1
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Natural products and ferroptosis: A novel approach for heart failure management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156783. [PMID: 40286752 DOI: 10.1016/j.phymed.2025.156783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/23/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The discovery of ferroptosis has brought a revolutionary breakthrough in heart failure treatment, and natural products, as a significant source of drug discovery, are gradually demonstrating their extraordinary potential in regulating ferroptosis and alleviating heart failure symptoms. In addition to chemically synthesized small molecule compounds, natural products have attracted attention as an important source for discovering compounds that target ferroptosis in treating heart failure. PURPOSE Systematically summarize and analyze the research progress on improving heart failure through natural products' modulation of the ferroptosis pathway. METHODS By comprehensively searching authoritative databases like PubMed, Web of Science, and China National Knowledge Infrastructure with keywords such as "heart failure", "cardiovascular disease", "heart disease", "ferroptosis", "natural products", "active compounds", "traditional Chinese medicine formulas", "traditional Chinese medicine", and "acupuncture", we aim to systematically review the mechanism of ferroptosis and its link with heart failure. We also want to explore natural small-molecule compounds, traditional Chinese medicine formulas, and acupuncture therapies that can inhibit ferroptosis to improve heart failure. RESULTS In this review, we not only trace the evolution of the concept of ferroptosis and clearly distinguish it from other forms of cell death but also establish a comprehensive theoretical framework encompassing core mechanisms such as iron overload and system xc-/GSH/GPX4 imbalance, along with multiple auxiliary pathways. On this basis, we innovatively link ferroptosis with various types of heart failure, covering classic heart failure types and extending our research to pre-heart failure conditions such as arrhythmia and aortic aneurysm, providing new insights for early intervention in heart failure. Importantly, this article systematically integrates multiple strategies of natural products for interfering with ferroptosis, ranging from monomeric compounds and bioactive components to crude extracts and further to traditional Chinese medicine formulae. In addition, non-pharmacological means such as acupuncture are also included. CONCLUSION This study fills the gap in the systematic description of the relationship between ferroptosis and heart failure and the therapeutic strategies of natural products, aiming to provide patients with more diverse treatment options and promote the development of the heart failure treatment field.
Collapse
Affiliation(s)
- Zeyu Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Zhihua Yang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shuai Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China
| | - Xianliang Wang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, No.88 Changling Road, Xiqing District, Tianjin 300381, PR China.
| |
Collapse
|
2
|
Bian Z, Wei L. The role of coenzyme Q10 in exercise tolerance and muscle strength. Arch Physiol Biochem 2025:1-20. [PMID: 40411469 DOI: 10.1080/13813455.2025.2507746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/24/2025] [Accepted: 05/12/2025] [Indexed: 05/26/2025]
Abstract
Context: Coenzyme Q10 (CoQ10) is a vital compound found in nearly all cells, and in mitochondria, it facilitates ATP production, and its reduced form acts as a powerful antioxidant, neutralizing reactive oxygen species (ROS) and preventing oxidative damage. Notably, during intense or endurance exercise, the body's increased energy demands and ROS production can lead to oxidative stress, muscle fatigue, inflammation, and exercise-induced muscle damage (EIMD). Objectives: This review will explore the mechanisms of CoQ10, its impact on exercise performance to be addressed. Results: CoQ10 has been shown to counteract these effects by supporting mitochondrial function, cell membranes, and reducing ROS. Research has demonstrated that CoQ10 supplementation lowers lipid peroxidation, reduces muscle damage indicators like creatine kinase (CK), lactate dehydrogenase (LDH-5 or LDH M), and myoglobin (Mb), and accelerates recovery from EIMD. Nevertheless, the impact of CoQ10 on performance has varied depending on factors such as dosage, duration, exercise type, and individual characteristics.
Collapse
Affiliation(s)
- Zhenwu Bian
- School of Humanities, Anhui Professional College of Art, HeFei, Anhui, China
| | - Liu Wei
- Basic Department, Anhui Water Conservancy Technical College, HeFei, Anhui, China
| |
Collapse
|
3
|
Dobrachinski F, Ribeiro KA, Bezerra IC, da Silva AJ, Pereira CMM, Vellasques K, Padilha HA, Haas SE, de Ávila DS, Gubert P. Nutraceutical approaches for Autism Spectrum Disorder treatment. Behav Brain Res 2025:115653. [PMID: 40409375 DOI: 10.1016/j.bbr.2025.115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/06/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
The Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that has been increasing in prevalence and is characterized by some degree of difficulty with social interaction, communication, and sensory response. According to the World Health Organization, ASD affects 1 in 100 children, and many factors may cause brain alterations, such as genetic and environmental factors. Currently, there is no standard treatment for ASD. Notably, one of the hallmarks of this condition is neuroinflammation since it has been suggested that autism results from central nervous system derangements due to chronic inflammatory reactions, with activation of microglial cells. Therefore, antioxidant and anti-inflammatory compounds may be nutraceutical supplements of interest to attenuate the impacts of neuroinflammation in ASD subjects. This review highlights the main molecules that have been successful in preclinical and clinical trials, as well as potential associations that might be further strategies to investigate.
Collapse
Affiliation(s)
- Fernando Dobrachinski
- Department of Basic Health Sciences, Faculty of Medicine, Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Kátia Alves Ribeiro
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
| | - Iverson Conrado Bezerra
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife, Brazil
| | - Artur José da Silva
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife, Brazil
| | | | - Kelle Vellasques
- Pharmacology and Pharmacometrics Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Heloísa Aiolfi Padilha
- Graduate Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Sandra Elisa Haas
- Pharmacology and Pharmacometrics Laboratory, LABFAR, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil
| | - Daiana Silva de Ávila
- Graduate Program in Biochemistry, Federal University of Pampa (UNIPAMPA), Uruguaiana, Brazil; Graduate Program in Biological Sciences, Toxicological Biochemistry, Federal University of Santa Maria, Brazil
| | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Biology Applied to Health, PPGBAS, Federal University of Pernambuco, Recife, Brazil; Graduate Program in Pure and Applied Chemistry, POSQUIPA, Federal University of Western of Bahia, Bahia, Brazil.
| |
Collapse
|
4
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Mechanism of ferroptosis in heart failure: The role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and intervention strategies. Ageing Res Rev 2025; 109:102770. [PMID: 40360081 DOI: 10.1016/j.arr.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/29/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
The ferroptosis of cardiomyocytes has been recognized as the core pathological mechanism of heart failure. During the evolution of cardiovascular diseases, the accumulation of angiotensin II and advanced glycation end products can lead to the excessive activation of the RAGE/TLR4-JNK1/2 pathway, which subsequently triggers ferritinophagy, clockophagy, and enhanced p53 activity, ultimately leading to cardiomyocyte ferroptosis. It is evident that deeply unraveling the specific mechanisms in this field and comprehensively evaluating potential drugs and therapeutic strategies targeting this pathway is crucial for improving the status of cardiomyocyte ferroptosis. However, our current understanding of this pathway's specific molecular biological mechanisms in the process of cardiomyocyte ferroptosis remains limited. In light of this, this paper first comprehensively reviews the historical context of ferroptosis research, compares the similarities and differences between ferroptosis and other standard modes of cell death, elucidates the core mechanisms of ferroptosis and its close connection with heart failure, aiming to establish a basic cognitive framework for readers on ferroptosis and its role in heart failure. Subsequently, the paper delves into the pivotal role of the RAGE/TLR4-JNK1/2 pathway in cardiomyocyte ferroptosis and its intricate molecular biological regulatory network. Furthermore, it systematically integrates various therapeutic approaches aimed at inhibiting RAGE, TLR4, and JNK1/2 activity to alleviate cardiomyocyte ferroptosis, encompassing RNA interference technology, gene knockout techniques, small molecule inhibitors, natural active ingredients, as well as traditional Chinese and Western medicines, with the ultimate goal of forging new avenues and strategies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, PR China.
| |
Collapse
|
5
|
Lv H, Liu Z, Sun M, Yu S, Hu M, Bian S, Ye X, Wang K, Dong H, Yang B, Zhou C, Huang L, Yang J. Cardiorespiratory fitness and effects of ubiquinol during high-altitude acclimatization and deacclimatization: The SCARF trial. iScience 2025; 28:112112. [PMID: 40160415 PMCID: PMC11952777 DOI: 10.1016/j.isci.2025.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/02/2025] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
The dynamic characteristics of cardiorespiratory fitness during high-altitude acclimatization and deacclimatization are not well elucidated, and whether ubiquinol exerts beneficial effects on cardiorespiratory fitness remains debated. In this trial, 41 volunteers were randomized to receive oral ubiquinol or placebo administration, 14 days before departure to highlands. All individuals were carried to 3900 m by air and then returned to 300 m after 7 days. Cardiopulmonary exercise testing was performed at baseline, on the third day after arrival in the highlands, and on the seventh day after return. This trial revealed the dynamic characteristics of cardiorespiratory fitness during the entire high-altitude acclimatization and deacclimatization process. The short-term journey to the highlands did not significantly affect cardiorespiratory fitness or physical performance capacity after the return. Cardiovascular and respiratory recoveries were desynchronized after returning from the highlands. Ubiquinol supplementation maintained the physical performance capacity in the highlands and facilitated acclimatization to hypoxia. Trial registration: The Chinese Clinical Trial Registry, ChiCTR2200059900, http://www.chictr.org.cn/ChiCTR2200059900.
Collapse
Affiliation(s)
- Hailin Lv
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Zhen Liu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Shiyong Yu
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Mingdong Hu
- Department of Physical Examination, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Shizhu Bian
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Xiaowei Ye
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Ke Wang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Hongmei Dong
- Department of Health Care and Geriatrics, The 941st Hospital of Joint Logistics Support Force of PLA, Sining, China
| | - Bingjie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Chao Zhou
- 953rd Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| | - Jie Yang
- Institute of Cardiovascular Diseases of PLA, the Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Cardiology, the Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, P.R. China
| |
Collapse
|
6
|
Pagano G, Lyakhovich A, Thomas PJ, Catalayud FVP, Tiano L, Zatterale A, Trifuoggi M. Prooxidant state in anticancer drugs and prospect use of mitochondrial cofactors and anti-inflammatory agents in cancer prevention. Inflammopharmacology 2025; 33:431-441. [PMID: 39656417 DOI: 10.1007/s10787-024-01613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 02/22/2025]
Abstract
An extensive body of literature has associated cancer with redox imbalance and inflammatory conditions. Thus, several studies and current clinical practice have relied on the use of anticancer drugs known to be associated with prooxidant state. On the other hand, a number of studies have reported on the effects of several antioxidants, anti-inflammatory agents and of mitochondrial cofactors (also termed mitochondrial nutrients, MNs) in counteracting or slowing carcinogenesis, or in controlling cancer growth. In the available literature, a body of evidence points on the roles of anti-inflammatory agents and of individual MNs against carcinogenesis or in controlling cancer cell proliferation, but only a few reports on the combined use of two or the effect of three MNs. These combinations are proposed as potentially successful tools to counteract carcinogenesis in prospective animal model studies or in adjuvant cancer treatment strategies. A "triad" of MNs are suggested to restore redox balance, mitigate side effects of prooxidative anticancer drugs, or aid in cancer prevention and/or adjuvant therapy. By elucidating their mechanistic underpinnings and appraising their clinical efficacy, we aim to contribute with a comprehensive understanding of these therapeutic modalities.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, 80136, Naples, Italy.
| | | | - Philippe J Thomas
- Environment and Climate Change Canada, Science Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, ON, K1A 0H3, Canada
| | | | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, Ancona, Italy
| | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, 80136, Naples, Italy
| |
Collapse
|
7
|
Stearns SA, Xun H, Haddad A, Rinkinen J, Bustos VP, Lee BT. Therapeutic Options for Migraines in the Microsurgical Patient: A Scoping Review. Plast Reconstr Surg 2024; 153:988e-1001e. [PMID: 37337332 DOI: 10.1097/prs.0000000000010861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
BACKGROUND There exists an increasing array of treatments proposed to prevent, alleviate, and abort symptoms of a migraine; however, for patients who undergo reconstructive microsurgery, caution must be taken to preserve vascular integrity. This study is the first-to-date scoping review of vascular and bleeding risk of current migraine therapies, with the purpose of identifying potential therapeutic agents for postoperative migraine management appropriate for microsurgical patients. METHODS Currently available migraine therapeutics were compiled from the UpToDate software system and the American Academy of Family Physicians. A PubMed literature review was performed for each therapeutic's effect on bleeding or vascular involvement. Data were compiled into tables of abortive, symptom-controlling and prophylactic, and nonpharmacologic treatments. Expert microsurgeons reviewed the data to provide recommendations for optimized patient care. RESULTS Triptans and other ergot derivatives demonstrated strong evidence of vasoconstriction and were greatly advised against for immediate postmicrosurgical use. Novel pharmaceutical therapies such as lasmiditan and calcitonin gene-related peptide antagonists have no literature indicating potential for vasoconstriction or hematoma and remain an investigational option for abortive medical treatment. For symptom control, acetaminophen appears the safest option, with clinical judgment and further research needed for use of nonsteroidal antiinflammatory drugs. Alternative treatment techniques may include migraine prophylaxis with botulinum toxin injection or nutraceutical treatment by means of magnesium supplementation or coenzyme Q10 administration, minimizing the need for additional medication in the postoperative setting. CONCLUSIONS Patients undergoing reconstructive microsurgery have a unique medical profile limiting the therapeutic options available to treat migraines. This review provides preliminary evidence to be considered as a guide for prescribing therapeutics for migraine in the postoperative setting.
Collapse
Affiliation(s)
| | - Helen Xun
- the Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Anthony Haddad
- the Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Jacob Rinkinen
- the Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Valeria P Bustos
- the Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Bernard T Lee
- the Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
8
|
Kim YJ, Park KM. Possible Mechanisms for Adverse Cardiac Events Caused by Exercise-Induced Hypertension in Long-Distance Middle-Aged Runners: A Review. J Clin Med 2024; 13:2184. [PMID: 38673457 PMCID: PMC11050973 DOI: 10.3390/jcm13082184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sudden cardiac death (SCD) is rare among athletes. However, hypertrophic cardiomyopathy is the leading cause of SCD among those <35 years of age. Meanwhile, coronary artery disease (CAD) is the primary SCD cause among those ≥35 years of age. CAD-induced plaque ruptures are believed to be a significant cause of cardiovascular diseases in middle-aged individuals who participate in extreme long-distance running activities such as marathons. A total of 1970 articles related to EIH were identified using search terms. Out of these, 1946 studies were excluded for reasons such as arterial hypertension, exercise-induced pulmonary hypertension, the absence of exercise stress testing (EST), and a lack of relevance to EIH. The study analyzed 24 studies related to both long-distance runners with exercise-induced hypertension (EIH) and the general public. Among these, 11 studies were quasi-experimentally designed studies used in randomized controlled trials (RCTs) on long-distance runners with EIH. Additionally, 12 studies utilized cohort designs, and one study with a quasi-experimental design was conducted among the general population. Recent studies suggest that an imbalance between oxygen demand and supply due to ventricular hypertrophy may be the actual cause of cardiovascular disease, regardless of CAD. Exercising excessively over an extended period can reduce endothelial function and increase arterial stiffness, which in turn increases afterload and leads to an excessive increase in blood pressure during exercise. Exercise-induced hypertension (EIH), which increases the morbidity rate of resting hypertension and is a risk factor for cardio-cerebro-vascular diseases, is more prevalent in middle-aged long-distance runners than in runners from other age groups, and it increases the prevalence of critical arrhythmias, such as atrial fibrillation or ventricular arrhythmias. EIH is associated with angiotensin II activity, and angiotensin II receptor blockers show promising effects in middle-aged runners. Further, guidelines for preventing excessive participation in races and restricting exercise intensity and frequency would be useful. This review identifies EIH as a potential risk factor for cardiovascular diseases and describes how EIH induces SCD.
Collapse
Affiliation(s)
- Young-Joo Kim
- Department of Exercise Rehabilitation Welfare, Sungshin Women’s University, 34 da-gil, Bomun-ro, Seongbuk-gu, Seoul 02844, Republic of Korea
| | - Kyoung-Min Park
- Division of Cardiology, Department of Internal Medicine, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
9
|
Daei S, Ildarabadi A, Goodarzi S, Mohamadi-Sartang M. Effect of Coenzyme Q10 Supplementation on Vascular Endothelial Function: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press Cardiovasc Prev 2024; 31:113-126. [PMID: 38630421 DOI: 10.1007/s40292-024-00630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Coenzyme Q10 (CoQ10) has gained attention as a potential therapeutic agent for improving endothelial function. Several randomized clinical trials have investigated CoQ10 supplementation's effect on endothelial function. However, these studies have yielded conflicting results, therefore this systematic review and meta-analysis were conducted. AIM This systematic review and meta-analysis were conducted to assess the effects of CoQ10 supplementation on endothelial factors. METHODS A comprehensive search was done in numerous databases until July 19th, 2023. Quantitative data synthesis was performed using a random-effects model, with weight mean difference (WMD) and 95% confidence intervals (CI). Standard methods were used for the assessment of heterogeneity, meta-regression, sensitivity analysis, and publication bias. RESULTS 12 studies comprising 489 subjects were included in the meta-analysis. The results demonstrated significant increases in Flow Mediated Dilation (FMD) after CoQ10 supplementation (WMD: 1.45; 95% CI: 0.55 to 2.36; p < 0.02), but there is no increase in Vascular cell adhesion protein (VCAM), and Intercellular adhesion molecule (ICAM) following Q10 supplementation (VCAM: SMD: - 0.34; 95% CI: - 0.74 to - 0.06; p < 0.10) (ICAM: SMD: - 0.18; 95% CI: - 0.82 to 0.46; p < 0.57). The sensitivity analysis showed that the effect size was robust in FMD and VCAM. In meta-regression, changes in FMD percent were associated with the dose of supplementation (slope: 0.01; 95% CI: 0.004 to 0.03; p = 0.006). CONCLUSIONS CoQ10 supplementation has a positive effect on FMD in a dose-dependent manner. Our findings show that CoQ10 has an effect on FMD after 8 weeks of consumption. Additional research is warranted to establish the relationship between CoQ10 supplementation and endothelial function.
Collapse
Affiliation(s)
- Shahrzad Daei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Ildarabadi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sima Goodarzi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohsen Mohamadi-Sartang
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Mancini A, Silvestrini A, Marcheggiani F, Capobianco E, Silvestri S, Lembo E, Orlando P, Beccia F, Nicolotti N, Panocchia N, Tiano L. Non-Thyroidal Illness in Chronic Renal Failure: Triiodothyronine Levels and Modulation of Extra-Cellular Superoxide Dismutase (ec-SOD). Antioxidants (Basel) 2024; 13:126. [PMID: 38275651 PMCID: PMC10812992 DOI: 10.3390/antiox13010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Oxidative stress (OS) is implicated in several chronic diseases. Extra-cellular superoxide dismutase (ec-SOD) catalyses the dismutation of superoxide anions with a protective role in endothelial cells. In chronic kidney disease (CKD), OS and thyroid dysfunction (low fT3 syndrome) are frequently present, but their relationship has not yet been investigated. This cohort study evaluated ec-SOD activity in CKD patients during haemodialysis, divided into "acute haemodialytic patients" (AH, 1-3 months of treatment) and "chronic haemodialytic patients" (CH, treated for a longer period). We also evaluated plasmatic total antioxidant capacity (TAC) and its relationships with thyroid hormones. Two basal samples ("basal 1", obtained 3 days after the last dialysis; and "basal 2", obtained 2 days after the last dialysis) were collected. On the same day of basal 2, a sample was collected 5 and 10 min after the standard heparin dose and at the end of the procedure. The ec-SOD values were significantly higher in CH vs. AH in all determinations. Moreover, the same patients had lower TAC values. When the CH patients were divided into two subgroups according to fT3 levels (normal or low), we found significantly lower ec-SOD values in the group with low fT3 in the basal, 5, and 10 min samples. A significant correlation was also observed between fT3 and ec-SOD in the basal 1 samples. These data, confirming OS and low fT3 syndrome in patients with CKD, suggest that low fT3 concentrations can influence ec-SOD activity and could therefore potentially contribute to endothelial oxidative damage in these patients.
Collapse
Affiliation(s)
- Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Emmanuele Capobianco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Erminia Lembo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Flavia Beccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Nicola Nicolotti
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Nicola Panocchia
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
11
|
Alehagen U, Alexander J, Aaseth JO, Larsson A, Svensson E, Opstad TB. Effects of an Intervention with Selenium and Coenzyme Q 10 on Five Selected Age-Related Biomarkers in Elderly Swedes Low in Selenium: Results That Point to an Anti-Ageing Effect-A Sub-Analysis of a Previous Prospective Double-Blind Placebo-Controlled Randomised Clinical Trial. Cells 2023; 12:1773. [PMID: 37443807 PMCID: PMC10340529 DOI: 10.3390/cells12131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Ageing is associated with cardiovascular disease (CVD). As no single biomarker reflects the full ageing process, we aimed to investigate five CVD- and age-related markers and the effects of selenium and coenzyme Q10 intervention to elucidate the mechanisms that may influence the course of ageing. Methods: This is a sub-study of a previous prospective double-blind placebo-controlled randomized clinical trial that included 441 subjects low in selenium (mean age 77, 49% women). The active treatment group (n = 220) received 200 µg/day of selenium and 200 mg/day of coenzyme Q10, combined. Blood samples were collected at inclusion and after 48 months for measurements of the intercellular adhesion molecule (ICAM-1), adiponectin, leptin, stem cell factor (SCF) and osteoprotegerin (OPG), using ELISAs. Repeated measures of variance and ANCOVA evaluations were used to compare the two groups. In order to better understand and reduce the complexity of the relationship between the biomarkers and age, factor analyses and structural equation modelling (SEM) were performed, and a structural model is presented. Results: Correlation analyses of biomarker values at inclusion in relation to age, and relevant markers related to inflammation, endothelial dysfunction and fibrosis, demonstrated the biomarkers' association with these pathological processes; however, only ICAM1 and adiponectin were directly correlated with age. SEM analyses showed, however, that the biomarkers ICAM-1, adiponectin, SCF and OPG, but not leptin, all had significant associations with age and formed two independent structural factors, both significantly related to age. While no difference was observed at inclusion, the biomarkers were differently changed in the active treatment and placebo groups (decreasing and increasing levels, respectively) at 48 months (p ≤ 0.02 in all, adjusted), and in the SEM model, they showed an anti-ageing impact. Conclusions: Supplementation with selenium/Q10 influenced the analysed biomarkers in ways indicating an anti-ageing effect, and by applying SEM methodology, the interrelationships between two independent structural factors and age were validated.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jan Alexander
- Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, 2382 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Erland Svensson
- Swedish Defence Research Agency, 164 40 Stockholm, Sweden (Ret.)
| | - Trine B. Opstad
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway;
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
12
|
Coenzyme Q10 Supplementation and Oxidative Stress Parameters: An Updated Systematic Review and Meta-analysis of Randomized Controlled Clinical Trials. Asian J Sports Med 2022. [DOI: 10.5812/asjsm-131308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Oxidative stress (OS) contributes to the development of some disorders, including malignancies, metabolic diseases, Alzheimer's disease, and Parkinson's disease. Objectives: The effects of coenzyme Q10 (CoQ10) supplementation on OS parameters have been assessed through an updated systematic review and meta-analysis. Methods: SCOPUS, PubMed, Cochrane Library, EMBASE, and Web of Sciences were used for article searching. Standardized mean difference (SMD) and its standard error were calculated using a random-effects DerSimonian and Laird model. All analyses were done using the STATA software version 16.0 (StataCorp, College Station, TX). Results: Based on twenty-five studies which remained to be incorporated in the meta-analysis, a statistically significant decrease in malondialdehyde (MDA) (SMD -2.74; 95% CI -3.89, -1.58; I2 = 96.9%) as well as nitric oxide (NO) (SMD -5.16; 95% CI -7.98, 2.34; I2 = 92.5%) was associated with CoQ10 supplementation, and a significant increase in total antioxidant capacity (TAC) (SMD 3.40; 95% CI 1.98, 4.83; I2 = 97.4%) and superoxide dismutase (SOD) activity (SMD 1.22; 95% CI 0.32, 2.12; I2 = 94.32%). Conclusions: The results showed no significant effect of CoQ10 supplementation on glutathione peroxidase (GPx), catalase (CAT) activities, and glutathione (GSH) levels. CoQ10 supplementation significantly reduced MDA and NO concentrations and increased TAC and SOD activity.
Collapse
|
13
|
Cicero AFG, Fogacci F, Di Micoli A, Veronesi M, Borghi C. Noninvasive instrumental evaluation of coenzyme Q 10 phytosome on endothelial reactivity in healthy nonsmoking young volunteers: A double-blind, randomized, placebo-controlled crossover clinical trial. Biofactors 2022; 48:1160-1165. [PMID: 35342994 PMCID: PMC9790510 DOI: 10.1002/biof.1839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
Coenzyme Q10 (CoQ10 ) is a natural antioxidant compound that prevents the vascular damage induced by free radicals and the activation of inflammatory signaling pathways. Supplementation with CoQ10 is safe though its bioavailability is generally low, as far as variable depending on the pharmaceutical form of preparation. Recently, the development of phytosome technology has improved the bioavailability of CoQ10 and definitely facilitated its effective use in clinical practice. The present double-blind, randomized, placebo-controlled, crossover clinical study aimed to investigate the effect on endothelial reactivity and total antioxidant capacity (TAC) of either acute and chronic supplementation with CoQ10 phytosome in a sample of 20 healthy young nonsmoking subjects. CoQ10 phytosome supplementation acutely improved endothelial reactivity in comparison with baseline and placebo (+4.7% ± 0.9% vs. -0.1 %± 0.3% p < 0.05). Middle-term supplementation of the tested pharmaceutical formulation of CoQ10 significantly improved mean arterial pressure (-2.2 ± 1.1 mmHg vs. 0.2 ± 0.7 mmHg, p < 0.05 vs. placebo) and TAC (+29.6% ± 3.2% vs. +1.9% ± 0.8%, p < 0.05 vs. placebo). Endothelial reactivity improved compared with baseline following middle-term dietary supplementation with CoQ10 phytosome (+5.7% ± 1.1%, p < 0.05).
Collapse
Affiliation(s)
- Arrigo F. G. Cicero
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Federica Fogacci
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | | | - Maddalena Veronesi
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Claudio Borghi
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| |
Collapse
|
14
|
Wardhani LFK, Dewi IP, Putra KNS, Andrianto A, Soemantri D. The physiological insight of Coenzyme-Q10 administration in preventing the incidence of reperfusion arrhythmia among patients undergoing coronary artery bypass grafting surgery. J Basic Clin Physiol Pharmacol 2022; 33:695-701. [PMID: 35858280 DOI: 10.1515/jbcpp-2021-0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
Abstract
Reperfusion arrhythmia following cardiac surgery has long been studied as part of myocardial damage. Reperfusion injury is thought to be exacerbated by oxygen-free radicals, whereas arrhythmogenic oscillations in membrane potential are mediated by reactive oxygen. Coenzyme Q10 is a lipid-soluble antioxidant that inhibits lipid peroxidation in biological membranes and supplies ATP cell synthesis, required as the organism's primary energy source. This process explains how Coenzyme Q10 helps stabilize membranes and avoids critical metabolite depletion that may relate to reperfusion arrhythmia. There is a reduction of iatrogenic Coenzyme Q10 after coronary artery bypass surgery (CABG). On the other hand, there is an increased inflammatory process and cellular demand post CABG procedure. It leads to ischemia that can be manifested as arrhythmia. Reperfusion arrhythmia was less common in patients who took Coenzyme Q10. These findings suggest that Coenzyme Q10 supplementation might help patients with heart surgery avoid reperfusion arrhythmia. However, a higher-quality randomized controlled study is needed to determine the effect of Coenzyme Q10 in preventing reperfusion arrhythmia in cardiac surgery patients.
Collapse
Affiliation(s)
- Louisa Fadjri Kusuma Wardhani
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ivana Purnama Dewi
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia.,Faculty of Medicine, Duta Wacana Christian University, Yogyakarta, Indonesia
| | - Kresna Nugraha Setia Putra
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Andrianto Andrianto
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Djoko Soemantri
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Cardiology and Vascular Medicine, Dr. Soetomo General Hospital, Surabaya, Indonesia
| |
Collapse
|
15
|
Sue-Ling CB, Abel WM, Sue-Ling K. Coenzyme Q10 as Adjunctive Therapy for Cardiovascular Disease and Hypertension: A Systematic Review. J Nutr 2022; 152:1666-1674. [PMID: 35348726 DOI: 10.1093/jn/nxac079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/07/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mitochondrial ATP production requires a small electron carrier, coenzyme Q10 (CoQ10), which has been used as adjunctive therapy in patients with cardiovascular disease (CVD) and hypertension (HTN) because of its bioenergetics and antioxidant properties. Randomized controlled trials (RCTs) beyond the last 2 decades evaluating CoQ10 added to conventional therapy resulted in mixed results and were underpowered to address major clinical endpoints. OBJECTIVES The objective of this systematic review was to examine the impact of CoQ10 supplementation on older adults with CVD or HTN in the last 2 decades (2000-2020). METHODS PubMed/Medline, Cochrane Database, CINAHL, and Google Scholar databases were searched systematically, and references from selected studies were manually reviewed, to identify RCTs or crossover studies evaluating the efficacy of CoQ10 supplementation. Data extracted from selected studies included trial design and duration, treatment, dose, participant characteristics, study variables, and important findings. RESULTS A total of 14 studies (1067 participants) met the inclusion criteria. The effect of CoQ10 supplementation was examined among predominantly older adult males with heart failure (HF) (n = 6), HTN (n = 4), and ischemic heart disease (n = 3), and preoperatively in patients scheduled for cardiac surgery (n = 1). CoQ10 supplementation in patients with HF improved functional capacity, increased serum CoQ10 concentrations, and led to fewer major adverse cardiovascular events. CoQ10 had positive quantifiable effects on inflammatory markers in patients with ischemic heart disease. Myocardial hemodynamics improved in patients who received CoQ10 supplementation before cardiac surgery. Effects on HTN were inconclusive. CONCLUSIONS In predominantly older adult males with CVD or HTN, CoQ10 supplementation added to conventional therapy is safe and offers benefits clinically and at the cellular level. However, results of the trials need to be viewed with caution, and further studies are indicated before widespread usage of CoQ10 is recommended in all older adults.
Collapse
Affiliation(s)
| | - Willie M Abel
- School of Nursing, The University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Keith Sue-Ling
- Department of Cardiology, University Hospital, Augusta, GA, USA
| |
Collapse
|
16
|
Sex-Dependent Protective Effect of Combined Application of Solubilized Ubiquinol and Selenium on Monocrotaline-Induced Pulmonary Hypertension in Wistar Rats. Antioxidants (Basel) 2022; 11:antiox11030549. [PMID: 35326199 PMCID: PMC8944686 DOI: 10.3390/antiox11030549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquinol exhibits anti-inflammatory and antioxidant properties. Selenium is a part of a number of antioxidant enzymes. The monocrotaline inducible model of pulmonary hypertension used in this study includes pathological links that may act as an application for the use of ubiquinol with high bioavailability and selenium metabolic products. On day 1, male and female rats were subcutaneously injected with a water-alcohol solution of monocrotaline or only water-alcohol solution. On days 7 and 14, some animals were intravenously injected with either ubiquinol’s vehicle or solubilized ubiquinol, or orally with selenium powder daily, starting from day 7, or received both ubiquinol + selenium. Magnetic resonance imaging of the lungs was performed on day 20. Hemodynamic parameters and morphometry were measured on day 22. An increased right ventricle systolic pressure in relation to control was demonstrated in all groups of animals of both sexes, except the group of males receiving the combination of ubiquinol + selenium. The relative mass of the right ventricle did not differ from the control in all groups of males and females receiving either ubiquinol alone or the combination. Magnetic resonance imaging revealed impaired perfusion in almost all animals examined, but pulmonary fibrosis developed in only half of the animals in the ubiquinol group. Intravenous administration of ubiquinol has a protective effect on monocrotaline-induced pulmonary hypertension development resulting in reduced right ventricle hypertrophy, and lung mass. Ubiquinol + selenium administration resulted in a less severe increase in the right ventricle systolic pressure in male rats but not in females 3 weeks after the start of the experiment. This sex-dependent effect was not observed in the influence of ubiquinol alone.
Collapse
|
17
|
Gutierrez-Mariscal FM, de la Cruz-Ares S, Torres-Peña JD, Alcalá-Diaz JF, Yubero-Serrano EM, López-Miranda J. Coenzyme Q 10 and Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10060906. [PMID: 34205085 PMCID: PMC8229886 DOI: 10.3390/antiox10060906] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023] Open
Abstract
Coenzyme Q10 (CoQ10), which plays a key role in the electron transport chain by providing an adequate, efficient supply of energy, has another relevant function as an antioxidant, acting in mitochondria, other cell compartments, and plasma lipoproteins. CoQ10 deficiency is present in chronic and age-related diseases. In particular, in cardiovascular diseases (CVDs), there is a reduced bioavailability of CoQ10 since statins, one of the most common lipid-lowering drugs, inhibit the common pathway shared by CoQ10 endogenous biosynthesis and cholesterol biosynthesis. Different clinical trials have analyzed the effect of CoQ10 supplementation as a treatment to ameliorate these deficiencies in the context of CVDs. In this review, we focus on recent advances in CoQ10 supplementation and the clinical implications in the reduction of cardiovascular risk factors (such as lipid and lipoprotein levels, blood pressure, or endothelial function) as well as in a therapeutic approach for the reduction of the clinical complications of CVD.
Collapse
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Silvia de la Cruz-Ares
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Juan F. Alcalá-Diaz
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clínica de Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (S.d.l.C.-A.); (J.D.T.-P.); (J.F.A.-D.); (E.M.Y.-S.)
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
- Correspondence: ; Tel.: +34-957-012-830
| |
Collapse
|
18
|
Kirkman DL, Robinson AT, Rossman MJ, Seals DR, Edwards DG. Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol 2021; 320:H2080-H2100. [PMID: 33834868 PMCID: PMC8163660 DOI: 10.1152/ajpheart.00917.2020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) affects one in three adults and remains the leading cause of death in America. Advancing age is a major risk factor for CVD. Recent plateaus in CVD-related mortality rates in high-income countries after decades of decline highlight a critical need to identify novel therapeutic targets and strategies to mitigate and manage the risk of CVD development and progression. Vascular dysfunction, characterized by endothelial dysfunction and large elastic artery stiffening, is independently associated with an increased CVD risk and incidence and is therefore an attractive target for CVD prevention and management. Vascular mitochondria have emerged as an important player in maintaining vascular homeostasis. As such, age- and disease-related impairments in mitochondrial function contribute to vascular dysfunction and consequent increases in CVD risk. This review outlines the role of mitochondria in vascular function and discusses the ramifications of mitochondrial dysfunction on vascular health in the setting of age and disease. The adverse vascular consequences of increased mitochondrial-derived reactive oxygen species, impaired mitochondrial quality control, and defective mitochondrial calcium cycling are emphasized, in particular. Current evidence for both lifestyle and pharmaceutical mitochondrial-targeted strategies to improve vascular function is also presented.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
19
|
Xu W, Ma X, Yao J, Wang D, Li W, Liu L, Shao L, Wang Y. Increasing coenzyme Q 10 yield from Rhodopseudomonas palustris by expressing rate-limiting enzymes and blocking carotenoid and hopanoid pathways. Lett Appl Microbiol 2021; 73:88-95. [PMID: 33783839 DOI: 10.1111/lam.13479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022]
Abstract
Coenzyme Q10 (CoQ10 ), a strong antioxidant, is used extensively in food, cosmetic and medicine industries. A natural producer, Rhodopseudomonas palustris, was engineered to overproduce CoQ10 . For increasing the CoQ10 content, crtB gene was deleted to block the carotenoid pathway. crtB gene deletion led to 33% improvement of CoQ10 content over the wild type strain. However, it was found that the yield of hopanoids was also increased by competing for the precursors from carotenoid pathway with CoQ10 pathway. To further increase the CoQ10 content, hopanoid pathway was blocked by deleting shc gene, resulting in R. palustris [Δshc, ΔcrtB] to produce 4·7 mg g-1 DCW CoQ10 , which was 1·2 times higher than the CoQ10 content in the wild type strain. The common strategy of co-expression of rate-limiting enzymes (DXS, DPS and UbiA) was combined with the pathway blocking method resulted in 8·2 mg g-1 DCW of CoQ10 , which was 2·9 times higher than that of wild type strain. The results suggested a synergistic effect among different metabolic engineering strategies. This study demonstrates the potential of R. palustris for CoQ10 production and provides viable strategies to increase CoQ10 titer.
Collapse
Affiliation(s)
- W Xu
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - X Ma
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - J Yao
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - D Wang
- Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, China
| | - W Li
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Li Liu
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - L Shao
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Y Wang
- The Xi'an key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Qin X, Zhang J, He Y, Zhang R, Cheng H, Chen C, Qin X. Synthesis and Biological Activities of Coenzyme Q Derivatives Containing (4-Aryloxylaryl)amino Moiety. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202011026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Gutierrez-Mariscal FM, Arenas-de Larriva AP, Limia-Perez L, Romero-Cabrera JL, Yubero-Serrano EM, López-Miranda J. Coenzyme Q 10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int J Mol Sci 2020; 21:ijms21217870. [PMID: 33114148 PMCID: PMC7660335 DOI: 10.3390/ijms21217870] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Apart from its main function in the mitochondria as a key element in electron transport, Coenzyme Q10 (CoQ10) has been described as having multiple functions, such as oxidant action in the generation of signals and the control of membrane structure and phospholipid and cellular redox status. Among these, the most relevant and most frequently studied function is the potent antioxidant capability of its coexistent redox forms. Different clinical trials have investigated the effect of CoQ10 supplementation and its ability to reduce oxidative stress. In this review, we focused on recent advances in CoQ10 supplementation, its role as an antioxidant, and the clinical implications that this entails in the treatment of chronic diseases, in particular cardiovascular diseases, kidney disease, chronic obstructive pulmonary disease, non-alcoholic fatty liver disease, and neurodegenerative diseases. As an antioxidant, CoQ10 has proved to be of potential use as a treatment in diseases in which oxidative stress is a hallmark, and beneficial effects of CoQ10 have been reported in the treatment of chronic diseases. However, it is crucial to reach a consensus on the optimal dose and the use of different formulations, which vary from ubiquinol or ubiquinone Ubisol-Q10 or Qter®, to new analogues such as MitoQ, before we can draw a clear conclusion about its clinical use. In addition, a major effort must be made to demonstrate its beneficial effects in clinical trials, with a view to making the implementation of CoQ10 possible in clinical practice.
Collapse
Affiliation(s)
- Francisco Miguel Gutierrez-Mariscal
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antonio Pablo Arenas-de Larriva
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Laura Limia-Perez
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Juan Luis Romero-Cabrera
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elena Maria Yubero-Serrano
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (E.M.Y.-S.); (J.L.-M.); Tel.: +34-957213733 (E.M.Y.-S.); +34-957010947 (J.L.-M.); Fax: +34-957218250 (J.L.-M.)
| | - Jose López-Miranda
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (F.M.G.-M.); (A.P.A.-d.L.); (L.L.-P.); (J.L.R.-C.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (E.M.Y.-S.); (J.L.-M.); Tel.: +34-957213733 (E.M.Y.-S.); +34-957010947 (J.L.-M.); Fax: +34-957218250 (J.L.-M.)
| |
Collapse
|
22
|
Morris G, Puri BK, Olive L, Carvalho A, Berk M, Walder K, Gustad LT, Maes M. Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med 2020; 18:305. [PMID: 33070778 PMCID: PMC7570030 DOI: 10.1186/s12916-020-01749-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Potential routes whereby systemic inflammation, oxidative stress and mitochondrial dysfunction may drive the development of endothelial dysfunction and atherosclerosis, even in an environment of low cholesterol, are examined. MAIN TEXT Key molecular players involved in the regulation of endothelial cell function are described, including PECAM-1, VE-cadherin, VEGFRs, SFK, Rho GEF TRIO, RAC-1, ITAM, SHP-2, MAPK/ERK, STAT-3, NF-κB, PI3K/AKT, eNOS, nitric oxide, miRNAs, KLF-4 and KLF-2. The key roles of platelet activation, xanthene oxidase and myeloperoxidase in the genesis of endothelial cell dysfunction and activation are detailed. The following roles of circulating reactive oxygen species (ROS), reactive nitrogen species and pro-inflammatory cytokines in the development of endothelial cell dysfunction are then described: paracrine signalling by circulating hydrogen peroxide, inhibition of eNOS and increased levels of mitochondrial ROS, including compromised mitochondrial dynamics, loss of calcium ion homeostasis and inactivation of SIRT-1-mediated signalling pathways. Next, loss of cellular redox homeostasis is considered, including further aspects of the roles of hydrogen peroxide signalling, the pathological consequences of elevated NF-κB, compromised S-nitrosylation and the development of hypernitrosylation and increased transcription of atherogenic miRNAs. These molecular aspects are then applied to neuroprogressive disorders by considering the following potential generators of endothelial dysfunction and activation in major depressive disorder, bipolar disorder and schizophrenia: NF-κB; platelet activation; atherogenic miRs; myeloperoxidase; xanthene oxidase and uric acid; and inflammation, oxidative stress, nitrosative stress and mitochondrial dysfunction. CONCLUSIONS Finally, on the basis of the above molecular mechanisms, details are given of potential treatment options for mitigating endothelial cell dysfunction and activation in neuroprogressive disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | | | - Lisa Olive
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- School of Psychology, Faculty of Health, Deakin University, Geelong, Australia
| | - Andre Carvalho
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.
- Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Ken Walder
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Lise Tuset Gustad
- Department of Circulation and medical imaging, Norwegian University of Technology and Science (NTNU), Trondheim, Norway
- Nord-Trøndelag Hospital Trust, Levanger Hospital, Levanger, Norway
| | - Michael Maes
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
- Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
23
|
Xu Y, Li X, Zuo X, Jia H, Han E, Liang F, Xie L, Gao J. Effects of coenzyme Q10 on endothelial and cardiac function in patients undergoing haemodialysis: study protocol for a pilot randomised controlled trial. BMJ Open 2020; 10:e036732. [PMID: 32873669 PMCID: PMC7467521 DOI: 10.1136/bmjopen-2019-036732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Endothelial and cardiac dysfunction are highly prevalent and are associated with cardiovascular morbidity and mortality among patients undergoing dialysis. For patients undergoing dialysis, no study has explored the effect of supplementation of coenzyme Q10 (CoQ10) on endothelial function. To our best of knowledge, only two small sample studies focused on the efficacy of supplementation of CoQ10 on cardiac function. However, the effect of CoQ10 supplementation on cardiac function remains uncertain in patients who undergo haemodialysis. The aim of this study is to explore whether CoQ10 supplementation can improve endothelial and cardiac function in patients undergoing haemodialysis. METHODS AND ANALYSIS This is a pilot randomised controlled study. Eligible patients undergoing haemodialysis in our haemodialysis centre will be randomly allocated to the CoQ10 and control groups. The follow-up time is 12 months. The primary outcome is to assess the change of brachial artery endothelial-dependent flow-mediated dilation, left ventricular systolic function, diastolic function and Myocardial Performance Index at 12 months from baseline. Secondary outcomes are death or hospitalisation due to cardiovascular events, all-cause mortality, change of CoQ10 concentration, the ratio of ubiquinol to ubiquinone, the change of oxidative stress markers (including malondialdehyde and 8-hydroxy-deoxyguanosine) and Left Ventricular Mass Index. ETHICS AND DISSEMINATION Risks associated with CoQ10 are minor, even at doses as high as 1800 mg according to previous studies. The trial has received ethics approval from the Medical Ethics Committee for Clinical Trials of Drugs, the 306th Hospital of Chinese PLA. The results of the study are expected to be published in a peer-reviewed journal and presented at academic conferences. TRIAL REGISTRATION NUMBER ChiCTR1900022258.
Collapse
Affiliation(s)
- Yongxing Xu
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| | - Xinlou Li
- Department of Medical Research, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| | - Xiaowen Zuo
- Department of Ultrasound in Medicine, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| | - Huaping Jia
- Department of Ultrasound in Medicine, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| | - Enhong Han
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| | - Fugui Liang
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| | - Lei Xie
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| | - Jianjun Gao
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center (The 306th Hospital of Chinese PLA), Beijing, China
| |
Collapse
|
24
|
Gao JJ, Xu YX, Jia HP, Zhang L, Cao XY, Zuo XW, Cai GY, Chen XM. Associations of coenzyme Q10 with endothelial function in hemodialysis patients. Nephrology (Carlton) 2020; 26:54-61. [PMID: 32749777 DOI: 10.1111/nep.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Endothelial dysfunction is common in patients undergoing hemodialysis (HD). However, little is known about the relationship between endothelial dysfunction and coenzyme Q10 (CoQ10) levels in HD patients. METHODS Eligible HD patients were enrolled in this study according to prespecified inclusion and exclusion criteria. Endothelial function was assessed by brachial artery flow-mediated dilation (FMD). Plasma CoQ10, serum malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) levels were measured. The potential confounders identified by univariate analyses (P < 0.15) were selected in a stepwise multiple regression model. RESULTS In total, 111 HD patients were enrolled in this study. The mean CoQ10 level was 633.53 ± 168.66 ng/mL, and endothelial dysfunction was prevalent (91.0%) using a cut-off value of 10% FMD. A significant correlation was observed between FMD and plasma CoQ10 level (r = 0.727, P < 0.001). After adjusting for potential parameters, a stepwise multivariate linear regression analysis revealed that CoQ10 level was an independent predictor of FMD (β = 0.018, P < 0.001). When CoQ10 was dichotomized using the median value (639.74 ng/mL), the conclusion remained unchanged (β = 0.584, P < 0.001). Pearson's correlation analyses revealed that plasma CoQ10 level was negatively correlated with MDA (r = -0.48, P < 0.001) and 8-OHdG (r = -0.43, P < 0.001) levels. CONCLUSION Our data demonstrate that impaired brachial artery FMD was common in HD patients. CoQ10 level was independently associated with FMD, and oxidative stress may constitute a link between CoQ10 level and endothelial dysfunction in these patients.
Collapse
Affiliation(s)
- Jian-Jun Gao
- Medical School of Chinese PLA, Beijing, PR China.,Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, PR China.,Department of Nephrology, The 306th Hospital of Chinese PLA, Beijing, PR China
| | - Yong-Xing Xu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, PR China
| | - Hua-Ping Jia
- Department of Ultrasound in Medicine, The 306th Hospital of Chinese PLA, Beijing, PR China
| | - Li Zhang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, PR China
| | - Xue-Ying Cao
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, PR China
| | - Xiao-Wen Zuo
- Department of Ultrasound in Medicine, The 306th Hospital of Chinese PLA, Beijing, PR China
| | - Guang-Yan Cai
- Medical School of Chinese PLA, Beijing, PR China.,Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, PR China
| | - Xiang-Mei Chen
- Medical School of Chinese PLA, Beijing, PR China.,Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, PR China
| |
Collapse
|
25
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
26
|
Kawashima C, Matsuzawa Y, Konishi M, Akiyama E, Suzuki H, Sato R, Nakahashi H, Kikuchi S, Kimura Y, Maejima N, Iwahashi N, Hibi K, Kosuge M, Ebina T, Tamura K, Kimura K. Ubiquinol Improves Endothelial Function in Patients with Heart Failure with Reduced Ejection Fraction: A Single-Center, Randomized Double-Blind Placebo-Controlled Crossover Pilot Study. Am J Cardiovasc Drugs 2020; 20:363-372. [PMID: 31713723 DOI: 10.1007/s40256-019-00384-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endothelial dysfunction is reportedly associated with worse outcomes in patients with chronic heart failure. Ubiquinol is a reduced form of coenzyme Q10 (CoQ10) that may improve endothelial function. OBJECTIVE We assessed the hypothesis that ubiquinol improves peripheral endothelial function in patients with heart failure with reduced ejection fraction (HFrEF). METHODS In this randomized, double-blind, placebo-controlled, crossover pilot study, 14 patients with stable HFrEF were randomly and blindly allocated to ubiquinol 400 mg/day or placebo for 3 months. After a 1-month washout period, patients were crossed over to the alternative treatment. Before and after each treatment, we assessed peripheral endothelial function using the reactive hyperemia index (RHI) and analyzed it using the natural logarithm of RHI (LnRHI). RESULTS Peripheral endothelial function as assessed by LnRHI tended to improve with ubiquinol 400 mg/day for 3 months (p = 0.076). Original RHI values were also compared, and RHI significantly improved with ubiquinol treatment (pre-RHI 1.57 [interquartile range (IQR) 1.39-1.80], post-RHI 1.74 [IQR 1.63-2.02], p = 0.026), but not with placebo (pre-RHI 1.67 [IQR 1.53-1.85], post-RHI 1.51 [IQR 1.39-2.11], p = 0.198). CONCLUSIONS Ubiquinol 400 mg/day for 3 months led to significant improvement in peripheral endothelial function in patients with HFrEF. Ubiquinol may be a therapeutic option for individuals with HFrEF. Large-scale randomized controlled trials of CoQ10 supplementation in patients with HFrEF are needed. CLINICAL TRIAL REGISTRATION Japanese University Hospital Medical Information Network (UMIN-ICDR). Clinical Trial identifier number UMIN000012604.
Collapse
Affiliation(s)
- Chika Kawashima
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan.
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan.
| | - Masaaki Konishi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Eiichi Akiyama
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Hiroyuki Suzuki
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Ryosuke Sato
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Hidefumi Nakahashi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Shinnosuke Kikuchi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Yuichiro Kimura
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Nobuhiko Maejima
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Noriaki Iwahashi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Kiyoshi Hibi
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Toshiaki Ebina
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kazuo Kimura
- Division of Cardiology, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan
| |
Collapse
|
27
|
Akbari A, Mobini GR, Agah S, Morvaridzadeh M, Omidi A, Potter E, Fazelian S, Ardehali SH, Daneshzad E, Dehghani S. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol 2020; 76:1483-1499. [PMID: 32583356 DOI: 10.1007/s00228-020-02919-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Oxidative stress (OS) is associated with several chronic complications and diseases. The use of coenzyme Q10 (CoQ10) as an adjuvant treatment with routine clinical therapy against metabolic diseases has shown to be beneficial. However, the impact of CoQ10 as a preventive agent against OS has not been systematically investigated. METHODS A systematic literature search was performed using the PubMed, SCOPUS, EMBASE, and Cochrane Library databases to identify randomized clinical trials evaluating the efficacy of CoQ10 supplementation on OS parameters. Standard mean differences and 95% confidence intervals were calculated for net changes in OS parameters using a random-effects model. RESULTS Seventeen randomized clinical trials met the eligibility criteria to be included in the meta-analysis. Overall, CoQ10 supplementation was associated with a statistically significant decrease in malondialdehyde (MDA) (SMD - 0.94; 95% CI - 1.46, - 0.41; I2 = 87.7%) and a significant increase in total antioxidant capacity (TAC) (SMD 0.67; 95% CI 0.28, 1.07; I2 = 74.9%) and superoxide dismutase (SOD) activity (SMD 0.40; 95% CI 1.12, 0.67; I2 = 9.6%). The meta-analysis found no statistically significant impact of CoQ10 supplementation on nitric oxide (NO) (SMD - 1.40; 95% CI - 0.12, 1.93; I2 = 92.6%), glutathione (GSH) levels (SMD 0.41; 95% CI - 0.09, 0.91; I2 = 70.0%), catalase (CAT) activity (SMD 0.36; 95% CI - 0.46, 1.18; I2 = 90.0%), or glutathione peroxidase (GPx) activities (SMD - 1.40; 95% CI: - 0.12, 1.93; I2 = 92.6%). CONCLUSION CoQ10 supplementation, in the tested range of doses, was shown to reduce MDA concentrations, and increase TAC and antioxidant defense system enzymes. However, there were no significant effects of CoQ10 on NO, GSH concentrations, or CAT activity.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Reza Mobini
- Cellular & Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences (SkUMS), Shahrekord, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eric Potter
- Baylor Scott & White Research Institute, Dallas, Texas, USA
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Hossein Ardehali
- Department of Anesthesiology and Critical Care, Shohadaye Tajrish Hospital, Tehran, Iran
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Sabbatinelli J, Orlando P, Galeazzi R, Silvestri S, Cirilli I, Marcheggiani F, Dludla PV, Giuliani A, Bonfigli AR, Mazzanti L, Olivieri F, Antonicelli R, Tiano L. Ubiquinol Ameliorates Endothelial Dysfunction in Subjects with Mild-to-Moderate Dyslipidemia: A Randomized Clinical Trial. Nutrients 2020; 12:nu12041098. [PMID: 32326664 PMCID: PMC7231284 DOI: 10.3390/nu12041098] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/07/2023] Open
Abstract
In this randomized, double-blind, single-center trial (ANZCTR number ACTRN12619000436178) we aimed to investigate changes in endothelium-dependent vasodilation induced by ubiquinol, the reduced form of coenzyme Q10 (CoQ10), in healthy subjects with moderate dyslipidemia. Fifty-one subjects with low-density lipoprotein (LDL) cholesterol levels of 130–200 mg/dL, not taking statins or other lipid lowering treatments, moderate (2.5%–6.0%) endothelial dysfunction as measured by flow-mediated dilation (FMD) of the brachial artery, and no clinical signs of cardiovascular disease were randomized to receive either ubiquinol (200 or 100 mg/day) or placebo for 8 weeks. The primary outcome measure was the effect of ubiquinol supplementation on FMD at the end of the study. Secondary outcomes included changes in FMD on week 4, changes in total and oxidized plasma CoQ10 on week 4 and week 8, and changes in serum nitrate and nitrite levels (NOx), and plasma LDL susceptibility to oxidation in vitro on week 8. Analysis of the data of the 48 participants who completed the study demonstrated a significantly increased FMD in both treated groups compared with the placebo group (200 mg/day, +1.28% ± 0.90%; 100 mg/day, +1.34% ± 1.44%; p < 0.001) and a marked increase in plasma CoQ10, either total (p < 0.001) and reduced (p < 0.001). Serum NOx increased significantly and dose-dependently in all treated subjects (p = 0.016), while LDL oxidation lag time improved significantly in those receiving 200 mg/day (p = 0.017). Ubiquinol significantly ameliorated dyslipidemia-related endothelial dysfunction. This effect was strongly related to increased nitric oxide bioavailability and was partly mediated by enhanced LDL antioxidant protection.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-0712206243
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60128 Ancona, Italy
| | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60128 Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60128 Ancona, Italy
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60128 Ancona, Italy
| | - Phiwayinkosi V. Dludla
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60128 Ancona, Italy
- Biomedical Research and Innovation Platform, South African Medical Research Council, P.O. Box 19070, Tygerberg, South Africa
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Anna Rita Bonfigli
- Scientific Direction, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy
| | - Laura Mazzanti
- Department of Clinical Sciences, Biology and Biochemistry Section, Università Politecnica delle Marche, Via Ranieri 65, 60128 Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60121 Ancona, Italy
| | | | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Ranieri 65, 60128 Ancona, Italy
| |
Collapse
|
29
|
Parasuraman S, Schwarz K, Singh S, Abraham D, Garg D, Frenneaux MP. Cardiopulmonary exercise test in myocardial ischemia detection. Future Cardiol 2020; 16:113-121. [PMID: 32081024 DOI: 10.2217/fca-2019-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exercise electrocardiography has low sensitivity for detection of myocardial ischemia. However, when combined with cardiopulmonary exercise testing (CPEX), the sensitivity and specificity of ischemia detection improves significantly. CPEX offers unique advantages over imaging techniques in tricky situations such as balanced ischemia. Early abnormal oxygen uptake would point toward profound coronary stenosis that could be missed in perfusion imaging. CPEX could be an invaluable tool in asymptomatic left bundle branch block pattern, without exposing patients to the risks of computerized tomography or invasive coronary angiography. Normal oxygen uptake curves would rule out significant coronary stenosis as the cause of left bundle branch block pattern. Elseways, abnormal oxygen uptake in patients with normal coronary arteries could indicate microvascular angina. Furthermore, exercise capacity is an excellent predictor of cardiovascular risk in those with and without heart disease. Using two clinical cases we introduce the concept of gas-exchange and hemodynamic changes encountered in ischemic heart disease.
Collapse
Affiliation(s)
| | | | - Satnam Singh
- Royal Bournemouth Hospital, Castle Lane East, Bournemouth, UK
| | - Dilip Abraham
- Norfolk & Norwich University Hospital, Colney Lane, Norwich, UK
| | - Deepak Garg
- Dr Gray's Hospital, Pluscarden Road, Elgin, UK
| | | |
Collapse
|
30
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Kloer HU, Belardinelli R, Ruchong O, Rosenfeldt F. Combining Ubiquinol With a Statin May Benefit Hypercholesterolaemic Patients With Chronic Heart Failure. Heart Lung Circ 2019; 29:188-195. [PMID: 31668616 DOI: 10.1016/j.hlc.2019.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 07/01/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022]
Abstract
Heart failure (HF) is one of the most common causes of death in Western society. Recent results underscore the utility of coenzyme Q10 (CoQ10) addition to standard medications in order to reduce mortality and to improve quality of life and functional capacity in chronic heart failure (CHF). The rationale for CoQ10 supplementation in CHF is two-fold. One is the well-known role of CoQ10 in myocardial bioenergetics, and the second is its antioxidant property. Redox balance is also improved by oral supplementation of CoQ10, and this effect contributes to enhanced endothelium-dependent relaxation. Previous reports have shown that CoQ10 concentration is decreased in myocardial tissue in CHF and by statin therapy, and the greater the CoQ10 deficiency the more severe is the cardiocirculatory impairment. In patients with CHF and hypercholesterolaemia being treated with statins, the combination of CoQ10 with a statin may be useful for two reasons: decreasing skeletal muscle injury and improving myocardial function. Ubiquinol, the active reduced form of CoQ10, presents higher bioavailability than the oxidised form ubiquinone, and should be the preferred form to be added to a statin. The combination ezetimibe/simvastatin may have advantages over single statins. Since ezetimibe reduces absorption of cholesterol and does not affect CoQ10 synthesis in the liver, the impact of this combination on CoQ10 tissue levels will be much less than that of high dose statin monotherapy at any target low density lipoprotein-cholesterol (LDL-C) level to be reached. This consideration makes the ezetimibe/statin combination the ideal LDL-lowering agent to be combined with ubiquinol in CHF patients. However, particular caution is advisable with the use of strategies of extreme lowering of cholesterol that may negatively impact on myocardial function. All in all there is a strong case for considering co-administration of ubiquinol with statin therapy in patients with depressed or borderline myocardial function.
Collapse
Affiliation(s)
- Hans-Ulrich Kloer
- Emer, Third Medical Department, UKGM, University of Giessen, Germany
| | | | - Ou Ruchong
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Vic, Australia
| | - Franklin Rosenfeldt
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Vic, Australia.
| |
Collapse
|
32
|
Influence of adjuvant Coenzyme Q10 on inflammatory and oxidative stress biomarkers in patients with bipolar disorders during the depressive episode. Mol Biol Rep 2019; 46:5333-5343. [DOI: 10.1007/s11033-019-04989-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022]
|
33
|
Stough C, Nankivell M, Camfield DA, Perry NL, Pipingas A, Macpherson H, Wesnes K, Ou R, Hare D, de Haan J, Head G, Lansjoen P, Langsjoen A, Tan B, Pase MP, King R, Rowsell R, Zwalf O, Rathner Y, Cooke M, Rosenfeldt F. CoQ 10 and Cognition a Review and Study Protocol for a 90-Day Randomized Controlled Trial Investigating the Cognitive Effects of Ubiquinol in the Healthy Elderly. Front Aging Neurosci 2019; 11:103. [PMID: 31191293 PMCID: PMC6549544 DOI: 10.3389/fnagi.2019.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/17/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: With an aging population there is an important need for the development of effective treatments for the amelioration of cognitive decline. Multiple mechanisms underlie age-related cognitive decline including cerebrovascular disease, oxidative stress, reduced antioxidant capacity and mitochondrial dysfunction. CoQ10 is a novel treatment which has the potential to improve brain function in healthy elderly populations due to established beneficial effects on mitochondrial function, vascular function and oxidative stress. Methods and Analysis: We describe the protocol for a 90-day randomized controlled trial which examines the efficacy of Ubiquinol (200 mg/day) vs. placebo for the amelioration of cognitive decline in a healthy (non-demented) elderly sample, aged 60 years and over. The primary outcome is the effect of Ubiquinol at 90 days compared to baseline on CogTrack composite measures of cognition. Additional cognitive measures, as well as measures of cardiovascular function, oxidative stress, liver function and mood will also be monitored across 30-, 60- and 90- day time points. Data analyses will involve repeated measures analysis of variance (ANOVA). Discussion: This study will be the first of its kind to provide important clinical and mechanistic data regarding the efficacy of Ubiquinol as a treatment for age-related cognitive decline in the healthy elderly with important implications for productivity and quality of life within this age group. Clinical Trial Registration: The trial has been registered with the Australian and New Zealand Clinical Trials Registry (ANZCTRN12618001841268).
Collapse
Affiliation(s)
- Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Madeleine Nankivell
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David A Camfield
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Naomi L Perry
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Faculty of Health, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Keith Wesnes
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Wesnes Cognition Limited, Streatley on Thames, United Kingdom.,Department of Psychology, Northumbria University, Newcastle, United Kingdom
| | - Ruchong Ou
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David Hare
- Austin Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Judy de Haan
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Lansjoen
- East Texas Medical Center and Trinity Mother Francis Hospital, Tyler, TX, United States
| | - Alena Langsjoen
- East Texas Medical Center and Trinity Mother Francis Hospital, Tyler, TX, United States
| | - Brendan Tan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Matthew P Pase
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca King
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Renee Rowsell
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Oliver Zwalf
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Yossi Rathner
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Matthew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Franklin Rosenfeldt
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Liu SH, Zeng ZT, Niu QY, Xiao R, Zeng GM, Liu Y, Cheng M, Hu K, Jiang LH, Tan XF, Tao JJ. Influence of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of Cd(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1279-1287. [PMID: 30577120 DOI: 10.1016/j.scitotenv.2018.11.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Suspended microbes gradually lost advantages in practical applications of PAHs and heavy metals bioremediation. Therefore this study investigated the effect of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of different Cd(II) concentrations. Condensed Bacillus sp. P1 was immobilized with polyvinyl alcohol and sodium alginate and PVA-SA-cell cryogel beads were prepared. The results indicated that the use of gel beads increased the number of adsorption sites thus accelerating phenanthrene degradation. In addition, changes in detoxification indices, including superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), were determined to elucidate the immobilization mechanisms related to cells protection from Cd(II) when degrading phenanthrene. By protecting the gel membrane, oxidative damage was minimized, while SOD activity increased from 55.72 to 81.33 U/mgprot as Cd(II) increased from 0 to 200 mg/L but later dropped to 44.29 U/mgprot as Cd(II) increased to 300 mg/L for the non-immobilized system. On the other hand, the SOD activity kept increasing from 52.23 to 473.35 U/mgprot for the immobilized system exposed to Cd(II) concentration between 0 and 300 mg/L. For CAT and GSH, immobilization only slowed down the depletion process without any change on the variation trends. The changes in surface properties and physiological responses of microbes caused the differences of immobilization effect on phenanthrene biodegradation in the presence of Cd(II), which is a novel finding.
Collapse
Affiliation(s)
- Shao-Heng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| | - Zhuo-Tong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kai Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu-Huang Jiang
- School of Minerals Processing and Bioengineering and Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jian-Jun Tao
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| |
Collapse
|
35
|
Andalib S, Mashhadi-Mousapour M, Bijani S, Hosseini MJ. Coenzyme Q 10 Alleviated Behavioral Dysfunction and Bioenergetic Function in an Animal Model of Depression. Neurochem Res 2019; 44:1182-1191. [PMID: 30820817 DOI: 10.1007/s11064-019-02761-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Coenzyme Q10 (CoQ10) is a natural compound, is involved in the mitochondrial electron transfer chain (ETC) and plays an important pattern in adenosine triphosphate (ATP) production. Amelioration of ATP is related to abnormalities in cognitive function and psychiatric diseases. Previous studies have shown that depression is accompanied by the induction of inflammatory and oxidative stress pathways and amelioration of antioxidant status. In a recent study, we investigated the beneficial effects of CoQ10 on behavioral dysfunction and CoQ10 level in the rat brain. Therefore, intracerebroventricular (ICV) infusion of a single dose of streptozotocin (STZ, 0.2 mg/mouse) was used in adult male mice to induce depression. The behavioral data revealed a significant difference between the depression and control groups regarding the forced swim test (FST) and splash test results at 24 h following STZ treatment. Also, the validated and accurate high-performance liquid chromatography (HPLC) technique showed decreased CoQ10 level in the brain samples of the STZ group, compared to the controls. Our findings revealed that behavioral abnormalities due to STZ target mitochondria and affect energy metabolism and hemostasis, resulting in the initiation of oxidative damage in the brain. Besides, 4-week administration of CoQ10 could reverse the depressive like behavior and bioenergetic effects of STZ in the treated groups.
Collapse
Affiliation(s)
- Sina Andalib
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Mobin Mashhadi-Mousapour
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran. .,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran.
| |
Collapse
|
36
|
Jorat MV, Tabrizi R, Kolahdooz F, Akbari M, Salami M, Heydari ST, Asemi Z. The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 2019; 27:233-248. [PMID: 30758695 DOI: 10.1007/s10787-019-00572-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Systemic inflammation and oxidative stress significantly contribute in developing coronary artery disease (CAD). This systematic review and meta-analysis was aimed to determine the effects of coenzyme Q10 (CoQ10) supplementation on biomarkers of inflammation and oxidative stress among patients with CAD. METHODS The electronic databases including MEDLINE, EMBASE, Scopus, Web of Science, and Cochrane Library databases were systematically searched until Oct 2018. The quality assessment and heterogeneity of the selected randomized clinical Trials (RCTs) were examined using the Cochrane Collaboration risk of bias tool, and Q and I2 tests, respectively. Given the presence of heterogeneity, random-effects model or fixed-effect model were used to pool standardized mean differences (SMDs) as summary effect sizes. RESULTS A total of 13 clinical RCTs of 912 potential citations were found to be eligible for the current meta-analysis. The pooled findings for biomarkers of inflammation and oxidative stress demonstrated that CoQ10 supplementation significantly increased superoxide dismutase (SOD) (SMD 2.63; 95% CI, 1.17, 4.09, P < 0.001; I2 = 94.5%) and catalase (CAT) levels (SMD 1.00; 95% CI, 0.57, 1.43, P < 0.001; I2 = 24.5%), and significantly reduced malondialdehyde (MDA) (SMD - 4.29; 95% CI - 6.72, - 1.86, P = 0.001; I2 = 97.6%) and diene levels (SMD - 2.40; 95% CI - 3.11, - 1.68, P < 0.001; I2 = 72.6%). We did not observe any significant effect of CoQ10 supplementation on C-reactive protein (CRP) (SMD - 0.62; 95% CI - 1.31, 0.08, P = 0.08; I2 = 87.9%), tumor necrosis factor alpha (TNF-α) (SMD 0.22; 95% CI - 1.07, 1.51, P = 0.73; I2 = 89.7%), interleukin-6 (IL-6) (SMD - 1.63; 95% CI - 3.43, 0.17, P = 0.07; I2 = 95.2%), and glutathione peroxidase (GPx) levels (SMD 0.14; 95% CI - 0.77, 1.04, P = 0.76; I2 = 78.7%). CONCLUSIONS Overall, this meta-analysis demonstrated CoQ10 supplementation increased SOD and CAT, and decreased MDA and diene levels, but did not affect CRP, TNF-α, IL-6, and GPx levels among patients with CAD.
Collapse
Affiliation(s)
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research Group, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Suárez-Rivero JM, de la Mata M, Pavón AD, Villanueva-Paz M, Povea-Cabello S, Cotán D, Álvarez-Córdoba M, Villalón-García I, Ybot-González P, Salas JJ, Muñiz O, Cordero MD, Sánchez-Alcázar JA. Intracellular cholesterol accumulation and coenzyme Q 10 deficiency in Familial Hypercholesterolemia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3697-3713. [PMID: 30292637 DOI: 10.1016/j.bbadis.2018.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
Familial Hypercholesterolemia (FH) is an autosomal co-dominant genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol levels and increased risk for premature cardiovascular disease. Here, we examined FH pathophysiology in skin fibroblasts derived from FH patients harboring heterozygous mutations in the LDL-receptor. Fibroblasts from FH patients showed a reduced LDL-uptake associated with increased intracellular cholesterol levels and coenzyme Q10 (CoQ10) deficiency, suggesting dysregulation of the mevalonate pathway. Secondary CoQ10 deficiency was associated with mitochondrial depolarization and mitophagy activation in FH fibroblasts. Persistent mitophagy altered autophagy flux and induced inflammasome activation accompanied by increased production of cytokines by mutant cells. All the pathological alterations in FH fibroblasts were also reproduced in a human endothelial cell line by LDL-receptor gene silencing. Both increased intracellular cholesterol and mitochondrial dysfunction in FH fibroblasts were partially restored by CoQ10 supplementation. Dysregulated mevalonate pathway in FH, including increased expression of cholesterogenic enzymes and decreased expression of CoQ10 biosynthetic enzymes, was also corrected by CoQ10 treatment. Reduced CoQ10 content and mitochondrial dysfunction may play an important role in the pathophysiology of early atherosclerosis in FH. The diagnosis of CoQ10 deficiency and mitochondrial impairment in FH patients may also be important to establish early treatment with CoQ10.
Collapse
Affiliation(s)
- Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mario de la Mata
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - David Cotán
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain
| | - Patricia Ybot-González
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Spain
| | - Joaquín J Salas
- Departamento de Bioquímica y Biología Molecular de Productos Vegetales, Instituto de la Grasa (CSIC), Spain
| | - Ovidio Muñiz
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Mario D Cordero
- Instituto de Nutrición y Tecnología de los Alimentos "José Mataix Verdú", Departamento de Fisiología, Centro de Investigación Biomédica, Universidad de Granada, 18100 Granada, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla 41013, Spain.
| |
Collapse
|
38
|
Shukla S, Dubey KK. CoQ10 a super-vitamin: review on application and biosynthesis. 3 Biotech 2018; 8:249. [PMID: 29755918 DOI: 10.1007/s13205-018-1271-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ) or ubiquinone is found in the biological system which is synthesized by the conjugation of benzoquinone ring with isoprenoid chain of variable length. Coenzyme Q10 supplementation energizes the body and increases body energy production in the form of ATP and helps to treat various human diseases such as cardiomyopathy, muscular dystrophy, periodontal disease, etc. Reports of these potential therapeutic advantages of CoQ10 have resulted in its high market demand, which focus the researchers to work on this molecule and develop better bioprocess methods for commercial level production. At the moment, chemical synthesis, semi-synthetic method as well as bio-production utilizing microbes as biofactory are in use for the synthesis of CoQ10. Chemical synthesis involves use of cheap and easily available precursor molecules such as isoprenol, chloromethylquinone, vinylalane, and solanesol. Chemical synthesis methods due to the use of various solvents and chemicals are less feasible, which limits its application. The microbial production of CoQ10 has added advantages of being produced in optically pure form with high yield using inexpensive medium composition. Several bacteria, e.g., Agrobacterium, Paracoccus, Rhodobacterium, and yeast such as Candida, Rhodotorula are the potent ubiquinone producer. Some alternative biosynthetic pathway for designing of CoQ10 production coupled with metabolic engineering might help to increase CoQ10 production. The most common practiced strategy for strain development for commercial CoQ10 production is through natural isolation and chemical mutagenesis. Here, we have reviewed the chemical, semi-synthetic as well as microbial CoQ10 production in detail.
Collapse
Affiliation(s)
- Shraddha Shukla
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031 India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031 India
| |
Collapse
|
39
|
Gutierrez-Mariscal FM, Yubero-Serrano EM, Villalba JM, Lopez-Miranda J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit Rev Food Sci Nutr 2018; 59:2240-2257. [DOI: 10.1080/10408398.2018.1442316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Francisco M. Gutierrez-Mariscal
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Jose Lopez-Miranda
- Lipid and Atherosclerosis Unit, Department of Internal Medicine/IMIBIC/Reina Sofia University Hospital/University of Córdoba, Córdoba, Spain; CIBER Fisiología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
40
|
|
41
|
Zozina VI, Covantev S, Goroshko OA, Krasnykh LM, Kukes VG. Coenzyme Q10 in Cardiovascular and Metabolic Diseases: Current State of the Problem. Curr Cardiol Rev 2018; 14:164-174. [PMID: 29663894 PMCID: PMC6131403 DOI: 10.2174/1573403x14666180416115428] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases is increasing with every year. Although the management of these conditions has improved greatly over the years, it is still far from perfect. With all of this in mind, there is a need for new methods of prophylaxis and treatment. Coenzyme Q10 (CoQ10) is an essential compound of the human body. There is growing evidence that CoQ10 is tightly linked to cardiometabolic disorders. Its supplementation can be useful in a variety of chronic and acute disorders. This review analyses the role of CoQ10 in hypertension, ischemic heart disease, myocardial infarction, heart failure, viral myocarditis, cardiomyopathies, cardiac toxicity, dyslipidemia, obesity, type 2 diabetes mellitus, metabolic syndrome, cardiac procedures and resuscitation.
Collapse
Affiliation(s)
- Vladlena I. Zozina
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Serghei Covantev
- Laboratory of Аllergology and Сlinical Immunology, State University of Medicine and Pharmacy «Nicolae Testemitanu», Chisinau, Republic of Moldova
| | - Olga A. Goroshko
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medical Products” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Liudmila M. Krasnykh
- Federal State Budgetary Institution “Scientific Centre for Expert Evaluation of Medical Products” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Vladimir G. Kukes
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
| |
Collapse
|
42
|
|
43
|
Kozaeva LP, Gorodetskaya EA, Ruuge EK, Kalenikova EI, Medvedev OS. Beneficial effect of coenzyme Q 10 injection on nitric oxide -related dilation of the rat aorta. Eur J Pharmacol 2016; 794:15-19. [PMID: 27864103 DOI: 10.1016/j.ejphar.2016.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
This study examined whether coenzyme Q10 can improve nitric oxide (NO)-dependent vasodilatation in the rat aorta after pre-incubation or intravenous administration. In initial experiments, intact isolated aortic rings were incubated with coenzyme Q10 or L-arginine. In further experiments, coenzyme Q10 was administered intravenously in anesthetized rats, then in 2h aorta was isolated. In both cases, after preliminary preparation the isolated aortic rings were tested for acetylcholine-induced NO-dependent relaxation. Acetylcholine elicited concentration-dependent relaxation of phenylephine precontracted aortic rings. Relaxant responses to acetylcholine were markedly potentiated after pre-incubation with coenzyme Q10 or L-arginine. The maximum relaxant responses (%) were significantly increased from 64.1±5.3 (control) to 89.8±3.0 and 83.6±3.0 (coenzyme Q10 and L-arginine, respectively). pD2 (-lgEC50) value in control study was 5.81±0.28, after pretreatment with coenzyme Q10 or L-arginine were 7.59±0.16 and 7.26±0.32, respectively. There was no difference between coenzyme Q10 and L-arginine groups. After intravenous administration, the relaxant responses to acetylcholine were significantly increased in coenzyme Q10-treated group (94.2±2.0) compared with controls (68.1±4.4). pD2 values were also different between control and treatment groups (5.79±0.29 vs. 8.14±0.65, respectively). Thus, coenzyme Q10 improved NO-mediated vasodilation in rat aorta in magnitude close to the effects of L-arginine - substrate for eNOS. Our data first show that exogenous coenzyme Q10 through intravenous administration is able to improve rapidly NO-dependent vasodilation in rat aorta, likely due to accumulation of coenzyme Q10 in the vessel wall. Improvement of endothelial function can contribute, at least in part, to beneficial effects of coenzyme Q10 in cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Larisa P Kozaeva
- Department of Pharmacology, Moscow State University, Lomonosovsky prosp. 31/5, 119192 Moscow, Russia.
| | - Evgeniya A Gorodetskaya
- Department of Pharmacology, Moscow State University, Lomonosovsky prosp. 31/5, 119192 Moscow, Russia
| | - Enno K Ruuge
- Department of Institute of Experimental Cardiology, Russian Cardiology Research and Production Complex, 3rd Cherepkovskaya str.15a, 121552 Moscow, Russia
| | - Elena I Kalenikova
- Department of Pharmacology, Moscow State University, Lomonosovsky prosp. 31/5, 119192 Moscow, Russia
| | - Oleg S Medvedev
- Department of Pharmacology, Moscow State University, Lomonosovsky prosp. 31/5, 119192 Moscow, Russia
| |
Collapse
|
44
|
Jankowski J, Korzeniowska K, Cieślewicz A, Jabłecka A. Coenzyme Q10 – A new player in the treatment of heart failure? Pharmacol Rep 2016; 68:1015-9. [DOI: 10.1016/j.pharep.2016.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
45
|
Özalp B, Elbey H, Aydın H, Tekkesin MS, Uzun H. The effect of coenzyme Q10 on venous ischemia reperfusion injury. J Surg Res 2016; 204:304-310. [DOI: 10.1016/j.jss.2016.04.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 11/15/2022]
|
46
|
|
47
|
Moludi J, Keshavarz S, Tabaee AS, Safiri S, Pakzad R. Q10 supplementation effects on cardiac enzyme CK-MB and troponin in patients undergoing coronary artery bypass graft: a randomized, double-blinded, placebo-controlled clinical trial. J Cardiovasc Thorac Res 2016; 8:1-7. [PMID: 27069560 PMCID: PMC4827133 DOI: 10.15171/jcvtr.2016.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/24/2016] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Coronary artery bypass surgery (CABG) is associated with ischemia-reperfusion injury and tissue damage. CoQ10 as an antioxidant has an important role and may have cardio-protective effects after myocardial dysfunction and CABG. We aimed to evaluate whether CoQ10 has a myocardial cardio protective impact on cardiac biomarkers after CABG. METHODS In this double-blind study, 80 patients with coronary artery disease (CAD) who underwent CABG surgery were divided into intervention and control groups and received Q10 supplement or placebo, respectively. The surgical characteristics of the patients in the two groups were similar. The intervention group received 150 mg of Q10 supplement per day for 7 days before the surgery. The control group received placebo capsule. After operation the inter- and intra-group blood levels of CK-MB and troponin, before and after supplementation and 12 hours after the CABG, and postoperative outcomes such as intensive care unit (ICU) stay and hospital stay were compared. RESULTS In this study, 40 subjects were located in each group. The participation rate was 97.5% and men and women accounted for 52.5% and 47.5% respectively. The mean age of the subjects was 58.17 ± 8.55. The two groups were not significantly different in terms of basic variables. Within-group comparison showed a significant increase in the level of troponin enzymes over time (P < 0.001) and CK-MB (P < 0.001). However, between-group comparison showed no significant difference between the two groups in terms of CK-MB (P = 0.384) and troponin (P = 0.115). In the end, no interaction was observed between the intervention and time on CK-MB (P = 0.095) and troponin (P = 0.198) variables. CONCLUSION Q10 supplementation 7 days before surgery was not effective in reducing CK-MB and troponin after CABG.
Collapse
Affiliation(s)
- Jalal Moludi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedali Keshavarz
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sadeghpour Tabaee
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Managerial Epidemiology Research Center, Department of Public Health, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Pakzad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Ewees MG, Messiha BAS, Abo-Saif AA, Abd El-Latif HAET. Is Coenzyme Q<sub>10</sub> Effective in Protection against Ulcerative Colitis? An Experimental Study in Rats. Biol Pharm Bull 2016; 39:1159-1166. [PMID: 27374290 DOI: 10.1248/bpb.b16-00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Mohamed Gamal Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University
| | | | - Ali Ahmed Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University
| | | |
Collapse
|
49
|
Forsberg E, Xu C, Grünler J, Frostegård J, Tekle M, Brismar K, Kärvestedt L. Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus. J Diabetes Complications 2015; 29:1152-8. [PMID: 26395643 DOI: 10.1016/j.jdiacomp.2015.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/09/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Our study aimed to explore associations between metabolic control, oxidative stress and coenzyme Q10 (CoQ10) in relation to diabetes complications in a representative population of type 2 diabetes. RESEARCH DESIGN AND METHODS A geographic cohort of 156 subjects was recruited. Serum concentrations of CoQ10 and vitamin E were measured by HPLC. ROS was determined by free oxygen radicals testing (FORT). Glutaredoxin (Grx) activity, oxidized LDL cholesterol (oxLDLc), high sensitive CRP (hsCRP), HbA1c, urine albumin, serum creatinine, serum cystatin C, and plasma lipids were assayed with routine laboratory protocols. RESULTS Serum CoQ10 was higher than in nondiabetics. HbA1c, fP-glucose, hyperlipidemia, inflammation (hsCRP), and increased BMI were associated with signs of oxidative stress as increased levels of FORT, Grx activity and/or increased levels of oxLDLc Oxidative stress was found to be strongly correlated with prevalence of cardiovascular disease (CVD) and peripheral sensory neuropathy (PSN). In both gender groups there were positive correlations between CoQ10 and oxLDLc, and between BMI and the ratio CoQ10/chol. Grx activity was inversely correlated to oxLDLc and CoQ10. Women with CVD and PSN had higher waist index, oxLDLc, and FORT levels compared to men but lower CoQ10 levels. Men had worse kidney function and lower vitamin E. Multiple regression analysis showed increased levels of CoQ10 to be significantly correlated with increased levels of cholesterol, triglycerides, vitamin E, fB-glucose and BMI. CONCLUSIONS Hyperlipidemia, hyperglycemia and inflammation were associated with oxidative stress, which was correlated to the prevalence of diabetes complications. CoQ10 was increased in response to oxidative stress. There were gender differences in the risk factors associated with diabetes complications.
Collapse
Affiliation(s)
- Elisabete Forsberg
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Cheng Xu
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
| | - Jacob Grünler
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Frostegård
- Department of Medicine, Huddinge, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Tekle
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden.
| | - Lars Kärvestedt
- Department of Molecular Medicine and Surgery, The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden; Stockholms Sjukhem, Stockholm, Sweden
| |
Collapse
|
50
|
Yang YK, Wang LP, Chen L, Yao XP, Yang KQ, Gao LG, Zhou XL. Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction. Clin Chim Acta 2015; 450:83-9. [DOI: 10.1016/j.cca.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 02/05/2023]
|