1
|
Wilson I, Perry T, Eisenhofer R, Rismiller P, Shaw M, Grutzner F. Microbiota changes in lactation in the short-beaked echidna (Tachyglossus aculeatus). FEMS Microbiol Ecol 2025; 101:fiaf036. [PMID: 40194944 PMCID: PMC12001884 DOI: 10.1093/femsec/fiaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/17/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025] Open
Abstract
Monotreme and marsupial development is characterized by a short gestation, with young exposed to the environment at an early developmental stage and supported by a long lactation in the pouch, pseudo-pouch, or burrow. The lack of a functional adaptive immune system in these altricial young raises questions about how they survive in a microbe-rich environment. Previous studies on marsupial pouches have revealed changes to pouch microbe composition during lactation, but no information is available in monotremes. We investigated changes in the echidna pseudo-pouch microbiota (n = 22) during different stages of the reproductive cycle and whether this differs between wild and zoo-managed animals. Metataxonomic profiling using 16S rRNA gene sequencing revealed that pseudo-pouch microbial communities undergo dramatic changes during lactation, with significant differences in taxonomic composition compared with samples taken outside of breeding season or during courtship and mating. This suggests that the echidna pseudo-pouch environment changes during lactation to accommodate young that lack a functional adaptive immune system. Furthermore, captivity was not found to have a significant effect on pseudo-pouch microbiota. This study pioneers pouch microbiota research in monotremes, provides new biological information on echidna reproduction, and may also provide information about the effects of captive management to inform breeding programmes in the future.
Collapse
Affiliation(s)
- Isabella Wilson
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Tahlia Perry
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide 5005, Australia
| | - Raphael Eisenhofer
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Centre for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen 1353, Denmark
| | - Peggy Rismiller
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Pelican Lagoon Research and Wildlife Centre, Penneshaw 5222, Australia
| | - Michelle Shaw
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
- Taronga Wildlife Nutrition Centre, Welfare, Conservation & Science, Taronga Conservation Society Australia, Mosman 2088, Australia
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
2
|
Luo F, Gwak H, Park AR, Nguyen VT, Kim JC. Biocontrol potential of natamycin-producing Streptomyces lydicus JCK-6019 against soil-borne fungal diseases of cucumber and characterization of its biocontrol mechanism. PEST MANAGEMENT SCIENCE 2025; 81:1971-1987. [PMID: 39655403 DOI: 10.1002/ps.8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani AG-4 are the two most important fungal pathogens causing soil-borne fungal diseases of cucumber; they are difficult to control and cause serious economic losses. Given the detrimental effects of the indiscriminate use of chemical fungicides, biocontrol emerges as an efficient and ecofriendly alternative for managing soil-borne fungal diseases. RESULTS Streptomyces lydicus JCK-6019 (hereafter, JCK-6019) was isolated from rhizosphere soil. Its fermentation filtrate and volatile organic compounds exhibited broad-spectrum antifungal activity against various phytopathogenic fungi and oomycetes. JCK-6019 produced natamycin as an agar-diffusible antifungal metabolite. It also produced indole-3-acetic acid and various hydrolytic enzymes. In vivo experiments revealed that a ten-fold-diluted optimized JCK-6019 fermentation broth exhibited 100% control efficiency against cucumber damping-off disease and 62.5% control efficiency against cucumber Fusarium wilt disease. Pretreatment of cucumber seedlings with 1000-fold-diluted optimized JCK-6019 fermentation broth resulted in 68.18% and 23.91% disease control values against cucumber damping-off and Fusarium wilt disease, respectively. Moreover, peroxidase activity in cucumbers after 1 day of treatment was 1.5-fold higher than that in the control. Similarly, polyphenol oxidase activity in cucumbers after 3 days of treatment was 2.34-fold higher than that in the control, indicating that JCK-6019 can induce plant resistance. CONCLUSION The natamycin-producing strain JCK-6019 could effectively suppress the development of cucumber Fusarium wilt and damping-off disease by inducing plant resistance and producing antifungal metabolites, including natamycin and volatile organic compounds. Thus, JCK-6019 possesses high potential for application in the development of biocontrol agents against soil-borne fungal diseases of cucumber. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Luo
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Hanna Gwak
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ae Ran Park
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| | - Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Yi G, Li J, Wang X, Cheng L. Screening of plant growth-promoting rhizobacteria and their growth-promoting activities for Stipa purpurea in alpine grassland. J Appl Microbiol 2025; 136:lxaf041. [PMID: 40036369 DOI: 10.1093/jambio/lxaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
AIMS Stipa purpurea is one of the dominant grass species in alpine grassland and plays a crucial role in safeguarding the ecosystem and restoring degraded grassland. To enhance the population dominance of S. purpurea and effectively prevent further grassland degradation. In this study, we screened high-efficiency plant growth-promoting rhizobacteria (PGPR) from rhizosphere soil samples, with the aim of improving the growth activity of S. purpurea through spraying PGPR. METHODS AND RESULTS We selected functional medium for the isolation of PGPR from the rhizosphere soils of five distinct sampling sites in the alpine grasslands surrounding Qinghai Lake. Nitrogenase activity, phosphorus-solubilization, carbon-fixation, indole acetic acid (IAA)-like compounds production, and 1-aminocyclopropane-1-carboxylate deaminase production were used to assess the growth-promoting capability of the PGPR. Additionally, the ecological adaptability of PGPR was examined. Finally, the growth promotion effect of high-efficiency PGPR on S. purpurea was determined using pot experiments. The results of this study showed that 136 strains were isolated and were categorized into 18 genera based on the 16S rRNA sequences. Among these, seven strains exhibited multiple characteristics of promoting growth, and meanwhile, strains GD-1-1, YD-2-4, GD-3-9, and HD-1-1 exhibited strong resistance to drought, cold, UV, and oxidation. The strains GD-1-1 and YD-2-4 had growth-promoting effects on the growth of S. purpurea, which significantly enhance the seed germination rate, facilitate the growth of the above-ground part of seedlings, and the formation of lateral roots. Additionally, the results of the principal component analysis indicated that the interaction effect of high-efficiency PGPRs with young roots was more beneficial than that with young sprout. CONCLUSIONS The results of this study provide outstanding strain resources and a theoretical foundation for the restoration of alpine degraded grassland. The findings further provide the basis for research and development of microbial fertilizer.
Collapse
Affiliation(s)
- Guoyun Yi
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251 Ningda Road, Chengbei District, Xining City, Qinghai Province, Xining 810016, China
| | - Juan Li
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251 Ningda Road, Chengbei District, Xining City, Qinghai Province, Xining 810016, China
| | - Xin Wang
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251 Ningda Road, Chengbei District, Xining City, Qinghai Province, Xining 810016, China
| | - Liang Cheng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, No. 251 Ningda Road, Chengbei District, Xining City, Qinghai Province, Xining 810016, China
| |
Collapse
|
4
|
McLean H, Mikaberidze A, Deakin G, Xu X, Papp-Rupar M. The interplay between scion genotype, root microbiome, and Neonectria ditissima apple canker. FEMS Microbiol Ecol 2025; 101:fiaf014. [PMID: 39848913 PMCID: PMC11878798 DOI: 10.1093/femsec/fiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/25/2025] Open
Abstract
Severity of European apple canker caused by Neonectria ditissima can vary between locations and apple genotypes. We investigated how location, cold storage/planting season, and apple scion genotype affect root-associated microbial communities. Additionally, we investigated whether differences in abundance of specific taxa could be associated with canker lesion counts. Seven scion cultivars grafted onto M9 rootstocks were inoculated with N. ditissima in the nursery and then planted in December 2018 or stored at 2°C until planting in April 2019 at three sites in Kent, UK. We assessed canker lesions and collected root samples in June 2021. Quantitative polymerase chain reaction (qPCR) and internal transcribed spacer (ITS)/16S rRNA gene amplicon sequencing was used to analyse microbial communities. Site was the primary factor affecting microbiome size, diversity, and composition. Cold storage/planting season had small but significant effects, indicating that differences in the microbiome at planting can persist long-term. Scion genotype had a limited effect on diversity but did influence the abundance of specific root-associated taxa. Bacterial α-diversity was associated with canker count in a site-dependent manner. Increased abundances of particular fungal (Rhizophagus irregularis and Epicoccum nigrum) and bacterial (Amycolatopsis and Bradyrhizobium) root-associated taxa were associated with fewer cankers.
Collapse
Affiliation(s)
- Hamish McLean
- Niab, New Road, East Malling, Kent ME19 6BJ, United Kingdom
- School of Agriculture, Policy, and Development, University of Reading, Whiteknights, Reading RG6 6BZ, United Kingdom
| | - Alexey Mikaberidze
- School of Agriculture, Policy, and Development, University of Reading, Whiteknights, Reading RG6 6BZ, United Kingdom
| | - Greg Deakin
- Niab, New Road, East Malling, Kent ME19 6BJ, United Kingdom
| | - Xiangming Xu
- Niab, New Road, East Malling, Kent ME19 6BJ, United Kingdom
| | | |
Collapse
|
5
|
Lasa AV, López-Hinojosa M, Villadas PJ, Fernández-González AJ, Cervera MT, Fernández-López M. Unraveling the shifts in the belowground microbiota and metabolome of Pinus pinaster trees affected by forest decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178486. [PMID: 39824104 DOI: 10.1016/j.scitotenv.2025.178486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline. The aim of our work was to unravel whether bacterial and fungal communities inhabiting the rhizosphere and root endosphere of P. pinaster trees with symptoms of decline and affected by Matsucoccus feytaudi in the National Park of Sierra Nevada (Granada, Spain) showed alterations in the structure, taxonomical profiles and associative patterns. We also aimed at deciphering potential changes in the rhizosphere and root metabolome. Trees infected by M. feytaudi and healthy individual harbored distinct microbial communities at both compositional and associative patterns. Unhealthy trees were enriched selectively in certain plant growth promoting microorganisms such as several ectomycorrhizal fungi (Clavulina) and Streptomyces, while other beneficial microorganisms (Micromonospora) were more abundant in unaffected pines. The rhizosphere of unhealthy trees was richer in secondary metabolites involved in plant defense than healthy pines, while the opposite trend was detected in root samples. The abundance of certain microorganisms was significantly correlated with several antimicrobial metabolites, thus, being all of them worthy of further isolation and study of their role in forest decline.
Collapse
Affiliation(s)
- Ana V Lasa
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Miriam López-Hinojosa
- Forest Tree Genomics, Department of Forest Ecology and Genetics, Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC (ICIFOR-INIA-CSIC), Carretera de La Coruña Km 7,5, 28040 Madrid, Spain
| | - Pablo J Villadas
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - Antonio José Fernández-González
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | - María Teresa Cervera
- Forest Tree Genomics, Department of Forest Ecology and Genetics, Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, CSIC (ICIFOR-INIA-CSIC), Carretera de La Coruña Km 7,5, 28040 Madrid, Spain
| | - Manuel Fernández-López
- Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
6
|
Podar M, Hochanadel LH, Alexander WG, Schadt CW, Pelletier DA. Complete genome sequence of Promicromonospora sp. strain Populi , an actinobacterium isolated from Populus trichocarpa rhizosphere. Microbiol Resour Announc 2024; 13:e0085124. [PMID: 39470237 PMCID: PMC11636086 DOI: 10.1128/mra.00851-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Promicromonospora sp. strain Populi is an actinobacterium isolated from the rhizosphere of a black cottonwood tree, Populus trichocarpa. We completely sequenced its 5.2-Mbp chromosome using Oxford Nanopore long reads and predicted it to encode 4,685 proteins, 3 rRNA operons, and 54 tRNAs and noncoding RNAs.
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
7
|
Njoroge HW, Hu J, Yu Y, Yuan Z, Lin Y, Han X, Liu Z, Muia AW, Liu H. A rice rhizosphere plant growth-promoting Streptomyces corchorusii isolate antagonizes Magnaporthe oryzae and elicits defense responses in rice. J Appl Microbiol 2024; 135:lxae266. [PMID: 39674266 DOI: 10.1093/jambio/lxae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 12/16/2024]
Abstract
AIMS Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice (Oryza sativa L.). The aim of this study was to investigate the biocontrol potential of rice rhizosphere actinomycetes against M. oryzae Guy 11, and elucidate the antagonistic mechanisms. METHODS AND RESULTS An isolate characterized as a Streptomyces corchorusii strain (Sc75) using the 16S rRNA gene exhibited superior antifungal activity. Sc75 had an inhibitory effect of 69.25% ± 0.15% against M. oryzae and broad antifungal activity on other fungal plant pathogens in the dual culture assay. Its cell-free culture filtrate inhibited fungal growth and reduced mycelial mass. Also, the ethyl acetate crude extract completely inhibited conidia germination and appressoria formation on the hydrophobic coverslips and detached leaf at a concentration of 20 mg/ml. Its volatile organic compounds (VOCs) suppressed fungal growth by 98.42%. GC-MS analysis of the VOCs identified butanoic acid, 2-methyl-, methyl ester; di-tert-butyl peroxide; furan, 2-pentyl-; and undecanoic acid, 10-methyl-, methyl ester as the main components. In the greenhouse experiment, the disease severity was reduced and growth promotion was evident. Molecular investigation revealed that Sc75 upregulated defense-related genes involved in the synthesis of jasmonic acid, salicylic acid signaling pathway, and led to callose deposition and ROS production in the leaves. Finally, Sc75 produced hydrolytic enzymes, siderophore, indole acetic acid, gibberellic acid, phosphate solubilization, and 1-aminocyclopropane-1-carboxylate deaminase. CONCLUSIONS The rice rhizosphere soil harbors actinomycetes that can be explored as biocontrol agents against fungal pathogens such as M. oryzae. The isolate Sc75 had superior antifungal activity against M. oryzae and other selected plant pathogenic fungi. It showed remarkable antagonistic activity through direct antibiosis, production of VOCs, antifungal metabolites in the culture filtrates and crude extracts, and produced enzymes. In addition, the isolate promoted plant growth, reduced rice blast disease index in the greenhouse experiment, and elicited defense-related responses. Sc75 is a promising candidate for future exploration as a biofungicide and a biofertilizer.
Collapse
Affiliation(s)
- Hellen Wambui Njoroge
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jiangfei Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Yijie Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Yuqing Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Xixi Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Zhuang Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | | | - Hongxia Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| |
Collapse
|
8
|
Chen M, Xing Y, Chen C, Wang Z. Enhancing sugarcane's drought resilience: the influence of Streptomycetales and Rhizobiales. FRONTIERS IN PLANT SCIENCE 2024; 15:1471044. [PMID: 39678007 PMCID: PMC11637870 DOI: 10.3389/fpls.2024.1471044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024]
Abstract
Drought stress is a critical environmental factor affecting sugarcane yield, and the adaptability of the sugarcane rhizosphere bacterial community is essential for drought tolerance. This review examines the adaptive responses of sugarcane rhizosphere bacterial communities to water stress and explores their significant role in enhancing sugarcane drought tolerance. Under drought conditions, the sugarcane rhizosphere bacterial community undergoes structural and functional shifts, particularly the enrichment of beneficial bacteria, including Streptomycetales and Rhizobiales. These bacteria enhance sugarcane resilience to drought through various means, including nutrient acquisition and phytohormone synthesis. Furthermore, changes in the rhizosphere bacterial community were closely associated with the composition and levels of soil metabolites, which significantly influenced the physiological and biochemical processes of sugarcane during drought stress. This study deepens our understanding of rhizosphere bacterial communities and their interactions with sugarcane, laying a scientific foundation for developing drought-resistant sugarcane varieties, optimizing agricultural practices, and opening new avenues for agricultural applications.
Collapse
Affiliation(s)
| | | | | | - Ziting Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab for Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Alattas H, Glick BR, Murphy DV, Scott C. Harnessing Pseudomonas spp. for sustainable plant crop protection. Front Microbiol 2024; 15:1485197. [PMID: 39640850 PMCID: PMC11617545 DOI: 10.3389/fmicb.2024.1485197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
This review examines the role of Pseudomonas spp. bacteria as biocontrol agents against crop diseases, focusing on their mechanisms of action, efficacy, and potential applications in sustainable agriculture. Pseudomonas spp., ubiquitous in soil ecosystems and root microbiomes, have attracted attention for their ability to suppress phytopathogens and enhance plant health through various mechanisms. These include direct competition for nutrients, production of antimicrobial compounds and volatile organic compounds, competition using type VI secretion systems, and indirect induction of systemic resistance. Our review shows that Pseudomonas strains effectively control a wide range of diseases across diverse plant species, with some strains demonstrating efficacy comparable to chemical fungicides. However, the review also highlights challenges in achieving consistent performance when using Pseudomonas inoculants under field conditions due to various biotic and abiotic factors. Strategies to optimize biocontrol potential, such as formulation techniques, application methods, and integration with other management practices, are discussed. The advantages of Pseudomonas-based biocontrol for sustainable agriculture include reduced reliance on chemical pesticides, enhanced crop productivity, and improved environmental sustainability. Future research directions should focus on understanding the complex interactions within the plant microbiome, optimizing delivery systems, and addressing regulatory hurdles for commercial deployment. This review underscores the significant potential of Pseudomonas spp. in sustainable crop protection while acknowledging the need for further research to fully harness their capabilities in agricultural systems.
Collapse
Affiliation(s)
- Hussain Alattas
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- School of Medical, Molecular, and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Colin Scott
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
10
|
Wang X, Zhang H, Zhan X, Li J, Huang J, Qin Z. Dissecting the Herbicidal Mechanism of Microbial Natural Product Lydicamycins Using a Deep Learning-Based Nonlinear Regression Model. ACS OMEGA 2024; 9:44778-44784. [PMID: 39524666 PMCID: PMC11541792 DOI: 10.1021/acsomega.4c07971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The plant microbiome significantly influences plant-microbe interactions, but the mechanisms are often complex and nonlinear. Here we show the nonlinear regulatory effects of Streptomyces ginsengnesis G7 on Arabidopsis thaliana growth. We focused on lydicamycin, a molecule from this bacterium that interferes with auxin polar transport. Using a deep learning approach with a feedforward neural network, we integrated multiomics data to elucidate the mechanism of lydicamycin on plant growth and development. We also examined the impact of flavonol metabolites, particularly isorhamnetin from A. thaliana, on the PIN protein family's role in auxin transport. Our findings indicate that lydicamycin regulates auxin transport by inducing flavonol overaccumulation in A. thaliana, affecting plant development. This study identifies potential molecular targets for crop enhancement and improved agricultural productivity.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Center
for Biological Science and Technology, Advanced Institute of Natural
Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Heqian Zhang
- Center
for Biological Science and Technology, Advanced Institute of Natural
Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xuanlin Zhan
- Center
for Biological Science and Technology, Advanced Institute of Natural
Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jie Li
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Jiaquan Huang
- Center
for Biological Science and Technology, Advanced Institute of Natural
Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center
for Biological Science and Technology, Advanced Institute of Natural
Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
11
|
Michalska-Smith M, Schlatter DC, Pombubpa N, Castle SC, Grandy AS, Borer ET, Seabloom EW, Kinkel LL. Plant community richness and foliar fungicides impact soil Streptomyces inhibition, resistance, and resource use phenotypes. Front Microbiol 2024; 15:1452534. [PMID: 39435438 PMCID: PMC11491370 DOI: 10.3389/fmicb.2024.1452534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 10/23/2024] Open
Abstract
Plants serve as critical links between above- and below-ground microbial communitites, both influencing and being influenced by microbes in these two realms. Below-ground microbial communities are expected to respond to soil resource environments, which are mediated by the roots of plants that can, in turn, be influenced by the above-ground community of foliar endophytes. For instance, diverse plant communities deposit more, and more diverse, nutrients into the soil, and this deposition is often increased when foliar pathogens are removed. Differences in soil resources can alter soil microbial composition and phenotypes, including inhibitory capacity, resource use, and antibiotic resistance. In this work, we consider plots differing in plant richness and application of foliar fungicide, evaluating consequences on soil resource levels and root-associated Streptomyces phenotypes. Soil carbon, nitrogen, phosphorus, potassium, and organic matter were greater in samples from polyculture than monoculture, yet this increase was surprisingly offset when foliar fungal communities were disrupted. We find that Streptomyces phenotypes varied more between richness plots-with the Streptomyces from polyculture showing lower inhibitory capacity, altered resource-use profiles, and greater antibiotic resistance-than between subplots with/without foliar fungicide. Where foliar fungicide affected phenotypes, it did so differently in polyculture than in monoculture, for instance decreasing niche width and overlap in monoculture while increasing them in polyculture. No differences in phenotype were correlated with soil nutrient levels, suggesting the need for further research looking more closely at soil resource diversity and particular compounds that were found to differ between treatments.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Plant Science Research Unit, St. Paul, MN, United States
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Sarah C. Castle
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - A. Stuart Grandy
- Center for Biogeochemistry and Microbial Ecology (Soil BioME), University of New Hampshire, Durham, NC, United States
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NC, United States
| | - Elizabeth T. Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Eric W. Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Linda L. Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
12
|
Berlow M, Mesa M, Creek M, Duarte JG, Carpenter E, Phinizy B, Andonian K, Dlugosch KM. Plant G × Microbial E: Plant Genotype Interaction with Soil Bacterial Community Shapes Rhizosphere Composition During Invasion. MICROBIAL ECOLOGY 2024; 87:113. [PMID: 39259393 PMCID: PMC11390927 DOI: 10.1007/s00248-024-02429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion.
Collapse
Affiliation(s)
- Mae Berlow
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Miles Mesa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Mikayla Creek
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jesse G Duarte
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Elizabeth Carpenter
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Brandon Phinizy
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Krikor Andonian
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
13
|
Hu N, Xiao F, Zhang D, Hu R, Xiong R, Lv W, Yang Z, Tan W, Yu H, Ding D, Yan Q, He Z. Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134975. [PMID: 38908177 DOI: 10.1016/j.jhazmat.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Fangfang Xiao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dandan Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenpan Lv
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhaolan Yang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
14
|
Echeverry-Gallego RA, Martínez-Pachón D, Arenas NE, Franco DC, Moncayo-Lasso A, Vanegas J. Characterization of bacterial diversity in rhizospheric soils, irrigation water, and lettuce crops in municipalities near the Bogotá river, Colombia. Heliyon 2024; 10:e35909. [PMID: 39229531 PMCID: PMC11369436 DOI: 10.1016/j.heliyon.2024.e35909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The use of wastewater in agricultural practices poses a potential risk for the spread of foodborne diseases. Therefore, this study aimed to characterize the bacterial biodiversity in rhizospheric soil, irrigation water, and lettuce crops in three municipalities adjacent to the Bogotá River, Colombia. Samples were collected in Mosquera, Funza, and Cota municipalities, including rhizospheric soil, lettuce leaves, and irrigation water. The total DNA extraction was performed to analyze bacterial diversity through high-throughput sequencing of the 16S ribosomal RNA genes, utilizing the Illumina HiSeq 2500 PE 300 sequencing platform. A total of 198 genera from the rhizospheric soil were detected including a higher abundance of zOTUs such as Bacillus, Streptomyces, and clinically relevant genera such as Mycobacterium and Pseudomonas. In lettuce, the detection of 26 genera of endophytic bacteria showed to Proteobacteria and Firmicutes as the predominant phyla, with Staphylococcus and Bacillus as the most abundant genera. Notably, Funza's crops exhibited the highest abundance of endophytes, approximately 50 %, compared to Cota (20 %). Furthermore, the most abundant bacterial genera in the irrigation water were Flavobacterium and Pseudomonas. The most prevalent Enterobacteriaceae were Serratia, Enterobacter, Citrobacter, Klebsiella, Yersinia, Shigella, Escherichia, and Erwinia. The Bacillus genus was highly enriched in both rhizospheric soils and lettuce crops, indicating its significant contribution as the main endophytic bacterium.
Collapse
Affiliation(s)
- Rodrigo A. Echeverry-Gallego
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
- Doctorado en Ciencia Aplicada, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Nelson Enrique Arenas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
- Facultad de Medicina, Universidad de Cartagena. Cartagena, Colombia
| | - Diego C Franco
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá DC, Colombia
| |
Collapse
|
15
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
16
|
da Fonseca JS, Sousa TF, de Almeida SVR, Silva CN, Castro GDS, Yamagishi MEB, Koolen HHF, Hanada RE, da Silva GF. Amazonian Bacteria from River Sediments as a Biocontrol Solution against Ralstonia solanacearum. Microorganisms 2024; 12:1364. [PMID: 39065132 PMCID: PMC11278729 DOI: 10.3390/microorganisms12071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, is one of the main challenges for sustainable tomato production in the Amazon region. This study evaluated the potential of bacteria isolated from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria selected through in vitro antibiosis, three promising isolates were identified: Priestia aryabhattai RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195, which inhibited the growth of the phytopathogen by 100%, 87.62%, and 100%, respectively. These isolates also demonstrated the ability to produce extracellular enzymes and plant growth-promoting compounds, such as indole-3-acetic acid (IAA), siderophore, and ammonia. In plant assays, during both dry and rainy seasons, P. aryabhattai RN 11 reduced disease incidence by 40% and 90%, respectively, while promoting the growth of infected plants. Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 exhibited high survival rates (85-90%) and pathogen suppression in the soil (>90%), demonstrating their potential as biocontrol agents. This study highlights the potential of Amazonian bacteria as biocontrol agents against bacterial wilt, contributing to the development of sustainable management strategies for this important disease.
Collapse
Affiliation(s)
- Jennifer Salgado da Fonseca
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Thiago Fernandes Sousa
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Suene Vanessa Reis de Almeida
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Carina Nascimento Silva
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Gleucinei dos Santos Castro
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | | | - Hector Henrique Ferreira Koolen
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | - Rogério Eiji Hanada
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | | |
Collapse
|
17
|
Paege N, Feustel S, Marx-Stoelting P. Toxicological evaluation of microbial secondary metabolites in the context of European active substance approval for plant protection products. Environ Health 2024; 23:52. [PMID: 38835048 DOI: 10.1186/s12940-024-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).
Collapse
Affiliation(s)
- Norman Paege
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Sabrina Feustel
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | |
Collapse
|
18
|
Lu L, Liu N, Fan Z, Liu M, Zhang X, Tian J, Yu Y, Lin H, Huang Y, Kong Z. A novel PGPR strain, Streptomyces lasalocidi JCM 3373 T, alleviates salt stress and shapes root architecture in soybean by secreting indole-3-carboxaldehyde. PLANT, CELL & ENVIRONMENT 2024; 47:1941-1956. [PMID: 38369767 DOI: 10.1111/pce.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
While soybean (Glycine max L.) provides the most important source of vegetable oil and protein, it is sensitive to salinity, which seriously endangers the yield and quality during soybean production. The application of Plant Growth-Promoting Rhizobacteria (PGPR) to improve salt tolerance for plant is currently gaining increasing attention. Streptomycetes are a major group of PGPR. However, to date, few streptomycetes has been successfully developed and applied to promote salt tolerance in soybean. Here, we discovered a novel PGPR strain, Streptomyces lasalocidi JCM 3373T, from 36 strains of streptomycetes via assays of their capacity to alleviate salt stress in soybean. Microscopic observation showed that S. lasalocidi JCM 3373T does not colonise soybean roots. Chemical analysis confirmed that S. lasalocidi JCM 3373T secretes indole-3-carboxaldehyde (ICA1d). Importantly, IAC1d inoculation alleviates salt stress in soybean and modulates its root architecture by regulating the expression of stress-responsive genes GmVSP, GmPHD2 and GmWRKY54 and root growth-related genes GmPIN1a, GmPIN2a, GmYUCCA5 and GmYUCCA6. Taken together, the novel PGPR strain, S. lasalocidi JCM 3373T, alleviates salt stress and improves root architecture in soybean by secreting ICA1d. Our findings provide novel clues for the development of new microbial inoculant and the improvement of crop productivity under salt stress.
Collapse
Affiliation(s)
- Liang Lu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zihui Fan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Minghao Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hou-Ji Laboratory in Shanxi province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
19
|
Feng NX, Li DW, Zhang F, Bin H, Huang YT, Xiang L, Liu BL, Cai QY, Li YW, Xu DL, Xie Y, Mo CH. Biodegradation of phthalate acid esters and whole-genome analysis of a novel Streptomyces sp. FZ201 isolated from natural habitats. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133972. [PMID: 38461665 DOI: 10.1016/j.jhazmat.2024.133972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Di-n-butyl phthalate (DBP) is one of the most extensively used phthalic acid esters (PAEs) and is considered to be an emerging, globally concerning pollutant. The genus Streptomyces holds promise as a degrader of various organic pollutants, but PAE biodegradation mechanisms by Streptomyces species remain unsolved. In this study, a novel PAE-degrading Streptomyces sp. FZ201 isolated from natural habitats efficiently degraded various PAEs. FZ201 had strong resilience against DBP and exhibited immediate degradation, with kinetics adhering to a first-order model. The comprehensive biodegradation of DBP involves de-esterification, β-oxidation, trans-esterification, and aromatic ring cleavage. FZ201 contains numerous catabolic genes that potentially facilitate PAE biodegradation. The DBP metabolic pathway was reconstructed by genome annotation and intermediate identification. Streptomyces species have an open pangenome with substantial genome expansion events during the evolutionary process, enabling extensive genetic diversity and highly plastic genomes within the Streptomyces genus. FZ201 had a diverse array of highly expressed genes associated with the degradation of PAEs, potentially contributing significantly to its adaptive advantage and efficiency of PAE degradation. Thus, FZ201 is a promising candidate for remediating highly PAE-contaminated environments. These findings enhance our preliminary understanding of the molecular mechanisms employed by Streptomyces for the removal of PAEs.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fei Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Bin
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - De-Lin Xu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Huang J, Li X, Zhan X, Pan S, Pan C, Li J, Fan S, Zhang L, Du K, Du Z, Zhang J, Huang H, Li J, Zhang H, Qin Z. A Streptomyces species from the ginseng rhizosphere exhibits biocontrol potential. PLANT PHYSIOLOGY 2024; 194:2709-2723. [PMID: 38206193 DOI: 10.1093/plphys/kiae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Plants and their associated microbes live in complicated, changeable, and unpredictable environments. They usually interact with each other in many ways through multidimensional, multiscale, and multilevel coupling manners, leading to challenges in the coexistence of randomness and determinism or continuity and discreteness. Gaining a deeper understanding of these diverse interaction mechanisms can facilitate the development of data-mining theories and methods for complex systems, coupled modeling for systems with different spatiotemporal scales and functional properties, or even a universal theory of information and information interactions. In this study, we use a "closed-loop" model to present a plant-microbe interaction system and describe the probable functions of microbial natural products. Specifically, we report a rhizosphere species, Streptomyces ginsengnesis G7, which produces polyketide lydicamycins and other active metabolites. Interestingly, these distinct molecules have the potential to function both as antibiotics and as herbicides for crop protection. Detailed laboratory experiments conducted in Arabidopsis (Arabidopsis thaliana), combined with a comprehensive bioinformatics analysis, allow us to rationalize a model for this specific plant-microbe interaction process. Our work reveals the benefits of exploring otherwise neglected resources for the identification of potential functional molecules and provides a reference to better understand the system biology of complex ecosystems.
Collapse
Affiliation(s)
- Jiaquan Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xiaojie Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Xuanlin Zhan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Shiyu Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Chao Pan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jixiao Li
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Liner Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Kehan Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiying Du
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jiayu Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Han Huang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Jie Li
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
21
|
Quinn GA, Dyson PJ. Going to extremes: progress in exploring new environments for novel antibiotics. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:8. [PMID: 39843508 PMCID: PMC11721673 DOI: 10.1038/s44259-024-00025-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2025]
Abstract
The discoveries of penicillin and streptomycin were pivotal for infection control with the knowledge subsequently being used to enable the discovery of many other antibiotics currently used in clinical practice. These valuable compounds are generally derived from mesophilic soil microorganisms, predominantly Streptomyces species. Unfortunately, problems with the replication of results suggested that this discovery strategy was no longer viable, motivating a switch to combinatorial chemistry in conjunction with existing screening programmes to derive new antimicrobials. However, the chemical space occupied by these synthetic products is vastly reduced compared to those of natural products. More recent approaches such as using artificial intelligence to 'design' synthetic ligands to dock with molecular targets suggest that chemical synthesis is still a promising option for discovery. It is important to employ diverse discovery strategies to combat the worrying increase in antimicrobial resistance (AMR). Here, we reconsider whether nature can supply innovative solutions to recalcitrant infections. Specifically, we assess progress in identifying novel antibiotic-producing organisms from extreme and unusual environments. Many of these organisms have adapted physiologies which often means they produce different repertoires of bioactive metabolites compared to their mesophilic counterparts, including antibiotics. In addition, we examine insights into the regulation of extremotolerant bacterial physiologies that can be harnessed to increase the production of clinically important antibiotics and stimulate the synthesis of new antibiotics in mesophilic microorganisms. Finally, we comment on the insights provided by combinatorial approaches to the treatment of infectious diseases that might enhance the efficacy of antibiotics and reduce the development of AMR.
Collapse
Affiliation(s)
- Gerry A Quinn
- Centre for Molecular Biosciences, Ulster University, Coleraine, BT52 1SA, N, Ireland, UK
| | - Paul J Dyson
- Institute of Life Sciences, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
22
|
Ge A, Li Q, Liu H, Zhang Z, Lu Y, Liang Z, Singh BK, Han L, Xiang J, Xiao J, Liu S, Zhang L. Streptomyces-triggered coordination between rhizosphere microbiomes and plant transcriptome enables watermelon Fusarium wilt resistance. Microb Biotechnol 2024; 17:e14435. [PMID: 38465781 PMCID: PMC10926178 DOI: 10.1111/1751-7915.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
The use of microbial inoculant is a promising strategy to improve plant health, but their efficiency often faces challenges due to difficulties in successful microbial colonization in soil environments. To this end, the application of biostimulation products derived from microbes is expected to resolve these barriers via direct interactions with plants or soil pathogens. However, their effectiveness and mechanisms for promoting plant growth and disease resistance remain elusive. In this study, we showed that root irrigation with the extracts of Streptomyces ahygroscopicus strain 769 (S769) solid fermentation products significantly reduced watermelon Fusarium wilt disease incidence by 30% and increased the plant biomass by 150% at a fruiting stage in a continuous cropping field. S769 treatment led to substantial changes in both bacterial and fungal community compositions, and induced a highly interconnected microbial association network in the rhizosphere. The root transcriptome analysis further suggested that S769 treatment significantly improved the expression of the MAPK signalling pathway, plant hormone signal transduction and plant-pathogen interactions, particular those genes related to PR-1 and ethylene, as well as genes associated with auxin production and reception. Together, our study provides mechanistic and empirical evidences for the biostimulation products benefiting plant health through coordinating plant and rhizosphere microbiome interaction.
Collapse
Affiliation(s)
- An‐Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qi‐Yun Li
- Key Laboratory of Integrated Pest Management on Crops in Northeast Ministry of Agriculture, Jilin Key Laboratory of Agricultural MicrobiologyInstitute of Plant Protection, Jilin Academy of Agricultural SciencesChangchunChina
- Jilin Agricultural Science and Technology UniversityJilinChina
| | - Hong‐Wei Liu
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Zheng‐Kun Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northeast Ministry of Agriculture, Jilin Key Laboratory of Agricultural MicrobiologyInstitute of Plant Protection, Jilin Academy of Agricultural SciencesChangchunChina
| | - Yang Lu
- Key Laboratory of Integrated Pest Management on Crops in Northeast Ministry of Agriculture, Jilin Key Laboratory of Agricultural MicrobiologyInstitute of Plant Protection, Jilin Academy of Agricultural SciencesChangchunChina
| | - Zhi‐Huai Liang
- Hunan Agricultural Biotechnology Research InstituteChangshaChina
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
- Global Centre for Land‐Based InnovationWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Li‐Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Ji‐Fang Xiang
- Hunan Agricultural Biotechnology Research InstituteChangshaChina
| | - Ji‐Ling Xiao
- Hunan Agricultural Biotechnology Research InstituteChangshaChina
| | - Si‐Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Li‐Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
23
|
Sweeney D, Chase AB, Bogdanov A, Jensen PR. MAR4 Streptomyces: A Unique Resource for Natural Product Discovery. JOURNAL OF NATURAL PRODUCTS 2024; 87:439-452. [PMID: 38353658 PMCID: PMC10897937 DOI: 10.1021/acs.jnatprod.3c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Marine-derived Streptomyces have long been recognized as a source of novel, pharmaceutically relevant natural products. Among these bacteria, the MAR4 clade within the genus Streptomyces has been identified as metabolically rich, yielding over 93 different compounds to date. MAR4 strains are particularly noteworthy for the production of halogenated hybrid isoprenoid natural products, a relatively rare class of bacterial metabolites that possess a wide range of biological activities. MAR4 genomes are enriched in vanadium haloperoxidase and prenyltransferase genes, thus accounting for the production of these compounds. Functional characterization of the enzymes encoded in MAR4 genomes has advanced our understanding of halogenated, hybrid isoprenoid biosynthesis. Despite the exceptional biosynthetic capabilities of MAR4 bacteria, the large body of research they have stimulated has yet to be compiled. Here we review 35 years of natural product research on MAR4 strains and update the molecular diversity of this unique group of bacteria.
Collapse
Affiliation(s)
- Douglas Sweeney
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexander B. Chase
- Department
of Earth Sciences, Southern Methodist University, Dallas, Texas 75275, United States
| | - Alexander Bogdanov
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Paul R. Jensen
- Scripps
Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Wang M, Ge AH, Ma X, Wang X, Xie Q, Wang L, Song X, Jiang M, Yang W, Murray JD, Wang Y, Liu H, Cao X, Wang E. Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nat Commun 2024; 15:1668. [PMID: 38395981 PMCID: PMC10891064 DOI: 10.1038/s41467-024-45925-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Root-associated microbiomes contribute to plant growth and health, and are dynamically affected by plant development and changes in the soil environment. However, how different fertilizer regimes affect quantitative changes in microbial assembly to effect plant growth remains obscure. Here, we explore the temporal dynamics of the root-associated bacteria of soybean using quantitative microbiome profiling (QMP) to examine its response to unbalanced fertilizer treatments (i.e., lacking either N, P or K) and its role in sustaining plant growth after four decades of unbalanced fertilization. We show that the root-associated bacteria exhibit strong succession during plant development, and bacterial loads largely increase at later stages, particularly for Bacteroidetes. Unbalanced fertilization has a significant effect on the assembly of the soybean rhizosphere bacteria, and in the absence of N fertilizer the bacterial community diverges from that of fertilized plants, while lacking P fertilizer impedes the total load and turnover of rhizosphere bacteria. Importantly, a SynCom derived from the low-nitrogen-enriched cluster is capable of stimulating plant growth, corresponding with the stabilized soybean productivity in the absence of N fertilizer. These findings provide new insights in the quantitative dynamics of the root-associated microbiome and highlight a key ecological cluster with prospects for sustainable agricultural management.
Collapse
Affiliation(s)
- Mingxing Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An-Hui Ge
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xingzhu Ma
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiujin Xie
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Like Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianwei Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengchen Jiang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weibing Yang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jeremy D Murray
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
25
|
Liu Y, Lu W, Li Y, Zhai B, Zhang B, Qin H, Xu P, Yang Y, Fan S, Wang Y, Li C, Zhao J, Ai J. Diversity of Endophytes of Actinidia arguta in Different Seasons. Life (Basel) 2024; 14:149. [PMID: 38276278 PMCID: PMC10819999 DOI: 10.3390/life14010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The seasonal changes in environmental conditions can alter the growth states of host plants, thereby affecting the living environment of endophytes and forming different endophytic communities. This study employs Illumina MiSeq next-generation sequencing to analyze the 16SrRNA and ITS rDNA of endophytes in 24 samples of Actinidia arguta stem tissues across different seasons. The results revealed a high richness and diversity of endophytes in Actinidia arguta, with significant seasonal variations in microbial community richness. This study identified 897 genera across 36 phyla for bacteria and 251 genera across 8 phyla for fungi. Notably, 69 bacterial genera and 19 fungal genera significantly contributed to the differences in community structure across seasons. A distinctive feature of coexistence in the endophytic community, both specific and conservative across different seasons, was observed. The bacterial community in winter demonstrated significantly higher richness and diversity compared to the other seasons. Environmental factors likely influence the optimal timing for endophyte colonization. Solar radiation, temperature, precipitation, and relative humidity significantly impact the diversity of endophytic bacteria and fungi. In addition, seasonal variations show significant differences in the nutritional modes of fungal endophytes and the degradation, ligninolysis, and ureolysis functions of bacterial endophytes. This study elucidates the potential role of endophytes in assisting Actinidia arguta in adapting to seasonal changes and provides a theoretical basis for further exploration of functional microbial strains.
Collapse
Affiliation(s)
- Yingxue Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Yang Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (B.Z.); (J.Z.)
| | - Boyu Zhai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (B.Z.); (J.Z.)
| | - Baoxiang Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Hongyan Qin
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Peilei Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Yiming Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Yue Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Changyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (W.L.); (B.Z.); (H.Q.); (P.X.); (Y.Y.); (S.F.); (Y.W.); (C.L.)
| | - Jianjun Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.L.); (B.Z.); (J.Z.)
| | - Jun Ai
- College of Horticulture, Jilin Agricultural University, Changchun 130112, China
| |
Collapse
|
26
|
Nicolle C, Gayrard D, Noël A, Hortala M, Amiel A, Grat S, Le Ru A, Marti G, Pernodet JL, Lautru S, Dumas B, Rey T. Root-associated Streptomyces produce galbonolides to modulate plant immunity and promote rhizosphere colonization. THE ISME JOURNAL 2024; 18:wrae112. [PMID: 38896026 PMCID: PMC11463028 DOI: 10.1093/ismejo/wrae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
The rhizosphere, which serves as the primary interface between plant roots and the soil, constitutes an ecological niche for a huge diversity of microbial communities. Currently, there is little knowledge on the nature and the function of the different metabolites released by rhizospheric microbes to facilitate colonization of this highly competitive environment. Here, we demonstrate how the production of galbonolides, a group of polyene macrolides that inhibit plant and fungal inositol phosphorylceramide synthase (IPCS), empowers the rhizospheric Streptomyces strain AgN23, to thrive in the rhizosphere by triggering the plant's defence mechanisms. Metabolomic analysis of AgN23-inoculated Arabidopsis roots revealed a strong induction in the production of an indole alkaloid, camalexin, which is a major phytoalexin in Arabidopsis. By using a plant mutant compromised in camalexin synthesis, we show that camalexin production is necessary for the successful colonization of the rhizosphere by AgN23. Conversely, hindering galbonolides biosynthesis in AgN23 knock-out mutant resulted in loss of inhibition of IPCS, a deficiency in plant defence activation, notably the production of camalexin, and a strongly reduced development of the mutant bacteria in the rhizosphere. Together, our results identified galbonolides as important metabolites mediating rhizosphere colonization by Streptomyces.
Collapse
Affiliation(s)
- Clément Nicolle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Damien Gayrard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Alba Noël
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marion Hortala
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélien Amiel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| | - Sabine Grat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Aurélie Le Ru
- Plateforme d’Imagerie FRAIB-TRI, Université de Toulouse, CNRS, Auzeville-Tolosane 31320, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
| | - Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, Université Toulouse III, Toulouse INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane 31320, France
- DE SANGOSSE, 47480 Pont-Du-Casse, France
| |
Collapse
|
27
|
Leal C, Trotel-Aziz P, Gramaje D, Armengol J, Fontaine F. Exploring Factors Conditioning the Expression of Botryosphaeria Dieback in Grapevine for Integrated Management of the Disease. PHYTOPATHOLOGY 2024; 114:21-34. [PMID: 37505093 DOI: 10.1094/phyto-04-23-0136-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Species from the Botryosphaeriaceae family are the causal agents of Botryosphaeria dieback (BD), a worldwide grapevine trunk disease. Because of their lifestyle and their adaptation to a wide range of temperatures, these fungi constitute a serious threat to vineyards and viticulture, especially in the actual context of climate change. Grapevine plants from both nurseries and vineyards are very susceptible to infections by botryosphaeriaceous fungi due to several cuts and wounds made during their propagation process and their entire life cycle, respectively. When decline becomes chronic or apoplectic, it reduces the longevity of the vineyard and affects the quality of the wine, leading to huge economic losses. Given the environmental impact of fungicides, and their short period of effectiveness in protecting pruning wounds, alternative strategies are being developed to fight BD fungal pathogens and limit their propagation. Among them, biological control has been recognized as a promising and sustainable alternative. However, there is still no effective strategy for combating this complex disease, conditioned by both fungal life traits and host tolerance traits, in relationships with the whole microbiome/microbiota. To provide sound guidance for an effective and sustainable integrated management of BD, by combining the limitation of infection risk, tolerant grapevine cultivars, and biological control, this review explores some of the factors conditioning the expression of BD in grapevine. Among them, the lifestyle of BD-associated pathogens, their pathogenicity factors, the cultivar traits of tolerance or susceptibility, and the biocontrol potential of Bacillus spp. and Trichoderma spp. are discussed.
Collapse
Affiliation(s)
- Catarina Leal
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Patricia Trotel-Aziz
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de la Rioja-Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Florence Fontaine
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
28
|
Antony A, Veerappapillai S, Karuppasamy R. In-silico bioprospecting of secondary metabolites from endophytic Streptomyces spp. against Magnaporthe oryzae, a cereal killer fungus. 3 Biotech 2024; 14:15. [PMID: 38125652 PMCID: PMC10728396 DOI: 10.1007/s13205-023-03859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Rice blast disease, caused by Magnaporthe oryzae, is the most devastating cereal killer worldwide. Note that melanin pigment is an essential factor of M. oryzae virulence, thus fungicides interfering with melanin biosynthesizing enzymes would reduce the pathogenicity. Scytalone dehydratase (SDH) is the key target for commercial fungicides, like carpropamid, due to its role in the dehydration reaction of the fungal melanin pathway. However, a single-point mutation (V75M) in SDH elicits resistance to carpropamid. A lack of effective fungicides against this resistant strain expedited the quest for novel bioactive inhibitors. Currently, bacterial endophytes like Streptomyces have been heralded for synthesizing bioactive metabolites to protect plants from phytopathogens. The literature search led to the identification of 21 Streptomyces spp. symbionts of paddy that can suppress M. oryzae growth. An antiSMASH server was used to explore Streptomyces spp. gene clusters and found 4463 putative metabolites. Besides, 745 unique metabolites were subjected to a series of virtual screening techniques. Ideally, this process identified five potential SDH inhibitors. The docking result highlights that the metabolite pseudopyronine A interacted hydrophobically with both Val75 of SDHWT and Met75 of SDHV75M targets. Moreover, pseudopyronine A has a higher binding free energy with SDHWT (- 89.94 kcal/mol) and SDHV75M (- 71.95 kcal/mol). Interestingly, the pyranones scaffold of pseudopyronine A was reported for antifungal activity against phytopathogens. Dynamic behavior confirms that pseudopyronine A has excellent conformational states with both SDHWT and SDHV75M. Altogether, we hope that this study creates a new avenue for the discovery of novel phytopathogen inhibitors from endophytes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03859-7.
Collapse
Affiliation(s)
- Ajitha Antony
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
29
|
Zhu H, Hu L, Rozhkova T, Wang X, Li C. Spectrophotometric analysis of bioactive metabolites and fermentation optimisation of Streptomyces sp. HU2014 with antifungal potential against Rhizoctonia solani. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2023.2178822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Affiliation(s)
- Hongxia Zhu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Plant Protection and Quarantine Department, Sumy National Agrarian University, Sumy, Sumy State, Ukraine
| | - Linfeng Hu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Tetiana Rozhkova
- Plant Protection and Quarantine Department, Sumy National Agrarian University, Sumy, Sumy State, Ukraine
| | - Xinfa Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan, China
- Plant Protection and Quarantine Department, Sumy National Agrarian University, Sumy, Sumy State, Ukraine
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Pombubpa N, Lakmuang C, Tiwong P, Kanchanabanca C. Streptomyces Diversity Maps Reveal Distinct High-Specificity Biogeographical and Environmental Patterns Compared to the Overall Bacterial Diversity. Life (Basel) 2023; 14:11. [PMID: 38276260 PMCID: PMC10821021 DOI: 10.3390/life14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Despite their enormous impact on the environment and humans, the distribution and variety of the biggest natural secondary metabolite producers, the genus Streptomyces, have not been adequately investigated. We developed representative maps from public EMP 16S rRNA amplicon sequences microbiomics data. Streptomyces ASVs were extracted from the EMP overall bacterial community, demonstrating Streptomyces diversity and identifying crucial diversity patterns. Our findings revealed that while the EMP primarily distinguished bacterial communities as host-associated or free-living (EMPO level 1), the Streptomyces community showed no significant difference but exhibited distinctions between categories in EMPO level 2 (animal, plant, non-saline, and saline). Multiple linear regression analysis demonstrated that pH, temperature, and salinity significantly predicted Streptomyces richness, with richness decreasing as these factors increased. However, latitude and longitude do not predict Streptomyces richness. Our Streptomyces maps revealed that additional samplings in Africa and Southeast Asia are needed. Additionally, our findings indicated that a greater number of samples did not always result in greater Streptomyces richness; future surveys may not necessitate extensive sampling from a single location. Broader sampling, rather than local/regional sampling, may be more critical in answering microbial biogeograph questions. Lastly, using 16S rRNA gene sequencing data has some limitations, which should be interpreted cautiously.
Collapse
Affiliation(s)
- Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayaporn Lakmuang
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| | - Pornnapat Tiwong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| | - Chompoonik Kanchanabanca
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| |
Collapse
|
31
|
Yang Z, Qiao Y, Konakalla NC, Strøbech E, Harris P, Peschel G, Agler-Rosenbaum M, Weber T, Andreasson E, Ding L. Streptomyces alleviate abiotic stress in plant by producing pteridic acids. Nat Commun 2023; 14:7398. [PMID: 37968347 PMCID: PMC10652019 DOI: 10.1038/s41467-023-43177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
Soil microbiota can confer fitness advantages to plants and increase crop resilience to drought and other abiotic stressors. However, there is little evidence on the mechanisms correlating a microbial trait with plant abiotic stress tolerance. Here, we report that Streptomyces effectively alleviate drought and salinity stress by producing spiroketal polyketide pteridic acid H (1) and its isomer F (2), both of which promote root growth in Arabidopsis at a concentration of 1.3 nM under abiotic stress. Transcriptomics profiles show increased expression of multiple stress responsive genes in Arabidopsis seedlings after pteridic acids treatment. We confirm in vivo a bifunctional biosynthetic gene cluster for pteridic acids and antimicrobial elaiophylin production. We propose it is mainly disseminated by vertical transmission and is geographically distributed in various environments. This discovery reveals a perspective for understanding plant-Streptomyces interactions and provides a promising approach for utilising beneficial Streptomyces and their secondary metabolites in agriculture to mitigate the detrimental effects of climate change.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Yijun Qiao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Naga Charan Konakalla
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, SE-230 53, Alnarp, Sweden
| | - Emil Strøbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, Søltofts Plads, Building 206, 2800 Kgs, Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Miriam Agler-Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, SE-230 53, Alnarp, Sweden
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
32
|
Khan S, Srivastava S, Karnwal A, Malik T. Streptomyces as a promising biological control agents for plant pathogens. Front Microbiol 2023; 14:1285543. [PMID: 38033592 PMCID: PMC10682734 DOI: 10.3389/fmicb.2023.1285543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Plant diseases caused by pathogenic microorganisms in agriculture present a considerable obstacle, resulting in approximately 30-40% crop damage. The use of conventional techniques to manage these microorganisms, i.e., applying chemical pesticides and antimicrobials, has been discovered to have adverse effects on human health and the environment. Furthermore, these methods have contributed to the emergence of resistance among phytopathogens. Consequently, it has become imperative to investigate natural alternatives to address this issue. The Streptomyces genus of gram-positive bacteria is a potentially viable natural alternative that has been extensively researched due to its capacity to generate diverse antimicrobial compounds, such as metabolites and organic compounds. Scientists globally use diverse approaches and methodologies to extract new bioactive compounds from these bacteria. The efficacy of bioactive compounds in mitigating various phytopathogens that pose a significant threat to crops and plants has been demonstrated. Hence, the Streptomyces genus exhibits potential as a biological control agent for combating plant pathogens. This review article aims to provide further insight into the Streptomyces genus as a source of antimicrobial compounds that can potentially be a biological control against plant pathogens. The investigation of various bioactive compounds synthesized by this genus can enhance our comprehension of their prospective utilization in agriculture.
Collapse
Affiliation(s)
- Shaista Khan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Srivastava
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
33
|
Chávez-Hernández M, Ortiz-Álvarez J, Morales-Jiménez J, Villa-Tanaca L, Hernández-Rodríguez C. Phenotypic and Genomic Characterization of Streptomyces pakalii sp. nov., a Novel Species with Anti-Biofilm and Anti-Quorum Sensing Activity in ESKAPE Bacteria. Microorganisms 2023; 11:2551. [PMID: 37894209 PMCID: PMC10608816 DOI: 10.3390/microorganisms11102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of infections caused by antimicrobial multi-resistant microorganisms has led to the search for new microorganisms capable of producing novel antibiotics. This work proposes Streptomyces pakalii sp. nov. as a new member of the Streptomycetaceae family. The strain ENCB-J15 was isolated from the jungle soil in Palenque National Park, Chiapas, Mexico. The strain formed pale brown, dry, tough, and buried colonies in the agar with no diffusible pigment in GAE (glucose-asparagine-yeast extract) medium. Scanning electron micrographs showed typical mycelium with long chains of smooth and oval-shaped spores (3-10 m). The strain grew in all of the International Streptomyces Project (ISP)'s media at 28-37 °C with a pH of 6-9 and 0-10% NaCl. S. pakalii ENCB-J15 assimilated diverse carbon as well as organic and inorganic nitrogen sources. The strain also exhibited significant inhibitory activity against the prodigiosin synthesis of Serratia marcescens and the inhibition of the formation and destruction of biofilms of ESKAPE strains of Acinetobacter baumannii and Klebsiella pneumoniae. The draft genome sequencing of ENCB-J15 revealed a 7.6 Mb genome with a high G + C content (71.6%), 6833 total genes, and 6746 genes encoding putative proteins. A total of 26 accessory clusters of proteins associated with carbon sources and amino acid catabolism, DNA modification, and the antibiotic biosynthetic process were annotated. The 16S rRNA gene phylogeny, core-proteome phylogenomic tree, and virtual genome fingerprints support that S. pakalii ENCB-J15 is a new species related to Streptomyces badius and Streptomyces globisporus. Similarly, its average nucleotide identity (ANI) (96.4%), average amino acid identity (AAI) (96.06%), and virtual DNA-DNA hybridization (67.3%) provide evidence to recognize it as a new species. Comparative genomics revealed that S. pakalli and its closest related species maintain a well-conserved genomic synteny. This work proposes Streptomyces pakalii sp. nov. as a novel species that expresses anti-biofilm and anti-quorum sensing activities.
Collapse
Affiliation(s)
- Michelle Chávez-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - Jossue Ortiz-Álvarez
- Programa “Investigadoras e Investigadores por México”. Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT). Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico;
| | - Jesús Morales-Jiménez
- Departamento el Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico;
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| |
Collapse
|
34
|
Kurm V, Visser J, Schilder M, Nijhuis E, Postma J, Korthals G. Soil Suppressiveness Against Pythium ultimum and Rhizoctonia solani in Two Land Management Systems and Eleven Soil Health Treatments. MICROBIAL ECOLOGY 2023; 86:1709-1724. [PMID: 37000231 PMCID: PMC10497426 DOI: 10.1007/s00248-023-02215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
The soil microbiome is known to be crucial for the control of soil-borne plant diseases. However, there is still little knowledge on how to modify the soil microbiome to induce or increase disease suppressiveness. In the present study, we applied eleven soil health treatments combined with conventional and organic agricultural management in a long-term field experiment. Suppressiveness against Pythium ultimum and Rhizoctonia solani was assessed in bioassays for 2 years. In addition, the microbiome community composition and microbial abundance were determined. We found that while several treatments changed the microbial community composition compared to the control, only a combination treatment of anaerobic soil disinfestation, hair meal, and compost addition resulted in suppressiveness against P. ultimum. Pythium suppressiveness is likely to have been caused by an increased microbial abundance and activity. Moreover, the increased abundance of several bacterial taxa, such as Pseudomonas sp., Chryseobacterium sp., members of the family Chitinophagaceae, and the fungal genus Mortierella sp. and family Trichosporonaceae, was measured. There was no overall difference in suppressiveness between conventional and organic land management. Also, no suppressiveness against R. solani could be detected. Our results indicate that a treatment combining the reduction of microorganisms followed by a recovery phase with high amounts of organic amendments may be more effective in inducing suppressiveness than treatments consisting of only one of these measures.
Collapse
Affiliation(s)
- Viola Kurm
- Wageningen University and Research, Biointeractions and Plant Health, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| | - Johnny Visser
- Wageningen University and Research, Field Crops, Edelhertweg 1, 8219, PH, Lelystad, The Netherlands
| | - Mirjam Schilder
- Wageningen University and Research, Biointeractions and Plant Health, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Els Nijhuis
- Wageningen University and Research, Biointeractions and Plant Health, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Joeke Postma
- Wageningen University and Research, Biointeractions and Plant Health, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Gerard Korthals
- Wageningen University and Research, Biointeractions and Plant Health, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| |
Collapse
|
35
|
Du L, Haldar S, King JB, Mattes AO, Srivastava S, Wendt KL, You J, Cunningham C, Cichewicz RH. Persephacin Is a Broad-Spectrum Antifungal Aureobasidin Metabolite That Overcomes Intrinsic Resistance in Aspergillus fumigatus. JOURNAL OF NATURAL PRODUCTS 2023; 86:1980-1993. [PMID: 37523665 DOI: 10.1021/acs.jnatprod.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Fungi pose a persistent threat to humankind with worrying indications that emerging and re-emerging pathogens (e.g., Candida auris, Coccidioides spp., drug-resistant Aspergilli, and more) exhibit resistance to the limited number of approved antifungals. To address this problem, our team is exploring endophytic fungi as a resource for the discovery of new antifungal natural products. The rationale behind this decision is based on evidence that endophytes engage with plants in mutualistic relationships wherein some fungi actively participate by producing chemical defense measures that suppress pathogenic microorganisms. To improve the odds of bioactive metabolite discovery, we developed a new hands-free laser-cutting system capable of generating >50 plant samples per minute that, in turn, enabled our team to prepare and screen large numbers of endophytic fungi. One of the fungal isolates obtained in this way was identified as an Elsinoë sp. that produced a unique aureobasidin analogue, persephacin (1). Some distinctive features of 1 are the absence of both phenylalanine residues combined with the incorporation of a novel amino acid residue, persephanine (9). Compound 1 exhibits potent antifungal effects against a large number of pathogenic yeast (including several clinical C. auris strains), as well as phylogenetically diverse filamentous fungi (e.g., Aspergillus fumigatus). In an ex vivo eye infection model, compound 1 outperformed standard-of-care treatments demonstrating the ability to suppress fluconazole-resistant Candida albicans and A. fumigatus at a concentration (0.1% solution) well below the clinically recommended levels used for fluconazole and natamycin (2% and 5% solutions, respectively). In 3D tissue models for acute dermal and ocular safety, 1 was found to be nontoxic and nonirritating at concentrations required to elicit antifungal activity. Natural product 1 appears to be a promising candidate for further investigation as a broad-spectrum antifungal capable of controlling a range of pathogens that negatively impact human, animal, and plant health.
Collapse
Affiliation(s)
- Lin Du
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Saikat Haldar
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jarrod B King
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Allison O Mattes
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shikha Srivastava
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jianlan You
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chad Cunningham
- Electronics & Instrument Shop, Department of Physics and Astronomy, Nielsen Hall, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert H Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
36
|
Thirugnanam T, Dharumadurai D, Babalola OO. Draft Genome Sequence of Streptomyces moderatus DT446, Isolated from Root Nodules of Casuarina cunninghamiana. Microbiol Resour Announc 2023; 12:e0018123. [PMID: 37432108 PMCID: PMC10443386 DOI: 10.1128/mra.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
A putative plant growth-promoting endophytic Streptomyces moderatus strain, DT446, was isolated from the root nodules of Casuarina cunninghamiana in Tamil Nadu, India. We report a draft genome sequence for S. moderatus DT446, with 8,168,245 bp and a GC content of 70.9%.
Collapse
Affiliation(s)
- Thirumagal Thirugnanam
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
37
|
Dow L, Gallart M, Ramarajan M, Law SR, Thatcher LF. Streptomyces and their specialised metabolites for phytopathogen control - comparative in vitro and in planta metabolic approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1151912. [PMID: 37389291 PMCID: PMC10301723 DOI: 10.3389/fpls.2023.1151912] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
In the search for new crop protection microbial biocontrol agents, isolates from the genus Streptomyces are commonly found with promising attributes. Streptomyces are natural soil dwellers and have evolved as plant symbionts producing specialised metabolites with antibiotic and antifungal activities. Streptomyces biocontrol strains can effectively suppress plant pathogens via direct antimicrobial activity, but also induce plant resistance through indirect biosynthetic pathways. The investigation of factors stimulating the production and release of Streptomyces bioactive compounds is commonly conducted in vitro, between Streptomyces sp. and a plant pathogen. However, recent research is starting to shed light on the behaviour of these biocontrol agents in planta, where the biotic and abiotic conditions share little similarity to those of controlled laboratory conditions. With a focus on specialised metabolites, this review details (i) the various methods by which Streptomyces biocontrol agents employ specialised metabolites as an additional line of defence against plant pathogens, (ii) the signals shared in the tripartite system of plant, pathogen and biocontrol agent, and (iii) an outlook on new approaches to expedite the identification and ecological understanding of these metabolites under a crop protection lens.
Collapse
Affiliation(s)
- Lachlan Dow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Marta Gallart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| | - Margaret Ramarajan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| | - Simon R. Law
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Louise F. Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| |
Collapse
|
38
|
Martín-González D, Bordel S, Santos-Beneit F. Characterization of the Keratinolytic Activity of Three Streptomyces Strains and Impact of Their Co-Cultivation on This Activity. Microorganisms 2023; 11:1109. [PMID: 37317082 DOI: 10.3390/microorganisms11051109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
In this study, we describe the characterization of three efficient chicken feather-degrading Streptomyces bacteria isolated from honeybee samples and assess the impact of their co-cultivation on this activity and antistaphylococcal activity. Streptomyces griseoaurantiacus AD2 was the strain showing the highest keratinolytic activity (4000 U × mL-1), followed by Streptomyces albidoflavus AN1 and Streptomyces drozdowiczii AD1, which both generated approximately 3000 U × mL-1. Moreover, a consortium constituted of these three strains was able to use chicken feathers as its sole nutrient source and growth in such conditions led to a significant increase in antibiotic production. S. griseoaurantiacus AD2 was the only strain that exhibited weak antimicrobial activity against Staphylococcus aureus. UPLC analyses revealed that a significant number of peaks detected in the extracts of co-cultures of the three strains were missing in the extracts of individual cultures. In addition, the production of specialized metabolites, such as undecylprodigiosin and manumycin A, was clearly enhanced in co-culture conditions, in agreement with the results of the antimicrobial bioassays against S. aureus. Our results revealed the benefits of co-cultivation of these bacterial species in terms of metabolic wealth and antibiotic production. Our work could thus contribute to the development of novel microbial-based strategies to valorize keratin waste.
Collapse
Affiliation(s)
- Diego Martín-González
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Sergio Bordel
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department of Functional Biology, Medical School, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| |
Collapse
|
39
|
Zhu HX, Hu LF, Hu HY, Zhou F, Wu LL, Wang SW, Rozhkova T, Li CW. Identification of a Novel Streptomyces sp. Strain HU2014 Showing Growth Promotion and Biocontrol Effect Against Rhizoctonia spp. in Wheat. PLANT DISEASE 2023; 107:1139-1150. [PMID: 36190299 DOI: 10.1094/pdis-06-22-1493-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wheat sharp eyespot is a serious disease caused by the phytopathogens Rhizoctonia cerealis and R. solani. Some species in the genus Streptomyces have been identified as potential biocontrol agents against phytopathogens. In this investigation, the physiological, biochemical, phylogenetic, and genomic characteristics of strain HU2014 indicate that it is a novel Streptomyces sp. most closely related to Streptomyces albireticuli. Strain HU2014 exhibited strong antifungal activity against R. cerealis G11 and R. solani YL-3. Ultraperformance liquid chromatography-mass spectrometry on the four extracts from the extracellular filtrate of strain HU2014 identified 10 chemical constituents in the Natural Products Atlas with high match levels (more than 90%). In an antifungal efficiency test on wheat sharp eyespot, two extracts significantly reduced the lesion areas on bean leaves infected by R. solani YL-3. The drenching of wheat in pots with spore suspension of strain HU2014 demonstrated a control efficiency of 65.1% against R. cerealis G11 (compared with 66.9% when treated by a 30% hymexazol aqueous solution). Additionally, in vitro and pot experiments demonstrated that strain HU2014 can produce indoleacetic acid, siderophores, extracellular enzymes, and solubilized phosphate, and it can promote plant growth. We conclude that strain HU2014 could be a valuable microbial resource for growth promotion of wheat and biological control of wheat sharp eyespot.
Collapse
Affiliation(s)
- Hong-Xia Zhu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
- Sumy National Agrarian University, Sumy, Ukraine
| | - Lin-Feng Hu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Hai-Yan Hu
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
| | - Feng Zhou
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
| | - Liu-Liu Wu
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
- Sumy National Agrarian University, Sumy, Ukraine
| | - Shi-Wen Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | | | - Cheng-Wei Li
- Henan University of Technology, Zhengzhou, China
| |
Collapse
|
40
|
Boykova I, Yuzikhin O, Novikova I, Ulianich P, Eliseev I, Shaposhnikov A, Yakimov A, Belimov A. Strain Streptomyces sp. P-56 Produces Nonactin and Possesses Insecticidal, Acaricidal, Antimicrobial and Plant Growth-Promoting Traits. Microorganisms 2023; 11:microorganisms11030764. [PMID: 36985337 PMCID: PMC10053667 DOI: 10.3390/microorganisms11030764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Streptomycetes produce a huge variety of bioactive metabolites, including antibiotics, enzyme inhibitors, pesticides and herbicides, which offer promise for applications in agriculture as plant protection and plant growth-promoting products. The aim of this report was to characterize the biological activities of strain Streptomyces sp. P-56, previously isolated from soil as an insecticidal bacterium. The metabolic complex was obtained from liquid culture of Streptomyces sp. P-56 as dried ethanol extract (DEE) and possessed insecticidal activity against vetch aphid (Medoura viciae Buckt.), cotton aphid (Aphis gossypii Glov.), green peach aphid (Myzus persicae Sulz.), pea aphid (Acyrthosiphon pisum Harr.) and crescent-marked lily aphid (Neomyzus circumflexus Buckt.), as well as two-spotted spider mite (Tetranychus urticae). Insecticidal activity was associated with production of nonactin, which was purified and identified using HPLC-MS and crystallographic techniques. Strain Streptomyces sp. P-56 also showed antibacterial and antifungal activity against various phytopathogenic bacteria and fungi (mostly for Clavibacfer michiganense, Alternaria solani and Sclerotinia libertiana), and possessed a set of plant growth-promoting traits, such as auxin production, ACC deaminase and phosphate solubilization. The possibilities for using this strain as a biopesticide producer and/or biocontrol and a plant growth-promoting microorganism are discussed.
Collapse
Affiliation(s)
- Irina Boykova
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Oleg Yuzikhin
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Irina Novikova
- All-Russia Institute of Plant Protection, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia; (I.B.)
| | - Pavel Ulianich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
| | - Igor Eliseev
- Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, Khlopin Str., 8/3-A, Saint-Petersburg 194021, Russia
| | - Alexander Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
| | - Alexander Yakimov
- Research Center of Nanobiotechnologies, Peter the Great St Petersburg Polytechnic University, Polytechnicheskaya, 29, Saint-Petersburg 195251, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin, Saint-Petersburg 196608, Russia
- Correspondence:
| |
Collapse
|
41
|
Vasilchenko AV, Poshvina DV, Semenov MV, Timofeev VN, Iashnikov AV, Stepanov AA, Pervushina AN, Vasilchenko AS. Triazoles and Strobilurin Mixture Affects Soil Microbial Community and Incidences of Wheat Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:660. [PMID: 36771744 PMCID: PMC9919142 DOI: 10.3390/plants12030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture as a pest control strategy. Despite the benefits of pesticides on crop yields, the persistence of chemical residues in soil has an unintended impact on non-targeted microorganisms. In the present study, we evaluated the potential adverse effects of a mixture of fungicides (difenoconazole, epoxiconazole, and kresoxim-methyl) on soil fungal and bacterial communities, as well as the manifestation of wheat diseases. In the fungicide-treated soil, the Shannon indices of both fungal and bacterial communities decreased, whereas the Chao1 indices did not differ compared to the control soil. Among bacterial taxa, the relative abundances of Arthrobacter and Sphingomonas increased in fungicide-treated soil due to their ability to utilize fungicides and other toxic compounds. Rhizopus and plant-beneficial Chaetomium were the dominant fungal genera, with their prevalence increasing by 2-4 times in the fungicide-treated soil. The genus Fusarium, which includes phytopathogenic species, which are notably responsible for root rot, was the most abundant taxon in each of the two conditions but its relative abundance was two times lower in fungicide-treated soils, consistent with a lower level of disease incidence in plants. The prediction of metabolic pathways revealed that the soil bacterial community had a high potential for degrading various pollutants, and the soil fungal community was in a state of recovery after the application of quinone outside inhibitor (QoI) fungicides. Fungicide-treated soil was characterized by an increase in soil microbial carbon, compared with the control soil. Collectively, the obtained results suggest that the application of difenoconazole, epoxiconazole, and kresoxim-methyl is an effective approach for pest control that does not pose a hazard for the soil ecosystem in the short term. However, it is necessary to carry out additional sampling to take into account the spatio-temporal impact of this fungicide mixture on the functional properties of the soil.
Collapse
Affiliation(s)
- Anastasia V. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Mikhail V. Semenov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
- Laboratory of Soil Carbon and Microbial Ecology, Dokuchaev Soil Science Institute, 119017 Moscow, Russia
| | - Vyacheslav N. Timofeev
- Scientific Research Institute of Agriculture for Northern Trans-Ural Region—Branch of Tyumen Scientific Centre SB RAS, 625003 Tyumen, Russia
| | - Alexandr V. Iashnikov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Artyom A. Stepanov
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Arina N. Pervushina
- International Integrated Research Laboratory for the Study of Climate Change, Land Use and Biodiversity, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| |
Collapse
|
42
|
Shepherdson EM, Baglio CR, Elliot MA. Streptomyces behavior and competition in the natural environment. Curr Opin Microbiol 2023; 71:102257. [PMID: 36565538 DOI: 10.1016/j.mib.2022.102257] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Streptomyces are ubiquitous terrestrial bacteria that are renowned for their robust metabolic capabilities and their behavioral flexibility. In competing for environmental niches, these bacteria can employ novel growth and dispersal behaviors. They also wield their diverse metabolic repertoire for everything from maximizing nutrient uptake, to preventing phage replication or inhibiting bacterial and fungal growth. Increasingly, they are found to live in association with plants and insects, often conferring protective benefits to their host courtesy of their ability to produce pathogen-inhibitory antimicrobial compounds. Here, we highlight recent advances in understanding the competitive and cooperative interactions between Streptomyces and phage, microbes, and higher organisms in their environment.
Collapse
Affiliation(s)
- Evan Mf Shepherdson
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada
| | - Christine R Baglio
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada; M.G. DeGroote Institute for Infectious Disease Research, Canada.
| |
Collapse
|
43
|
Kakagianni M, Tsiknia M, Feka M, Vasileiadis S, Leontidou K, Kavroulakis N, Karamanoli K, Karpouzas DG, Ehaliotis C, Papadopoulou KK. Above- and below-ground microbiome in the annual developmental cycle of two olive tree varieties. FEMS MICROBES 2023; 4:xtad001. [PMID: 37333440 PMCID: PMC10117799 DOI: 10.1093/femsmc/xtad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 10/22/2023] Open
Abstract
The olive tree is a hallmark crop in the Mediterranean region. Its cultivation is characterized by an enormous variability in existing genotypes and geographical areas. As regards the associated microbial communities of the olive tree, despite progress, we still lack comprehensive knowledge in the description of these key determinants of plant health and productivity. Here, we determined the prokaryotic, fungal and arbuscular mycorrhizal fungal (AMF) microbiome in below- (rhizospheric soil, roots) and above-ground (phyllosphere and carposphere) plant compartments of two olive varieties 'Koroneiki' and 'Chondrolia Chalkidikis' grown in Southern and Northern Greece respectively, in five developmental stages along a full fruit-bearing season. Distinct microbial communities were supported in above- and below-ground plant parts; while the former tended to be similar between the two varieties/locations, the latter were location specific. In both varieties/locations, a seasonally stable root microbiome was observed over time; in contrast the plant microbiome in the other compartments were prone to changes over time, which may be related to seasonal environmental change and/or to plant developmental stage. We noted that olive roots exhibited an AMF-specific filtering effect (not observed for bacteria and general fungi) onto the rhizosphere AMF communities of the two olive varieties/locations/, leading to the assemblage of homogenous intraradical AMF communities. Finally, shared microbiome members between the two olive varieties/locations include bacterial and fungal taxa with putative functional attributes that may contribute to olive tree tolerance to abiotic and biotic stress.
Collapse
Affiliation(s)
- Myrsini Kakagianni
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Temponera str, 43100 Karditsa, Greece
| | - Myrto Tsiknia
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Maria Feka
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Kleopatra Leontidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nektarios Kavroulakis
- Institute for Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization “ELGO-Dimitra”, Agrokipio-Souda, 73164 Chania, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Constantinos Ehaliotis
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
44
|
Wang X, Du Z, Chen C, Guo S, Mao Q, Wu W, Wu R, Han W, Xie P, Zeng Y, Shan W, Wang Z, Yu X. Antifungal effects and biocontrol potential of lipopeptide-producing Streptomyces against banana Fusarium wilt fungus Fusarium oxysporum f. sp. cubense. Front Microbiol 2023; 14:1177393. [PMID: 37180271 PMCID: PMC10172682 DOI: 10.3389/fmicb.2023.1177393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4), presents the foremost menace to the global banana production. Extensive efforts have been made to search for efficient biological control agents for disease management. Our previous study showed that Streptomyces sp. XY006 exhibited a strong inhibitory activity against several phytopathogenic fungi, including F. oxysporum. Here, the corresponding antifungal metabolites were purified and determined to be two cyclic lipopeptide homologs, lipopeptin A and lipopeptin B. Combined treatment with lipopeptin complex antagonized Foc TR4 by inhibiting mycelial growth and conidial sporulation, suppressing the synthesis of ergosterol and fatty acids and lowering the production of fusaric acid. Electron microscopy observation showed that lipopeptide treatment induced a severe disruption of the plasma membrane, leading to cell leakage. Lipopeptin A displayed a more pronounced antifungal activity against Foc TR4 than lipopeptin B. In pot experiments, strain XY006 successfully colonized banana plantlets and suppressed the incidence of FWB, with a biocontrol efficacy of up to 87.7%. Additionally, XY006 fermentation culture application improved plant growth parameters and induced peroxidase activity in treated plantlets, suggesting a possible role in induced resistance. Our findings highlight the potential of strain XY006 as a biological agent for FWB, and further research is needed to enhance its efficacy and mode of action in planta.
Collapse
Affiliation(s)
- Xiaxia Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenghua Du
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chanxin Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Guo
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianzhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ruimei Wu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenbo Han
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peifeng Xie
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiping Zeng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenna Shan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Universities Engineering Research Center of Marine Biology and Drugs, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Zonghua Wang, ; Xiaomin Yu,
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zonghua Wang, ; Xiaomin Yu,
| |
Collapse
|
45
|
Agyekum DVA, Kobayashi T, Dastogeer KMG, Yasuda M, Sarkodee-Addo E, Ratu STN, Xu Q, Miki T, Matsuura E, Okazaki S. Diversity and function of soybean rhizosphere microbiome under nature farming. Front Microbiol 2023; 14:1130969. [PMID: 36937301 PMCID: PMC10014912 DOI: 10.3389/fmicb.2023.1130969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Nature farming is a farming system that entails cultivating crops without using chemical fertilizers and pesticides. The present study investigated the bacterial and fungal communities in the rhizosphere of soybean grown in conventional and nature farming soils using wild-type and non-nodulating mutant soybean. The effect of soil fumigant was also analyzed to reveal its perturbation of microbial communities and subsequent effects on the growth of soybean. Overall, the wild-type soybean exhibited a better growth index compared to mutant soybean and especially in nature farming. Nodulation and arbuscular mycorrhiza (AM) fungi colonization were higher in plants under nature farming than in conventionally managed soil; however, fumigation drastically affected these symbioses with greater impacts on plants in nature farming soil. The rhizosphere microbiome diversity in nature farming was higher than that in conventional farming for both cultivars. However, the diversity was significantly decreased after fumigation treatment with a greater impact on nature farming. Principal coordinate analysis revealed that nature farming and conventional farming soil harbored distinct microbial communities and that soil fumigation significantly altered the communities in nature farming soils but not in conventional farming soils. Intriguingly, some beneficial microbial taxa related to plant growth and health, including Rhizobium, Streptomyces, and Burkholderia, were found as distinct microbes in the nature farming soil but were selectively bleached by fumigant treatment. Network analysis revealed a highly complex microbial network with high taxa connectivity observed under nature farming soil than in conventional soil; however, fumigation strongly broke it. Overall, the results highlighted that nature farming embraced higher microbial diversity and the abundance of beneficial soil microbes with a complex and interconnected network structure, and also demonstrated the underlying resilience of the microbial community to environmental perturbations, which is critical under nature farming where chemical fertilizers and pesticides are not applied.
Collapse
Affiliation(s)
- Dominic V. A. Agyekum
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tatsuyuki Kobayashi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Khondoker M. G. Dastogeer
- Department of Plant Pathology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Michiko Yasuda
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Elsie Sarkodee-Addo
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Safirah T. N. Ratu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qicong Xu
- International Nature Farming Research Center, Nagano, Japan
| | - Takaaki Miki
- International Nature Farming Research Center, Nagano, Japan
| | - Eri Matsuura
- College of Agriculture, Ibaraki University, Mito, Japan
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Shin Okazaki,
| |
Collapse
|
46
|
Shirokikh IG, Nasarova YI, Raldugina GN, Gulevich AA, Baranova EN. Analysis of Actinobiota in the Tobacco Rhizosphere with a Heterologous Choline Oxidase Gene from Arthrobacter globiformis. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Funneliformis mosseae Inoculation Enhances Cucurbita pepo L. Plant Growth and Fruit Yield by Reshaping Rhizosphere Microbial Community Structure. DIVERSITY 2022. [DOI: 10.3390/d14110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are essential components of the soil microbiome that can facilitate plant growth and enhance abiotic and biotic stress resistance. However, the mechanisms via which AMF inoculation influences Cucurbita pepo L. plant growth and fruit yield remain unclear. Here, we conducted pot experiments to investigate bacterial and fungal community structure in the rhizosphere of C. pepo plants inoculated with Funneliformis mosseae (Nicoll. & Gerd.) Gerd. & Trappe based on 16S ribosomal RNA and internal transcribed spacer gene sequencing. The α-diversity of bacteria increased significantly following F. mosseae inoculation, whereas the α-diversity of fungi exhibited an opposite trend (p < 0.01). The relative abundances of major bacterial phyla, Actinobacteria, Acidobacteria, and Chloroflexi, together with the fungal phylum Ascomycota, were all higher in inoculated samples than in uninoculated controls. F. mosseae inoculation led to remarkable enrichment of potentially beneficial taxa (e.g., Streptomyces, Sphingomonas, Lysobacter, and Trichoderma), in stark contrast to depletion of fungal pathogens (e.g., Botryotrichum, Acremonium, Fusarium, and Plectosphaerella). Pathways related to amino acid metabolism and antibiotic biosynthesis were upregulated by F. mosseae inoculation, whereas pathways involved in infectious diseases were downregulated. The results suggest that F. mosseae inoculation reshapes the rhizosphere microbiome, thereby augmenting C. pepo plant growth and fruit yield.
Collapse
|
48
|
The Arabidopsis thaliana–Streptomyces Interaction Is Controlled by the Metabolic Status of the Holobiont. Int J Mol Sci 2022; 23:ijms232112952. [PMID: 36361736 PMCID: PMC9655247 DOI: 10.3390/ijms232112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022] Open
Abstract
How specific interactions between plant and pathogenic, commensal, or mutualistic microorganisms are mediated and how bacteria are selected by a plant are important questions to address. Here, an Arabidopsis thaliana mutant called chs5 partially deficient in the biogenesis of isoprenoid precursors was shown to extend its metabolic remodeling to phenylpropanoids and lipids in addition to carotenoids, chlorophylls, and terpenoids. Such a metabolic profile was concomitant to increased colonization of the phyllosphere by the pathogenic strain Pseudomonas syringae pv. tomato DC3000. A thorough microbiome analysis by 16S sequencing revealed that Streptomyces had a reduced colonization potential in chs5. This study revealed that the bacteria–Arabidopsis interaction implies molecular processes impaired in the chs5 mutant. Interestingly, our results revealed that the metabolic status of A. thaliana was crucial for the specific recruitment of Streptomyces into the microbiota. More generally, this study highlights specific as well as complex molecular interactions that shape the plant microbiota.
Collapse
|
49
|
Alam K, Mazumder A, Sikdar S, Zhao YM, Hao J, Song C, Wang Y, Sarkar R, Islam S, Zhang Y, Li A. Streptomyces: The biofactory of secondary metabolites. Front Microbiol 2022; 13:968053. [PMID: 36246257 PMCID: PMC9558229 DOI: 10.3389/fmicb.2022.968053] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products derived from microorganisms serve as a vital resource of valuable pharmaceuticals and therapeutic agents. Streptomyces is the most ubiquitous bacterial genus in the environments with prolific capability to produce diverse and valuable natural products with significant biological activities in medicine, environments, food industries, and agronomy sectors. However, many natural products remain unexplored among Streptomyces. It is exigent to develop novel antibiotics, agrochemicals, anticancer medicines, etc., due to the fast growth in resistance to antibiotics, cancer chemotherapeutics, and pesticides. This review article focused the natural products secreted by Streptomyces and their function and importance in curing diseases and agriculture. Moreover, it discussed genomic-driven drug discovery strategies and also gave a future perspective for drug development from the Streptomyces.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Arpita Mazumder
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Yi-Ming Zhao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chaoyi Song
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rajib Sarkar
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, Bangladesh
- Saiful Islam,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Aiying Li,
| |
Collapse
|
50
|
Khoshakhlagh A, Abroun S, Aghaei SS, Soleimani M, Zolfaghari MR. Analysis of the A549 cell line affected by anticancer bioactive compounds of Actinomycetes isolated from saline soils. Arch Microbiol 2022; 204:641. [PMID: 36149504 DOI: 10.1007/s00203-022-03258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Actinomycetes are filamentous bacteria and the residents of the soil, prone to produce bioactive metabolites. This research aimed to isolate, classify, and investigate the anticancer properties of Actinomycetes secondary metabolites from various saline soils of Qom province. Actinomycetes isolates were molecularly recognized by 16SrRNA gene sequencing after the PCR procedure. The A549 cell line was then exposed to bacterial metabolites to find their cytotoxicity by MTT assay and their capacity to cause apoptosis by Flow cytometry. The expression levels of the bax and bcl-2 genes were determined using Real-time PCR. Bacterial metabolites were distinct by HPLC and GC-MS assays. Sequencing identified three novel Actinomycetes strains, Streptomyces griseoflavus, Streptomyces calvus, and Kitasatospora phosalacineus. The IC50 doses of bacterial metabolites were discovered equal to 1337, 2619, and 4874 µg/ml, respectively. Flow cytometric assay revealed that their secondary metabolites were capable of inducing apoptosis in A549 cells by 25%, 14.5%, and 7.58%, respectively. Real-time PCR findings displayed that the bax gene expression in A549 cells treated with S. griseoflavus and S. calvus, comparatively increased (P < 0.0008, P < 0.00056). The expression of the bcl-2 gene was significantly reduced in cells treated with S. griseoflavus and K. phosalacineus (P < 0.0006, P < 0.0004). The findings of this analysis showed the presence of new isolates in a soil sample from Qom province which can produce new anticancer agents and can be considered appropriate candidates for further research to employ as anticancer drugs.
Collapse
Affiliation(s)
- Amin Khoshakhlagh
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-11, Iran.
| | | | - Mohammad Soleimani
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|