1
|
Lotfinaghsh A, Imam A, Pompian A, Stitziel NO, Javaheri A. Clinical Insights from Proteomics in Heart Failure. Curr Heart Fail Rep 2025; 22:12. [PMID: 40063168 DOI: 10.1007/s11897-025-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/13/2025]
Abstract
PURPOSE OF REVIEW The pathophysiology of heart failure (HF), a complex and heterogenous condition, remains to be fully understood. Troponin and b-type natriuretic peptide are the only biomarkers that are utilized in clinical practice for HF clinical management. Recent advances in proteomics present a powerful tool to identify risk markers and ultimately, potential molecular mechanisms underlying HF pathogenesis. Herein, we explore traditional and novel heart biomarkers, highlighting their potential role in the pathogenesis of HF. RECENT FINDINGS Recent proteomic analyses have identified numerous proteins including Galectin-3, sST2, GDF-15, FGF21, Endotrophin, THSB-2, ADAMSTL, SVEP1, and anthracycline that are associated with clinical outcomes in HF. These biomarkers are not presently utilized in HF management but may be useful in the future for prediction of death or HF hospitalization. While traditional biomarkers remain essential, proteomic strategies have revealed additional targets that require further mechanistic exploration. Future research should focus on validating these biomarkers and translating proteomic insights into clinical practice to enhance HF management.
Collapse
Affiliation(s)
- Aynaz Lotfinaghsh
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adnan Imam
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander Pompian
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- John Cochran VA Hospital, St Louis, MO, USA.
| |
Collapse
|
2
|
Fujii J, Ochi H, Yamada S. A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification. Free Radic Biol Med 2025; 227:336-354. [PMID: 39643136 DOI: 10.1016/j.freeradbiomed.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs. The first type is designated as Prdx4. It is translated with a cleavable, hydrophobic signal sequence and is expressed in most cells throughout the body. The second type is designated as Prdx4t. The peroxidase activity of PRDX4 is involved in both the reduction of hydrogen peroxides and in the oxidative folding of nascent proteins in the ER. Prdx4 appears to have evolved from an ancestral gene in Eutherians simultaneously with the evolution of sperm protamine to cysteine-rich peptides, and, therefore, the testis-specific PRDX4t is likely involved in spermatogenesis through the oxidative folding of protamine. The dysfunction of PRDX4 leads to oxidative damage and ER stress, and is related to various diseases including diabetes and cancer. In this review article we refer to the results of biological and medical research in order to unveil the functional consequences of this unique member of the PRDX family.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata, 990-9585, Japan.
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Sohsuke Yamada
- Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
3
|
Li K, Liu P, Han L, Tian J, Zheng Z, Sha M, Ye J, Zhu L. Elucidating ferroptosis mechanisms in heart failure through transcriptomics, single-cell sequencing, and experimental validation. Cell Signal 2024; 124:111416. [PMID: 39293745 DOI: 10.1016/j.cellsig.2024.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND The mechanisms underlying ferroptosis in heart failure (HF) remain incompletely understood. METHODS This study analyzed the heart failure dataset from the Gene Expression Omnibus to identify differentially expressed ferroptosis-related genes (DFRGs). Key DFRGs were selected using LASSO regression and SVM-RFE machine learning techniques. Their diagnostic accuracy was evaluated via ROC curve analysis. Single-cell sequencing data, heart failure cell, and mouse models were utilized to validate these key DFRGs. Additionally, potential non-coding RNAs targeting these genes were predicted, and analyses for gene set enrichment, immune cell infiltration, and drug targeting were conducted. RESULTS A total of 127 DFRGs were identified, with 83 downregulated and 44 upregulated compared to controls. Seven key DFRGs (PTGS2, BECN1, SLC39A14, QSOX1, MLST8, TMSB4X, KDM4A) were identified, showing high diagnostic accuracy (AUC 0.988) in the GSE5406 dataset. GO and KEGG analyses linked these genes to ferroptosis, FoxO signaling, and autophagy pathways. A ceRNA network identified 217 miRNAs and 243 lncRNAs potentially targeting these genes, and 64 drugs were predicted as potential targets. Single-cell sequencing and in vitro experiments revealed differential expression of SLC39A14 and QSOX1, which was further confirmed in vivo. CONCLUSION This study provides novel insights into the role of ferroptosis in heart failure by identifying and validating DFRGs that exhibit differential expression across various cell types. The differential expression patterns of these genes, particularly SLC39A14 and QSOX1, indicate their potential involvement in the pathophysiological mechanisms contributing to HF. These findings offer new insights for the development of targeted therapies for HF.
Collapse
Affiliation(s)
- Kaiyuan Li
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, PR China
| | - Peng Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, PR China
| | - Lingyu Han
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, PR China
| | - Jing Tian
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, PR China
| | - Zhipeng Zheng
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, PR China
| | - Min Sha
- Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, PR China
| | - Jun Ye
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, PR China.
| | - Li Zhu
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116000, PR China; Department of Cardiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, PR China.
| |
Collapse
|
4
|
Yang L, Zhang Y, Hong X, Zhang K, Liu B, Zhang P, Tang Q, Yu J, Jin XZ, Jin XZ, Zhang N, Targher G, Byrne CD, Zhang Z, Zheng MH, Zhang J. Serum dithiothreitol-oxidizing capacity (DOC) is a promising biomarker for excluding significant liver fibrosis: a proof-of-concept study. BMC Med 2024; 22:278. [PMID: 38956533 PMCID: PMC11221035 DOI: 10.1186/s12916-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND APRI and FIB-4 scores are used to exclude clinically significant fibrosis (defined as stage ≥ F2) in patients with chronic viral hepatitis. However, the cut-offs for these scores (generated by Youden indices) vary between different patient cohorts. This study aimed to evaluate whether serum dithiothreitol-oxidizing capacity (DOC), i.e., a surrogate test of quiescin sulfhydryl oxidase-1, which is a matrix remodeling enzyme, could be used to non-invasively identify significant fibrosis in patients with various chronic liver diseases (CLDs). METHODS Diagnostic performance of DOC was compared with APRI and FIB-4 for identifying significant fibrosis. ROC curve analyses were undertaken in: a) two chronic hepatitis B (CHB) cohorts, independently established from hospitals in Wenzhou (n = 208) and Hefei (n = 120); b) a MASLD cohort from Wenzhou hospital (n = 122); and c) a cohort with multiple CLD etiologies (except CHB and MASLD; n = 102), which was identified from patients in both hospitals. Cut-offs were calculated using the Youden index. All CLD patients (n = 552) were then stratified by age for ROC curve analyses and cut-off calculations. RESULTS Stratified by CLD etiology or age, ROC curve analyses consistently showed that the DOC test was superior to APRI and FIB-4 for discriminating between clinically significant fibrosis and no fibrosis, when APRI and FIB-4 showed poor/modest diagnostic performance (P < 0.05, P < 0.01 and P < 0.001 in 3, 1 and 3 cohort comparisons, respectively). Conversely, the DOC test was equivalent to APRI and FIB-4 when all tests showed moderate/adequate diagnostic performances (P > 0.05 in 11 cohort comparisons). DOC had a significant advantage over APRI or FIB-4 scores for establishing a uniform cut-off independently of age and CLD etiology (coefficients of variation of DOC, APRI and FIB-4 cut-offs were 1.7%, 22.9% and 47.6% in cohorts stratified by CLD etiology, 2.0%, 26.7% and 29.5% in cohorts stratified by age, respectively). The uniform cut-off was 2.13, yielded from all patients examined. Surprisingly, the uniform cut-off was the same as the DOC upper limit of normal with a specificity of 99%, estimated from 275 healthy control individuals. Hence, the uniform cut-off should possess a high negative predictive value for excluding significant fibrosis in primary care settings. A high DOC cut-off with 97.5% specificity could be used for detecting significant fibrosis (≥ F2) with an acceptable positive predictive value (87.1%). CONCLUSIONS This proof-of-concept study suggests that the DOC test may efficiently rule out and rule in significant liver fibrosis, thereby reducing the numbers of unnecessary liver biopsies. Moreover, the DOC test may be helpful for clinicians to exclude significant liver fibrosis in the general population.
Collapse
Affiliation(s)
- Lumin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, No. 130 West Changjiang Lane, Hefei, Anhui, 230036, China
| | - Yafei Zhang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Xiaodan Hong
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Ke Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, No. 130 West Changjiang Lane, Hefei, Anhui, 230036, China
| | - Bingyan Liu
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Peixin Zhang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Qianqian Tang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Jian Yu
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China
| | - Xiao-Zhi Jin
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Xin-Zhe Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ni Zhang
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar Di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Zhenhua Zhang
- Department of Infectious Diseases and Institute of Clinical Virology, The Second Hospital of Anhui Medical University, No. 678 Furong Lane, Hefei, Anhui, 230601, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agricultural University, No. 130 West Changjiang Lane, Hefei, Anhui, 230036, China.
| |
Collapse
|
5
|
Koelbel C, Ruiz Y, Wan Z, Wang S, Ho T, Lake D. Development of tandem antigen capture ELISAs measuring QSOX1 isoforms in plasma and serum. Free Radic Biol Med 2024; 210:212-220. [PMID: 38036070 PMCID: PMC10843750 DOI: 10.1016/j.freeradbiomed.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
QSOX1 is a sulfhydryl oxidase that has been identified as a potential biomarker in multiple cancer types as well as acute decompensated heart failure. Three anti-QSOX1 monoclonal antibodies (mAbs) were generated: 2F1, 3A10, and 56-3. MAbs 2F1 and 3A10 were generated against the short isoform of recombinant QSOX1 (rQSOX1-S), and mAb 56-3 was generated against a peptide (NEQEQPLGQWHLS) from the long isoform of QSOX1 (QSOX1-L). Using these mAbs, tandem antigen capture ELISAs were developed to quantify both short and long isoforms of QSOX1 (Total QSOX1 ELISA) and QSOX1-L (QSOX1-L ELISA) in serum and plasma samples. The Total QSOX1 ELISA pairs mAbs 2F1 and 3A10 and has a limit of detection of 109.5 pM, while the QSOX1-L ELISA pairs mAbs 2F1 and 56-3 and has a limit of detection of 10 pM. The levels of total QSOX1 and QSOX1-L were measured in a cohort of paired sera and plasma from 61 donors ≥40 years old and 15 donors <40 years old. No difference in QSOX1 levels was detected between QSOX1-L and QSOX1-S in serum, but the mean concentration of QSOX1-L was found to be 3.21 nM in serum and 5.63 nM in plasma (**p = 0.006). Our tandem ELISAs demonstrate the wide range of concentrations of QSOX1-L and QSOX1-S among individual serum and plasma samples. Since the epitope of mAb 2F1 was mapped to the first CxxC motif at residues C70 and C73 and mAb 56-3 was generated against NEQEQPLGQWHLS in QSOX1-L, our findings support previous research which suggested that QSOX1-L is secreted from cells despite a putative transmembrane domain. The ELISAs reported here may be a useful tool for investigating QSOX1 isoforms as potential biomarkers in cancer and/or heart failure.
Collapse
Affiliation(s)
- Calvin Koelbel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yvette Ruiz
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Thai Ho
- Divison of Hematology and Medical Oncology, Hollings Cancer Center, Medical University of South Carolina College of Medicine, Charleston, SC, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Kodogo V, Viljoen C, Hoevelmann J, Chakafana G, Tromp J, Farhan HA, Goland S, van der Meer P, Karaye K, Kryczka K, Hilfiker-Kleiner D, Jackson A, Mebazaa A, Böhm M, Pieske B, Bauersachs J, Bell L, Sliwa K. Proteomic Profiling in Patients With Peripartum Cardiomyopathy: A Biomarker Study of the ESC EORP PPCM Registry. JACC. HEART FAILURE 2023; 11:1708-1725. [PMID: 37804308 DOI: 10.1016/j.jchf.2023.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Peripartum cardiomyopathy (PPCM) remains an important cause of maternal morbidity and mortality globally. The pathophysiology remains incompletely understood, and the diagnosis is often missed or delayed. OBJECTIVES This study explored the serum proteome profile of patients with newly diagnosed PPCM, as compared with matched healthy postpartum mothers, to unravel novel protein biomarkers that would further an understanding of the pathogenesis of PPCM and improve diagnostic precision. METHODS Study investigators performed untargeted serum proteome profiling using data-independent acquisition-based label-free quantitative liquid chromatography-tandem mass spectrometry on 84 patients with PPCM, as compared with 29 postpartum healthy controls (HCs). Significant changes in protein intensities were determined with nonpaired Student's t-tests and were further classified by using the Boruta algorithm. The proteins' diagnostic performance was evaluated by area under the curve (AUC) and validated using the 10-fold cross-validation. RESULTS Patients with PPCM presented with a mean left ventricular ejection fraction of 33.5% ± 9.3% vs 57.0% ± 8.8% in HCs (P < 0.001). Study investigators identified 15 differentially up-regulated and 14 down-regulated proteins in patients with PPCM compared with HCs. Seven of these proteins were recognized as significant by the Boruta algorithm. The combination of adiponectin, quiescin sulfhydryl oxidase 1, inter-α-trypsin inhibitor heavy chain, and N-terminal pro-B-type natriuretic peptide had the best diagnostic precision (AUC: 0.90; 95% CI: 0.84-0.96) to distinguish patients with PPCM from HCs. CONCLUSIONS Salient biologic themes related to immune response proteins, inflammation, fibrosis, angiogenesis, apoptosis, and coagulation were predominant in patients with PPCM compared with HCs. These newly identified proteins warrant further evaluation to establish their role in the pathogenesis of PPCM and potential use as diagnostic markers.
Collapse
Affiliation(s)
- Vitaris Kodogo
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Charle Viljoen
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa; Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Julian Hoevelmann
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa; Department of Internal Medicine III-Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Graham Chakafana
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa; Department of Chemistry and Biochemistry, Hampton University, Hampton, Virginia, USA
| | - Jasper Tromp
- Saw Swee Hock School of Public Health, National University of Singapore and the National University Health System, Singapore; Duke-National University of Singapore Medical School, Singapore
| | | | - Sorel Goland
- Heart Institute, Kaplan Medical Center, Rehovot, affiliated with the Hebrew University, Jerusalem, Israel
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Kamilu Karaye
- Department of Medicine, Bayero University, Kano, Nigeria
| | | | | | - Alice Jackson
- Institute of Cardiovascular and Medical Sciences, Glasgow University, Glasgow, United Kingdom
| | - Alexandre Mebazaa
- Paris Cité University, French National Institute of Health and Medical Research (INSERM) Cardiovascular MArkers in Stress Conditions (MASCOT), Paris, France; Department of Anesthesiology and Critical Care, Saint Louis Lariboisière Hospitals, Public Assistance Hospital of Paris, Paris, France
| | - Michael Böhm
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa; Internal Medicine Clinic III -Cardiology, Angiology, and Internist Intensive Medicine, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Cape Town, South Africa, Cape Town, South Africa
| | - Karen Sliwa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, South Africa; Division of Cardiology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
7
|
Morfino P, Aimo A, Castiglione V, Vergaro G, Emdin M, Clerico A. Biomarkers of HFpEF: Natriuretic Peptides, High-Sensitivity Troponins and Beyond. J Cardiovasc Dev Dis 2022; 9:jcdd9080256. [PMID: 36005420 PMCID: PMC9409788 DOI: 10.3390/jcdd9080256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022] Open
Abstract
Heart failure (HF) is a significant cause of morbidity and mortality worldwide. HF with preserved ejection fraction (HFpEF) is a complex syndrome, often participated by several cardiac and extracardiac conditions, including chronic kidney disease, pulmonary disease, anaemia and advanced age. Circulating biomarkers reflecting pathophysiological pathways involved in HFpEF development and progression may assist clinicians in early diagnosis and management of this condition. Natriuretic peptides (NPs) are cardioprotective hormones released by cardiomyocytes in response to pressure or volume overload and in response to activation of neuro-endocrine-immune system. The relevance of B-type NP (BNP) and N-terminal pro-B-type NP (NT-proBNP) for diagnosis and risk stratification has been extensively demonstrated, and these biomarkers are emerging tools for population screening and as guides to the start of treatment in subclinical HF. On the contrary, conflicting evidence exists on the value of NPs to guide HF therapy. Among the other biomarkers, high-sensitivity troponins and soluble suppression of tumorigenesis-2 are the most promising biomarkers for risk stratification, predicting outcome independently from NPs. In this review, some novel biomarkers are being tested in such clinical scenario, more tightly linked to specific pathophysiological processes of cardiac damage.
Collapse
Affiliation(s)
- Paolo Morfino
- Interdisciplinary Center of Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Alberto Aimo
- Interdisciplinary Center of Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56127 Pisa, Italy
| | - Vincenzo Castiglione
- Interdisciplinary Center of Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56127 Pisa, Italy
| | - Giuseppe Vergaro
- Interdisciplinary Center of Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56127 Pisa, Italy
| | - Michele Emdin
- Interdisciplinary Center of Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56127 Pisa, Italy
| | - Aldo Clerico
- Interdisciplinary Center of Health Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, 56127 Pisa, Italy
- Correspondence:
| |
Collapse
|
8
|
Clinical Phenotypes of Cardiovascular and Heart Failure Diseases Can Be Reversed? The Holistic Principle of Systems Biology in Multifaceted Heart Diseases. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Recent advances in cardiology and biological sciences have improved quality of life in patients with complex cardiovascular diseases (CVDs) or heart failure (HF). Regardless of medical progress, complex cardiac diseases continue to have a prolonged clinical course with high morbidity and mortality. Interventional coronary techniques together with drug therapy improve quality and future prospects of life, but do not reverse the course of the atherosclerotic process that remains relentlessly progressive. The probability of CVDs and HF phenotypes to reverse can be supported by the advances made on the medical holistic principle of systems biology (SB) and on artificial intelligence (AI). Studies on clinical phenotypes reversal should be based on the research performed in large populations of patients following gathering and analyzing large amounts of relative data that embrace the concept of complexity. To decipher the complexity conundrum, a multiomics approach is needed with network analysis of the biological data. Only by understanding the complexity of chronic heart diseases and explaining the interrelationship between different interconnected biological networks can the probability for clinical phenotypes reversal be increased.
Collapse
|
9
|
Salie MT, Yang J, Ramírez Medina CR, Zühlke LJ, Chishala C, Ntsekhe M, Gitura B, Ogendo S, Okello E, Lwabi P, Musuku J, Mtaja A, Hugo-Hamman C, El-Sayed A, Damasceno A, Mocumbi A, Bode-Thomas F, Yilgwan C, Amusa GA, Nkereuwem E, Shaboodien G, Da Silva R, Lee DCH, Frain S, Geifman N, Whetton AD, Keavney B, Engel ME. Data-independent acquisition mass spectrometry in severe rheumatic heart disease (RHD) identifies a proteomic signature showing ongoing inflammation and effectively classifying RHD cases. Clin Proteomics 2022; 19:7. [PMID: 35317720 PMCID: PMC8939134 DOI: 10.1186/s12014-022-09345-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rheumatic heart disease (RHD) remains a major source of morbidity and mortality in developing countries. A deeper insight into the pathogenetic mechanisms underlying RHD could provide opportunities for drug repurposing, guide recommendations for secondary penicillin prophylaxis, and/or inform development of near-patient diagnostics. METHODS We performed quantitative proteomics using Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectrometry (SWATH-MS) to screen protein expression in 215 African patients with severe RHD, and 230 controls. We applied a machine learning (ML) approach to feature selection among the 366 proteins quantifiable in at least 40% of samples, using the Boruta wrapper algorithm. The case-control differences and contribution to Area Under the Receiver Operating Curve (AUC) for each of the 56 proteins identified by the Boruta algorithm were calculated by Logistic Regression adjusted for age, sex and BMI. Biological pathways and functions enriched for proteins were identified using ClueGo pathway analyses. RESULTS Adiponectin, complement component C7 and fibulin-1, a component of heart valve matrix, were significantly higher in cases when compared with controls. Ficolin-3, a protein with calcium-independent lectin activity that activates the complement pathway, was lower in cases than controls. The top six biomarkers from the Boruta analyses conferred an AUC of 0.90 indicating excellent discriminatory capacity between RHD cases and controls. CONCLUSIONS These results support the presence of an ongoing inflammatory response in RHD, at a time when severe valve disease has developed, and distant from previous episodes of acute rheumatic fever. This biomarker signature could have potential utility in recognizing different degrees of ongoing inflammation in RHD patients, which may, in turn, be related to prognostic severity.
Collapse
Affiliation(s)
- M Taariq Salie
- AFROStrep Research Group, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jing Yang
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carlos R Ramírez Medina
- Division of Informatics, Imaging, and Data Sciences, University of Manchester, Manchester , UK
| | - Liesl J Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Chishala Chishala
- Division of Cardiology, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Division of Cardiology, University of Cape Town & Groote Schuur Hospital, Cape Town, South Africa
| | - Bernard Gitura
- Cardiology Department of Medicine, Kenyatta National Hospital, University of Nairobi, Nairobi, Kenya
| | - Stephen Ogendo
- Department of Surgery, University of Nairobi, Nairobi, Kenya
| | - Emmy Okello
- Departments of Adult and Pediatric Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - Peter Lwabi
- Departments of Adult and Pediatric Cardiology, Uganda Heart Institute, Kampala, Uganda
| | - John Musuku
- University Teaching Hospital-Children's Hospital, University of Zambia, Lusaka, Zambia
| | - Agnes Mtaja
- University Teaching Hospital-Children's Hospital, University of Zambia, Lusaka, Zambia
| | - Christopher Hugo-Hamman
- Division of Paediatric Cardiology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
- Rheumatic Heart Disease Clinic, Windhoek Central Hospital, Windhoek, Namibia
| | - Ahmed El-Sayed
- Department of Cardiothoracic Surgery, Alshaab Teaching Hospital, Alazhari Health Research Center, Alzaiem Alazhari University, Khartoum, Sudan
| | - Albertino Damasceno
- Faculty of Medicine, Eduardo Mondlane University/Nucleo de Investigaçao, Departamento de Medicina, Hospital Central de Maputo, Maputo, Mozambique
| | - Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Mozambique
- Division of Non Communicable Diseases, Instituto Nacional de Saude, Vila de Marracuene, Mozambique
| | - Fidelia Bode-Thomas
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Christopher Yilgwan
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Ganiyu A Amusa
- Department of Medicine, University of Jos and Jos University Teaching Hospital, Jos, Nigeria
| | - Esin Nkereuwem
- Departments of Paediatrics, Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Gasnat Shaboodien
- Department of Medicine and Cape Heart Institute (CHI), University of Cape Town, Cape Town, South Africa
| | - Rachael Da Silva
- Stoller Biomarker Discovery Institute, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dave Chi Hoo Lee
- Stoller Biomarker Discovery Institute, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Frain
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nophar Geifman
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Anthony D Whetton
- Faculty of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester, UK
| | - Mark E Engel
- AFROStrep Research Group, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
Letunica N, Van Den Helm S, McCafferty C, Swaney E, Cai T, Attard C, Karlaftis V, Monagle P, Ignjatovic V. Proteomics in Thrombosis and Haemostasis. Thromb Haemost 2021; 122:1076-1084. [PMID: 34753192 DOI: 10.1055/a-1690-8897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
No Abstract.
Collapse
Affiliation(s)
- Natasha Letunica
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia
| | | | - Conor McCafferty
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Ella Swaney
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Tengyi Cai
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chantal Attard
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Vasiliki Karlaftis
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Paul Monagle
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Department of Clinical Haematology, The Royal Children's Hospital Melbourne, Parkville, Australia.,Kids Cancer Centre, Sydney Children's Hospital Randwick, Randwick, Australia
| | - Vera Ignjatovic
- Haematology, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
11
|
Ataklte F, Vasan RS. Heart failure risk estimation based on novel biomarkers. Expert Rev Mol Diagn 2021; 21:655-672. [PMID: 34014781 DOI: 10.1080/14737159.2021.1933446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Despite advances in medical care, heart failure (HF)-associated morbidity and mortality remains high. Consequently, there is increased effort to find better ways for predicting, screening, and prognosticating HF in order to facilitate effective primary and secondary prevention.Areas covered: In this review, we describe the various biomarkers associated with different etiologic pathways implicated in HF, and discuss their roles in screening, diagnosing, prognosticating and predicting HF. We explore the emerging role of multi-omic approaches. We performed electronic searches in databases (PubMed and Google Scholar) through December 2020, using the following key terms: biomarker, novel, heart failure, risk, prediction, and estimation.Circulating BNP and troponin concentrations have been established in clinical care as key biomarkers for diagnosing and prognosticating HF. Emerging biomarkers (such as galectin-3 and ST-2) have gained further recognition for use in evaluating prognosis of HF patients. Promising biomarkers that are yet to be part of clinical recommendations include biomarkers of cardiorenal disease.Expert opinion: Increasing recognition of the complex and interdependent nature of pathophysiological pathways of HF has led to the application of multi-marker approaches including multi-omic high throughput assays. These newer approaches have the potential for new therapeutic discoveries and improving precision medicine in HF.
Collapse
Affiliation(s)
- Feven Ataklte
- Department of Internal Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Ramachandran S Vasan
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.,Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.,Framingham Heart Study, Framingham, MA, USA.,Boston University Center for Computing and Data Sciences, Boston, MA, USA
| |
Collapse
|
12
|
Castiglione V, Aimo A, Vergaro G, Saccaro L, Passino C, Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev 2021; 27:625-643. [PMID: 33852110 PMCID: PMC8898236 DOI: 10.1007/s10741-021-10105-w] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is a significant cause of morbidity and mortality worldwide. Circulating biomarkers reflecting pathophysiological pathways involved in HF development and progression may assist clinicians in early diagnosis and management of HF patients. Natriuretic peptides (NPs) are cardioprotective hormones released by cardiomyocytes in response to pressure or volume overload. The roles of B-type NP (BNP) and N-terminal pro-B-type NP (NT-proBNP) for diagnosis and risk stratification in HF have been extensively demonstrated, and these biomarkers are emerging tools for population screening and as guides to the start of treatment in subclinical HF. On the contrary, conflicting evidence exists on the role of NPs as a guide to HF therapy. Among the other biomarkers, high-sensitivity troponins and soluble suppression of tumorigenesis-2 are the most promising biomarkers for risk stratification, with independent value to NPs. Other biomarkers evaluated as predictors of adverse outcome are galectin-3, growth differentiation factor 15, mid-regional pro-adrenomedullin, and makers of renal dysfunction. Multi-marker scores and genomic, transcriptomic, proteomic, and metabolomic analyses could further refine HF management.
Collapse
Affiliation(s)
| | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy. .,Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Luigi Saccaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| |
Collapse
|
13
|
Zheng W, Liu F, Du F, Yang F, Kou X, He Y, Feng H, Fan Q, Luo E, Min H, Miao J, Cui L, Cao Y. Characterization of a Sulfhydryl Oxidase From Plasmodium berghei as a Target for Blocking Parasite Transmission. Front Cell Infect Microbiol 2020; 10:311. [PMID: 32670896 PMCID: PMC7332561 DOI: 10.3389/fcimb.2020.00311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Quiescin sulfhydryl oxidase (QSOX), present in a wide variety of eukaryotic species, catalyzes the insertion of disulfide bonds into unfolded, reduced proteins. Here we characterized the QSOX protein from the rodent malaria parasite Plasmodium berghei (PbQSOX), which is conserved in all sequenced malaria parasite species. The PbQSOX protein was not expressed in asexual erythrocytic stages, but was most abundantly expressed in ookinetes. Indirect immunofluorescence assays revealed PbQSOX was not only localized in cytoplasm of gametocytes, gametes and ookinetes, but also expressed on the surface of gametes and ookinetes. Western blot identified extracellular presence of PbQSOX in the culture medium of ookinetes suggestive of secretion. Pbqsox deletion (Δpbqsox) did not affect asexual intraerythrocytic development, but reduced exflagellation of male gametocytes as well as formation and maturation of ookinetes. Pbqsox deletion also led to a significant increase in the reduced thiol groups of ookinete surface proteins, suggesting that it may play a role in maintaining the integrity of disulfide bonds of surface proteins, which might be needed for ookinete development. Mosquitoes that fed on Δpbqsox-infected mice showed a significant reduction in ookinete and oocyst numbers compared to those fed on wild-type parasite-infected mice. Further, both polyclonal mouse antisera and a monoclonal antibody against the recombinant PbQSOX exhibited substantial transmission-blocking activities in in vitro and mosquito feeding assays, suggesting QSOX is a potential target for blocking parasite transmission.
Collapse
Affiliation(s)
- Wenqi Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Feng Du
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Fan Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu Kou
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Animal Quarantine, College of Animal Husbandry and Veterinary Sciences, Liaoning Medical University, Jinzhou, China
| | - Yiwen He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, China
| | - Enjie Luo
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
14
|
Sarhene M, Wang Y, Wei J, Huang Y, Li M, Li L, Acheampong E, Zhengcan Z, Xiaoyan Q, Yunsheng X, Jingyuan M, Xiumei G, Guanwei F. Biomarkers in heart failure: the past, current and future. Heart Fail Rev 2020; 24:867-903. [PMID: 31183637 DOI: 10.1007/s10741-019-09807-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the enhanced knowledge of the pathophysiology of heart failure (HF), it still remains a serious syndrome with substantial morbidity, mortality, and frequent hospitalizations. These are due to the current improvements in other cardiovascular diseases (like myocardial infarction), the aging population, and growing prevalence of comorbidities. Biomarker-guided management has brought a new dimension in prognostication, diagnosis, and therapy options. Following the recommendation of natriuretic peptides (B-type natriuretic peptide and N-terminal-proBNP), many other biomarkers have been thoroughly studied to reflect different pathophysiological processes (such as fibrosis, inflammation, myocardial injury, and remodeling) in HF and some of them (like cardiac troponins, soluble suppression of tumorigenesis-2, and galectin 3) have subsequently been recommended to aid in the diagnosis and prognostication in HF. Consequently, multi-marker approach has also been approved owing to the varied nature of HF syndrome. In this review, we discussed the guidelines available for HF biomarkers, procedures for evaluating novel markers, and the utilities of both emerging and established biomarkers for risk stratification, diagnosis, and management of HF in the clinics. We later looked at how the rapidly emerging field-OMICs, can help transform HF biomarkers discoveries and establishment.
Collapse
Affiliation(s)
- Michael Sarhene
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Yili Wang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Jing Wei
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Yuting Huang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Min Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Lan Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Enoch Acheampong
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhou Zhengcan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Xiaoyan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Yunsheng
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mao Jingyuan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China
| | - Gao Xiumei
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fan Guanwei
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China. .,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
15
|
França KC, Martinez PA, Prado ML, Lo SM, Borges BE, Zanata SM, San Martin A, Nakao LS. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways. Arch Biochem Biophys 2020; 679:108220. [PMID: 31812669 DOI: 10.1016/j.abb.2019.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023]
Abstract
Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.
Collapse
Affiliation(s)
- Karime C França
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Pierina A Martinez
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Maiara L Prado
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Sze M Lo
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Beatriz E Borges
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | | | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
16
|
Evaluation of sample preparation methods for label-free quantitative profiling of salivary proteome. J Proteomics 2020; 210:103532. [DOI: 10.1016/j.jprot.2019.103532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/07/2019] [Accepted: 09/19/2019] [Indexed: 01/17/2023]
|
17
|
Vanhaverbeke M, Vausort M, Veltman D, Zhang L, Wu M, Laenen G, Gillijns H, Moreau Y, Bartunek J, Van De Werf F, Devaux Y, Janssens S, Sinnaeve PR. Peripheral Blood RNA Levels of QSOX1 and PLBD1 Are New Independent Predictors of Left Ventricular Dysfunction After Acute Myocardial Infarction. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002656. [PMID: 31756302 PMCID: PMC6922070 DOI: 10.1161/circgen.119.002656] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The identification of patients with acute myocardial infarction (MI) at risk of subsequent left ventricular (LV) dysfunction remains challenging, but it is important to optimize therapies. The aim of this study was to determine the unbiased RNA profile in peripheral blood of patients with acute MI and to identify and validate new prognostic markers of LV dysfunction. METHODS We prospectively enrolled a discovery cohort with acute MI (n=143) and performed whole-blood RNA profiling at different time points. We then selected transcripts on admission that related to LV dysfunction at follow-up and validated them by quantitative polymerase chain reaction in the discovery cohort, in an external validation cohort (n=449), and in a representative porcine MI model with cardiac magnetic resonance-based measurements of infarct size and postmortem myocardial pathology (n=33). RESULTS RNA profiling in the discovery cohort showed upregulation of genes involved in chemotaxis, IL (interleukin)-6, and NF-κB (nuclear factor-κB) signaling in the acute phase of MI. Expression levels of the majority of these transcripts paralleled the rise in cardiac troponin T and decayed at 30 days. RNA levels of QSOX1, PLBD1, and S100A8 on admission with MI correlated with LV dysfunction at follow-up. Using quantitative polymerase chain reaction, we confirmed that QSOX1 and PLBD1 predicted LV dysfunction (odds ratio, 2.6 [95% CI, 1.1-6.1] and 3.2 [95% CI, 1.4-7.4]), whereas S100A8 did not. In the external validation cohort, we confirmed QSOX1 and PLBD1 as new independent markers of LV dysfunction (odds ratio, 1.41 [95% CI, 1.06-1.88] and 1.43 [95% CI, 1.08-1.89]). QSOX1 had an incremental predictive value in a model consisting of clinical variables and cardiac biomarkers (including NT-proBNP [N-terminal pro-B-type natriuretic peptide]). In the porcine MI model, whole-blood levels of QSOX1 and PLBD1 related to neutrophil infiltration in the ischemic myocardium in an infarct size-independent manner. CONCLUSIONS Peripheral blood QSOX1 and PLBD1 in acute MI are new independent markers of LV dysfunction post-MI.
Collapse
Affiliation(s)
- Maarten Vanhaverbeke
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | - Mélanie Vausort
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen (M. Vausort, L.Z., Y.D.)
| | - Denise Veltman
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.)
| | - Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen (M. Vausort, L.Z., Y.D.)
| | - Ming Wu
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.)
| | - Griet Laenen
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven (G.L., Y.M.)
| | - Hilde Gillijns
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.)
| | - Yves Moreau
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven (G.L., Y.M.)
| | - Jozef Bartunek
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Cardiovascular Center, OLV Hospital, Aalst, Belgium (J.B.)
| | - Frans Van De Werf
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen (M. Vausort, L.Z., Y.D.)
| | - Stefan Janssens
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | - Peter R Sinnaeve
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | | |
Collapse
|
18
|
Arrigo M, Vodovar N, Nougué H, Sadoune M, Pemberton CJ, Ballan P, Ludes PO, Gendron N, Carpentier A, Cholley B, Bizouarn P, Cohen-Solal A, Singh JP, Szymonifka J, Latremouille C, Samuel JL, Launay JM, Pottecher J, Richards AM, Truong QA, Smadja DM, Mebazaa A. The heart regulates the endocrine response to heart failure: cardiac contribution to circulating neprilysin. Eur Heart J 2019; 39:1794-1798. [PMID: 29244074 DOI: 10.1093/eurheartj/ehx679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/01/2017] [Indexed: 12/11/2022] Open
Abstract
Aims Heart failure (HF) is accompanied by major neuroendocrine changes including the activation of the natriuretic peptide (NP) pathway. Using the unique model of patients undergoing implantation of the CARMAT total artificial heart and investigating regional differences in soluble neprilysin (sNEP) in patients with reduced or preserved systolic function, we studied the regulation of the NP pathway in HF. Methods and results Venous blood samples from two patients undergoing replacement of the failing ventricles with a total artificial heart were collected before implantation and weekly thereafter until post-operative week 6. The ventricular removal was associated with an immediate drop in circulating NPs, a nearly total disappearance of circulating glycosylated proBNP and furin activity and a marked decrease in sNEP. From post-operative week 1 onwards, NP concentrations remained overall unchanged. In contrast, partial recoveries in glycosylated proBNP, furin activity, and sNEP were observed. Furthermore, while in patients with preserved systolic function (n = 6), sNEP concentrations in the coronary sinus and systemic vessels were similar (all P > 0.05), in patients with reduced left-ventricular systolic function, sNEP concentration, and activity were ∼three-fold higher in coronary sinus compared to systemic vessels (n = 21, all P < 0.0001), while the trans-pulmonary gradient was neutral (n = 5, P = 1.0). Conclusion The heart plays a pivotal role as a regulator of the endocrine response in systolic dysfunction, not only by directly releasing NPs but also by contributing to circulating sNEP, which in turn determines the bioavailability of other numerous vasoactive peptides.
Collapse
Affiliation(s)
- Mattia Arrigo
- Inserm UMR-S 942, Hôpital Lariboisière, Paris, France.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Hélène Nougué
- Inserm UMR-S 942, Hôpital Lariboisière, Paris, France.,Department of Anaesthesiology and Intensive Care, Lariboisière Hospital, Paris, France
| | - Malha Sadoune
- Inserm UMR-S 942, Hôpital Lariboisière, Paris, France
| | | | - Pamela Ballan
- Department of Anaesthesiology and Intensive Care, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Pierre-Olivier Ludes
- Department of Anaesthesiology and Intensive Care, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France
| | - Nicolas Gendron
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Inserm UMR-S 1140, Faculté de Pharmacie, Paris, France.,Department of Haematology, Georges Pompidou European Hospital, Paris, France
| | - Alain Carpentier
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Department of Cardiovascular Surgery, Georges Pompidou European Hospital, Paris, France
| | - Bernard Cholley
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Department of Anaesthesiology and Intensive Care, Georges Pompidou European Hospital, Paris, France
| | - Philippe Bizouarn
- Department of Anaesthesiology and Intensive Care, CHU Nantes, France
| | - Alain Cohen-Solal
- Inserm UMR-S 942, Hôpital Lariboisière, Paris, France.,Université Paris Diderot-Sorbonne Paris Cité, Paris, France.,Department of Cardiology, Lariboisière Hospital, Paris, France
| | - Jagmeet P Singh
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jackie Szymonifka
- Department of Radiology and Division of Cardiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Christian Latremouille
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Department of Cardiovascular Surgery, Georges Pompidou European Hospital, Paris, France
| | | | - Jean-Marie Launay
- Inserm UMR-S 942, Hôpital Lariboisière, Paris, France.,Centre for Biological Resources BB-0033-00064, Lariboisière Hospital, Paris, France
| | - Julien Pottecher
- Department of Anaesthesiology and Intensive Care, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - A Mark Richards
- University of Otago, Christchurch, New Zealand.,National University Health System, Singapore, Singapore
| | - Quynh A Truong
- Department of Radiology and Division of Cardiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - David M Smadja
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France.,Inserm UMR-S 1140, Faculté de Pharmacie, Paris, France.,Department of Haematology, Georges Pompidou European Hospital, Paris, France
| | - Alexandre Mebazaa
- Inserm UMR-S 942, Hôpital Lariboisière, Paris, France.,Department of Anaesthesiology and Intensive Care, Lariboisière Hospital, Paris, France.,Université Paris Diderot-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Grozdanić M, Vidmar R, Vizovišek M, Fonović M. Degradomics in Biomarker Discovery. Proteomics Clin Appl 2019; 13:e1800138. [PMID: 31291060 DOI: 10.1002/prca.201800138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/01/2019] [Indexed: 12/13/2022]
Abstract
The upregulation of protease expression and proteolytic activity is implicated in numerous pathological conditions such as neurodegeneration, cancer, cardiovascular and autoimmune diseases, and bone degeneration. During disease progression, various proteases form characteristic patterns of cleaved proteins and peptides, which can affect disease severity and course of progression. It has been shown that qualitative and quantitative monitoring of cleaved protease substrates can provide relevant prognostic, diagnostic, and therapeutic information. As proteolytic fragments and peptides generated in the affected tissue are commonly translocated to blood, urine, and other proximal fluids, their possible application as biomarkers is the subject of ongoing research. The field of degradomics has been established to enable the global identification of proteolytic events on the organism level, utilizing proteomic approaches and sample preparation techniques that facilitate the detection of proteolytic processing of protease substrates in complex biological samples. In this review, some of the latest developments in degradomic methodologies used for the identification and validation of biologically relevant proteolytic events and their application in the search for clinically relevant biomarker candidates are presented. The current state of degradomics in clinics is discussed and the future perspectives of the field are outlined.
Collapse
Affiliation(s)
- Marija Grozdanić
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, SI-1000, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Matej Vizovišek
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
20
|
Affiliation(s)
- Satoshi Masutani
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University
| |
Collapse
|
21
|
|
22
|
Bromage DI, Santos CX, Shah AM. Developing potential biomarkers through bedside-to-bench translation. J Mol Cell Cardiol 2018; 133:209-210. [PMID: 30472252 DOI: 10.1016/j.yjmcc.2018.07.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 10/27/2022]
Affiliation(s)
- D I Bromage
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - C X Santos
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - A M Shah
- King's College London British Heart Foundation Centre of Excellence, London, UK.
| |
Collapse
|
23
|
Implications of plasma thiol redox in disease. Clin Sci (Lond) 2018; 132:1257-1280. [DOI: 10.1042/cs20180157] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/09/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022]
Abstract
Thiol groups are crucially involved in signaling/homeostasis through oxidation, reduction, and disulphide exchange. The overall thiol pool is the resultant of several individual pools of small compounds (e.g. cysteine), peptides (e.g. glutathione), and thiol proteins (e.g. thioredoxin (Trx)), which are not in equilibrium and present specific oxidized/reduced ratios. This review addresses mechanisms and implications of circulating plasma thiol/disulphide redox pools, which are involved in several physiologic processes and explored as disease biomarkers. Thiol pools are regulated by mechanisms linked to their intrinsic reactivity against oxidants, concentration of antioxidants, thiol-disulphide exchange rates, and their dynamic release/removal from plasma. Major thiol couples determining plasma redox potential (Eh) are reduced cysteine (CyS)/cystine (the disulphide form of cysteine) (CySS), followed by GSH/disulphide-oxidized glutathione (GSSG). Hydrogen peroxide and hypohalous acids are the main plasma oxidants, while water-soluble and lipid-soluble small molecules are the main antioxidants. The thiol proteome and thiol-oxidoreductases are emerging investigative areas given their specific disease-related responses (e.g. protein disulphide isomerases (PDIs) in thrombosis). Plasma cysteine and glutathione redox couples exhibit pro-oxidant changes directly correlated with ageing/age-related diseases. We further discuss changes in thiol-disulphide redox state in specific groups of diseases: cardiovascular, cancer, and neurodegenerative. These results indicate association with the disease states, although not yet clear-cut to yield specific biomarkers. We also highlight mechanisms whereby thiol pools affect atherosclerosis pathophysiology. Overall, it is unlikely that a single measurement provides global assessment of plasma oxidative stress. Rather, assessment of individual thiol pools and thiol-proteins specific to any given condition has more solid and logical perspective to yield novel relevant information on disease risk and prognosis.
Collapse
|
24
|
Caillard A, Sadoune M, Cescau A, Meddour M, Gandon M, Polidano E, Delcayre C, Da Silva K, Manivet P, Gomez AM, Cohen-Solal A, Vodovar N, Li Z, Mebazaa A, Samuel JL. QSOX1, a novel actor of cardiac protection upon acute stress in mice. J Mol Cell Cardiol 2018; 119:75-86. [DOI: 10.1016/j.yjmcc.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/07/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
|
25
|
|
26
|
Farmakis D, Papingiotis G, Parissis J, Filippatos G. Ups and downs in heart failure: the case of proteomics. Eur J Heart Fail 2017; 20:63-66. [DOI: 10.1002/ejhf.1065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Georgios Papingiotis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
27
|
Zhang X, Walsh T, Atherton JJ, Kostner K, Schulz B, Punyadeera C. Identification and Validation of a Salivary Protein Panel to Detect Heart Failure Early. Am J Cancer Res 2017; 7:4350-4358. [PMID: 29158831 PMCID: PMC5695135 DOI: 10.7150/thno.21727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Over 26 million people suffer from heart failure (HF) globally. Current diagnosis of HF relies on clinical evaluation, blood assays and imaging techniques. Our aim is to develop a diagnostic assay to detect HF in at risk individuals within the community using human saliva as a medium, potentially leading to a simple, safe early warning system. METHODS Saliva samples were collected from healthy controls (n=36) and HF patients (n=75). Salivary proteome profiles were analysed by Sequential Window Acquisition of All Theoretical fragment ion spectra - Mass Spectrometry (SWATH-MS). A total of 738 proteins were quantified and 177 proteins demonstrated significant differences between HF patients and healthy controls. Candidate biomarkers were chosen based on their abundance and difference between the two cohorts. A multi-protein panel was developed using logistic regression analysis. The diagnostic performance of the multi-protein panel was assessed using receiver operative characteristic curves. The candidate proteins were further confirmed, using western blot analysis, and validated technically, using an independent biological cohort. RESULTS A group of six proteins were chosen in the discovery phase as potential candidates based on their differences in the abundance between the two cohorts. During the validation phase, two of the proteins were not detected with western blotting and as such were removed. The final panel consists of four proteins with sensitivity of 83.3%, specificity of 62.5% with an area under ROC curve of 0.78 in discriminating healthy controls from NYHA class I/II HF patients, and was validated in a second independent cohort study. CONCLUSION Analysis of salivary proteome using SWATH-MS revealed novel HF-specific protein candidates yielding high diagnostic performance. A multi-centre longitudinal clinical trial will be the next step before clinical implementation of this panel.
Collapse
|
28
|
Wang Y, Zheng C, Wang X, Zuo K, Liu Z. Proteomic profile-based screening of potential protein biomarkers in the urine of patients with nephrotic syndrome. Mol Med Rep 2017; 16:6276-6284. [DOI: 10.3892/mmr.2017.7329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 05/23/2017] [Indexed: 11/06/2022] Open
|
29
|
Hoffman JM, Lyu Y, Pletcher SD, Promislow DEL. Proteomics and metabolomics in ageing research: from biomarkers to systems biology. Essays Biochem 2017; 61:379-388. [PMID: 28698311 PMCID: PMC5743054 DOI: 10.1042/ebc20160083] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Age is the single greatest risk factor for a wide range of diseases, and as the mean age of human populations grows steadily older, the impact of this risk factor grows as well. Laboratory studies on the basic biology of ageing have shed light on numerous genetic pathways that have strong effects on lifespan. However, we still do not know the degree to which the pathways that affect ageing in the lab also influence variation in rates of ageing and age-related disease in human populations. Similarly, despite considerable effort, we have yet to identify reliable and reproducible 'biomarkers', which are predictors of one's biological as opposed to chronological age. One challenge lies in the enormous mechanistic distance between genotype and downstream ageing phenotypes. Here, we consider the power of studying 'endophenotypes' in the context of ageing. Endophenotypes are the various molecular domains that exist at intermediate levels of organization between the genotype and phenotype. We focus our attention specifically on proteins and metabolites. Proteomic and metabolomic profiling has the potential to help identify the underlying causal mechanisms that link genotype to phenotype. We present a brief review of proteomics and metabolomics in ageing research with a focus on the potential of a systems biology and network-centric perspective in geroscience. While network analyses to study ageing utilizing proteomics and metabolomics are in their infancy, they may be the powerful model needed to discover underlying biological processes that influence natural variation in ageing, age-related disease, and longevity.
Collapse
Affiliation(s)
- Jessica M Hoffman
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd CH464, Birmingham, AL 35294, U.S.A
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, Biomedical Sciences and Research Building, University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Box 357705, 1959 NE Pacific Street, Seattle, Washington 98195, U.S.A.
- Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A
| |
Collapse
|
30
|
NANDAKUMAR P, LEE D, RICHARD MA, TEKOLA-AYELE F, TAYO BO, WARE E, SUNG YJ, SALAKO B, OGUNNIYI A, GU CC, GROVE ML, FORNAGE M, KARDIA S, ROTIMI C, COOPER RS, MORRISON AC, EHRET G, CHAKRAVARTI A. Rare coding variants associated with blood pressure variation in 15 914 individuals of African ancestry. J Hypertens 2017; 35:1381-1389. [PMID: 28234671 PMCID: PMC5451310 DOI: 10.1097/hjh.0000000000001319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Hypertension is a major risk factor for all cardiovascular diseases, especially among African Americans. This study focuses on identifying specific blood pressure (BP) genes using 15 914 individuals of African ancestry from eight cohorts (Africa America Diabetes Mellitus, Atherosclerosis Risk in Communities Study, Coronary Artery Risk Development in young Adults, Genetics Network, Genetic Epidemiology Network of Arteriopathy, Howard University Family Study, Hypertension Genetic Epidemiology Network, and Loyola University Chicago Cohort) to further genetic findings in this population which has generally been underrepresented in BP studies. METHODS We genotyped and performed various single variant and gene-based exome-wide analyses on 15 914 individuals on the Illumina HumanExome Beadchip v1.0 or v1.1 to test association with SBP and DBP long-term average residuals that were adjusted for age, age-squared, sex, and BMI. RESULTS We identified rare variants affecting SBP and DBP in 10 genes: AFF1, GAPDHS, SLC28A3, COL6A1, CRYBA2, KRBA1, SEL1L3, YOD1, CCDC13, and QSOX1. Prior experimental evidence for six of these 10 candidate genes supports their involvement in cardiovascular mechanisms, corroborating their potential roles in BP regulation. CONCLUSION Although our results require replication or validation due to their low numbers of carriers, and an ethnicity-specific genotyping array may be more informative, this study, which has identified several candidate genes in this population most susceptible to hypertension, presents one of the largest African-ancestry BP studies to date and the largest including analysis of rare variants.
Collapse
Affiliation(s)
- Priyanka NANDAKUMAR
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Dongwon LEE
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Melissa A. RICHARD
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Fasil TEKOLA-AYELE
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Bamidele O. TAYO
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Erin WARE
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
- Institute for Social Research, University of Michigan, Ann Arbor, MI
| | - Yun Ju SUNG
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | | | | | - C. Charles GU
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Megan L. GROVE
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Myriam FORNAGE
- Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Sharon KARDIA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Charles ROTIMI
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Richard S. COOPER
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - Alanna C. MORRISON
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston TX
| | - Georg EHRET
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Specialties of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Aravinda CHAKRAVARTI
- McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
31
|
Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, Fonarow GC, Greenberg B, Januzzi JL, Kiernan MS, Liu PP, Wang TJ, Yancy CW, Zile MR. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement From the American Heart Association. Circulation 2017; 135:e1054-e1091. [PMID: 28446515 DOI: 10.1161/cir.0000000000000490] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE Natriuretic peptides have led the way as a diagnostic and prognostic tool for the diagnosis and management of heart failure (HF). More recent evidence suggests that natriuretic peptides along with the next generation of biomarkers may provide added value to medical management, which could potentially lower risk of mortality and readmissions. The purpose of this scientific statement is to summarize the existing literature and to provide guidance for the utility of currently available biomarkers. METHODS The writing group used systematic literature reviews, published translational and clinical studies, clinical practice guidelines, and expert opinion/statements to summarize existing evidence and to identify areas of inadequacy requiring future research. The panel reviewed the most relevant adult medical literature excluding routine laboratory tests using MEDLINE, EMBASE, and Web of Science through December 2016. The document is organized and classified according to the American Heart Association to provide specific suggestions, considerations, or contemporary clinical practice recommendations. RESULTS A number of biomarkers associated with HF are well recognized, and measuring their concentrations in circulation can be a convenient and noninvasive approach to provide important information about disease severity and helps in the detection, diagnosis, prognosis, and management of HF. These include natriuretic peptides, soluble suppressor of tumorgenicity 2, highly sensitive troponin, galectin-3, midregional proadrenomedullin, cystatin-C, interleukin-6, procalcitonin, and others. There is a need to further evaluate existing and novel markers for guiding therapy and to summarize their data in a standardized format to improve communication among researchers and practitioners. CONCLUSIONS HF is a complex syndrome involving diverse pathways and pathological processes that can manifest in circulation as biomarkers. A number of such biomarkers are now clinically available, and monitoring their concentrations in blood not only can provide the clinician information about the diagnosis and severity of HF but also can improve prognostication and treatment strategies.
Collapse
|
32
|
Mokou M, Lygirou V, Vlahou A, Mischak H. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics 2017; 14:117-136. [DOI: 10.1080/14789450.2017.1274653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marika Mokou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Mosaiques Diagnostics, Hannover, Germany
| |
Collapse
|
33
|
Arrigo M, Truong QA, Onat D, Szymonifka J, Gayat E, Tolppanen H, Sadoune M, Demmer RT, Wong KY, Launay JM, Samuel JL, Cohen-Solal A, Januzzi JL, Singh JP, Colombo PC, Mebazaa A. Soluble CD146 Is a Novel Marker of Systemic Congestion in Heart Failure Patients: An Experimental Mechanistic and Transcardiac Clinical Study. Clin Chem 2017; 63:386-393. [DOI: 10.1373/clinchem.2016.260471] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Abstract
BACKGROUND
Soluble CD146 (sCD146), is an endothelial marker with similar diagnostic power as natriuretic peptides in decompensated heart failure (HF). While natriuretic peptides are released by the failing heart, sCD146 may be released by veins in response to stretch induced by systemic congestion in HF. This study investigated the source, effects of vascular stress on release and prognostic properties of sCD146 in HF.
METHODS
In a peripheral venous stress study, plasma concentrations of sCD146 and N-terminal probrain natriuretic-peptide (NT-proBNP) were measured in 44 HF patients at baseline and after 90 min of unilateral forearm venous congestion. In addition, sCD146 and NT-proBNP were measured in peripheral vein (PV) and coronary sinus (CS) blood samples of 137 HF patients and the transcardiac gradient was calculated. Those patients were followed for major adverse cardiovascular events (MACE) during 2 years.
RESULTS
The induction of venous stress was associated with a pronounced increase in circulating concentrations of sCD146 in the congested arm (+60 μg/L) compared to the control arm (+16 μg/L, P = 0.025), while no difference in NT-proBNP concentrations was seen. In contrast to positive transcardiac gradient for NT-proBNP, median sCD146 concentrations were lower in CS than in PV (396 vs 434, P < 0.001), indicating a predominantly extracardiac source of sCD146. Finally, increased PV concentrations of sCD146 were associated with higher risk of MACE at 2 years.
CONCLUSIONS
Soluble CD146 is released from the peripheral vasculature in response to venous stretch and may reflect systemic congestion in chronic HF patients.
Collapse
Affiliation(s)
- Mattia Arrigo
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France; Department of Anesthesiology and Critical Care Medicine, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France, Department of Cardiology, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
- Department of Cardiology, University Heart Center, University Hospital Zurich, Switzerland
| | - Quynh A Truong
- Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Duygu Onat
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Jackie Szymonifka
- Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Etienne Gayat
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France; Department of Anesthesiology and Critical Care Medicine, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
| | | | | | - Ryan T Demmer
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Ka Y Wong
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Jean Marie Launay
- Université Paris Diderot, PRES Sorbonne Paris Cité, France, Department of Biochemistry, AP-HP, Lariboisière University Hospitals, Paris, France
| | | | - Alain Cohen-Solal
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France, Department of Cardiology, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
| | - James L Januzzi
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jagmeet P Singh
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Paolo C Colombo
- Division of Cardiology, Columbia University Medical Center, New York NY
| | - Alexandre Mebazaa
- INSERM UMR-S 942, Paris, France
- Université Paris Diderot, PRES Sorbonne Paris Cité, France; Department of Anesthesiology and Critical Care Medicine, AP-HP, Saint Louis Lariboisière University Hospitals, Paris, France
| |
Collapse
|
34
|
|
35
|
Abstract
Several protein biomarkers, including cardiac troponin T, cardiac troponin I, B-type natriuretic peptide, C-reactive protein and apolipoprotein A-I, are widely employed in the evaluation of cardiovascular disease. Several of such potential biomarkers, or their multiscores, have been assessed over the last years for the prediction of cardiovascular risk but only a few of them have been validated for clinical use. Substantial improvement in the cardiovascular risk prediction and reclassification relative to traditional models therefore remains a difficult task presently unresolved. Hence, a potential importance of alternative approaches which may rely on novel proteomic biomarkers among others. Plasma or serum concentrations of numerous proteins were measured using proteomic approaches to establish their relationships with cardiovascular disease; none of them was however evaluated for cardiovascular risk prediction and subject stratification in rigorous large-scale studies. Thus, further research is needed to identify novel candidates that can improve cardiovascular risk prediction, subject stratification and standard care. Proteomics will undoubtedly remain a key approach to address this major clinical and scientific challenge.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), Research Unit 1166 ICAN, University of Pierre and Marie Curie - Paris 6, Pitié - Salpétrière University Hospital, 91, boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
36
|
Emdin M, Mirizzi G, Pastormerlo LE, Poletti R, Giannelli E, Prontera C, Passino C, Vergaro G. The search for efficient diagnostic and prognostic biomarkers of heart failure. Future Cardiol 2016; 12:327-37. [PMID: 27092725 DOI: 10.2217/fca.16.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several biomarkers have been tested for screening, diagnosis and prognosis purposes, as well as to guide treatment in heart failure, but only the assay of circulating B-type natriuretic peptides has widely recognized applications for clinical decision-making. Natriuretic peptides are sensitive in detecting the clinically overt or subclinical myocardial damage, but their plasma levels are increased following every generic insult to the cardiovascular system. Novel biomarkers are required to identify specific pathways of disease progression, such as diverse neurohormonal axes activation, inflammation and fibrogenesis, and to act as a tool for therapeutic tailoring. In this view, Gal-3 and ST-2 assays seem very promising, given their involvement in mechanisms of cardiac fibrosis and their prognostic value.
Collapse
Affiliation(s)
- Michele Emdin
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy.,Health Science Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Gianluca Mirizzi
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy
| | - Luigi E Pastormerlo
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy.,Health Science Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Roberta Poletti
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy
| | - Elena Giannelli
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy
| | - Concetta Prontera
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy
| | - Claudio Passino
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy.,Health Science Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Giuseppe Vergaro
- Fondazione G. Monasterio CNR-Regione Toscana, via Moruzzi 1, 56124 Pisa, Italy.,Health Science Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| |
Collapse
|
37
|
Martindale JL, Wakai A, Collins SP, Levy PD, Diercks D, Hiestand BC, Fermann GJ, deSouza I, Sinert R. Diagnosing Acute Heart Failure in the Emergency Department: A Systematic Review and Meta-analysis. Acad Emerg Med 2016; 23:223-42. [PMID: 26910112 DOI: 10.1111/acem.12878] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/31/2015] [Accepted: 09/16/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Acute heart failure (AHF) is one of the most common diagnoses assigned to emergency department (ED) patients who are hospitalized. Despite its high prevalence in the emergency setting, the diagnosis of AHF in ED patients with undifferentiated dyspnea can be challenging. OBJECTIVES The primary objective of this study was to perform a systematic review and meta-analysis of the operating characteristics of diagnostic elements available to the emergency physician for diagnosing AHF. Secondary objectives were to develop a test-treatment threshold model and to calculate interval likelihood ratios (LRs) for natriuretic peptides (NPs) by pooling patient-level results. METHODS PubMed, EMBASE, and selected bibliographies were searched from January 1965 to March 2015 using MeSH terms to address the ability of the following index tests to predict AHF as a cause of dyspnea in adult patients in the ED: history and physical examination, electrocardiogram, chest radiograph (CXR), B-type natriuretic peptide (BNP), N-terminal proB-type natriuretic peptide (NT-proBNP), lung ultrasound (US), bedside echocardiography, and bioimpedance. A diagnosis of AHF based on clinical data combined with objective test results served as the criterion standard diagnosis. Data were analyzed using Meta-DiSc software. Authors of all NP studies were contacted to obtain patient-level data. The Quality Assessment Tool for Diagnostic Accuracy Studies-2 (QUADAS-2) for systematic reviews was utilized to evaluate the quality and applicability of the studies included. RESULTS Based on the included studies, the prevalence of AHF ranged from 29% to 79%. Index tests with pooled positive LRs ≥ 4 were the auscultation of S3 on physical examination (4.0, 95% confidence interval [CI] = 2.7 to 5.9), pulmonary edema on both CXR (4.8, 95% CI = 3.6 to 6.4) and lung US (7.4, 95% CI = 4.2 to 12.8), and reduced ejection fraction observed on bedside echocardiogram (4.1, 95% CI = 2.4 to 7.2). Tests with low negative LRs were BNP < 100 pg/mL (0.11, 95% CI = 0.07 to 0.16), NT-proBNP < 300 pg/mL (0.09, 95% CI = 0.03 to 0.34), and B-line pattern on lung US LR (0.16, 95% CI = 0.05 to 0.51). Interval LRs of BNP concentrations at the low end of "positive" results as defined by a cutoff of 100 pg/mL were substantially lower (100 to 200 pg/mL; 0.29, 95% CI = 0.23 to 0.38) than those associated with higher BNP concentrations (1000 to 1500 pg/mL; 7.12, 95% CI = 4.53 to 11.18). The interval LR of NT-proBNP concentrations even at very high values (30,000 to 200,000 pg/mL) was 3.30 (95% CI = 2.05 to 5.31). CONCLUSIONS Bedside lung US and echocardiography appear to the most useful tests for affirming the presence of AHF while NPs are valuable in excluding the diagnosis.
Collapse
Affiliation(s)
| | - Abel Wakai
- The Emergency Care Research Unit; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Sean P. Collins
- The Department of Emergency Medicine; Vanderbilt University; Nashville TN
| | - Phillip D. Levy
- The Department of Emergency Medicine; Wayne State University School of Medicine; Detroit MI
| | - Deborah Diercks
- The Department of Emergency Medicine; University of Texas Southwestern; Dallas TX
| | - Brian C. Hiestand
- The Department of Emergency Medicine; Wake Forest University School of Medicine; Winston-Salem NC
| | - Gregory J. Fermann
- The Department of Emergency Medicine; University of Cincinnati; Cincinnati OH
| | - Ian deSouza
- The Department of Emergency Medicine; SUNY Downstate Medical Center; New York NY
| | - Richard Sinert
- The Department of Emergency Medicine; SUNY Downstate Medical Center; New York NY
- The Emergency Care Research Unit; Royal College of Surgeons in Ireland; Dublin Ireland
| |
Collapse
|
38
|
Zhang X, Schulz BL, Punyadeera C. The current status of heart failure diagnostic biomarkers. Expert Rev Mol Diagn 2016; 16:487-500. [PMID: 26788983 DOI: 10.1586/14737159.2016.1144474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) affects approximately 23 million individuals worldwide and this number is increasing, due to an aging and growing population. Early detection of HF is crucial in the management of this debilitating disease. Current diagnostic methods for HF rely heavily on clinical imaging techniques and blood analysis, which makes them less than ideal for population-based screening purposes. Studies focusing on developing novel biomarkers for HF have utilized various techniques and biological fluids, including urine and saliva. Promising results from these studies imply that these body fluids can be used in evaluating the clinical manifestation of HF and will one day be integrated into a clinical workflow and facilitate HF management.
Collapse
Affiliation(s)
- Xi Zhang
- a The School of Biomedical Sciences , Institute of Health and Biomedical Innovations, Queensland University of Technology , Brisbane , Queensland , Australia
| | - Benjamin L Schulz
- b School of Chemistry and Molecular Biosciences , The University of Queensland , Brisbane , Queensland , Australia
| | - Chamindie Punyadeera
- a The School of Biomedical Sciences , Institute of Health and Biomedical Innovations, Queensland University of Technology , Brisbane , Queensland , Australia
| |
Collapse
|
39
|
Mayne J, Ning Z, Zhang X, Starr AE, Chen R, Deeke S, Chiang CK, Xu B, Wen M, Cheng K, Seebun D, Star A, Moore JI, Figeys D. Bottom-Up Proteomics (2013-2015): Keeping up in the Era of Systems Biology. Anal Chem 2015; 88:95-121. [PMID: 26558748 DOI: 10.1021/acs.analchem.5b04230] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Janice Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Xu Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Amanda E Starr
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Rui Chen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Shelley Deeke
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Cheng-Kang Chiang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Bo Xu
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Ming Wen
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Kai Cheng
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Deeptee Seebun
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Alexandra Star
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Jasmine I Moore
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| | - Daniel Figeys
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Rd., Ottawa, Ontario, Canada , K1H8M5
| |
Collapse
|
40
|
|
41
|
Abstract
Heart failure in children is a complex clinical syndrome with multiple aetiologies. The underlying disorders that lead to heart failure in children differ significantly from those in adults. Some clinical biomarkers for heart failure status and prognosis appear to be useful in both age groups. This review outlines the use and the present status of biomarkers for heart failure in paediatric cardiology. Furthermore, clinical scenarios in which development of new biomarkers might address management or prognosis are discussed. Finally, strategies for proteomic discovery of novel biomarkers and application to practice are described.
Collapse
|
42
|
The flavo-oxidase QSOX1 supports vascular smooth muscle cell migration and proliferation: Evidence for a role in neointima growth. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1334-46. [DOI: 10.1016/j.bbadis.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/13/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
|
43
|
Beck HC, Overgaard M, Melholt Rasmussen L. Plasma proteomics to identify biomarkers – application to cardiovascular diseases. TRANSLATIONAL PROTEOMICS 2015. [DOI: 10.1016/j.trprot.2015.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
44
|
Mass spectrometry-based proteomics for pre-eclampsia and preterm birth. Int J Mol Sci 2015; 16:10952-85. [PMID: 26006232 PMCID: PMC4463685 DOI: 10.3390/ijms160510952] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022] Open
Abstract
Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered.
Collapse
|
45
|
Basak T, Varshney S, Akhtar S, Sengupta S. Understanding different facets of cardiovascular diseases based on model systems to human studies: a proteomic and metabolomic perspective. J Proteomics 2015; 127:50-60. [PMID: 25956427 DOI: 10.1016/j.jprot.2015.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/08/2015] [Accepted: 04/25/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED Cardiovascular disease has remained as the largest cause of morbidity and mortality worldwide. From dissecting the disease aetiology to identifying prognostic markers for better management of the disease is still a challenge for researchers. In the post human genome sequencing era much of the thrust has been focussed towards application of advanced genomic tools along with evaluation of traditional risk factors. With the advancement of next generation proteomics and metabolomics approaches it has now become possible to understand the protein interaction network & metabolic rewiring which lead to the perturbations of the disease phenotype. Further, elucidating different post translational modifications using advanced mass spectrometry based methods have provided an impetus towards in depth understanding of the proteome. The past decade has observed a plethora of studies where proteomics has been applied successfully to identify potential prognostic and diagnostic markers as well as to understand the disease mechanisms for various types of cardiovascular diseases. In this review, we attempted to document relevant proteomics based studies that have been undertaken either to identify potential biomarkers or have elucidated newer mechanistic insights into understanding the patho-physiology of cardiovascular disease, primarily coronary artery disease, cardiomyopathy, and myocardial ischemia. We have also provided a perspective on the potential of proteomics in combating this deadly disease. BIOLOGICAL SIGNIFICANCE This review has catalogued recent studies on proteomics and metabolomics involved in understanding several cardiovascular diseases (CVDs). A holistic systems biology based approach, of which proteomics and metabolomics are two very important components, would help in delineating various pathways associated with complex disorders like CVD. This would ultimately provide better mechanistic understanding of the disease biology leading to development of prognostic biomarkers. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, New Delhi, India.
| | - Swati Varshney
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, New Delhi, India
| | - Shamima Akhtar
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, New Delhi, India.
| |
Collapse
|
46
|
Abstract
MyCartis NV, a new player on the clinical and translational research market, aims at revolutionizing current healthcare systems. These are mostly based on treating the diseased rather than on caring better and longer for the healthy. The ‘one size fits all’ model is no longer sufficient and is unsustainable in the long run. Although it comes very scattered, today's access to molecular information has the potential to make healthcare more personal and effective, shifting it from treating diseases to improving quality of life. MyCartis wants to contribute to this process by developing broadly available next generation multiplex biomarker analysis solutions both at the technical and content levels. The Evalution™ platform provides a ‘one technology fits all’ solution to enable researchers to validate their biomarkers and assay providers to utilize them, no matter their physical nature: multiplexing in its true sense. The ability to quantify different types of markers on a single platform will help produce more comprehensive and coherent multiplex datasets, which will facilitate the integration into syndromic assay formats.
Collapse
Affiliation(s)
- Wouter Laroy
- MyCartis Belgium, Technologiepark 4, B-9052 Zwijnaarde, Belgium
- MyCartis Switzerland, EPFL Innovation Park G, 1015 Lausanne, Switzerland
| | - Paul Ladestein
- MyCartis Belgium, Technologiepark 4, B-9052 Zwijnaarde, Belgium
- MyCartis Switzerland, EPFL Innovation Park G, 1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Jiang H, Zhang L, Yu Y, Liu M, Jin X, Zhang P, Yu P, Zhang S, Zhu H, Chen R, Zou Y, Ge J. A pilot study of angiogenin in heart failure with preserved ejection fraction: a novel potential biomarker for diagnosis and prognosis? J Cell Mol Med 2014; 18:2189-97. [PMID: 25124701 PMCID: PMC4224553 DOI: 10.1111/jcmm.12344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/28/2014] [Indexed: 01/06/2023] Open
Abstract
Characteristics of heart failure with preserved ejection fraction (HFPEF) have not yet been fully understood. The objectives of this pilot study are to detect protein expression profile in the sera of HFPEF patients, and to identify potential biomarkers for the disease. Five hundred and seven proteins were detected in the sera of healthy volunteers and patients with either HFPEF or hypertension using antibody microarrays (three in each group). The results showed that the serum concentrations of 17 proteins (e.g. angiogenin, activin A and artemin) differed considerably between HFPEF and non-HFPEF patients (hypertensive patients and healthy controls), while a protein expression pattern distinct from that in non-HFPEF patients was associated with HFPEF patients. The up-regulation of angiogenin in both HFPEF patients with LVEF ≥50% (P = 0.004) and a subset of HFPEF patients with LVEF = 41–49% (P < 0.001) was further validated in 16 HFPEF patients and 16 healthy controls. Meanwhile, angiogenin distinguished HFPEF patients from controls with a mean area under the receiver operating characteristic curve of 0.88 (P < 0.001) and a diagnostic cut-off point of 426 ng/ml. Moreover, the angiogenin levels in HFPEF patients were positively correlated with Lg(N-terminal pro-B-type natriuretic peptide, NT-proBNP) (P < 0.001). In addition, high angiogenin level (≥426 ng/ml) was a predictor of all-cause death within a short-term follow-up duration, but not in the longer term of 36 months. This pilot study indicates that the aforementioned 17 potential biomarkers, such as angiogenin, may hold great promise for both diagnosis and prognosis assessment of HFPEF.
Collapse
Affiliation(s)
- Hong Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shen X, Young R, Canty JM, Qu J. Quantitative proteomics in cardiovascular research: global and targeted strategies. Proteomics Clin Appl 2014; 8:488-505. [PMID: 24920501 DOI: 10.1002/prca.201400014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/02/2014] [Accepted: 06/06/2014] [Indexed: 11/05/2022]
Abstract
Extensive technical advances in the past decade have substantially expanded quantitative proteomics in cardiovascular research. This has great promise for elucidating the mechanisms of cardiovascular diseases and the discovery of cardiac biomarkers used for diagnosis and treatment evaluation. Global and targeted proteomics are the two major avenues of quantitative proteomics. While global approaches enable unbiased discovery of altered proteins via relative quantification at the proteome level, targeted techniques provide higher sensitivity and accuracy, and are capable of multiplexed absolute quantification in numerous clinical/biological samples. While promising, technical challenges need to be overcome to enable full utilization of these techniques in cardiovascular medicine. Here, we discuss recent advances in quantitative proteomics and summarize applications in cardiovascular research with an emphasis on biomarker discovery and elucidating molecular mechanisms of disease. We propose the integration of global and targeted strategies as a high-throughput pipeline for cardiovascular proteomics. Targeted approaches enable rapid, extensive validation of biomarker candidates discovered by global proteomics. These approaches provide a promising alternative to immunoassays and other low-throughput means currently used for limited validation.
Collapse
Affiliation(s)
- Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The purpose of the present work was to review the literature on the role of biomarkers for the diagnosis, the risk stratification, and the management of circulatory failure. RECENT FINDINGS Recent research has highlighted how biomarkers could guide physicians in making proper diagnosis of the cause of the circulatory failure, assessing the consequence in terms of organ injury and function, refining prognosis prediction and stratification of patients, and guiding treatments, in patients with cardiovascular failure. SUMMARY Because of the tight association between circulatory and renal failure, we put a special emphasis on cardiovascular [B-type natriuretic peptide (BNP), Nt-proBNP, troponin, QSOX-1, sST-2, mid-regional pro-atrial natriuretic peptide] and renal biomarkers (neutrophil gelatinase-associated lipocalin, cystatin C, liver-type fatty acid-binding protein, kidney injury molecule-1, insulin-like growth factor-binding protein-7, tissue inhibitor of metalloproteinase-2). We also discuss nonspecific biomarkers (pro-ADM, glycemia, MicroRNA, chromogramin A) in this setting. We discuss the potential interest and limits, from diagnosis to prognosis reclassification, of cutting-edge new biomarkers, but also widely available and inexpensive biomarkers, in the particular setting of circulatory failure.
Collapse
|
50
|
Israel BA, Jiang L, Gannon SA, Thorpe C. Disulfide bond generation in mammalian blood serum: detection and purification of quiescin-sulfhydryl oxidase. Free Radic Biol Med 2014; 69:129-35. [PMID: 24468475 PMCID: PMC3960832 DOI: 10.1016/j.freeradbiomed.2014.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
A sensitive new plate-reader assay has been developed showing that adult mammalian blood serum contains circulating soluble sulfhydryl oxidase activity that can introduce disulfide bonds into reduced proteins with the reduction of oxygen to hydrogen peroxide. The activity was purified 5000-fold to >90% homogeneity from bovine serum and found by mass spectrometry to be consistent with the short isoform of quiescin-sulfhydryl oxidase 1 (QSOX1). This FAD-dependent enzyme is present at comparable activity levels in fetal and adult commercial bovine sera. Thus cell culture media that are routinely supplemented with either fetal or adult bovine sera will contain this facile catalyst of protein thiol oxidation. QSOX1 is present at approximately 25 nM in pooled normal adult human serum. Examination of the unusual kinetics of QSOX1 toward cysteine and glutathione at low micromolar concentrations suggests that circulating QSOX1 is unlikely to significantly contribute to the oxidation of these monothiols in plasma. However, the ability of QSOX1 to rapidly oxidize conformationally mobile protein thiols suggests a possible contribution to the redox status of exofacial and soluble proteins in blood plasma. Recent proteomic studies showing that plasma QSOX1 can be utilized in the diagnosis of pancreatic cancer and acute decompensated heart failure, together with the overexpression of this secreted enzyme in a number of solid tumors, suggest that the robust QSOX assay developed here may be useful in the quantitation of enzyme levels in a wide range of biological fluids.
Collapse
Affiliation(s)
- Benjamin A Israel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Lingxi Jiang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Shawn A Gannon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|