1
|
Veronese P, Dodi I. Campylobacter jejuni/ coli Infection: Is It Still a Concern? Microorganisms 2024; 12:2669. [PMID: 39770871 PMCID: PMC11728820 DOI: 10.3390/microorganisms12122669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. Campylobacter infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of Campylobacter jejuni/coli infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations. Late complications are reactive arthritis, Guillain-Barré syndrome, and Miller Fisher syndrome. In the pediatric population, the 0-4 age group has the highest incidence of campylobacteriosis. Regarding the use of specific antimicrobial therapy, international guidelines agree in recommending it for severe intestinal infections. Host factors, including malnutrition, immunodeficiency, and malignancy, can also influence the decision to treat. The Centers for Disease Control and Prevention (CDC) has identified antibiotic resistance in Campylobacter as a 'significant public health threat' due to increasing resistance to FQs or macrolides. Although numerous vaccines have been proposed in recent years to reduce the intestinal colonization of poultry, none have shown sufficient efficacy to provide a definitive solution.
Collapse
Affiliation(s)
- Piero Veronese
- Pediatric Infectious Disease Unit, Barilla Children’s Hospital of Parma, 43126 Parma, Italy;
| | | |
Collapse
|
2
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
Chibwe M, Odume ON, Nnadozie CF. Spatiotemporal variations in the occurrence of Campylobacter species in the Bloukrans and Swartkops rivers, Eastern Cape, South Africa. Heliyon 2024; 10:e28774. [PMID: 38601622 PMCID: PMC11004744 DOI: 10.1016/j.heliyon.2024.e28774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
An increase in the incidence of Campylobacter species in rivers raises concerns on the safety of river water for humans who get exposed to river water. This study examines the spatiotemporal dynamics of Campylobacter species in the Bloukrans and Swartkops rivers, analysing patterns of its occurrence in relation to meteorological conditions, physicochemical parameters, seasons, and sampling sites. Physico-chemical parameters and meteorological conditions were measured during water sampling from various sites along the rivers over a year, while Polymerase Chain Reaction (PCR) was utilised to detect Campylobacter genus-specific genes and selected antibiotic-resistant genes. Campylobacter was detected in 66.67% (Bloukrans River) and 58.33% (Swartkops River). In the Bloukrans River, multi-drug resistance genes cmeA (20%), cmeB (65%), cmeC (10%), were detected while and tetO was detected at 70%. In the Swartkops River, the corresponding prevalence were 28%, 66.67%, 28.56%, and 76%. The study indicates that sampling season did not significantly impact Campylobacter prevalence. However, variation in Campylobacter occurrence exists among different sites along the rivers, reflecting the influence of site proximity to potential contamination sources. The study suggests that Campylobacter infection may be endemic in South Africa, with rivers serving as potential sources of exposure to humans, thereby contributing to the epidemiology of campylobacteriosis.
Collapse
Affiliation(s)
- Mary Chibwe
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa
| | - Oghenekaro Nelson Odume
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa
| | - Chika Felicitas Nnadozie
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa
| |
Collapse
|
4
|
Chibwe M, Odume ON, Nnadozie CF. Assessment of risk of exposure to Campylobacter species and their antibiotic-resistant genes from selected rivers in the Eastern Cape, South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122625. [PMID: 37788798 DOI: 10.1016/j.envpol.2023.122625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Contaminated rivers play a critical role in the transmission of Campylobacter and antibiotic-resistant genes (ARGs) in many parts of the world. South Africa is a water-scarce country which relies on its freshwater systems such as rivers for recreation, irrigation, and domestic activities. This study assesses the potential human exposure to Campylobacter and its ARGs from rivers through the ingestion route in two South African rivers. The concentration of viable Campylobacter and ARGs in selected rivers was determined using quantitative PCR. The concentrations were then used to estimate the number of gene copies a person could ingest after swimming in the contaminated water for 1 h (intake burden). The human intake burden of Campylobacter 16 S rRNA copies per 1-h swimming event ranged from 7.1 × 105-3.7 × 106 copies/h for the Bloukrans River, and 9.9 × 101-2.3 × 105 copies/h for the Swartkops River. The intake burden of Campylobacter ARGs ranged from 1.64 × 104-5.8 × 105 copies/h for cmeB; 1.0 × 103-5.7 × 104 copies/h for tetO for the Bloukrans River, and 3.6 × 102-1.551 × 105 copies/h (cmeB) and 9.98 × 102-5.7 × 104 copies/h (tetO) for the Swartkops River. Ingestion of water from contaminated rivers during recreation, cultural, or religious activities may lead to human exposure to ARGs, posing a health risk. In many communities in the world, rivers play an important role in the social and cultural lives of people, and so it is important to monitor the quality of river water. Studies such as these will help prevent the spread of antibiotic-resistant genes and waterborne diseases caused by pathogens such as Campylobacter.
Collapse
Affiliation(s)
- Mary Chibwe
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa
| | - Oghenekaro Nelson Odume
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa
| | - Chika Felicitas Nnadozie
- Institute for Water Research (IWR), Rhodes University, Old Geology Building (off Artillery Road), P.O Box 94 Grahamstown 6140, South Africa.
| |
Collapse
|
5
|
Bacillus subtilis PS-216 Antagonistic Activities against Campylobacter jejuni NCTC 11168 Are Modulated by Temperature, Oxygen, and Growth Medium. Microorganisms 2022; 10:microorganisms10020289. [PMID: 35208741 PMCID: PMC8875091 DOI: 10.3390/microorganisms10020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
As the incidence of Campylobacter jejuni and campylobacteriosis grows, so does the need for a better understanding and control of this pathogen. We studied the interactions of C. jejuni NCTC 11168 and a potential probiotic, Bacillus subtilis PS-216, in cocultures at different starting ratios and temperatures (20 °C, 37 °C, 42 °C), under different atmospheres (aerobic, microaerobic), and in different growth media (Mueller–Hinton, chicken litter medium, chicken intestinal-content medium). Under microaerobic conditions, B. subtilis effectively inhibited the growth of C. jejuni at 42 °C (log reduction, 4.19), even when C. jejuni counts surpassed B. subtilis by 1000-fold in the starting inoculum. This inhibition was weaker at 37 °C (log reduction, 1.63), while no impact on CFUs was noted at 20 °C, which is a temperature nonpermissive of C. jejuni growth. Under aerobic conditions, B. subtilis supported C. jejuni survival. B. subtilis PS-216 inhibited the growth of C. jejuni in sterile chicken litter (4.07 log reduction) and in sterile intestinal content (2.26 log reduction). In nonsterile intestinal content, B. subtilis PS-216 was able to grow, to a lesser extent, compared to Mueller–Hinton media, still showing potential as a chicken probiotic that could be integrated into the chicken intestinal microbiota. This study showed the strong influence of environmental parameters on the variability of C. jejuni and B. subtilis interactions. Furthermore, B. subtilis PS-216 antagonism was strongest against C. jejuni NCTC 11168 under conditions that might represent conditions in the chicken environment (42 °C, microaerobic atmosphere, chicken litter medium).
Collapse
|
6
|
Giaouris E. Relevance and Importance of Biofilms in the Resistance and Spreading of Campylobacter spp. Within the Food Chain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Innes GK, Nachman KE, Abraham AG, Casey JA, Patton AN, Price LB, Tartof SY, Davis MF. Contamination of Retail Meat Samples with Multidrug-Resistant Organisms in Relation to Organic and Conventional Production and Processing: A Cross-Sectional Analysis of Data from the United States National Antimicrobial Resistance Monitoring System, 2012-2017. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57004. [PMID: 33978452 PMCID: PMC8114881 DOI: 10.1289/ehp7327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND During food animal production, animals are exposed to, colonized by, and sometimes infected with bacteria that may contaminate animal products with susceptible and multidrug-resistant organisms (MDRO). The United States' Organic Foods Production Act resulted in decreased antibiotic use in some animal production operations. Some studies have reported that decreased antibiotic use is associated with reduced MDRO on meat. OBJECTIVES The aim of this study was to investigate associations of meat production and processing methods with MDRO and overall bacterial contamination of retail meats. METHODS Bacterial contamination data from 2012 to 2017 for chicken breast, ground beef, ground turkey, and pork chops were downloaded from the National Antimicrobial Resistance Monitoring System. Poisson regression models with robust variance were used to estimate associations with MDRO contamination and any contamination (adjusted for year and meat type) overall, and according to bacteria genus (Salmonella, Campylobacter, Enterococcus, Escherichia coli) and meat type. RESULTS A total of 39,349 retail meat samples were linked to 216 conventional, 123 split (conventional and organic), and three organic processing facilities. MDRO contamination was similar in conventionally produced meats processed at split vs. conventional facilities but was significantly lower in organically produced meats processed at split facilities [adjusted prevalance ratio (aPR)=0.43; 95% CI: 0.30, 0.63]. Meat processed by split vs. conventional processors had higher or similar MDRO contamination for all tested bacterial genera except Campylobacter (aPR=0.29; 95% CI: 0.13, 0.64). The prevalence of any contamination was lower in samples processed at split vs. conventional facilities for aggregated samples (aPR=0.70; 95% CI: 0.68, 0.73) and all meat types and bacterial genera. DISCUSSION Organically produced and processed retail meat samples had a significantly lower prevalence of MDRO than conventionally produced and processed samples had, whereas meat from split processors had a lower prevalence of any contamination than samples from conventional processors had. Additional studies are needed to confirm findings and clarify specific production and processing practices that might explain them. https://doi.org/10.1289/EHP7327.
Collapse
Affiliation(s)
- Gabriel K. Innes
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Keeve E. Nachman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alison G. Abraham
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, School of Public Health University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joan A. Casey
- Mailman School of Public Heath, Columbia University, New York, New York, USA
| | - Andrew N. Patton
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lance B. Price
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Sara Y. Tartof
- Kaiser Permanente Southern California, Pasadena, California, USA
| | - Meghan F. Davis
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Scheik LK, Volcan Maia DS, Würfel SDFR, Ramires T, Kleinubing NR, Haubert L, Lopes GV, da Silva WP. Biofilm-forming ability of poultry Campylobacter jejuni strains in the presence and absence of Pseudomonas aeruginosa. Can J Microbiol 2021; 67:301-309. [PMID: 33703923 DOI: 10.1139/cjm-2020-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aims of this study were to evaluate the ability of Campylobacter jejuni isolated from a poultry slaughterhouse to form biofilm in the presence and absence of Pseudomonas aeruginosa, and the effect of surface (stainless steel, polystyrene), temperature (7, 25, and 42 °C), and oxygen concentration (microaerophilic and aerobic conditions) on the formation of biofilm. The genes ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, katA, kpsM, luxS, racR, and sodB, related to biofilm formation by C. jejuni, were also investigated. All isolates formed biofilm on stainless steel and on polystyrene, in both aerobic and microaerophilic atmospheres, including temperatures not optimal for C. jejuni growth (7 and 25 °C), and biofilm also was formed in the presence of P. aeruginosa. In dual-species biofilm on stainless steel, biofilm formation was 2-6 log CFU·cm-2 higher at 7 °C for all isolates, in comparison with monospecies biofilm. Ten genes (ahpC, cadF, clpP, dnaJ, docA, flaA, flaB, luxS, racR, and sodB) were detected in all isolates, but katA and kpsM were found in four and six isolates, respectively. The results obtained are of concern because the poultry C. jejuni isolates form biofilm in different conditions, which is enhanced in the presence of other biofilm formers, such as P. aeruginosa.
Collapse
Affiliation(s)
- Letícia Klein Scheik
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Darla Silveira Volcan Maia
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Simone de Fátima Rauber Würfel
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Tassiana Ramires
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Natalie Rauber Kleinubing
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Graciela Volz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brasil
| |
Collapse
|
9
|
Soro AB, Whyte P, Bolton DJ, Tiwari BK. Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Compr Rev Food Sci Food Saf 2020; 19:1353-1377. [PMID: 33337085 DOI: 10.1111/1541-4337.12544] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Campylobacteriosis is one of the most common bacterial infections worldwide causing economic costs. The high prevalence of Campylobacter spp. in poultry meat is a result of several contamination and cross-contamination sources through the production chain. Moreover, survival mechanisms, such as biofilm formation, viable but nonculturable state, and antimicrobial resistance, enable its persistence during food processing. Therefore, mitigation strategies are necessary in order to avoid and/or inactivate Campylobacter at farm, abattoir, industry, and retail level. In this review, a number of potential strategies and novel technologies that could reduce the prevalence of Campylobacter in poultry meat have been identified and evaluated to provide a useful overview. At farm level for instance, biosecurity, bacteriocins, probiotics, feed and water additives, bacteriophages, and vaccination could potentially reduce colonization in chicken flocks. However, current technologies used in the chicken slaughter and processing industry may be less effective against this foodborne pathogen. Novel technologies and strategies such as cold plasma, ultraviolet light, high-intensity light pulses, pulsed electric fields, antimicrobials, and modified atmosphere packaging are discussed in this review for reducing Campylobacter contamination. Although these measures have achieved promising results, most have not been integrated within processing operations due to a lack of knowledge or an unwillingness to implement these into existing processing systems. Furthermore, a combination of existing and novel strategies might be required to decrease the prevalence of this pathogen in poultry meat and enhance food safety. Therefore, further research will be essential to assess the effectiveness of all these strategies.
Collapse
Affiliation(s)
- Arturo B Soro
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland.,UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Declan J Bolton
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland
| |
Collapse
|
10
|
Ford N, Chopp D. A Dimensionally Reduced Model of Biofilm Growth Within a Flow Cell. Bull Math Biol 2020; 82:40. [PMID: 32166519 DOI: 10.1007/s11538-020-00715-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Biofilms are colonies of bacteria attached to surfaces. They play a critical role in many engineering and medical applications. Scientists study biofilm growth in flow cells but often have limited direct knowledge of the environmental conditions in the apparatus. Using fully resolved, numerical simulations to estimate conditions within a flow cell is computationally expensive. In this paper, we use asymptotic analysis to create a simulation of a biofilm system that has one growth-limiting substrate, and we show that this method runs quickly while maintaining similar accuracy to prior models. These equations can provide a better understanding of the environmental conditions in experiments and can establish the boundary conditions for further smaller-scale numerical simulations.
Collapse
Affiliation(s)
- Noah Ford
- Engineering Sciences and Applied Mathematics, Northwestern University, Technological Institute, 2145 Sheridan Rd., Evanston, IL, 60208-3125, USA.
| | - David Chopp
- Engineering Sciences and Applied Mathematics, Northwestern University, Technological Institute, 2145 Sheridan Rd., Evanston, IL, 60208-3125, USA
| |
Collapse
|
11
|
Rasschaert G, De Zutter L, Herman L, Heyndrickx M. Campylobacter contamination of broilers: the role of transport and slaughterhouse. Int J Food Microbiol 2020; 322:108564. [PMID: 32163798 DOI: 10.1016/j.ijfoodmicro.2020.108564] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/26/2019] [Accepted: 02/16/2020] [Indexed: 01/06/2023]
Abstract
Campylobacter is one of the most important causative agents of foodborne illnesses worldwide. The poultry reservoir is the main source of Campylobacter. Within the broiler production chain, campylobacters can only multiply in the chicken's intestinal tract. Intervention at farm level to reduce Campylobacter is thus preferred, but despite extensive study, no highly effective solutions have been found to combat Campylobacter at farm level. Slaughterhouses are experiencing great pressure to deliver carcasses with low Campylobacter contamination even when they receive and slaughter Campylobacter colonized flocks. Since 2018, a process hygiene criterion (EU 2017/1495) with the critical limit of <1000 cfu/g neck skin has been implemented in EU Member States based on the calculation done at the time of the study that human campylobacteriosis cases could be halved if all carcasses would comply with a criterion of <1000 cfu/g neck skin. This review covers Campylobacter contamination of broiler carcasses from transport through the different slaughter steps. Possible intervention methods during slaughter are discussed with a focus on the European situation, where chemicals are not allowed to disinfect carcasses.
Collapse
Affiliation(s)
- Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lieve Herman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium; Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
García-Sánchez L, Melero B, Jaime I, Rossi M, Ortega I, Rovira J. Biofilm formation, virulence and antimicrobial resistance of different Campylobacter jejuni isolates from a poultry slaughterhouse. Food Microbiol 2019; 83:193-199. [PMID: 31202413 DOI: 10.1016/j.fm.2019.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 01/16/2023]
Abstract
The fastidious requirement of the zoonotic pathogen Campylobacter jejuni contrasts with its ability to overcome harsh conditions. Different strategies might be involved in the survival and persistence of C. jejuni through the poultry food chain. Therefore, the aims of this study were to get insights in the survival strategies in the poultry slaughterhouse environment by (i) characterizing factors such as biofilm formation, virulence and antimicrobial resistance in environmental isolates and (ii) understanding the possible link between the phenotypic and genetic characterization using whole genome sequencing (WGS). Results have shown that three STs: ST 443 (PFGE A), ST 904 (PFGE C) and ST 3769 (PFGE G), out of the six studied, formed biofilms with variable intensity according to different conditions (temperatures -37 °C, 30 °C, 25°C- and materials -stainless steel and plastic-). High levels of antimicrobial resistance were found in isolates to ciprofloxacin, nalidixic acid and tetracycline as well as to two common detergents used in the slaughterhouse. A combination of several changes in the genome of ST 904 (PFGE C) including mutations, insertions in antimicrobial resistance genes, the presence of T6SS and a set of genes related to virulence factors might explain its ability to form biofilm and persist longer in the environment. However, the complexity of the survival strategies adopted by the different strains of C. jejuni suggests that multiple mechanisms may exist that allow these organisms to persist and ultimately cause disease in humans.
Collapse
Affiliation(s)
| | - Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Isabel Jaime
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Irene Ortega
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain.
| |
Collapse
|
13
|
Maes S, Vackier T, Nguyen Huu S, Heyndrickx M, Steenackers H, Sampers I, Raes K, Verplaetse A, De Reu K. Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiol 2019; 19:77. [PMID: 30987581 PMCID: PMC6466764 DOI: 10.1186/s12866-019-1451-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/02/2019] [Indexed: 11/29/2022] Open
Abstract
Background Water quality in the drinking water system (DWS) plays an important role in the general health and performance of broiler chickens. Conditions in the DWS of broilers are ideal for microbial biofilm formation. Since pathogens might reside within these biofilms, they serve as potential source of waterborne transmission of pathogens to livestock and humans. Knowledge about the presence, importance and composition of biofilms in the DWS of broilers is largely missing. In this study, we therefore aim to monitor the occurrence, and chemically and microbiologically characterise biofilms in the DWS of five broiler farms. Results The bacterial load after disinfection in DWSs was assessed by sampling with a flocked swab followed by enumerations of total aerobic flora (TAC) and Pseudomonas spp. The dominant flora was identified and their biofilm-forming capacity was evaluated. Also, proteins, carbohydrates and uronic acids were quantified to analyse the presence of extracellular polymeric substances of biofilms. Despite disinfection of the water and the DWS, average TAC was 6.03 ± 1.53 log CFU/20cm2. Enumerations for Pseudomonas spp. were on average 0.88 log CFU/20cm2 lower. The most identified dominant species from TAC were Stenotrophomonas maltophilia, Pseudomonas geniculata and Pseudomonas aeruginosa. However at species level, most of the identified microorganisms were farm specific. Almost all the isolates belonging to the three most abundant species were strong biofilm producers. Overall, 92% of all tested microorganisms were able to form biofilm under lab conditions. Furthermore, 63% of the DWS surfaces appeared to be contaminated with microorganisms combined with at least one of the analysed chemical components, which is indicative for the presence of biofilm. Conclusions Stenotrophomonas maltophilia, Pseudomonas geniculata and Pseudomonas aeruginosa are considered as opportunistic pathogens and could consequently be a potential risk for animal health. Additionally, the biofilm-forming capacity of these organisms could promote attachment of other pathogens such as Campylobacter spp. and Salmonella spp. Electronic supplementary material The online version of this article (10.1186/s12866-019-1451-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sharon Maes
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Thijs Vackier
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewery Technology, University of Leuven, Gebroeders De Smetstraat 1, 9000, Ghent, Belgium
| | - Son Nguyen Huu
- Faculty of Bioscience Engineering, Department of Industrial Biological Sciences, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500, Kortrijk, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.,Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans Steenackers
- Faculty of Bioscience Engineering, Department of Microbial and Molecular Systems (M2S), Centre of Microbial and Plant Genetics (CMPG), University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Leuven, Belgium
| | - Imca Sampers
- Faculty of Bioscience Engineering, Department of Industrial Biological Sciences, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500, Kortrijk, Belgium
| | - Katleen Raes
- Faculty of Bioscience Engineering, Department of Industrial Biological Sciences, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500, Kortrijk, Belgium
| | - Alex Verplaetse
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewery Technology, University of Leuven, Gebroeders De Smetstraat 1, 9000, Ghent, Belgium
| | - Koen De Reu
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090, Melle, Belgium.
| |
Collapse
|
14
|
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4014-4032. [PMID: 29424050 DOI: 10.1002/jsfa.8945] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
It takes several steps to bring food from the farm to the fork (dining table), and contamination with food-borne pathogens can occur at any point in the process. Campylobacter spp. and Salmonella spp. are the main microorganisms responsible for foodborne disease in the EU. These two pathogens are able to persist throughout the food supply chain thanks to their ability to form biofilms. Owing to the high prevalence of Salmonella and especially of Campylobacter in the food supply chain and the huge efforts of food authorities to reduce these levels, it is of great importance to fully understand their mechanisms of persistence. Diverse studies have evaluated the biofilm-forming capacity of foodborne pathogens isolated at different steps of food production. Nonetheless, the principal obstacle of these studies is to reproduce the real conditions that microorganisms encounter in the food supply chain. While there are a wide number of Salmonella biofilm studies, information on Campylobacter biofilms is still limited. A comparison between the two microorganisms could help to develop new research in the field of Campylobacter biofilms. Therefore, this review evaluates relevant work in the field of Salmonella and Campylobacter biofilms and the applicability of the data obtained from these studies to real working conditions. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Lamas
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Patricia Regal
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Beatriz Vázquez
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - José M Miranda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carlos M Franco
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
15
|
|
16
|
Campylobacter jejuni survival in a poultry processing plant environment. Food Microbiol 2017; 65:185-192. [DOI: 10.1016/j.fm.2017.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 02/07/2023]
|
17
|
Melo RT, Mendonça EP, Monteiro GP, Siqueira MC, Pereira CB, Peres PABM, Fernandez H, Rossi DA. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms. Front Microbiol 2017; 8:1332. [PMID: 28769900 PMCID: PMC5513903 DOI: 10.3389/fmicb.2017.01332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Biofilm represents a way of life that allows greater survival of microorganisms in hostile habitats. Campylobacter jejuni is able to form biofilms in vitro and on surfaces at several points in the poultry production chain. Genetic determinants related to their formation are expressed differently between strains and external conditions are decisive in this respect. Our approach combines phylogenetic analysis and the presence of seven specific genes linked to biofilm formation in association with traditional microbiology techniques, using Mueller Hinton and chicken juice as substrates in order to quantify, classify, determine the composition and morphology of the biomass of simple and mixed biofilms of 30 C. jejuni strains. It also evaluates the inhibition of its formation by biocides commonly used in industry and also by zinc oxide nanoparticles. Genetic analysis showed high heterogeneity with the identification of 23 pulsotypes. Despite the diversity, the presence of flaA, cadF, luxS, dnaJ, htrA, cbrA, and sodB genes in all strains shows the high potential for biofilm formation. This ability was only expressed in chicken juice, where they presented phenotype of a strong biofilm producer, with a mean count of 7.37 log CFU/mL and an ultrastructure characteristic of mature biofilm. The composition of simple and mixed biofilms was predominantly composed by proteins. The exceptions were found in mixed biofilms with Pseudomonas aeruginosa, which includes a carbohydrate-rich matrix, lower ability to sessile form in chicken juice and compact architecture of the biofilm, this aspects are intrinsic to this species. Hypochlorite, chlorhexidine, and peracetic acid were more effective in controlling viable cells of C. jejuni in biofilm, but the existence of tolerant strains indicates exposure to sublethal concentrations and development of adaptation mechanisms. This study shows that in chicken juice C. jejuni presents greater potential in producing mature biofilms.
Collapse
Affiliation(s)
- Roberta T. Melo
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Eliane P. Mendonça
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Guilherme P. Monteiro
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Mariana C. Siqueira
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Clara B. Pereira
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Phelipe A. B. M. Peres
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| | - Heriberto Fernandez
- Institute of Clinical Microbiology, Universidad Austral de ChileValdivia, Chile
| | - Daise A. Rossi
- Laboratory of Applied Animal Biotechnology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
- Laboratory of Molecular Epidemiology, Federal University of UberlândiaUberlândia, Minas Gerais, Brazil
| |
Collapse
|
18
|
McCormick AR, Hoellein TJ, London MG, Hittie J, Scott JW, Kelly JJ. Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages. Ecosphere 2016. [DOI: 10.1002/ecs2.1556] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | | | - Joshua Hittie
- Department of BiologyLoyola University Chicago Illinois 60660 USA
| | - John W. Scott
- Prairie Research InstituteIllinois Sustainable Technology Center Champaign Illinois 61820 USA
| | - John J. Kelly
- Department of BiologyLoyola University Chicago Illinois 60660 USA
| |
Collapse
|