1
|
Han YH, Cui XW, Wang HY, Lai XB, Zhu Y, Li JB, Xie RR, Zhang Y, Zhang H, Chen Z. Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137351. [PMID: 39874764 DOI: 10.1016/j.jhazmat.2025.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions. Results observed lower soil pH (4.67-4.95 vs. 7.96), total carbon (TC) (0.35-0.62 vs. 2.84 g kg-1), total nitrogen (TN) (20-23 vs. 133 mg kg-1), and total phosphorus (TP) (81-91 vs. 133 mg kg-1) at sites Dp and Bo than site Pv. Hyperaccumulators efficiently extracted soil REEs and translocated them to fronds (up to 6897-7759 mg kg-1). Bacterial α diversity in three soils did not significantly vary. In contrast, bacterial composition at sites Dp and Bo was dominant by higher abundances of copiotrophic bacteria (18 % vs. 12 %, p_Actinomycetota; 3.3-8.3 % vs. 1.9 %, p_Bacteroidota; 8.3-14 % vs. 6.9 %, c_Gammaproteobacteria) and autotrophic bacteria (18 % vs. 13 %, p_Chloroflexota; 13 % vs. 8.6 %, p_Cyanobacteriota) when compared to site Pv. These bacteria likely acted as nutrient cyclers that promoted the growth of hyperaccumulators, based on functional predictions from DiTing analyses. This study provides new insights into nutrient recovery in abandoned REEs mining sites, offering strategies to reclaim degraded soils using phyto-microbial technology.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Xi-Wen Cui
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hai-Yan Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xiao-Bin Lai
- Changting Branch of Zhongxi (Fujian) Rare Earth Mining Co., LTD., China Rare Earth Group, Longyan, Fujian 364000, China
| | - Ying Zhu
- Fujian Center for Disease Control & Prevention, Fuzhou, Fujian 350012, China
| | - Jia-Bing Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Rong-Rong Xie
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Zhibiao Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
2
|
Heisi HD, Nkuna R, Matambo T. Rhizosphere microbial community structure and PICRUSt2 predicted metagenomes function in heavy metal contaminated sites: A case study of the Blesbokspruit wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178147. [PMID: 39733577 DOI: 10.1016/j.scitotenv.2024.178147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
This study investigated the microbial diversity inhabiting the roots (rhizosphere) of macrophytes thriving along the Blesbokspruit wetland, South Africa's least conserved Ramsar site. The wetland suffers from decades of pollution from mining wastewater, agriculture, and sewage. The current study focused on three macrophytes: Phragmites australis (common reed), Typha capensis (bulrush), and Eichhornia crassipes (water hyacinth). The results revealed a greater abundance and diversity of microbes (Bacteria and Fungi) associated with the free-floating E. crassipes compared to P. australis and T. capensis. Furthermore, the correlation between microbial abundance and metals, showed a strong correlation between fungal communities and metals such as nickel (Ni) and arsenic (As), while bacterial communities correlated more with lead (Pb) and chromium (Cr). The functional analysis predicted by PICRUSt2 identified genes related to xenobiotic degradation, suggesting the potential of these microbes to break down pollutants. Moreover, specific bacterial groups - Proteobacteria, Verrucomicrobia, Cyanobacteria, and Bacteroidetes - were linked to this degradation pathway. These findings suggest a promising avenue for microbe-assisted phytoremediation, a technique that utilizes plants and their associated microbes to decontaminate polluted environments.
Collapse
Affiliation(s)
- Hlalele D Heisi
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa.
| | - Rosina Nkuna
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa
| | - Tonderayi Matambo
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
3
|
Wattenburger CJ, Wang E, Buckley DH. Dynamics of bacterial growth, and life-history tradeoffs, explain differences in soil carbon cycling due to land-use. ISME COMMUNICATIONS 2025; 5:ycaf014. [PMID: 39991272 PMCID: PMC11844245 DOI: 10.1093/ismeco/ycaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
Soil contains a considerable fraction of Earth's organic carbon. Bacterial growth and mortality drive the microbial carbon pump, influencing carbon use efficiency and necromass production, key determinants for organic carbon persistence in soils. However, bacterial growth dynamics in soil are poorly characterized. We used an internal standard approach to normalize 16S ribosomal RNA gene sequencing data allowing us to quantify growth dynamics for 30 days following plant litter input to soil. We show that clustering taxa into three groups optimized variation of bacterial growth parameters in situ. These three clusters differed significantly with respect to their lag time, growth rate, growth duration, and change in abundance due to growth (ΔNg) and mortality (ΔNd), matching predictions of Grime's CSR life-history framework. In addition, we show a striking relationship between ΔNg and ΔNd, which reveals that growth in soil is tightly coupled to death. This result suggests a fitness paradox whereby some bacteria can optimize fitness in soil by minimizing mortality rather than maximizing growth. We hypothesized that land-use constrains microbial growth dynamics by favoring different life-history strategies and that these constraints control carbon mineralization. We show that life-history groups vary in prevalence with respect to land-use, and that bacterial growth dynamics correlated with carbon mineralization rate and net growth efficiency. Meadow soil supported more bacterial growth, greater mortality, and higher growth efficiency than agricultural soils, pointing toward more efficient conversion of plant litter into microbial necromass, which should promote long-term C stabilization.
Collapse
Affiliation(s)
- Cassandra J Wattenburger
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY 14853, United States
| | - Evangeline Wang
- Department of Microbiology, Cornell University, Ithaca, NY 14853, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY 14853, United States
- Department of Microbiology, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
4
|
Joubert O, Arnault G, Barret M, Simonin M. Sowing success: ecological insights into seedling microbial colonisation for robust plant microbiota engineering. TRENDS IN PLANT SCIENCE 2025; 30:21-34. [PMID: 39406642 DOI: 10.1016/j.tplants.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Manipulating the seedling microbiota through seed or soil inoculations has the potential to improve plant health. Mixed in-field results have been attributed to a lack of consideration for ecological processes taking place during seedling microbiota assembly. In this opinion article, we (i) assess the contribution of ecological processes at play during seedling microbiota assembly (e.g., propagule pressure and priority effects); (ii) investigate how life history theory can help us identify microbial traits involved in successful seedling colonisation; and (iii) suggest how different plant microbiota engineering methods could benefit from a greater understanding of seedling microbiota assembly processes. Finally, we propose several research hypotheses and identify outstanding questions for the plant microbiota engineering community.
Collapse
Affiliation(s)
- Oscar Joubert
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Cedex 07 Lyon, France; Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| | - Gontran Arnault
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Matthieu Barret
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.
| |
Collapse
|
5
|
White CA, Antell EH, Schwartz SL, Lawrence JE, Keren R, Zhou L, Yu K, Zhuang WQ, Alvarez-Cohen L. Life history strategies determine response to SRT driven crash in anammox bioreactors. WATER RESEARCH 2024; 268:122727. [PMID: 39549623 DOI: 10.1016/j.watres.2024.122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a biological process often applied in wastewater treatment plants for nitrogen removal from highly concentrated side-stream effluents from anaerobic digesters. However, they are vulnerable to process instability prompted by operational shocks and microbial community imbalances, resulting in lengthy recovery times. These issues are further compounded by a lack of understanding of how sustained press disturbances influence the microbial ecology of the system. Here we investigate the response and recovery of an anammox membrane bioreactor to a solids retention time (SRT)-induced reactor crash using 16S rRNA gene and shotgun metagenomic sequencing. We observed a strong selection of bacterial groups based on reproduction strategies, with the Orders Rhodospirillales and Sphingobacteriales increasing from 1.0 % and 11.9 % prior to the crash to 31.9 % and 18.1 % during the crash respectively. The Orders Brocadiales and Anaerolineales decreased from 17.3 % and 28.3 % to 7.3 % and 1.4 % over the same time period, respectively. Metagenomic and metatranscriptomic analyses revealed differential crash responses in metabolically distinct groups of bacteria, with increased expression of genes for extracellular carbohydrate active enzymes, peptidases and membrane transporters. Following the crash, the reactor recovered to its prior state of nitrogen removal performance and pathway analysis demonstrated increased expression of genes related to exopolysaccharide biosynthesis and quorum sensing during the reactor recovery period. This study highlights the effects of reactor perturbations on microbial community dynamics in anammox bioreactors and provides insight into potential recovery mechanisms from severe disturbance.
Collapse
Affiliation(s)
- Christian A White
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Edmund H Antell
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Sarah L Schwartz
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | | | - Ray Keren
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States
| | - Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Wei-Qin Zhuang
- Department of Civil & Environmental Engineering, University of Auckland, Auckland, New Zealand
| | - Lisa Alvarez-Cohen
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA, United States; Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
6
|
Espenberg M, Pille K, Yang B, Maddison M, Abdalla M, Smith P, Li X, Chan PL, Mander Ü. Towards an integrated view on microbial CH 4, N 2O and N 2 cycles in brackish coastal marsh soils: A comparative analysis of two sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170641. [PMID: 38325442 PMCID: PMC10884468 DOI: 10.1016/j.scitotenv.2024.170641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Coastal ecosystems, facing threats from global change and human activities like excessive nutrients, undergo alterations impacting their function and appearance. This study explores the intertwined microbial cycles of carbon (C) and nitrogen (N), encompassing methane (CH4), nitrous oxide (N2O), and nitrogen gas (N2) fluxes, to determine nutrient transformation processes between the soil-plant-atmosphere continuum in the coastal ecosystems with brackish water. Water salinity negatively impacted denitrification, bacterial nitrification, N fixation, and n-DAMO processes, but did not significantly affect archaeal nitrification, COMAMMOX, DNRA, and ANAMMOX processes in the N cycle. Plant species age and biomass influenced CH4 and N2O emissions. The highest CH4 emissions were from old Spartina and mixed Spartina and Scirpus sites, while Phragmites sites emitted the most N2O. Nitrification and incomplete denitrification mainly governed N2O emissions depending on the environmental conditions and plants. The higher genetic potential of ANAMMOX reduced excessive N by converting it to N2 in the sites with higher average temperatures. The presence of plants led to a decrease in the N fixers' abundance. Plant biomass negatively affected methanogenetic mcrA genes. Microbes involved in n-DAMO processes helped mitigate CH4 emissions. Over 93 % of the total climate forcing came from CH4 emissions, except for the Chinese bare site where the climate forcing was negative, and for Phragmites sites, where almost 60 % of the climate forcing came from N2O emissions. Our findings indicate that nutrient cycles, CH4, and N2O fluxes in soils are context-dependent and influenced by environmental factors and vegetation. This underscores the need for empirical analysis of both C and N cycles at various levels (soil-plant-atmosphere) to understand how habitats or plants affect nutrient cycles and greenhouse gas emissions.
Collapse
Affiliation(s)
- Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | - Kristin Pille
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Bin Yang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China
| | - Martin Maddison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mohamed Abdalla
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China
| | - Ping-Lung Chan
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Lee SM, Thapa Magar R, Jung MK, Kong HG, Song JY, Kwon JH, Choi M, Lee HJ, Lee SY, Khan R, Kim JF, Lee SW. Rhizobacterial syntrophy between a helper and a beneficiary promotes tomato plant health. THE ISME JOURNAL 2024; 18:wrae120. [PMID: 38952008 PMCID: PMC11253211 DOI: 10.1093/ismejo/wrae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Microbial interactions impact the functioning of microbial communities. However, microbial interactions within host-associated communities remain poorly understood. Here, we report that the beneficiary rhizobacterium Niallia sp. RD1 requires the helper Pseudomonas putida H3 for bacterial growth and beneficial interactions with the plant host. In the absence of the helper H3 strain, the Niallia sp. RD1 strain exhibited weak respiration and elongated cell morphology without forming bacterial colonies. A transposon mutant of H3 in a gene encoding succinate-semialdehyde dehydrogenase displayed much attenuated support of RD1 colony formation. Through the subsequent addition of succinate to the media, we found that succinate serves as a public good that supports RD1 growth. Comparative genome analysis highlighted that RD1 lacked the gene for sufficient succinate, suggesting its evolution as a beneficiary of succinate biosynthesis. The syntrophic interaction between RD1 and H3 efficiently protected tomato plants from bacterial wilt and promoted tomato growth. The addition of succinate to the medium restored complex II-dependent respiration in RD1 and facilitated the cultivation of various bacterial isolates from the rhizosphere. Taken together, we delineate energy auxotrophic beneficiaries ubiquitous in the microbial community, and these beneficiaries could benefit host plants with the aid of helpers in the rhizosphere.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Roniya Thapa Magar
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Min Kyeong Jung
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hyun Gi Kong
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
- Department of Plant Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ju Yeon Song
- Department of Systems Biology and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joo Hwan Kwon
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Minseo Choi
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hyoung Ju Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Seung Yeup Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Raees Khan
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
- Department of Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Jihyun F Kim
- Department of Systems Biology and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Microbiome Initiative, Yonsei University, Seoul 03722, Republic of Korea
| | - Seon-Woo Lee
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315, Republic of Korea
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
8
|
Malard LA, Bergk-Pinto B, Layton R, Vogel TM, Larose C, Pearce DA. Snow Microorganisms Colonise Arctic Soils Following Snow Melt. MICROBIAL ECOLOGY 2023; 86:1661-1675. [PMID: 36939866 PMCID: PMC10497451 DOI: 10.1007/s00248-023-02204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Arctic soils are constantly subjected to microbial invasion from either airborne, marine, or animal sources, which may impact local microbial communities and ecosystem functioning. However, in winter, Arctic soils are isolated from outside sources other than snow, which is the sole source of microorganisms. Successful colonisation of soil by snow microorganisms depends on the ability to survive and compete of both, the invading and resident community. Using shallow shotgun metagenome sequencing and amplicon sequencing, this study monitored snow and soil microbial communities throughout snow melt to investigate the colonisation process of Arctic soils. Microbial colonisation likely occurred as all the characteristics of successful colonisation were observed. The colonising microorganisms originating from the snow were already adapted to the local environmental conditions and were subsequently subjected to many similar conditions in the Arctic soil. Furthermore, competition-related genes (e.g. motility and virulence) increased in snow samples as the snow melted. Overall, one hundred potentially successful colonisers were identified in the soil and, thus, demonstrated the deposition and growth of snow microorganisms in soils during melt.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Benoit Bergk-Pinto
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
- BioIT, TAG (Transversal Activities in Applied Genomics) Sciensano, 1050, Brussels, Belgium
| | - Rose Layton
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, CNRS, University of Lyon, Lyon, France
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST, UK.
| |
Collapse
|
9
|
Lu Y, Cong P, Kuang S, Tang L, Li Y, Dong J, Song W. Long-term excessive application of K 2SO 4 fertilizer alters bacterial community and functional pathway of tobacco-planting soil. FRONTIERS IN PLANT SCIENCE 2022; 13:1005303. [PMID: 36247599 PMCID: PMC9554487 DOI: 10.3389/fpls.2022.1005303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 05/31/2023]
Abstract
To improve tobacco leaf quality, excessive K2SO4 fertilizers were applied to soils in major tobacco-planting areas in China. However, the effects of K2SO4 application on soil microbial community and functions are still unclear. An eight-year field experiment with three kinds of K2SO4 amounts (low amount, K2O 82.57 kg hm-2, LK; moderate amount, K2O 165.07 kg hm-2, MK; high amount, K2O 247.58 kg hm-2, HK) was established to assess the effects of K2SO4 application on the chemical and bacterial characteristics of tobacco-planting soil using 16S rRNA gene and metagenomic sequencing approaches. Results showed that HK led to lower pH and higher nitrogen (N), potassium (K), sulfur(S) and organic matter contents of the soil than LK. The bacterial community composition of HK was significantly different from those of MK and LK, while these of MK and LK were similar. Compared to LK, HK increased the relative abundance of predicted copiotrophic groups (e.g. Burkholderiaceae, Rhodospirillaceae families and Ellin6067 genus) and potentially beneficial bacteria (e.g. Gemmatimonadetes phylum and Bacillus genus) associated with pathogens and heavy metal resistance, N fixation, dissolution of phosphorus and K. While some oligotrophic taxa (e.g. Acidobacteria phylum) related to carbon, N metabolism exhibited adverse responses to HK. Metagenomic analysis suggested that the improvement of pathways related to carbohydrate metabolism and genetic information processing by HK might be the self-protection mechanism of microorganisms against environmental stress. Besides, the redundancy analysis and variation partitioning analysis showed that soil pH, available K and S were the primary soil factors in shifting the bacterial community and KEGG pathways. This study provides a clear understanding of the responses of soil microbial communities and potential functions to excessive application of K2SO4 in tobacco-planting soil.
Collapse
Affiliation(s)
- Ya Lu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ping Cong
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Shuai Kuang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lina Tang
- Tobacco Science Research Institute, Fujian Tobacco Monopoly Administration, Fuzhou, China
| | - Yuyi Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxin Dong
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
10
|
Finn DR, App M, Hertzog L, Tebbe CC. Reconciling concepts of black queen and tragedy of the commons in simulated bulk soil and rhizosphere prokaryote communities. Front Microbiol 2022; 13:969784. [PMID: 36187971 PMCID: PMC9520196 DOI: 10.3389/fmicb.2022.969784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Black Queen hypothesis describes the evolutionary strategy to lose costly functions in favour of improving growth efficiency. This results in mutants (cheaters) becoming obligately dependent upon a provider (black queen) to produce a necessary resource. Previous analyses demonstrate black queens and cheaters reach a state of equilibrium in pair-wise systems. However, in complex communities, accumulation of cheaters likely poses a serious burden on shared resources. This should result in a Tragedy of the Commons (ToC), whereby over-utilisation of public resources risks making them growth-limiting. With a collection of differential equations, microbial communities composed of twenty prokaryote ‘species’ either from rhizosphere, characterised by abundant carbon and energy sources, or bulk soil, with limited carbon and energy supply, were simulated. Functional trait groups differed based on combinations of cellulase and amino acid production, growth and resource uptake. Randomly generated communities were thus composed of species that acted as cellulolytic prototrophic black queens, groups that were either cellulolytic or prototrophic, or non-cellulolytic auxotrophic cheaters. Groups could evolve to lose functions over time. Biomass production and biodiversity were tracked in 8,000 Monte Carlo simulations over 500 generations. Bulk soil favoured oligotrophic co-operative communities where biodiversity was positively associated with growth. Rhizosphere favoured copiotrophic cheaters. The most successful functional group across both environments was neither black queens nor cheaters, but those that balanced providing an essential growth-limiting function at a relatively low maintenance cost. Accumulation of loss of function mutants in bulk soil risked resulting in loss of cumulative growth by ToC, while cumulative growth increased in the rhizosphere. In the bulk soil, oligotrophic adaptations assisted species in avoiding extinction. This demonstrated that loss of function by mutation is a successful evolutionary strategy in host-associated and/or resource-rich environments, but poses a risk to communities that must co-operate with each other for mutual co-existence. It was concluded that microbial communities must follow different evolutionary and community assembly strategies in bulk soil versus rhizosphere, with bulk soil communities more dependent on traits that promote co-operative interactions between microbial species.
Collapse
|
11
|
Finn DR, Samad MS, Tebbe CC. One-step PCR amplicon sequencing libraries perform better than two-step when assessing soil microbial diversity and community profiles. FEMS Microbiol Lett 2022; 369:6674203. [PMID: 35998308 DOI: 10.1093/femsle/fnac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022] Open
Abstract
Despite adoption of high-throughput sequencing of PCR-amplified microbial taxonomic markers for ecological analyses, distinct approaches for preparing amplicon libraries exist. One approach utilises long fusion primers and a single PCR (one-step) while another utilises shorter primers in a first reaction, before transferring diluted amplicons to a second reaction for barcode index incorporation (two-step). We investigated whether transferring diluted amplicons risked creating artificially simplified, poorly diverse communities. In soils from three sites with paired cropland and forest, one-step yielded higher alpha-diversity indices, including detection of two-four times more unique taxa. Modelling expected taxa per sequence observation predicted that one-step reaches full coverage by 104 sequences per sample while two-step needs 105-109. Comparisons of rank abundance demonstrated that two-step covered only 38-69% of distributions. Beta-diversity showed better separation of communities in response to land use change under one-step, although both approaches showed a significant effect. Driving differences was underestimation of relatively minor taxa with the two-step procedure. These taxa were low in abundance, yet play important roles in carbon cycling, secondary metabolite production, anaerobic metabolism, and bacterial predation. We conclude that one-step amplicon libraries are advisable for studies focussed on diversity or relatively minor yet functionally important taxa.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
| | - Md Sainur Samad
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
| | - Christoph C Tebbe
- Thünen Institut für Biodiversität, Johann Heinrich von Thünen Institut, Braunschweig 38116, Germany
| |
Collapse
|
12
|
Delineating the Drivers and Functionality of Methanogenic Niches within an Arid Landfill. Appl Environ Microbiol 2022; 88:e0243821. [PMID: 35404071 PMCID: PMC9088289 DOI: 10.1128/aem.02438-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial communities mediate the transformation of organic matter within landfills into methane (CH4). Yet their ecological role in CH4 production is rarely evaluated. To characterize the microbiome associated with this biotransformation, the overall community and methanogenic Archaea were surveyed in an arid landfill using leachate collected from distinctly aged landfill cells (i.e., younger, intermediate, and older). We hypothesized that distinct methanogenic niches exist within an arid landfill, driven by geochemical gradients that developed under extended and age-dependent waste biodegradation stages. Using 16S rRNA and mcrA gene amplicon sequencing, we identified putative methanogenic niches as follows. The order Methanomicrobiales was the most abundant order in leachate from younger cells, where leachate temperature and propionate concentrations were measured at 41.8°C ± 1.7°C and 57.1 ± 10.7 mg L−1. In intermediate-aged cells, the family Methanocellaceae was identified as a putative specialist family under intermediate-temperature and -total dissolved solid (TDS) conditions, wherein samples had a higher alpha diversity index and near CH4 concentrations. In older-aged cells, accumulating metals and TDS supported Methanocorpusculaceae, “Candidatus Bathyarchaeota,” and “Candidatus Verstraetearchaeota” operational taxonomic units (OTUs). Consistent with the mcrA data, we assayed methanogenic activity across the age gradient through stable isotopic measurements of δ13C of CH4 and δ13C of CO2. The majority (80%) of the samples’ carbon fractionation was consistent with hydrogenotrophic methanogenesis. Together, we report age-dependent geochemical gradients detected through leachate in an arid landfill seemingly influencing CH4 production, niche partitioning, and methanogenic activity. IMPORTANCE Microbiome analysis is becoming common in select municipal and service ecosystems, including wastewater treatment and anaerobic digestion, but its potential as a microbial-status-informative tool to promote or mitigate CH4 production has not yet been evaluated in landfills. Methanogenesis mediated by Archaea is highly active in solid-waste microbiomes but is commonly neglected in studies employing next-generation sequencing techniques. Identifying methanogenic niches within a landfill offers detail into operations that positively or negatively impact the commercial production of methane known as biomethanation. We provide evidence that the geochemistry of leachate and its microbiome can be a variable accounting for ecosystem-level (coarse) variation of CH4 production, where we demonstrate through independent assessments of leachate and gas collection that the functional variability of an arid landfill is linked to the composition of methanogenic Archaea.
Collapse
|
13
|
Westoby M, Nielsen DA, Gillings MR, Gumerov VM, Madin JS, Paulsen IT, Tetu SG. Strategic traits of bacteria and archaea vary widely within substrate-use groups. FEMS Microbiol Ecol 2021; 97:6402898. [PMID: 34665251 DOI: 10.1093/femsec/fiab142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
Quantitative traits such as maximum growth rate and cell radial diameter are one facet of ecological strategy variation across bacteria and archaea. Another facet is substrate-use pathways, such as iron reduction or methylotrophy. Here, we ask how these two facets intersect, using a large compilation of data for culturable species and examining seven quantitative traits (genome size, signal transduction protein count, histidine kinase count, growth temperature, temperature-adjusted maximum growth rate, cell radial diameter and 16S rRNA operon copy number). Overall, quantitative trait variation within groups of organisms possessing a particular substrate-use pathway was very broad, outweighing differences between substrate-use groups. Although some substrate-use groups had significantly different means for some quantitative traits, standard deviation of quantitative trait values within each substrate-use pathway mostly averaged between 1.6 and 1.8 times larger than standard deviation across group means. Most likely, this wide variation reflects ecological strategy: for example, fast maximum growth rate is likely to express an early successional or copiotrophic strategy, and maximum growth varies widely within most substrate-use pathways. In general, it appears that these quantitative traits express different and complementary information about ecological strategy, compared with substrate use.
Collapse
Affiliation(s)
- Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Daniel A Nielsen
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Michae R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Vadim M Gumerov
- Department of Microbiology, Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Joshua S Madin
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2019, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2019, Australia
| |
Collapse
|
14
|
Stone W, Lukashe NS, Blake LI, Gwandu T, Hardie AG, Quinton J, Johnson K, Clarke CE. The microbiology of rebuilding soils with water treatment residual co-amendments: Risks and benefits. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1381-1394. [PMID: 34464455 DOI: 10.1002/jeq2.20286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Water treatment residual (WTR) is composed of sludges from the potable water treatment process, currently largely destined for landfill. This waste can be diverted to rebuild degraded soils, aligning with the UN's Sustainable Development Goals 12 (Consumption and Production) and 15 (Terrestrial Ecosystems). Biosolids are tested against stringent pathogen guidelines, yet few studies have explored the microbial risk of WTR land application, despite anthropogenic impacts on water treatment. We explored the microbial risks and benefits of amending nutrient-poor sandy soil with WTRs. Our results showed that the culturable pathogen load of wet and dry WTRs did not warrant pre-processing before land application, according to South African national quality guidelines, with fecal coliforms not exceeding 104 colony forming units per gram dry weight in wet sludges sampled from four South African and Zimbabwean water treatment plants and decreasing upon drying and processing. There was no culturable pathogenic (fecal coliforms, enterococci, Salmonella, and Shigella) regrowth in soil incubations amended with dry WTR. However, the competition (microbial load and diversity) introduced by a WTR co-amendment did not limit pathogen survival in soils amended with biosolids. Application of WTR to nutrient-poor sandy soils for wheat (Triticum aestivum L.) growth improved the prokaryotic and eukaryotic culturable cell concentrations, similar to compost. However, the compost microbiome more significantly affected the bacterial beta diversity of the receiving soil than WTR when analyzed with automated ribosomal intergenic spacer analysis. Thus, although there was a low pathogen risk for WTR amendment in receiving soils and total soil microbial loads were increased, microbial diversity was more significantly enhanced by compost than WTR.
Collapse
Affiliation(s)
- Wendy Stone
- Environmental Microbiology Laboratory, Dep. of Microbiology, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | - Noxolo S Lukashe
- Dep. of Soil Science, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | | | - Tariro Gwandu
- Dep. of Engineering, Durham Univ., Durham, DH1 3LE, UK
- Dep. of Soil Science & Environment, Univ. of Zimbabwe, Harare, Zimbabwe
| | - Ailsa G Hardie
- Dep. of Soil Science, Stellenbosch Univ., Stellenbosch, 7602, South Africa
| | - John Quinton
- Lancaster Environment Centre, Lancaster Univ., Lancaster, Lancashire, UK
| | - Karen Johnson
- Dep. of Engineering, Durham Univ., Durham, DH1 3LE, UK
| | | |
Collapse
|
15
|
Finn DR, Lee S, Lanzén A, Bertrand M, Nicol GW, Hazard C. Cropping systems impact changes in soil fungal, but not prokaryote, alpha-diversity and community composition stability over a growing season in a long-term field trial. FEMS Microbiol Ecol 2021; 97:6374554. [PMID: 34555173 DOI: 10.1093/femsec/fiab136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Crop harvest followed by a fallow period can act as a disturbance on soil microbial communities. Cropping systems intended to improve alpha-diversity of communities may also confer increased compositional stability during succeeding growing seasons. Over a single growing season in a long-term (18 year) agricultural field experiment incorporating conventional (CON), conservation (CA), organic (ORG) and integrated (INT) cropping systems, temporal changes in prokaryote, fungal and arbuscular mycorrhizal fungi (AMF) communities were investigated overwinter, during crop growth and at harvest. While certain prokaryote phyla were influenced by cropping system (e.g. Acidobacteria), the community as a whole was primarily driven by temporal changes over the growing season as distinct overwinter and crop-associated communities, with the same trend observed regardless of cropping system. Species-rich prokaryote communities were most stable over the growing season. Cropping system exerted a greater effect on fungal communities, with alpha-diversity highest and temporal changes most stable under CA. CON was particularly detrimental for alpha-diversity in AMF communities, with AMF alpha-diversity and stability improved under all other cropping systems. Practices that promoted alpha-diversity tended to also increase the similarity and temporal stability of soil fungal (and AMF) communities during a growing season, while prokaryote communities were largely insensitive to management.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, 38116 Braunschweig, Germany.,Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Sungeun Lee
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Anders Lanzén
- NEIKER, Basque Institute of Agricultural Research and Development, c/ Berreaga 1, 48160 Derio, Spain
| | - Michel Bertrand
- UMR Agronomie, INRAE AgroParisTech Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Graeme W Nicol
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Christina Hazard
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| |
Collapse
|