assessment of differential gene expression and weighted gene co-expression network analysis (WGCNA). Experimental procedures involved BRCA1 lentivirus transfection of M1 macrophages, isolation of Exo for application to cardiomyocytes and smooth muscle cells, cell viability assessments, and characterization of Exo. The results showed that BRCA1-Exo from M1 macrophages induced cardiomyocyte apoptosis and affected smooth muscle cell behavior. In vivo studies further supported the exacerbating effects of BRCA1-Exo on CAD progression. Overall, the involvement of Exo carrying BRCA1 from M1 macrophages is evident in the induction of cardiomyocyte apoptosis and the regulation of smooth muscle cell behaviors, thereby contributing to CAD atherosclerosis progression. These findings unveil novel molecular targets that could have potential implications for CAD treatment strategies.
Collapse
Affiliation(s)
- Hairui Yu
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Dong Wei
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Weiqian Liao
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Xiaoming Shang
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Dandan Li
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Chunzhao Liu
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Qimei Deng
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Haiquan Huangfu
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Peng L, Li H, Yuan S, Meng T, Chen Y, Fu X, Cao D. metaCDA: A Novel Framework for CircRNA-Driven Drug Discovery Utilizing Adaptive Aggregation and Meta-Knowledge Learning. J Chem Inf Model 2025; 65:2129-2144. [PMID: 39937612 DOI: 10.1021/acs.jcim.4c02193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
In the emerging field of RNA drugs, circular RNA (circRNA) has attracted much attention as a novel multifunctional therapeutic target. Delving deeper into the intricate interactions between circRNA and disease is critical for driving drug discovery efforts centered around circRNAs. Current computational methods face two significant limitations: a lack of aggregate information in heterogeneous graph networks and a lack of higher-order fusion information. To this end, we present a novel approach, metaCDA, which utilizes meta-knowledge and adaptive aggregate learning to improve the accuracy of circRNA and disease association predictions and addresses the limitations of both. We calculate multiple similarity measures between disease and circRNA, construct a heterogeneous graph based on these, and apply meta-networks to extract meta-knowledge from the heterogeneous graph, so that the constructed heterogeneous maps have adaptive contrast enhancement information. Then, we construct a nodal adaptive attention aggregation system, which integrates a multihead attention mechanism and a nodal adaptive attention aggregation mechanism, so as to achieve accurate capture of higher-order fusion information. We conducted extensive experiments, and the results show that metaCDA outperforms existing state-of-the-art models and can effectively predict disease-associated circRNA, opening up new prospects for circRNA-driven drug discovery.
Collapse
Affiliation(s)
- Li Peng
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411100, China
| | - Huaping Li
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411100, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, United States
| | - Tao Meng
- College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yifan Chen
- Institute of Artificial Intelligence Application, College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| | - Xiangzheng Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR 999077, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410003, China
| |
Collapse
|
8
|
Shao B, Wang Z, Luo P, Du P, Zhang X, Zhang H, Si X, Ma S, Chen W, Huang Y. Identifying insulin-responsive circRNAs in chicken pectoralis. BMC Genomics 2025; 26:148. [PMID: 39955508 PMCID: PMC11830218 DOI: 10.1186/s12864-025-11347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are stable, covalently closed non-coding RNAs formed by reverse splicing of precursor mRNA. They play critical roles in various biological processes, including insulin secretion and metabolism. However, their function in avian skeletal muscle's response to insulin remains poorly understood. This study aimed to comprehensively identify insulin-responsive circRNAs and explore their temporal and breed-specific regulation in poultry. RESULTS Using strand-specific RNA sequencing (ssRNA-Seq) on the pectoralis muscles of both Arbor Acres (AA) broilers and Silky fowls following insulin administration (5 IU/kg.BW, PBS as control). We identified 2,027 muscle circRNAs. Insulin-responsive circRNAs were detected in Silky fowls (29) and broilers (45) at 120 min, and in broilers (20) at 15 min post-injection. These circRNAs are enriched in processes such as exocrine pancreas development, response to exogenous stimuli, and regulation of intracellular signal transduction, likely mediated through a circRNA-miRNA network. Fewer insulin-responsive circRNAs were shared between time points in broilers (1) or between breeds (3) at 120 min. We further characterized a conserved insulin-responsive circRNA (circINSR), formed by exon 2 of the Insulin Receptor (INSR). The circINSR showed a similar spatiotemporal expression pattern to INSR, but exhibited distinct changes post-insulin administration. In broilers, INSR expression was dynamically modulated, while circINSR was downregulated only at 15 min (P < 0.01). Conversely, glucose did not change muscle circINSR but increased INSR at 10 min (P < 0.01). Energy restriction significantly downregulated circINSR (P < 0.01) without affecting INSR levels, and pyruvate had no effect on either circINSR or INSR levels. CONCLUSION This study reveals the dynamic and breed-specific roles of circRNAs, particularly circINSR, in avian skeletal muscle's response to insulin. The distinct regulation of circINSR and INSR under various metabolic conditions suggests a complex regulatory mechanism. These findings provide novel insights into the molecular basis of insulin signaling in avian species and highlight the potential of circRNAs as biomarkers for metabolic regulation.
Collapse
Affiliation(s)
- Binghao Shao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Liu X, Li Z. The role and mechanism of epigenetics in anticancer drug-induced cardiotoxicity. Basic Res Cardiol 2025; 120:11-24. [PMID: 38724618 DOI: 10.1007/s00395-024-01054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is the main factor contributing to the global burden of diseases, and the cardiotoxicity caused by anticancer drugs is an essential component that cannot be ignored. With the development of anticancer drugs, the survival period of cancer patients is prolonged; however, the cardiotoxicity caused by anticancer drugs is becoming increasingly prominent. Currently, cardiovascular disease has emerged as the second leading cause of mortality among long-term cancer survivors. Anticancer drug-induced cardiotoxicity has become a frontier and hot topic. The discovery of epigenetics has given the possibility of environmental changes in gene expression, protein synthesis, and traits. It has been found that epigenetics plays a pivotal role in promoting cardiovascular diseases, such as heart failure, coronary heart disease, and hypertension. In recent years, increasing studies have underscored the crucial roles played by epigenetics in anticancer drug-induced cardiotoxicity. Here, we provide a comprehensive overview of the role and mechanisms of epigenetics in anticancer drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
10
|
Shen H, Xu Q, Tu C, Peng Y, Xie Y, Miao Z, Yang R, Zhang J. Left ventricular trabecular complexity for risk stratification of cancer therapy-related cardiac dysfunction in breast cancer. MedComm (Beijing) 2025; 6:e70004. [PMID: 39760113 PMCID: PMC11695210 DOI: 10.1002/mco2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/02/2024] [Accepted: 09/19/2024] [Indexed: 01/07/2025] Open
Abstract
The left ventricular trabecular fractal dimension (LVTFD) derived from cardiac magnetic resonance reflects myocardial trabecular complexity, which is associated with cardiovascular disease risk. Baseline risk stratification of cancer therapy-related cardiac dysfunction (CTRCD) in patients with breast cancer who received anthracycline is a very important clinical issue. In this study, we used the Cox model to derive and validate a new score system based on LVTFD for baseline risk stratification of CTRCD in breast cancer patients receiving anthracycline. We also compare the performance of LVTFD-based score with the Heart Failure Association-International Cardio-Oncology Society (HFA-ICOS) score using C-index. This study enrolled 370 participants, of whom 73 participants developed CTRCD. The C-indices of LVTFD-based score integrating age, hypertension, previous cardiovascular disease, and maximal apical fractal dimension were higher than those of HFA-ICOS score for stratifying CTRCD (0.834 vs. 0.642 and 0.834 vs. 0.633, respectively, in derivation and validation cohort). LVTFD-based score can stratify the CTRCD risk, but HFA-ICOS score cannot. The above results reveal that the LVTFD-based score is an alternative method for baseline risk stratification of CTRCD in breast cancer who received anthracycline.
Collapse
Affiliation(s)
- Hesong Shen
- Department of RadiologyChongqing University Cancer Hospital & ChongqingCancer Institute & Chongqing Cancer HospitalChongqingChina
| | - Qian Xu
- School of MedicineChongqing UniversityChongqingChina
| | - Chunrong Tu
- Department of RadiologyChongqing University Cancer Hospital & ChongqingCancer Institute & Chongqing Cancer HospitalChongqingChina
| | - Yangling Peng
- Department of RadiologyChongqing University Cancer Hospital & ChongqingCancer Institute & Chongqing Cancer HospitalChongqingChina
| | - Yuhang Xie
- Department of RadiologyChongqing University Cancer Hospital & ChongqingCancer Institute & Chongqing Cancer HospitalChongqingChina
| | - Zhiming Miao
- Department of RadiologyChongqing University Cancer Hospital & ChongqingCancer Institute & Chongqing Cancer HospitalChongqingChina
| | - Rui Yang
- Department of RadiologyChongqing University Cancer Hospital & ChongqingCancer Institute & Chongqing Cancer HospitalChongqingChina
| | - Jiuquan Zhang
- Department of RadiologyChongqing University Cancer Hospital & ChongqingCancer Institute & Chongqing Cancer HospitalChongqingChina
| |
Collapse
|
11
|
Avagimyan A, Kakturskiy L, Pogosova N, Ottaviani G, Rizzo M, Sarrafzadegan N. Doxorubicin and cyclophosphamide mode of chemotherapy-related cardiomyopathy: Review of preclinical model. Curr Probl Cardiol 2025; 50:102882. [PMID: 39427867 DOI: 10.1016/j.cpcardiol.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Over the past 70 years, there has been extensive research focused on preventing chemotherapy-related cardiovascular complications. However, the current state of cardio-oncology research has raised more questions than answers. Experimental studies often present data that are difficult to compare and, at times, contradictory. One notable limitation in translating experimental findings to clinical practice is the reliance on models that administer only one chemotherapeutic drug to experimental animals, despite the common use of multidrug cancer treatments in real clinical settings. This article aims to discuss our own experience in modeling an experimental rat model of cardiomyopathy induced by the administration of two chemotherapeutic drugs, doxorubicin (adriamycin) and cyclophosphamide (AC mode of chemotherapy) - Avagimyan A., et al model, along with a subsequent review of morphological changes based on our personal archive.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Lev Kakturskiy
- A.P. Avtsyn Research Institute of Human Morphology, Petrovskiy NRCS, Moscow, Russia
| | - Nana Pogosova
- National Medical Research Centre of Cardiology after acad. E. I. Chazov, Moscow, Russia; Peoples' Friendship University of Russia after Patrice Lumumba (RUDN), Moscow, Russia
| | - Giulia Ottaviani
- Lino Rossi Research Center, Università degli Studi di Milano, Milan, Italy
| | | | - Nizal Sarrafzadegan
- Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
13
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
14
|
Yao R, Xu L, Cheng G, Wang Z, Liang R, Pei W, Cao L, Jia Y, Ye H, Hu F, Su Y. Elevated expression of hsa_circ_0000479 in neutrophils correlates with features of systemic lupus erythematosus. Ann Med 2024; 56:2309607. [PMID: 38300888 PMCID: PMC10836484 DOI: 10.1080/07853890.2024.2309607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE Accumulating evidence suggests that differentially expressed circular RNAs (circRNAs) play critical roles in immune cells of systemic lupus erythematosus (SLE) patients. Hsa_circ_0000479 has been studied in the field of cancer and infection, whereas seldom studied in autoimmune diseases. The aim of this study was to investigate the role and clinical value of neutrophil hsa_circ_0000479 in SLE. METHODS The expression levels of hsa_circ_0000479 in both healthy individuals and SLE patients' neutrophils were detected by qPCR and compared with those in peripheral blood mononuclear cells (PBMCs) . In addition, the correlation of hsa_circ_0000479 levels in neutrophils with the clinical and immunological features of SLE patients was also analysed. RESULTS The expression levels of hsa_circ_0000479 in the patients with SLE were significantly higher in neutrophils than that of PBMCs, and also significantly higher than that in healthy controls (HCs). Moreover, the expression levels of hsa_circ_0000479 in neutrophils were negatively associated with absolute neutrophil count and complement 3 (C3), whereas positively correlated with anti-dsDNA and anti-nucleosome antibodies in SLE. In addition, SLE patients with higher levels of hsa_circ_0000479 demonstrated more several clinical manifestations, including Raynaud's phenomenon, alopecia and leucopenia. CONCLUSIONS Hsa_circ_0000479 is up-regulated in neutrophils of SLE patients, and is also associated with several important laboratory indicators and clinical manifestations, suggesting that hsa_circ_0000479 in neutrophils was one of probable factors involved in the pathogenesis of SLE with potential clinical value.
Collapse
Affiliation(s)
- Ranran Yao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Gong Cheng
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Ruyu Liang
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Wenwen Pei
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, PR China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People’s Hospital, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, PR China
| |
Collapse
|
15
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
16
|
Jia Y, Wu Q, Yang Z, Sun R, Zhang K, Guo X, Xu R, Guo Y. Mechanisms of myocardial toxicity of antitumor drugs and potential therapeutic strategies: A review of the literature. Curr Probl Cardiol 2024; 49:102782. [PMID: 39134104 DOI: 10.1016/j.cpcardiol.2024.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
With the successive development of chemotherapy drugs, good results have been achieved in clinical application. However, myocardial toxicity is the biggest challenge. Anthracyclines, immune checkpoint inhibitors, and platinum drugs are widely used. Targeted drug delivery, nanomaterials and dynamic imaging evaluation are all emerging research directions. This article reviews the recent literature on the use of targeted nanodrug delivery and imaging techniques to evaluate the myocardial toxicity of antineoplastic drugs, and discusses the potential mechanisms.
Collapse
Affiliation(s)
- Yang Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Qihong Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhigang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Street, Chengdu 610041, China
| | - Ran Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Kun Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University; 20# South Renmin Road, Chengdu, Sichuan 610041, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education; 20# South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
17
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Xu Z, Guan C, Cheng Z, Zhou H, Qin W, Feng J, Wan M, Zhang Y, Jia C, Shao S, Guo H, Li S, Liu B. Research trends and hotspots of circular RNA in cardiovascular disease: A bibliometric analysis. Noncoding RNA Res 2024; 9:930-944. [PMID: 38680417 PMCID: PMC11047193 DOI: 10.1016/j.ncrna.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
From a global perspective, cardiovascular diseases (CVDs), the leading factor accounting for population mortality, and circRNAs, RNA molecules with stable closed-loop structures, have been proven to be closely related. The latent clinical value and the potential role of circRNAs in CVDs have been attracting increasing, active research interest, but bibliometric studies in this field are still lacking. Thus, in this study, we conducted a bibliometric analysis by using software such as VOSviewer, CiteSpace, Microsoft Excel, and the R package to determine the current research progress and hotspots and ultimately provide an overview of the development trends and future frontiers in this field. In our study, based on our search strategy, a total of 1206 publications published before July 31, 2023 were accessed from the WOSCC database. According to our findings, there is a notable increasing trend in global publications in the field of circRNA in CVDs. China was found to be the dominant country in terms of publication number, but a lack of high-quality articles was a significant fault. A cluster analysis on the co-cited references indicated that dilated cardiomyopathy, AMI, and cardiac hypertrophy are the greatest objects of concern. In contrast, a keywords analysis indicated that high importance has been ascribed to MI, abdominal aortic aneurysm, cell proliferation, and coronary artery diseases.
Collapse
Affiliation(s)
- Zehui Xu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houle Zhou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaming Feng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Melisandre Wan
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihan Zhang
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
19
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
20
|
Neufeldt D, Schmidt A, Mohr E, Lu D, Chatterjee S, Fuchs M, Xiao K, Pan W, Cushman S, Jahn C, Juchem M, Hunkler HJ, Cipriano G, Jürgens B, Schmidt K, Groß S, Jung M, Hoepfner J, Weber N, Foo R, Pich A, Zweigerdt R, Kraft T, Thum T, Bär C. Circular RNA circZFPM2 regulates cardiomyocyte hypertrophy and survival. Basic Res Cardiol 2024; 119:613-632. [PMID: 38639887 PMCID: PMC11319402 DOI: 10.1007/s00395-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) constitutes the most common genetic cardiac disorder. However, current pharmacotherapeutics are mainly symptomatic and only partially address underlying molecular mechanisms. Circular RNAs (circRNAs) are a recently discovered class of non-coding RNAs and emerged as specific and powerful regulators of cellular functions. By performing global circRNA-specific next generation sequencing in cardiac tissue of patients with hypertrophic cardiomyopathy compared to healthy donors, we identified circZFPM2 (hsa_circ_0003380). CircZFPM2, which derives from the ZFPM2 gene locus, is a highly conserved regulatory circRNA that is strongly induced in HCM tissue. In vitro loss-of-function experiments were performed in neonatal rat cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and HCM-patient-derived hiPSC-CMs. A knockdown of circZFPM2 was found to induce cardiomyocyte hypertrophy and compromise mitochondrial respiration, leading to an increased production of reactive oxygen species and apoptosis. In contrast, delivery of recombinant circZFPM2, packaged in lipid-nanoparticles or using AAV-based overexpression, rescued cardiomyocyte hypertrophic gene expression and promoted cell survival. Additionally, HCM-derived cardiac organoids exhibited improved contractility upon CM-specific overexpression of circZFPM2. Multi-Omics analysis further promoted our hypothesis, showing beneficial effects of circZFPM2 on cardiac contractility and mitochondrial function. Collectively, our data highlight that circZFPM2 serves as a promising target for the treatment of cardiac hypertrophy including HCM.
Collapse
MESH Headings
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Humans
- Animals
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/metabolism
- Induced Pluripotent Stem Cells/metabolism
- Rats
- Cell Survival
- Apoptosis/genetics
- Cells, Cultured
- Reactive Oxygen Species/metabolism
- RNA/genetics
- Animals, Newborn
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Dimyana Neufeldt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Ke Xiao
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Wen Pan
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Christopher Jahn
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Hannah Jill Hunkler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Giuseppe Cipriano
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Bjarne Jürgens
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Roger Foo
- Institute of Molecular and Cell Biology, A*Star, Singapore, Singapore
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
- Core Facility Proteomics, Institute of Toxicology, Hannover, Germany
| | - Robert Zweigerdt
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| |
Collapse
|
21
|
Xian G, Huang R, Xu M, Zhao H, Xu X, Chen Y, Ren H, Xu D, Zeng Q. Noncoding RNA regulates the expression of Krm1 and Dkk2 to synergistically affect aortic valve lesions. Exp Mol Med 2024; 56:1560-1573. [PMID: 38945954 PMCID: PMC11297286 DOI: 10.1038/s12276-024-01256-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is becoming an increasingly important global medical problem, but effective pharmacological treatments are lacking. Noncoding RNAs play a pivotal role in the progression of cardiovascular diseases, but their relationship with CAVD remains unclear. Sequencing data revealed differential expression of many noncoding RNAs in normal and calcified aortic valves, with significant differences in circHIPK3 and miR-182-5p expression. Overexpression of circHIPK3 ameliorated aortic valve lesions in a CAVD mouse model. In vitro experiments demonstrated that circHIPK3 inhibits the osteogenic response of aortic valve interstitial cells. Mechanistically, DEAD-box helicase 5 (DDX5) recruits methyltransferase 3 (METTL3) to promote the N6-methyladenosine (m6A) modification of circHIPK3. Furthermore, m6A-modified circHIPK3 increases the stability of Kremen1 (Krm1) mRNA, and Krm1 is a negative regulator of the Wnt/β-catenin pathway. Additionally, miR-182-5p suppresses the expression of Dickkopf2 (Dkk2), the ligand of Krm1, and attenuates the Krm1-mediated inhibition of Wnt signaling. Activation of the Wnt signaling pathway significantly contributes to the promotion of aortic valve calcification. Our study describes the role of the Krm1-Dkk2 axis in inhibiting Wnt signaling in aortic valves and suggests that noncoding RNAs are upstream regulators of this process.
Collapse
Affiliation(s)
- Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Rong Huang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Minhui Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Xingbo Xu
- Department of Cardiology, University Medical Center of Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Hao Ren
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
22
|
Wang Y, Tu J, Wu W, Xu Y, Li Y, Pan X, Liu B, Lu T, Han Q, Zhang H, Jiao L, Zhang Y, Yu XY, Shen Z, Li Y. The orchestration of cell-cycle reentry and ribosome biogenesis network is critical for cardiac repair. Theranostics 2024; 14:3927-3944. [PMID: 38994017 PMCID: PMC11234283 DOI: 10.7150/thno.96460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Myocardial infarction (MI) is a severe global clinical condition with widespread prevalence. The adult mammalian heart's limited capacity to generate new cardiomyocytes (CMs) in response to injury remains a primary obstacle in developing effective therapies. Current approaches focus on inducing the proliferation of existing CMs through cell-cycle reentry. However, this method primarily elevates cyclin dependent kinase 6 (CDK6) and DNA content, lacking proper cytokinesis and resulting in the formation of dysfunctional binucleated CMs. Cytokinesis is dependent on ribosome biogenesis (Ribo-bio), a crucial process modulated by nucleolin (Ncl). Our objective was to identify a novel approach that promotes both DNA synthesis and cytokinesis. Methods: Various techniques, including RNA/protein-sequencing analysis, Ribo-Halo, Ribo-disome, flow cytometry, and cardiac-specific tumor-suppressor retinoblastoma-1 (Rb1) knockout mice, were employed to assess the series signaling of proliferation/cell-cycle reentry and Ribo-bio/cytokinesis. Echocardiography, confocal imaging, and histology were utilized to evaluate cardiac function. Results: Analysis revealed significantly elevated levels of Rb1, bur decreased levels of circASXL1 in the hearts of MI mice compared to control mice. Deletion of Rb1 induces solely cell-cycle reentry, while augmenting the Ribo-bio modulator Ncl leads to cytokinesis. Mechanically, bioinformatics and the loss/gain studies uncovered that circASXL1/CDK6/Rb1 regulates cell-cycle reentry. Moreover, Ribo-Halo, Ribo-disome and circRNA pull-down assays demonstrated that circASXL1 promotes cytokinesis through Ncl/Ribo-bio. Importantly, exosomes derived from umbilical cord mesenchymal stem cells (UMSC-Exo) had the ability to enhance cardiac function by facilitating the coordinated signaling of cell-cycle reentry and Ribo-bio/cytokinesis. These effects were attenuated by silencing circASXL1 in UMSC-Exo. Conclusion: The series signaling of circASXL1/CDK6/Rb1/cell-cycle reentry and circASXL1/Ncl/Ribo-bio/cytokinesis plays a crucial role in cardiac repair. UMSC-Exo effectively repairs infarcted myocardium by stimulating CM cell-cycle reentry and cytokinesis in a circASXL1-dependent manner. This study provides innovative therapeutic strategies targeting the circASXL1 signaling network for MI and offering potential avenues for enhanced cardiac repair.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Junchu Tu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Weiliang Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yan Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P. R. China
| | - Yujie Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Key Laboratory of Cardiovascular Apparatus Innovation, Beijing 100037, P. R. China
| | - Bin Liu
- Department of Cardiology, the Second Hospital of Jilin University, Changchun, Jilin 130041, P. R. China
| | - Tonggan Lu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingfang Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Huiling Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Lijuan Jiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yu Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
23
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
24
|
Liu X, Yao X, Chen L. Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res 2024; 9:429-436. [PMID: 38511061 PMCID: PMC10950605 DOI: 10.1016/j.ncrna.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
CircRNAs are a class of single-stranded RNAs characterized by covalently looped structures. Emerging advances have promoted our understanding of circRNA biogenesis, nuclear export, biological functions, and functional mechanisms. Roles of circRNAs in diverse diseases have been increasingly recognized in the past decade, with novel approaches in bioinformatics analysis and new strategies in modulating circRNA levels, which have made circRNAs the hot spot for therapeutic applications. Moreover, due to the intrinsic features of circRNAs such as high stability, conservation, and tissue-/stage-specific expression, circRNAs are believed to be promising prognostic and diagnostic markers for diseases. Aiming cardiovascular disease (CVD), one of the leading causes of mortality worldwide, we briefly summarize the current understanding of circRNAs, provide the recent progress in circRNA functions and functional mechanisms in CVD, and discuss the future perspectives both in circRNA research and therapeutics based on existing knowledge.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Xuelin Yao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Liang Chen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
25
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
Qian C, Zhou Y, Zhang T, Dong G, Song M, Tang Y, Wei Z, Yu S, Shen Q, Chen W, Choi JP, Yan J, Zhong C, Wan L, Li J, Wang A, Lu Y, Zhao Y. Targeting PKM2 signaling cascade with salvianic acid A normalizes tumor blood vessels to facilitate chemotherapeutic drug delivery. Acta Pharm Sin B 2024; 14:2077-2096. [PMID: 38799619 PMCID: PMC11121179 DOI: 10.1016/j.apsb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 05/29/2024] Open
Abstract
Aberrant tumor blood vessels are prone to propel the malignant progression of tumors, and targeting abnormal metabolism of tumor endothelial cells emerges as a promising option to achieve vascular normalization and antagonize tumor progression. Herein, we demonstrated that salvianic acid A (SAA) played a pivotal role in contributing to vascular normalization in the tumor-bearing mice, thereby improving delivery and effectiveness of the chemotherapeutic agent. SAA was capable of inhibiting glycolysis and strengthening endothelial junctions in the human umbilical vein endothelial cells (HUVECs) exposed to hypoxia. Mechanistically, SAA was inclined to directly bind to the glycolytic enzyme PKM2, leading to a dramatic decrease in endothelial glycolysis. More importantly, SAA improved the endothelial integrity via activating the β-Catenin/Claudin-5 signaling axis in a PKM2-dependent manner. Our findings suggest that SAA may serve as a potent agent for inducing tumor vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jaesung P. Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney NSW 2050, Australia
| | - Juming Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, China
| | - Chongjin Zhong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wan
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jia Li
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney NSW 2109, Australia
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
27
|
Kuang Z, Kong M, Yan N, Ma X, Wu M, Li J. Precision Cardio-oncology: Update on Omics-Based Diagnostic Methods. Curr Treat Options Oncol 2024; 25:679-701. [PMID: 38676836 PMCID: PMC11082000 DOI: 10.1007/s11864-024-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
OPINION STATEMENT Cardio-oncology is an emerging interdisciplinary field dedicated to the early detection and treatment of adverse cardiovascular events associated with anticancer treatment, and current clinical management of anticancer-treatment-related cardiovascular toxicity (CTR-CVT) remains limited by a lack of detailed phenotypic data. However, the promise of diagnosing CTR-CVT using deep phenotyping has emerged with the development of precision medicine, particularly the use of omics-based methodologies to discover sensitive biomarkers of the disease. In the future, combining information produced by a variety of omics methodologies could expand the clinical practice of cardio-oncology. In this review, we demonstrate how omics approaches can improve our comprehension of CTR-CVT deep phenotyping, discuss the positive and negative aspects of available omics approaches for CTR-CVT diagnosis, and outline how to integrate multiple sets of omics data into individualized monitoring and treatment. This will offer a reliable technical route for lowering cardiovascular morbidity and mortality in cancer patients and survivors.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Kong
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ningzhe Yan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
28
|
Robert Li Y, Traore K, Zhu H. Novel molecular mechanisms of doxorubicin cardiotoxicity: latest leading-edge advances and clinical implications. Mol Cell Biochem 2024; 479:1121-1132. [PMID: 37310587 DOI: 10.1007/s11010-023-04783-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Doxorubicin (Dox) is among the most widely used cancer chemotherapeutic drugs. The clinical use of Dox is, however, limited due to its cardiotoxicity. Studies over the past several decades have suggested various mechanisms of Dox-induced cardiotoxicity (DIC). Among them are oxidative stress, topoisomerase inhibition, and mitochondrial damage. Several novel molecular targets and signaling pathways underlying DIC have emerged over the past few years. The most notable advances include discovery of ferroptosis as a major form of cell death in Dox cytotoxicity, and elucidation of the involvement of cardiogenetics and regulatory RNAs as well as multiple other targets in DIC. In this review, we discuss these advances, focusing on latest cutting-edge research discoveries from mechanistic studies reported in influential journals rather than surveying all research studies available in the literature.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Campbell University Jerry Wallace School of Osteopathic Medicine, Buies Creek, NC, 27560, USA.
| | - Kassim Traore
- Department of Biochemistry, Duquesne University College of Osteopathic Medicine, Pittsburgh, PA, 15282, USA
| | - Hong Zhu
- Department of Physiology and Pathophysiology, Campbell University Jerry Wallace School of Osteopathic Medicine, Buies Creek, NC, 27560, USA
| |
Collapse
|
29
|
Zhang L, Yu X, Hong N, Xia Y, Zhang X, Wang L, Xie C, Dong F, Tong J, Shen Y. CircRNA expression profiles and regulatory networks in the vitreous humor of people with high myopia. Exp Eye Res 2024; 241:109827. [PMID: 38354945 DOI: 10.1016/j.exer.2024.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Myopia is a global health and economic issue. Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of many ocular diseases. We first evaluated the circRNA profiles and possible roles in vitreous humor samples of individuals with high myopia by a competitive endogenous RNA (ceRNA) array. Vitreous humor samples were collected from 15 high myopic (5 for ceRNA array, and 10 for qPCR) and 15 control eyes (5 for ceRNA array, and 10 for qPCR) with idiopathic epiretinal membrane (ERM) and macular hole (MH). 486 circRNAs (339 upregulated and 147 downregulated) and 264 mRNAs (202 upregulated and 62 downregulated) were differentially expressed between the high myopia and control groups. The expression of hsa_circ_0033079 (hsa-circDicer1), hsa_circ_0029989 (hsa-circNbea), hsa_circ_0019072 (hsa-circPank1) and hsa_circ_0089716 (hsa-circEhmt1) were validated by qPCR. Pearson analysis and multivariate regression analysis showed positive and significant correlations for axial length with hsa-circNbea and hsa-circPank1. KEGG analysis showed that the target genes of circRNAs were enriched in the mTOR, insulin, cAMP, and VEGF signaling pathways. GO analysis indicated that circRNAs mainly targeted transcription, cytoplasm, and protein binding. CircRNA-associated ceRNA network analysis and PPI network analysis identified several critical genes for myopia. The expression of circNbea, circPank1, miR-145-5p, miR-204-5p, Nras, Itpr1 were validated by qPCR in the sclera of form-deprivation myopia (FDM) mice model. CircPank1/miR-145-5p/NRAS and circNbea/miR-204-5p/ITPR1 were identified and may be important in the progression of myopia. Our findings suggest that circRNAs may contribute to the pathogenesis of myopia and may serve as potential biomarkers.
Collapse
Affiliation(s)
- Liyue Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Yu
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Nan Hong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutong Xia
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuhong Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liyin Wang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Feng Dong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Jianping Tong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ye Shen
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Zhang Y, Cheng Y, Zhao W, Song F, Cao Y. Effects of Halloysite Nanotubes and Multi-walled Carbon Nanotubes on Kruppel-like Factor 15-Mediated Downstream Events in Mouse Hearts After Intravenous Injection. Cardiovasc Toxicol 2024; 24:408-421. [PMID: 38411850 DOI: 10.1007/s12012-024-09844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.
Collapse
Affiliation(s)
- Yimin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yujia Cheng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
31
|
Chi K, Liu J, Li X, Wang H, Li Y, Liu Q, Zhou Y, Ge Y. Biomarkers of heart failure: advances in omics studies. Mol Omics 2024; 20:169-183. [PMID: 38224222 DOI: 10.1039/d3mo00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Heart failure is a complex syndrome characterized by progressive circulatory dysfunction, manifesting clinically as pulmonary and systemic venous congestion, alongside inadequate tissue perfusion. The early identification of HF, particularly at the mild and moderate stages (stages B and C), presents a clinical challenge due to the overlap of signs, symptoms, and natriuretic peptide levels with other cardiorespiratory pathologies. Nonetheless, early detection coupled with timely pharmacological intervention is imperative for enhancing patient outcomes. Advances in high-throughput omics technologies have enabled researchers to analyze patient-derived biofluids and tissues, discovering biomarkers that are sensitive and specific for HF diagnosis. Due to the diversity of HF etiology, it is insufficient to study the diagnostic data of early HF using a single omics technology. This study reviewed the latest progress in genomics, transcriptomics, proteomics, and metabolomics for the identification of HF biomarkers, offering novel insights into the early clinical diagnosis of HF. However, the validity of biomarkers depends on the disease status, intervention time, genetic diversity and comorbidities of the subjects. Moreover, biomarkers lack generalizability in different clinical settings. Hence, it is imperative to conduct multi-center, large-scale and standardized clinical trials to enhance the diagnostic accuracy and utility of HF biomarkers.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Xinghua Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - He Wang
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yanliang Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yabin Zhou
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yuan Ge
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
32
|
Jin T, Wang H, Liu Y, Wang H. Circular RNAs: Regulators of endothelial cell dysfunction in atherosclerosis. J Mol Med (Berl) 2024; 102:313-335. [PMID: 38265445 DOI: 10.1007/s00109-023-02413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
Endothelial cell (EC) dysfunction is associated with atherosclerosis. Circular RNAs (circRNAs) are covalently closed loops formed by back-splicing, are highly expressed in a tissue-specific or cell-specific manner, and regulate ECs mainly through miRNAs (mircoRNAs) or protein sponges. This review describes the regulatory mechanisms and physiological functions of circRNAs, as well as the differential expression of circRNAs in aberrant ECs. This review focuses on their roles in inflammation, proliferation, migration, angiogenesis, apoptosis, senescence, and autophagy in ECs from the perspective of signaling pathways, such as nuclear factor κB (NF-κB), nucleotide-binding domain, leucine-rich-repeat family, pyrin-domain-containing 3 (NLRP3)/caspase-1, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and phosphoinositide-3 kinase/protein kinase B (PI3K/Akt). Finally, we address the issues and recent advances in circRNAs as well as circRNA-mediated regulation of ECs to improve our understanding of the molecular mechanisms underlying the progression of atherosclerosis and provide a reference for studies on circRNAs that regulate EC dysfunction and thus affect atherosclerosis.
Collapse
Affiliation(s)
- Tengyu Jin
- Hebei Medical University, Shijiazhuang 050011, Hebei, China
- Hebei General Hospital, Affiliated to Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Haoyuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuelin Liu
- Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Hebo Wang
- Hebei Medical University, Shijiazhuang 050011, Hebei, China.
- Hebei General Hospital, Affiliated to Hebei Medical University, Shijiazhuang 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
33
|
Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet 2024; 25:211-232. [PMID: 37968332 DOI: 10.1038/s41576-023-00662-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 233.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.
Collapse
Affiliation(s)
- Kinga Nemeth
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Recep Bayraktar
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - George A Calin
- Translational Molecular Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The RNA Interference and Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Crea F. Ischaemic heart disease: prevention, management, mechanisms, and new therapeutic targets. Eur Heart J 2024; 45:637-641. [PMID: 38427947 DOI: 10.1093/eurheartj/ehae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2024] Open
Affiliation(s)
- Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Gemelli Isola Hospital, Rome, Italy
| |
Collapse
|
35
|
Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev 2024; 321:246-262. [PMID: 37823450 DOI: 10.1111/imr.13279] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cell death can be executed through distinct subroutines. PANoptosis is a unique inflammatory cell death modality involving the interactions between pyroptosis, apoptosis, and necroptosis, which can be mediated by multifaceted PANoptosome complexes assembled via integrating components from other cell death modalities. There is growing interest in the process and function of PANoptosis. Accumulating evidence suggests that PANoptosis occurs under diverse stimuli, for example, viral or bacterial infection, cytokine storm, and cancer. Given the impact of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and PANoptosis activation, and outlines the multifaceted roles of PANoptosis in diseases together with a potential for therapeutic targeting. We also discuss important concepts and pressing issues for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is crucial for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Xu Sun
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yanpeng Yang
- Cardiac Care Unit, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaona Meng
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoli Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
36
|
Juchem M, Cushman S, Lu D, Chatterjee S, Bär C, Thum T. Encapsulating In Vitro Transcribed circRNA into Lipid Nanoparticles Via Microfluidic Mixing. Methods Mol Biol 2024; 2765:247-260. [PMID: 38381344 DOI: 10.1007/978-1-0716-3678-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
This chapter serves as a guide for researchers embarking on circular RNA-based translational studies. It provides a foundation for the successful encapsulation of circular RNA into lipid nanoparticles (LNPs) and facilitates progress in this emerging field. Crucial scientific methods and techniques involved in the formulation process, particle characterization, and downstream processing of circ-LNPs are covered. The production of in vitro transcribed circular RNA-containing LNPs based on a commercially available lipid mix is provided, in addition to the fundamentals for successful encapsulation based on lipid mixes composed of single components. Furthermore, the transfection and validation protocols for the identification of a functional and potentially therapeutic circRNA candidate for initial in vitro verification, before subsequent LNP studies, are explained.
Collapse
Affiliation(s)
- Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sarah Cushman
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
37
|
Wang L, Feng J, Feng X, Meng D, Zhao X, Wang J, Yu P, Xu GE, Hu M, Wang T, Lehmann HI, Li G, Sluijter JPG, Xiao J. Exercise-induced circular RNA circUtrn is required for cardiac physiological hypertrophy and prevents myocardial ischaemia-reperfusion injury. Cardiovasc Res 2023; 119:2638-2652. [PMID: 37897547 DOI: 10.1093/cvr/cvad161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023] Open
Abstract
AIMS Regular exercise training benefits cardiovascular health and effectively reduces the risk for cardiovascular disease. Circular RNAs (circRNAs) play important roles in cardiac pathophysiology. However, the role of circRNAs in response to exercise training and biological mechanisms responsible for exercise-induced cardiac protection remain largely unknown. METHODS AND RESULTS RNA sequencing was used to profile circRNA expression in adult mouse cardiomyocytes that were isolated from mice with or without exercise training. Exercise-induced circRNA circUtrn was significantly increased in swimming-trained adult mouse cardiomyocytes. In vivo, circUtrn was found to be required for exercise-induced physiological cardiac hypertrophy. circUtrn inhibition abolished the protective effects of exercise on myocardial ischaemia-reperfusion remodelling. circUtrn overexpression prevented myocardial ischaemia-reperfusion-induced acute injury and pathological cardiac remodelling. In vitro, overexpression of circUtrn promoted H9 human embryonic stem cell-induced cardiomyocyte growth and survival via protein phosphatase 5 (PP5). Mechanistically, circUtrn directly bound to PP5 and regulated the stability of PP5 in a ubiquitin-proteasome-dependent manner. Hypoxia-inducible factor 1α-dependent splicing factor SF3B1 acted as an upstream regulator of circUtrn in cardiomyocytes. CONCLUSION The circRNA circUtrn is upregulated upon exercise training in the heart. Overexpression of circUtrn can prevent myocardial I/R-induced injury and pathological cardiac remodelling.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Jingyi Feng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Xing Feng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Danni Meng
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Xuan Zhao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Jiaqi Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Pujiao Yu
- Department of Cardiology, Shanghai Tongji hospital, Tongji University School of Medicine, 389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Gui-E Xu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Meiyu Hu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - Tianhui Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| | - H Immo Lehmann
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht 3508GA, The Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht 3508GA, The Netherlands
| | - Junjie Xiao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Life Science, Shanghai University, 881 Yonghe Road, Chongchuan District, Nantong 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China
| |
Collapse
|
38
|
Mester-Tonczar J, Einzinger P, Hasimbegovic E, Kastner N, Schweiger V, Spannbauer A, Han E, Müller-Zlabinger K, Traxler-Weidenauer D, Bergler-Klein J, Gyöngyösi M, Lukovic D. A CircRNA-miRNA-mRNA Network for Exploring Doxorubicin- and Myocet-Induced Cardiotoxicity in a Translational Porcine Model. Biomolecules 2023; 13:1711. [PMID: 38136582 PMCID: PMC10741657 DOI: 10.3390/biom13121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Despite the widespread use of doxorubicin (DOX) as a chemotherapeutic agent, its severe cumulative cardiotoxicity represents a significant limitation. While the liposomal encapsulation of doxorubicin (Myocet, MYO) reduces cardiotoxicity, it is crucial to understand the molecular background of doxorubicin-induced cardiotoxicity. Here, we examined circular RNA expression in a translational model of pigs treated with either DOX or MYO and its potential impact on the global gene expression pattern in the myocardium. This study furthers our knowledge about the regulatory network of circRNA/miRNA/mRNA and its interaction with chemotherapeutics. Domestic pigs were treated with three cycles of anthracycline drugs (DOX, n = 5; MYO, n = 5) to induce cardiotoxicity. Untreated animals served as controls (control, n = 3). We applied a bulk mRNA-seq approach and the CIRIquant algorithm to identify circRNAs. The most differentially regulated circRNAs were validated under cell culture conditions, following forecasting of the circRNA-miRNA-mRNA network. We identified eight novel significantly regulated circRNAs from exonic and mitochondrial regions in the porcine myocardium. The forecasted circRNA-miRNA-mRNA network suggested candidate circRNAs that sponge miR-17, miR-15b, miR-130b, the let-7 family, and miR125, together with their mRNA targets. The identified circRNA-miRNA-mRNA network provides an updated, coherent view of the mechanisms involved in anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Julia Mester-Tonczar
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Patrick Einzinger
- Research Unit of Information and Software, Institute of Information Systems Engineering, 1040 Vienna, Austria;
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Nina Kastner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Victor Schweiger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Emilie Han
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Katrin Müller-Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Denise Traxler-Weidenauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (J.M.-T.); (E.H.); (N.K.); (V.S.); (A.S.); (K.M.-Z.); (D.T.-W.); (J.B.-K.); (M.G.)
| |
Collapse
|
39
|
Lin X, Wu G, Wang S, Huang J. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity. Front Pharmacol 2023; 14:1255158. [PMID: 38026961 PMCID: PMC10665513 DOI: 10.3389/fphar.2023.1255158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Doxorubicin-induced cardiotoxicity represents a prevalent adverse effect encountered in patients undergoing treatment with doxorubicin. To date, there has been no bibliometric study to summarize the field of doxorubicin-induced cardiotoxicity. In our study, we aim to determine the current status and frontiers of doxorubicin-induced cardiotoxicity by bibliometric analysis. Methods: The documents concerning doxorubicin-induced cardiotoxicity are obtained from the Web of Science Core Collection database (WOSCC), and VOSviewer 1.6.16, CiteSpace 5.1.3 and the WOSCC's literature analysis wire were used to conduct the bibliometric analysis. Results: In total, 7,021 publications were encompassed, which are produced by 37,152 authors and 6,659 organizations, 1,323 journals, and 101 countries/regions. The most productive author, institution, country and journal were Bonnie Ky with 35 publications, University of Texas with 190 documents, the United States with 1,912 publications, and PLOS ONE with 120 documents. The first high-cited article was published in the NEJM with 8,134 citations authored by DJ Slamon et al., in 2001. For keyword analysis, there are four clusters depicted in distinct directions. The keywords in the red cluster are oxidative stress, apoptosis, and cardiomyopathy. The keywords in the green cluster are cardiotoxicity, heart failure, and anthracycline. The keywords in the blue cluster are chemotherapy, trastuzumab, and paclitaxel. The keywords in the purple cluster are doxorubicin, adriamycin, and cancer. Most of the documents were derived from the United States, China and Italy (4,080/7,021, 58.1%). The number of studies from other countries should be increased. Conclusion: In conclusion, the main research hotspots and frontiers in the field of doxorubicin-induced cardiotoxicity include the role of doxorubicin in cardiotoxicity, the mechanisms underlying doxorubicin-induced cardiotoxicity, and the development of treatment strategies for doxorubicin-induced cardiotoxicity. More studies are needed to explore the mechanisms and treatment of doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Shuai Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Huang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Kong Y, Luo Y, Zheng S, Yang J, Zhang D, Zhao Y, Zheng H, An M, Lin Y, Ai L, Diao X, Lin Q, Chen C, Chen R. Mutant KRAS Mediates circARFGEF2 Biogenesis to Promote Lymphatic Metastasis of Pancreatic Ductal Adenocarcinoma. Cancer Res 2023; 83:3077-3094. [PMID: 37363990 PMCID: PMC10502454 DOI: 10.1158/0008-5472.can-22-3997] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/05/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Circular RNAs (circRNA) contribute to cancer stemness, proliferation, and metastasis. The biogenesis of circRNAs can be impacted by the genetic landscape of tumors. Herein, we identified a novel circRNA, circARFGEF2 (hsa_circ_0060665), which was upregulated in KRASG12D pancreatic ductal adenocarcinoma (PDAC) and positively associated with KRASG12D PDAC lymph node (LN) metastasis. CircARFGEF2 overexpression significantly facilitated KRASG12D PDAC LN metastasis in vitro and in vivo. Mechanistically, circARFGEF2 biogenesis in KRASG12D PDAC was significantly activated by the alternative splicing factor QKI-5, which recruited U2AF35 to facilitate spliceosome assembly. QKI-5 bound the QKI binding motifs and neighboring reverse complement sequence in intron 3 and 6 of ARFGEF2 pre-mRNA to facilitate circARFGEF2 biogenesis. CircARFGEF2 sponged miR-1205 and promoted the activation of JAK2, which phosphorylated STAT3 to trigger KRASG12D PDAC lymphangiogenesis and LN metastasis. Importantly, circARFGEF2 silencing significantly inhibited LN metastasis in the KrasG12D/+Trp53R172H/+Pdx-1-Cre (KPC) mouse PDAC model. These findings provide insight into the mechanism and metastasis-promoting function of mutant KRAS-mediated circRNA biogenesis. SIGNIFICANCE Increased splicing-mediated biogenesis of circARFGEF2 in KRAS-mutant pancreatic ductal adenocarcinoma activates JAK2-STAT3 signaling and triggers lymph node metastasis, suggesting circARFGEF2 could be a therapeutic target to inhibit pancreatic cancer progression.
Collapse
Affiliation(s)
- Yao Kong
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Yuming Luo
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shangyou Zheng
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jiabin Yang
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Dingwen Zhang
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Yue Zhao
- Department of Tumor Intervention, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, P.R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Le Ai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Xiayao Diao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qing Lin
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China
| | - Rufu Chen
- Department of Pancreas Center, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
41
|
Mittal R, Krishnan M P S, Saxena R, Sampath A, Goyal B. Non-coding RNAs, cancer treatment and cardiotoxicity: A triad of new hope. Cancer Treat Res Commun 2023; 36:100750. [PMID: 37531735 DOI: 10.1016/j.ctarc.2023.100750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
The global health landscape has experienced a shift towards non-communicable diseases, with cardiovascular diseases and cancer as leading causes of mortality. Although advancements in healthcare have led to an increase in life expectancy, they have concurrently resulted in a greater burden of chronic health conditions. Unintended consequences of anticancer therapies on various tissues, particularly the cardiovascular system, contribute to elevated morbidity and mortality rates that are not directly attributable to cancer. Consequently, the field of cardio-oncology has emerged to address the prevalence of CVD in cancer survivors and the cardiovascular toxicity associated with cancer therapies. Non-coding RNAs (ncRNAs) have been found to play a crucial role in early diagnosis, prognosis, and therapeutics within the realm of cardio-oncology. This comprehensive review evaluates the risk assessment of cancer survivors concerning the acquisition of adverse cardiovascular consequences, investigates the association of ncRNAs with CVD in patients undergoing cancer treatment, and delves into the role of ncRNAs in the diagnosis, treatment, and prevention of CVD in patients with a history of anti-cancer therapy. A thorough understanding of the pathogenesis of cancer therapy-related cardiovascular disease and the involvement of ncRNAs in cardio-oncology will enable healthcare professionals to provide anticancer treatment with minimized cardiovascular side effects, thereby improving patient outcomes. Ultimately, this comprehensive analysis aims to provide valuable insights into the complex interplay between cancer and cardiovascular diseases, facilitating the development of more effective diagnostic, therapeutic, and preventive strategies in the burgeoning field of cardio-oncology.
Collapse
Affiliation(s)
- Rishabh Mittal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Sarath Krishnan M P
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Rahul Saxena
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Ananyan Sampath
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India; Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India.
| |
Collapse
|
42
|
Montañés-Agudo P, van der Made I, Aufiero S, Tijsen AJ, Pinto YM, Creemers EE. Quaking regulates circular RNA production in cardiomyocytes. J Cell Sci 2023; 136:jcs261120. [PMID: 37272356 PMCID: PMC10323251 DOI: 10.1242/jcs.261120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNA molecules that are gaining increasing attention for their roles in various pathophysiological processes. The RNA-binding protein quaking (QKI) has been identified as a regulator of circRNA formation. In this study, we investigate the role of QKI in the formation of circRNAs in the heart by performing RNA-sequencing on Qki-knockout mice. Loss of QKI resulted in the differential expression of 17% of the circRNAs in adult mouse hearts. Interestingly, the majority of the QKI-regulated circRNAs (58%) were derived from genes undergoing QKI-dependent splicing, indicating a relationship between back-splicing and linear splicing. We compared these QKI-dependent circRNAs with those regulated by RBM20, another cardiac splicing factor essential for circRNA formation. We found that QKI and RBM20 regulate the formation of a distinct, but partially overlapping set of circRNAs in the heart. Strikingly, many shared circRNAs were derived from the Ttn gene, and they were regulated in an opposite manner. Our findings indicate that QKI not only regulates alternative splicing in the heart but also the formation of circRNAs.
Collapse
Affiliation(s)
- Pablo Montañés-Agudo
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Simona Aufiero
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Anke J. Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location University of Amsterdam, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol 2023; 16:67. [PMID: 37365670 DOI: 10.1186/s13045-023-01452-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomal circRNA serves a novel genetic information molecule, facilitating communication between tumor cells and microenvironmental cells, such as immune cells, fibroblasts, and other components, thereby regulating critical aspects of cancer progression including immune escape, tumor angiogenesis, metabolism, drug resistance, proliferation and metastasis. Interestingly, microenvironment cells have new findings in influencing tumor progression and immune escape mediated by the release of exosomal circRNA. Given the intrinsic stability, abundance, and broad distribution of exosomal circRNAs, they represent excellent diagnostic and prognostic biomarkers for liquid biopsy. Moreover, artificially synthesized circRNAs may open up new possibilities for cancer therapy, potentially bolstered by nanoparticles or plant exosome delivery strategies. In this review, we summarize the functions and underlying mechanisms of tumor cell and non-tumor cell-derived exosomal circRNAs in cancer progression, with a special focus on their roles in tumor immunity and metabolism. Finally, we examine the potential application of exosomal circRNAs as diagnostic biomarkers and therapeutic targets, highlighting their promise for clinical use.
Collapse
Affiliation(s)
- Fan Zhang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yongmin Yan
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, No. 2 North Yongning Road, Changzhou, 213017, Jiangsu, People's Republic of China.
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, People's Republic of China.
- Zhenjiang Key Laboratory of High Technology Research on sEVs Foundation and Transformation Application, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
44
|
Crea F. Addressing the pandemic of heart failure: old and new therapeutic opportunities. Eur Heart J 2023; 44:1961-1964. [PMID: 37294902 DOI: 10.1093/eurheartj/ehad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2023] Open
Affiliation(s)
- Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
45
|
Wang C, Liu T, Wang J, Cheng C, Zhang Z, Zhang J, Huang H, Li Y. CircHIPK3 negatively regulates autophagy by blocking VCP binding to the Beclin 1 complex in bladder cancer. Discov Oncol 2023; 14:86. [PMID: 37269429 DOI: 10.1007/s12672-023-00689-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023] Open
Abstract
Circular RNA HIPK3 (circHIPK3) mediates the progression of multiple cancers, including bladder cancer, by regulating cell migration, autophagy and epithelial mesenchymal transition. However, the mechanism by which circHIPK3 regulates autophagy in bladder cancer cells remains unclear. Autophagy is a common self-protection mechanism in eukaryotic cells and is essential for cell survival and death regulation. However, it is unclear whether circHIPK3 affects the level of autophagy in bladder cancer through binding proteins, and the potential regulatory mechanism is unknown. Here, we found that circHIPK3 levels were significantly lower and autophagy-related proteins were significantly upregulated in bladder cancer cells and tissues compared to normal controls. CircHIPK3 downregulation promoted bladder cancer cell proliferation, while circHIPK3 overexpression inhibited proliferation. CircHIPK3 overexpression significantly suppressed autophagy in bladder cancer cells. Overexpression of circHIPK3 did not affect VCP protein expression but inhibited the VCP/Beclin 1 interaction. VCP also stabilized Beclin 1 and promoted autophagy in bladder cancer cells by downregulating ataxin-3. Thus, circHIPK3 may play an important role in bladder cancer by inhibiting VCP-mediated autophagy.
Collapse
Affiliation(s)
- Chong Wang
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, People's Republic of China
- Department of Urology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241001, People's Republic of China
- School of Medicine, Yangpu Hospital, Tongji University, Shanghai, 200090, China
| | - Tiantian Liu
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, People's Republic of China
- Department of Urology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241001, People's Republic of China
| | - Jiawei Wang
- Department of Urology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241001, People's Republic of China
| | - Chao Cheng
- Department of Urology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241001, People's Republic of China
| | - Ze Zhang
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, People's Republic of China
- Department of Urology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241001, People's Republic of China
| | - Jingwei Zhang
- Department of Urology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241001, People's Republic of China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241001, People's Republic of China.
| | - Yawei Li
- Department of Urology, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, People's Republic of China.
| |
Collapse
|
46
|
Wang G, Cheng T, Yuan H, Zou F, Miao P, Jiao J. Tracing cellular interaction of circRNA-miRNA axis with Cu metal-organic framework supported DNA cascade assembly. Biosens Bioelectron 2023; 228:115226. [PMID: 36934606 DOI: 10.1016/j.bios.2023.115226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Circular RNAs (circRNAs) can act as molecular sponges of microRNA (miRNA) to form circRNA-miRNA axis, which regulates the expressions of downstream proteins. Although the mechanism has been widely reported in various bioprocesses, there is still a lack of reliable and facile way to intuitively monitor and locate the interaction between circRNA and miRNA inside living cells. In this study, multiple DNA probes are designed and loaded onto two-dimensional Cu metal-organic framework (2D Cu-MOF) nanosheets for one-step analysis of circRNA-miRNA axis. The nanosheets serve as not only powerful fluorescence quenchers but also excellent nanocarriers of abundant DNA probes for further assembly. The Probes@Cu-MOF complex can be applied to track the circRNA-miRNA axis in living cells with high sensitivity and co-localization analysis. This platform combines the transmembrane advantage of nanosheets and the signal amplification ability of localized DNA cascade assembly, so it holds great potential for understanding the biological functions of circRNA-miRNAs in cancer pathogenesis and for therapeutic applications.
Collapse
Affiliation(s)
- Gang Wang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Tao Cheng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Hongxiu Yuan
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Fangbo Zou
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China; Jinan Guoke Medical Technology Development Co, Ltd, Jinan, 250103, PR China.
| | - Jin Jiao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China.
| |
Collapse
|
47
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
Wei L, Liu L, Bai M, Ning X, Sun S. CircRNAs: versatile players and new targets in organ fibrosis. Cell Commun Signal 2023; 21:90. [PMID: 37131173 PMCID: PMC10152639 DOI: 10.1186/s12964-023-01051-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 05/04/2023] Open
Abstract
Organ fibrosis can occur in virtually all major organs with relentlessly progressive and irreversible progress, ultimately resulting in organ dysfunction and potentially death. Unfortunately, current clinical treatments cannot halt or reverse the progression of fibrosis to end-stage organ failure, and thus, advanced antifibrotic therapeutics are urgently needed. In recent years, a growing body of research has revealed that circular RNAs (circRNAs) play pivotal roles in the development and progression of organ fibrosis through highly diverse mechanisms of action. Thus, manipulating circRNAs has emerged as a promising strategy to mitigate fibrosis across different organ types. In this review, we systemically summarize the current state of knowledge about circRNA biological properties and the regulatory mechanisms of circRNAs. A comprehensive overview of major fibrotic signaling pathways and representative circRNAs that are known to modulate fibrotic signals are outlined. Then, we focus on the research progress of the versatile functional roles and underlying molecular mechanisms of circRNAs in various fibrotic diseases in different organs, including the heart, liver, lung, kidney and skin. Finally, we offer a glimpse into the prospects of circRNA-based interference and therapy, as well as their utilization as biomarkers in the diagnosis and prognosis of fibrotic diseases. Video abstract.
Collapse
Affiliation(s)
- Lei Wei
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Limin Liu
- School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710032, Shaanxi, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi, China.
| |
Collapse
|
49
|
Ao X, Ding W, Li X, Xu Q, Chen X, Zhou X, Wang J, Liu Y. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med (Berl) 2023; 101:501-526. [PMID: 37014377 DOI: 10.1007/s00109-023-02305-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of disease-related death worldwide and a significant obstacle to improving patients' health and lives. Mitochondria are core organelles for the maintenance of myocardial tissue homeostasis, and their impairment and dysfunction are considered major contributors to the pathogenesis of various CVDs, such as hypertension, myocardial infarction, and heart failure. However, the exact roles of mitochondrial dysfunction involved in CVD pathogenesis remain not fully understood. Non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, have been shown to be crucial regulators in the initiation and development of CVDs. They can participate in CVD progression by impacting mitochondria and regulating mitochondrial function-related genes and signaling pathways. Some ncRNAs also exhibit great potential as diagnostic and/or prognostic biomarkers as well as therapeutic targets for CVD patients. In this review, we mainly focus on the underlying mechanisms of ncRNAs involved in the regulation of mitochondrial functions and their role in CVD progression. We also highlight their clinical implications as biomarkers for diagnosis and prognosis in CVD treatment. The information reviewed herein could be extremely beneficial to the development of ncRNA-based therapeutic strategies for CVD patients.
Collapse
Affiliation(s)
- Xiang Ao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qingling Xu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xinhui Chen
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
50
|
Bo L, Wang Y, Li Y, Wurpel JND, Huang Z, Chen ZS. The Battlefield of Chemotherapy in Pediatric Cancers. Cancers (Basel) 2023; 15:cancers15071963. [PMID: 37046624 PMCID: PMC10093214 DOI: 10.3390/cancers15071963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The survival rate for pediatric cancers has remarkably improved in recent years. Conventional chemotherapy plays a crucial role in treating pediatric cancers, especially in low- and middle-income countries where access to advanced treatments may be limited. The Food and Drug Administration (FDA) approved chemotherapy drugs that can be used in children have expanded, but patients still face numerous side effects from the treatment. In addition, multidrug resistance (MDR) continues to pose a major challenge in improving the survival rates for a significant number of patients. This review focuses on the severe side effects of pediatric chemotherapy, including doxorubicin-induced cardiotoxicity (DIC) and vincristine-induced peripheral neuropathy (VIPN). We also delve into the mechanisms of MDR in chemotherapy to the improve survival and reduce the toxicity of treatment. Additionally, the review focuses on various drug transporters found in common types of pediatric tumors, which could offer different therapeutic options.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Youyou Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zoufang Huang
- Ganzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY 11439, USA
- Institute for Biotechnology, St. John’s University, Queens, NY 11439, USA
- Correspondence: (Z.H.); (Z.-S.C.); Tel.: +86-138-797-27439 (Z.H.); +1-718-990-1432 (Z.-S.C.); Fax: +1-718-990-1877 (Z.-S.C.)
| |
Collapse
|