1
|
Darienko T, Pröschold T. Prasiolopsis wulf-kochii (Prasiolales, Trebouxiophyceae), a New Species Occurring in Hairs of the Sloth Bradypus tridactylus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2405. [PMID: 39273889 PMCID: PMC11397384 DOI: 10.3390/plants13172405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The monotypic genus Prasiolopsis has been known for a long time, but is often overlooked because of difficulties in identification and the morphological variability between uniseriate filaments and cell packages forming pseudoparenchymatic thalli depending on age. We investigated a strain (SAG 84.81) originally denoted as Trichophilus welckeri, which was isolated from the hairs of the sloth Bradypus tridactylus, and compared it with other available strains of Prasiolopsis and of the sister genus Pseudomarvania. Our investigations clearly showed that this strain differed in morphology, especially of the chloroplast, from those originally described for Trichophilus. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed that the strain SAG 84.81 is sister to several strains of P. ramosa within the Prasiola clade (Trebouxiophyceae). Using the ITS-2/CBC approach, we clearly demonstrated that this strain represented a new species of Prasiolopsis, which we proposed here as P. wulf-kochii. In addition, we evaluated the ITS-2/CBC approach by comparing it with the two species of Pseudomarvania. All investigated strains showed CBCs and HCBCs, which support their species delimitation. The sequencing data of Trichophilus welckeri available in GenBank were phylogenetically re-evaluated by including all representatives of the Ulotrichales (Ulvophyceae). Our analyses showed that these sequences formed their own lineage within this order.
Collapse
Affiliation(s)
- Tatyana Darienko
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | - Thomas Pröschold
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria
| |
Collapse
|
2
|
Muela T, Abellán A, Bande-De León C, Gómez P, Gil MD. Effect of Macro and Microalgae Addition on Nutritional, Physicochemical, Sensorial, and Functional Properties of a Vegetable Cream. Foods 2024; 13:1651. [PMID: 38890879 PMCID: PMC11171859 DOI: 10.3390/foods13111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Algae are a booming resource in the food industry due to their several health benefits. This study assesses the impact of the combined use of selected macro- and microalgae to improve the nutritional profile and the labeling of a vegetable cream by the introduction of nutrition and health claims. As macroalgae, two Ascophyllum nodosum L., one natural (An) and one smoked (AnS), were selected for their high iodine concentration and flavor notes. A new strain of Chlorella vulgaris, golden (CvG), was selected as the microalgae, which is rich in proteins and has a neutral sensorial profile (golden color and mild flavor). In this study, two vegetable creams were compared. The control (CTRL) versus one enriched with a mixture of macroalgae and microalgae (CV-AN). Sensory, physicochemical, and functional properties of both vegetable creams were evaluated. The bioactivity assessed was the effect of iodine as a health claim and antioxidant and antihypertensive properties. CV-AN vegetable cream showed significantly higher values (p < 0.05) for protein content, iodine value, and antioxidant activity, with no significant differences (p > 0.05) in antihypertensive activity or sensory panel. The incorporation of these algae resulted in a vegetable cream with a better nutritional profile and sensory acceptability comparable to the control, offering protein and iodine source claims in the labeling.
Collapse
Affiliation(s)
- Teresa Muela
- Department of Nutrition and Food Technology, Universidad Católica de Murcia-UCAM, Campus de los Jerónimos, 30107 Murcia, Spain; (A.A.); (C.B.-D.L.); (P.G.); (M.D.G.)
| | | | | | | | | |
Collapse
|
3
|
Pandey A, Kant G, Chaudhary A, Amesho KTT, Reddy K, Bux F. Axenic green microalgae for the treatment of textile effluent and the production of biofuel: a promising sustainable approach. World J Microbiol Biotechnol 2024; 40:81. [PMID: 38285224 PMCID: PMC10824862 DOI: 10.1007/s11274-023-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
An integrated approach to nutrient recycling utilizing microalgae could provide feasible solutions for both environmental control and energy production. In this study, an axenic microalgae strain, Chlorella sorokiniana ASK25 was evaluated for its potential as a biofuel feedstock and textile wastewater (TWW) treatment. The microalgae isolate was grown on TWW supplemented with different proportions of standard BG-11 medium varying from 0 to 100% (v/v). The results showed that TWW supplemented with 20% (v/v) BG11 medium demonstrated promising results in terms of Chlorella sorokiniana ASK25 biomass (3.80 g L-1), lipid production (1.24 g L-1), nutrients (N/P, > 99%) and pollutant removal (chemical oxygen demand (COD), 99.05%). The COD level dropped by 90% after 4 days of cultivation, from 2,593.33 mg L-1 to 215 mg L-1; however, after day 6, the nitrogen (-NO3-1) and total phosphorus (TP) levels were reduced by more than 95%. The biomass-, total lipid- and carbohydrate- production, after 6 days of cultivation were 3.80 g L-1, 1.24 g L-1, and 1.09 g L-1, respectively, which were 2.15-, 2.95- and 3.30-fold higher than Chlorella sorokiniana ASK25 grown in standard BG-11 medium (control). In addition, as per the theoretical mass balances, 1 tonne biomass of Chlorella sorokiniana ASK25 might yield 294.5 kg of biodiesel and 135.7 kg of bioethanol. Palmitic acid, stearic acid, and oleic acid were the dominant fatty acids found in the Chlorella sorokiniana ASK25 lipid. This study illustrates the potential use of TWW as a microalgae feedstock with reduced nutrient supplementation (20% of TWW). Thus, it can be considered a promising feedstock for economical biofuel production.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa
- BiotechnologyBioenergy Research Laboratory, Department of Biotechnology, AKS University Satna, Satna, MP, 485001, India
| | - Gaurav Kant
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, 211004, India
| | - Ashvani Chaudhary
- Department of Biotechnology, University)IMS Engineering College (Affiliated to Dr. APJ Abdul Kalam Technical University, Lucknow), Lucknow, Ghaziabad, UP, 201015, India
- Amity Institute of Biotechnology, Amity University Noida Campus, Sec-125, Noida, 201313, UP, India
| | - Kaissan T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Centre for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Centre for Environmental Studies, The International University of Management, Main Campus, Dorado Park Ext 1, Windhoek, 10001, Namibia
| | - Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban, 4000, South Africa.
| |
Collapse
|
4
|
Žilka M, Tropeková M, Zahradníková E, Kováčik Ľ, Ščevková J. Temporal variation in the spectrum and concentration of airborne microalgae and cyanobacteria in the urban environments of inland temperate climate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97616-97628. [PMID: 37594706 PMCID: PMC10495494 DOI: 10.1007/s11356-023-29341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Despite their non-negligible representation among the airborne bioparticles and known allergenicity, autotrophic microorganisms-microalgae and cyanobacteria-are not commonly reported or studied by aerobiological monitoring stations due to the challenging identification in their desiccated and fragmented state. Using a gravimetric method with open plates at the same time as Hirst-type volumetric bioparticle sampler, we were able to cultivate the autotrophic microorganisms and use it as a reference for correct retrospective identification of the microalgae and cyanobacteria captured by the volumetric trap. Only in this way, reliable data on their presence in the air of a given area can be obtained and analysed with regard to their temporal variation and environmental factors. We gained these data for an inland temperate region over 3 years (2018, 2020-2021), identifying the microalgal genera Bracteacoccus, Desmococcus, Geminella, Chlorella, Klebsormidium, and Stichococcus (Chlorophyta) and cyanobacterium Nostoc in the volumetric trap samples and three more in the cultivated samples. The mean annual concentration recorded over 3 years was 19,182 cells*day/m3, with the greatest contribution from the genus Bracteacoccus (57%). Unlike some other bioparticles like pollen grains, autotrophic microorganisms were present in the samples over the course of the whole year, with greatest abundance in February and April. The peak daily concentration reached the highest value (1011 cells/m3) in 2021, while the mean daily concentration during the three analysed years was 56 cells/m3. The analysis of intra-diurnal patterns showed their increased presence in daylight hours, with a peak between 2 and 4 p.m. for most genera, which is especially important due to their potential to trigger allergy symptoms. From the environmental factors, wind speed had a most significant positive association with their concentration, while relative air humidity had a negative influence.
Collapse
Affiliation(s)
- Matúš Žilka
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Mária Tropeková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Eva Zahradníková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Ľubomír Kováčik
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia.
| |
Collapse
|
5
|
Lim ZS, Wong CY, Ahmad SA, Puasa NA, Phang LY, Shaharuddin NA, Merican F, Convey P, Zulkharnain A, Shaari H, Azmi AA, Kok YY, Gomez-Fuentes C. Harnessing Diesel-Degrading Potential of an Antarctic Microalga from Greenwich Island and Its Physiological Adaptation. BIOLOGY 2023; 12:1142. [PMID: 37627026 PMCID: PMC10452857 DOI: 10.3390/biology12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023]
Abstract
Microalgae are well known for their metal sorption capacities, but their potential in the remediation of hydrophobic organic compounds has received little attention in polar regions. We evaluated in the laboratory the ability of an Antarctic microalga to remediate diesel hydrocarbons and also investigated physiological changes consequent upon diesel exposure. Using a polyphasic taxonomic approach, the microalgal isolate, WCY_AQ5_1, originally sampled from Greenwich Island (South Shetland Islands, maritime Antarctica) was identified as Tritostichococcus sp. (OQ225631), a recently erected lineage within the redefined Stichococcus clade. Over a nine-day experimental incubation, 57.6% of diesel (~3.47 g/L) was removed via biosorption and biodegradation, demonstrating the strain's potential for phytoremediation. Fourier transform infrared spectroscopy confirmed the adsorption of oil in accordance with its hydrophobic characteristics. Overall, degradation predominated over sorption of diesel. Chromatographic analysis confirmed that the strain efficiently metabolised medium-chain length n-alkanes (C-7 to C-21), particularly n-heneicosane. Mixotrophic cultivation using diesel as the organic carbon source under a constant light regime altered the car/chl-a ratio and triggered vacuolar activities. A small number of intracellular lipid droplets were observed on the seventh day of cultivation in transmission electron microscopic imaging. This is the first confirmation of diesel remediation ability in an Antarctic green microalga.
Collapse
Affiliation(s)
- Zheng Syuen Lim
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (Z.S.L.); (Y.-Y.K.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
| | - Chiew-Yen Wong
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (Z.S.L.); (Y.-Y.K.)
- Centre for Environmental and Population Health, Institute for Research, Development and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Aini Puasa
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.A.P.); (N.A.S.)
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia;
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Hasrizal Shaari
- Centre of Research and Field Services, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Alyza Azzura Azmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Yih-Yih Kok
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (Z.S.L.); (Y.-Y.K.)
| | - Claudio Gomez-Fuentes
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
| |
Collapse
|
6
|
Rybalka N, Blanke M, Tzvetkova A, Noll A, Roos C, Boy J, Boy D, Nimptsch D, Godoy R, Friedl T. Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island). Front Microbiol 2023; 14:1118747. [PMID: 37434717 PMCID: PMC10332270 DOI: 10.3389/fmicb.2023.1118747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Eukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment. Methods We employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae. Results A surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany. Discussion In the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae's high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta.
Collapse
Affiliation(s)
- Nataliya Rybalka
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Matthias Blanke
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg August University, Göttingen, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics and Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz University, Hanover, Germany
| | - Diana Boy
- Institute of Microbiology, Leibniz University, Hanover, Germany
| | - Daniel Nimptsch
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Roberto Godoy
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| |
Collapse
|
7
|
Krivina ES, Bobrovnikova LA, Temraleeva AD, Markelova AG, Gabrielyan DA, Sinetova MA. Description of Neochlorella semenenkoi gen. et. sp. nov. (Chlorophyta, Trebouxiophyceae), a Novel Chlorella-like Alga with High Biotechnological Potential. DIVERSITY 2023. [DOI: 10.3390/d15040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Despite many publications about Chlorella-like algae, their reliable and accurate identification is still difficult due to their simplicity and high phenotypic plasticity. The molecular approach has revolutionized our understanding of the diversity of ’small green balls’, and a natural classification of this group is currently being developed. This work is aimed at providing a detailed study of the phylogenetic position, morphology, ultrastructure, and physiology of the biotechnologically remarkable Chlorella-like strain IPPAS C-1210. Based on the SSU–ITS1–5.8S–ITS2 phylogeny, genetic distances, and the presence of compensatory base changes (CBCs) in ITS1 and conserved regions of ITS2 secondary structures, we describe a new genus, Neochlorella, with IPPAS C-1210 as the authentic strain of the type species, N. semenenkoi gen. and sp. nov. In addition, we justify the reassignment of the strain C. thermophila ITBB HTA 1–65 into N. thermophila comb. nov. The distinctive ultrastructural and physiological traits of the new species are discussed.
Collapse
Affiliation(s)
- Elena S. Krivina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki, 3, Pushchino 142290, Russia
| | - Lidia A. Bobrovnikova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
- Department of Agricultural Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100 Godollo, Hungary
| | - Anna D. Temraleeva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki, 3, Pushchino 142290, Russia
| | - Alexandra G. Markelova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
| | - David A. Gabrielyan
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
| | - Maria A. Sinetova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
| |
Collapse
|
8
|
Chiva S, Moya P, Barreno E. Lichen phycobiomes as source of biodiversity for microalgae of the Stichococcus-like genera. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThe term phycobiome was recently introduced to designate all the microalgae (primary or non-primary) associated with lichen symbioses. Abundant non-primary symbiotic microalgae are usually obtained from lichen isolations, confirming that thalli are a source of biodiversity and new species. In this study, microalgae were isolated from thalli of Buellia zoharyi, Ramalina farinacea and Parmotrema pseudotinctorum collected in the Iberian Peninsula and the Canary Islands. Excluding Trebouxia phycobionts, 17 strains similar to Stichococcus (Prasiola clade) were obtained. Molecular identification was carried out by nuclear ITS sequencing, and a phylogenetic tree was generated from these sequences, and grouping them into 4 clades: Diplosphaera chodatti, Diplosphaera sp.1. Deuterostichocuccus sp.1. and Tritostichococcus coniocybes. It is also noteworthy that Diplosphaera sp.1 was detected and isolated from three phylogenetically distant lichenized fungi (B. zoharyi, R. farinacea and P. pseudotinctorum), which were sampled in ecologically different localities, namely Tenerife, La Gomera and Castellón. These results reinforce the idea of the constant presence of certain microalgae associated with the lichen thalli which, despite not being the main primary photobiont, probably form part of the lichen’s phycobiomes.
Collapse
|
9
|
Ezzedine JA, Scheifler M, Desdevises Y, Jacquet S. A Comparative Study of the Dynamics and Diversity of Bdellovibrio and Like Organisms in Lakes Annecy and Geneva. Microorganisms 2022; 10:microorganisms10101960. [PMID: 36296236 PMCID: PMC9610775 DOI: 10.3390/microorganisms10101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Bdellovibrio and like organisms (BALOs) are obligate bacterial predators of other Gram-negative bacteria. Here, we used quantitative PCR (qPCR) and recently developed specific primers which target the 16S rRNA gene to explore the abundance and distribution of three families of BALO belonging to the Oligoflexia class (i.e., Bdellovibrionaceae, Peredibacteraceae and Bacteriovoracaceae) over one year in the epilimnion and hypolimnion of Lakes Annecy and Geneva. Peredibacteraceae was the dominant group at all sampling points except at the bottom of Lake Geneva, where Bdellovibrionaceae was found in higher number. In addition, the abundance of BALOs increased significantly during the warmer months. Using high-throughput sequencing (Illumina Miseq), hundreds of OTUs were identified for Bdellovibrionaceae and Peredibacteraceae. Phylogenetic analysis suggests that Bdellovibrionaceae are more diverse than Peredibacteraceae and that some OTUs belong to new species of Bdellovibrionaceae. We also found that dominant OTUs were present simultaneously in the two lakes, while some others were specific to each lake, suggesting an adaptive pattern. Finally, both abundance and diversity of BALOs were poorly associated with abiotic factors except temperature, suggesting the importance of studying biotic relationships, assumed to play a greater role than physico-chemical variables in BALOs' dynamics and distribution.
Collapse
Affiliation(s)
- Jade A. Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, 74200 Thonon les Bains, France
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, 38058 Grenoble, France
| | - Mathilde Scheifler
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, 74200 Thonon les Bains, France
- Correspondence:
| |
Collapse
|
10
|
Aigner S, Arc E, Schletter M, Karsten U, Holzinger A, Kranner I. Metabolite Profiling in Green Microalgae with Varying Degrees of Desiccation Tolerance. Microorganisms 2022; 10:946. [PMID: 35630392 PMCID: PMC9144557 DOI: 10.3390/microorganisms10050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Trebouxiophyceae are microalgae occupying even extreme environments such as polar regions or deserts, terrestrial or aquatic, and can occur free-living or as lichen photobionts. Yet, it is poorly understood how environmental factors shape their metabolism. Here, we report on responses to light and temperature, and metabolic adjustments to desiccation in Diplosphaera epiphytica, isolated from a lichen, and Edaphochlorella mirabilis, isolated from Tundra soil, assessed via growth and photosynthetic performance parameters. Metabolite profiling was conducted by GC-MS. A meta-analysis together with data from a terrestrial and an aquatic Chlorella vulgaris strain reflected elements of phylogenetic relationship, lifestyle, and relative desiccation tolerance of the four algal strains. For example, compatible solutes associated with desiccation tolerance were up-accumulated in D. epiphytica, but also sugars and sugar alcohols typically produced by lichen photobionts. The aquatic C. vulgaris, the most desiccation-sensitive strain, showed the greatest variation in metabolite accumulation after desiccation and rehydration, whereas the most desiccation-tolerant strain, D. epiphytica, showed the least, suggesting that it has a more efficient constitutive protection from desiccation and/or that desiccation disturbed the metabolic steady-state less than in the other three strains. The authors hope that this study will stimulate more research into desiccation tolerance mechanisms in these under-investigated microorganisms.
Collapse
Affiliation(s)
- Siegfried Aigner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Michael Schletter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Ulf Karsten
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, D-18057 Rostock, Germany;
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| |
Collapse
|
11
|
Syuhada NH, Merican F, Zaki S, Broady PA, Convey P, Muangmai N. Strong and widespread cycloheximide resistance in Stichococcus-like eukaryotic algal taxa. Sci Rep 2022; 12:1080. [PMID: 35058560 PMCID: PMC8776791 DOI: 10.1038/s41598-022-05116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
This study was initiated following the serendipitous discovery of a unialgal culture of a Stichococcus-like green alga (Chlorophyta) newly isolated from soil collected on Signy Island (maritime Antarctica) in growth medium supplemented with 100 µg/mL cycloheximide (CHX, a widely used antibiotic active against most eukaryotes). In order to test the generality of CHX resistance in taxa originally identified as members of Stichococcus (the detailed taxonomic relationships within this group of algae have been updated since our study took place), six strains were studied: two strains isolated from recent substrate collections from Signy Island (maritime Antarctica) ("Antarctica" 1 and "Antarctica" 2), one isolated from this island about 50 years ago ("Antarctica" 3) and single Arctic ("Arctic"), temperate ("Temperate") and tropical ("Tropical") strains. The sensitivity of each strain towards CHX was compared by determining the minimum inhibitory concentration (MIC), and growth rate and lag time when exposed to different CHX concentrations. All strains except "Temperate" were highly resistant to CHX (MIC > 1000 µg/mL), while "Temperate" was resistant to 62.5 µg/mL (a concentration still considerably greater than any previously reported for algae). All highly resistant strains showed no significant differences in growth rate between control and treatment (1000 µg/mL CHX) conditions. Morphological examination suggested that four strains were consistent with the description of the species Stichococcus bacillaris while the remaining two conformed to S. mirabilis. However, based on sequence analyses and the recently available phylogeny, only one strain, "Temperate", was confirmed to be S. bacillaris, while "Tropical" represents the newly erected genus Tetratostichococcus, "Antarctica 1" Tritostichococcus, and "Antarctica 2", "Antarctica 3" and "Arctic" Deuterostichococcus. Both phylogenetic and CHX sensitivity analyses suggest that CHX resistance is potentially widespread within this group of algae.
Collapse
Affiliation(s)
- Nur Hidayu Syuhada
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
- National Antarctic Research Centre, University of Malaya, Kuala Lumpur, Malaysia.
| | - Syazana Zaki
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Paul A Broady
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter Convey
- British Antarctic Survey, Cambridge, UK
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Muggia L, Coleine C, De Carolis R, Cometto A, Selbmann L. Antarctolichenia onofrii gen. nov. sp. nov. from Antarctic Endolithic Communities Untangles the Evolution of Rock-Inhabiting and Lichenized Fungi in Arthoniomycetes. J Fungi (Basel) 2021; 7:935. [PMID: 34829222 PMCID: PMC8621061 DOI: 10.3390/jof7110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/25/2022] Open
Abstract
Microbial endolithic communities are the main and most widespread life forms in the coldest and hyper-arid desert of the McMurdo Dry Valleys and other ice-free areas across Victoria Land, Antarctica. There, the lichen-dominated communities are complex and self-supporting assemblages of phototrophic and heterotrophic microorganisms, including bacteria, chlorophytes, and both free-living and lichen-forming fungi living at the edge of their physiological adaptability. In particular, among the free-living fungi, microcolonial, melanized, and anamorphic species are highly recurrent, while a few species were sometimes found to be associated with algae. One of these fungi is of paramount importance for its peculiar traits, i.e., a yeast-like habitus, co-growing with algae and being difficult to propagate in pure culture. In the present study, this taxon is herein described as the new genus Antarctolichenia and its type species is A. onofrii, which represents a transitional group between the free-living and symbiotic lifestyle in Arthoniomycetes. The phylogenetic placement of Antarctolichenia was studied using three rDNA molecular markers and morphological characters were described. In this study, we also reappraise the evolution and the connections linking the lichen-forming and rock-inhabiting lifestyles in the basal lineages of Arthoniomycetes (i.e., Lichenostigmatales) and Dothideomycetes.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy; (L.M.); (R.D.C.); (A.C.)
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’ Università, 01100 Viterbo, Italy;
| | - Roberto De Carolis
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy; (L.M.); (R.D.C.); (A.C.)
| | - Agnese Cometto
- Department of Life Sciences, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy; (L.M.); (R.D.C.); (A.C.)
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’ Università, 01100 Viterbo, Italy;
- Mycological Section, Italian Antarctic National Museum (MNA), 16128 Genoa, Italy
| |
Collapse
|
13
|
Řeháková K, Čapková K, Altman J, Dančák M, Majeský Ľ, Doležal J. Contrasting Patterns of Soil Chemistry and Vegetation Cover Determine Diversity Changes of Soil Phototrophs Along an Afrotropical Elevation Gradient. Ecosystems 2021. [DOI: 10.1007/s10021-021-00698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Van AT, Sommer V, Glaser K. The Ecophysiological Performance and Traits of Genera within the Stichococcus-like Clade (Trebouxiophyceae) under Matric and Osmotic Stress. Microorganisms 2021; 9:1816. [PMID: 34576715 PMCID: PMC8472729 DOI: 10.3390/microorganisms9091816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Changes in water balance are some of the most critical challenges that aeroterrestrial algae face. They have a wide variety of mechanisms to protect against osmotic stress, including, but not limited to, downregulating photosynthesis, the production of compatible solutes, spore and akinete formation, biofilms, as well as triggering structural cellular changes. In comparison, algae living in saline environments must cope with ionic stress, which has similar effects on the physiology as desiccation in addition to sodium and chloride ion toxicity. These environmental challenges define ecological niches for both specialist and generalist algae. One alga known to be aeroterrestrial and euryhaline is Stichococcus bacillaris Nägeli, possessing the ability to withstand both matric and osmotic stresses, which may contribute to wide distribution worldwide. Following taxonomic revision of Stichococcus into seven lineages, we here examined their physiological responses to osmotic and matric stress through a salt growth challenge and desiccation experiment. The results demonstrate that innate compatible solute production capacity under salt stress and desiccation tolerance are independent of one another, and that salt tolerance is more variable than desiccation tolerance in the Stichococcus-like genera. Furthermore, algae within this group likely occupy similar ecological niches, with the exception of Pseudostichococcus.
Collapse
Affiliation(s)
- Anh Tu Van
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | | | | |
Collapse
|
15
|
Fais G, Malavasi V, Scano P, Soru S, Caboni P, Cao G. Metabolomics and lipid profile analysis of Coccomyxa melkonianii SCCA 048. Extremophiles 2021; 25:357-368. [PMID: 34057605 PMCID: PMC8254698 DOI: 10.1007/s00792-021-01234-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023]
Abstract
With an unsupervised GC-MS metabolomics approach, polar metabolite changes of the microalgae Coccomyxa melkonianii SCCA 048 grown under standard conditions for seven weeks were studied. C. melkonianii was sampled at the Rio Irvi River, in the mining site of Montevecchio-Ingurtosu (Sardinia, Italy), which is severely contaminated by heavy metals and shows high concentrations of sulfates. The partial-least-square (PLS) analysis of the GC-MS data indicated that growth of C. melkonianii was characterized by an increase of the levels of threonic acid, myo-inositol, malic acid, and fumaric acid. Furthermore, at the sixth week of exponential phase the lipid fingerprint of C. melkonianii was studied by LC-QTOF-MS. C. melkonianii lipid extract characterized through an iterative MS/MS analysis showed the following percent levels: 61.34 ± 0.60% for triacylglycerols (TAG); 11.55 ± 0.09% for diacylglyceryltrimethyl homoserines (DGTS), 11.34 ± 0.10% for sulfoquinovosyldiacylglycerols (SQDG) and, 5.29 ± 0.04% for lysodiacylglyceryltrimethyl homoserines (LDGTS). Noteworthy, we were able to annotate different fatty acid ester of hydroxyl fatty acid, such as FAHFA (18:1_20:3), FAHFA (18:2_20:4), FAHFA (18:0_20:2), and FAHFA (18:1_18:0), with relevant biological activity. These approaches can be useful to study the biochemistry of this extremophile algae in the view of its potential exploitation in the phycoremediation of polluted mining areas.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy
| | - Veronica Malavasi
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy
| | - Paola Scano
- Department of Life and Environmental Sciences, University of Cagliari, 09124, Cagliari, Italy
| | - Santina Soru
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124, Cagliari, Italy.
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, via San Giorgio 12, 09124, Cagliari, Italy.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, piazza d'Armi, 09123, Cagliari, Italy
| |
Collapse
|
16
|
Ballesteros I, Terán P, Guamán-Burneo C, González N, Cruz A, Castillejo P. DNA barcoding approach to characterize microalgae isolated from freshwater systems in Ecuador. NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1920296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Isabel Ballesteros
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | - Paulina Terán
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | | | - Nory González
- AgroScience & Food Research Group, Universidad de las Américas, Quito, Ecuador
| | - Alejandra Cruz
- Ingeniería en Biotecnología. Facultad de Ingenierías y Ciencias Aplicadas, Universidad de las Américas, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| |
Collapse
|
17
|
Vishnivetskaya TA, Almatari AL, Spirina EV, Wu X, Williams DE, Pfiffner SM, Rivkina EM. Insights into community of photosynthetic microorganisms from permafrost. FEMS Microbiol Ecol 2021; 96:5979775. [PMID: 33181853 DOI: 10.1093/femsec/fiaa229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
This work integrates cultivation studies of Siberian permafrost and analyses of metagenomes from different locations in the Arctic with the aim of obtaining insights into the community of photosynthetic microorganisms in perennially frozen deposits. Cyanobacteria and microalgae have been described in Arctic aquatic and surface soil environments, but their diversity and ability to withstand harsh conditions within the permafrost are still largely unknown. Community structure of photosynthetic organisms in permafrost sediments was explored using Arctic metagenomes available through the MG-RAST. Sequences affiliated with cyanobacteria represented from 0.25 to 3.03% of total sequences, followed by sequences affiliated with Streptophyta (algae and vascular plants) 0.01-0.45% and Chlorophyta (green algae) 0.01-0.1%. Enrichment and cultivation approaches revealed that cyanobacteria and green algae survive in permafrost and they could be revived during prolonged incubation at low light intensity. Among photosynthetic microorganisms isolated from permafrost, the filamentous Oscillatoria-like cyanobacteria and unicellular green algae of the genus Chlorella were dominant. Our findings suggest that permafrost cyanobacteria and green algae are expected to be effective members of the re-assembled community after permafrost thawing and soil collapse.
Collapse
Affiliation(s)
- Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA.,Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| | - Abraham L Almatari
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Elena V Spirina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| | - Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996-1605, USA
| | - Elizaveta M Rivkina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia
| |
Collapse
|
18
|
Câmara PEAS, Carvalho-Silva M, Pinto OHB, Amorim ET, Henriques DK, da Silva TH, Pellizzari F, Convey P, Rosa LH. Diversity and Ecology of Chlorophyta (Viridiplantae) Assemblages in Protected and Non-protected Sites in Deception Island (Antarctica, South Shetland Islands) Assessed Using an NGS Approach. MICROBIAL ECOLOGY 2021; 81:323-334. [PMID: 32860076 DOI: 10.1007/s00248-020-01584-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 05/20/2023]
Abstract
Assessment of the diversity of algal assemblages in Antarctica has until now largely relied on traditional microbiological culture approaches. Here we used DNA metabarcoding through high-throughput sequencing (HTS) to assess the uncultured algal diversity at two sites on Deception Island, Antarctica. The first was a relatively undisturbed site within an Antarctic Specially Protected Area (ASPA 140), and the second was a site heavily impacted by human visitation, the Whalers Bay historic site. We detected 65 distinct algal taxa, 50 from within ASPA 140 and 61 from Whalers Bay. Of these taxa, 46 were common to both sites, and 19 only occurred at one site. Algal richness was about six times greater than reported in previous studies using culture methods. A high proportion of DNA reads obtained was assigned to the highly invasive species Caulerpa webbiana at Whalers Bay, and the potentially pathogenic genus Desmodesmus was found at both sites. Our data demonstrate that important differences exist between these two protected and human-impacted sites on Deception Island in terms of algal diversity, richness, and abundance. The South Shetland Islands have experienced considerable effects of climate change in recent decades, while warming through geothermal activity on Deception Island itself makes this island one of the most vulnerable to colonization by non-native species. The detection of DNA of non-native taxa highlights concerns about how human impacts, which take place primarily through tourism and national research operations, may influence future biological colonization processes in Antarctica.
Collapse
Affiliation(s)
| | | | - Otávio H B Pinto
- Departamento de Biologia Celular e Molecular, Universidade de Brasília (UnB), Brasilia, Brazil
| | - Eduardo T Amorim
- Departamento de Botânica, Universidade de Brasília (UnB), Brasilia, Brazil
- Centro Nacional de Conservação da Flora/Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (CNCFlora/JBRJ), Rio de Janeiro, Brazil
| | | | - Thamar Holanda da Silva
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Franciane Pellizzari
- Departamento de Ciências Biológicas, Universidade Estadual do Paraná, Paranaguá, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
19
|
Cyanobacteria and Algae in Clouds and Rain in the Area of puy de Dôme, Central France. Appl Environ Microbiol 2020; 87:AEM.01850-20. [PMID: 33097513 DOI: 10.1128/aem.01850-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/10/2020] [Indexed: 01/04/2023] Open
Abstract
The atmosphere contains diverse living microbes, of which the heterotrophic community has been the best studied. Microbes with other trophic modes, such as photoautotrophy, have received much less attention. In this study, culture-independent and dependent methods were used to examine the presence and diversity of oxygenic photoautotrophic microbes in clouds and rain collected at or around puy de Dôme Mountain, central France. Cloud water was collected from the summit of puy de Dôme (1,465 m above sea level [a.s.l.]) for cultivation and metagenomic analysis. Cyanobacteria, diatoms, green algae, and other oxygenic photoautotrophs were found to be recurrent members of clouds, while green algae affiliated with the Chlorellaceae were successfully cultured from three different clouds. Additionally, rain samples were collected below the mountain from Opme meteorological station (680 m a.s.l.). The abundance of chlorophyll a-containing cells and the diversity of cyanobacteria and green algae in rain were assessed by flow cytometry and amplicon sequencing. The corresponding downward flux of chlorophyll a-containing organisms to the ground, entering surface ecosystems with rain, varied with time and was estimated to be between ∼1 and >300 cells cm-2 day-1 during the sampling period. Besides abundant pollen from Pinales and Rosales, cyanobacteria of the Chroococcidiopsidales and green algae of the Trebouxiales were dominant in rain samples. Certain members of these taxa are known to be ubiquitous and stress tolerant and could use the atmosphere for dispersal. Overall, our results indicate that the atmosphere carries diverse, viable oxygenic photoautotrophic microbes and acts as a dispersal vector for this microbial guild.IMPORTANCE Information regarding the diversity and abundance of oxygenic photoautotrophs in the atmosphere is limited. More information from diverse locations is needed. These airborne organisms could have important impacts upon atmospheric processes and on the ecosystems they enter after deposition. Oxygenic photoautotrophic microbes are integral to ecosystem functioning, and some have the potential to affect human health. A better understanding of the diversity and the movements of these aeolian dispersed organisms is needed to understand their ecology, as well as how they could affect ecosystems and human health.
Collapse
|
20
|
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms 2020; 8:E1667. [PMID: 33121104 PMCID: PMC7692164 DOI: 10.3390/microorganisms8111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
Collapse
Affiliation(s)
- Veronika Sommer
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
- upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany
| | - Tatiana Mikhailyuk
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine;
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| |
Collapse
|
21
|
Aigner S, Glaser K, Arc E, Holzinger A, Schletter M, Karsten U, Kranner I. Adaptation to Aquatic and Terrestrial Environments in Chlorella vulgaris (Chlorophyta). Front Microbiol 2020; 11:585836. [PMID: 33178169 PMCID: PMC7593248 DOI: 10.3389/fmicb.2020.585836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
The globally distributed green microalga Chlorella vulgaris (Chlorophyta) colonizes aquatic and terrestrial habitats, but the molecular mechanisms underpinning survival in these two contrasting environments are far from understood. Here, we compared the authentic strain of C. vulgaris from an aquatic habitat with a strain from a terrestrial high alpine habitat previously determined as Chlorella mirabilis. Molecular phylogeny of SSU rDNA (823 bp) showed that the two strains differed by one nucleotide only. Sequencing of the ITS2 region confirmed that both strains belong to the same species, but to distinct ribotypes. Therefore, the terrestrial strain was re-assessed as C. vulgaris. To study the response to environmental conditions experienced on land, we assessed the effects of irradiance and temperature on growth, of temperature on photosynthesis and respiration, and of desiccation and rehydration on photosynthetic performance. In contrast to the aquatic strain, the terrestrial strain tolerated higher temperatures and light conditions, had a higher photosynthesis-to-respiration ratio at 25°C, still grew at 30°C and was able to fully recover photosynthetic performance after desiccation at 84% relative humidity. The two strains differed most in their response to the dehydration/rehydration treatment, which was further investigated by untargeted GC–MS-based metabolite profiling to gain insights into metabolic traits differentiating the two strains. The two strains differed in their allocation of carbon and nitrogen into their primary metabolites. Overall, the terrestrial strain had higher contents of readily available nitrogen-based metabolites, especially amino acids and the polyamine putrescine. Dehydration and rehydration led to differential regulation of the amino acid metabolism, the tricarboxylic acid cycle and sucrose metabolism. The data are discussed with a view to differences in phenotypic plasticity of the two strains, and we suggest that the two genetically almost identical C. vulgaris strains are attractive models to study mechanisms that protect from abiotic stress factors, which are more frequent in terrestrial than aquatic habitats, such as desiccation and irradiation.
Collapse
Affiliation(s)
- Siegfried Aigner
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Karin Glaser
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | | | - Ulf Karsten
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Brown SP, Tucker AE. Distribution and biogeography of Sanguina snow algae: Fine-scale sequence analyses reveal previously unknown population structure. Ecol Evol 2020; 10:11352-11361. [PMID: 33144969 PMCID: PMC7593155 DOI: 10.1002/ece3.6772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
It has been previously suggested that snow algal species within the genus Sanguina (S. nivaloides and S. aurantia) show no population structure despite being found globally (S. nivaloides) or throughout the Northern Hemisphere (S. aurantia). However, systematic biogeographic research into global distributions is lacking due to few genetic and no genomic resources for these snow algae. Here, using all publicly available and previously unpublished Sanguina sequences of the Internal Transcribed Spacer 2 region, we investigated whether this purported lack of population structure within Sanguina species is supported by additional evidence. Using a minimum entropy decomposition (MED) approach to examine fine-scale genetic population structure, we find that these snow algae populations are largely distinct regionally and have some interesting biogeographic structuring. This is in opposition to the currently accepted idea that Sanguina species lack any observable population structure across their vast ranges and highlights the utility of fine-scale (sub-OTU) analytical tools to delineate geographic and genetic population structure. This work extends the known range of S. aurantia and emphasizes the need for development of genetic and genomic tools for additional studies on snow algae biogeography.
Collapse
Affiliation(s)
- Shawn P. Brown
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| | - Avery E. Tucker
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| |
Collapse
|
23
|
Fawley MW, Fawley KP. Identification of Eukaryotic Microalgal Strains. JOURNAL OF APPLIED PHYCOLOGY 2020; 32:2699-2709. [PMID: 33542589 PMCID: PMC7853647 DOI: 10.1007/s10811-020-02190-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proper identification and documentation of microalgae is often lacking in publications of applied phycology, algal physiology and biochemistry. Identification of many eukaryotic microalgae can be very daunting to the non-specialist. We present a systematic process for identifying eukaryotic microalgae using morphological evidence and DNA sequence analysis. Our intent was to provide an identification method that could be used by non-taxonomists, but which is grounded in the current techniques used by algal taxonomists. Central to the identification is database searches with DNA sequences of appropriate loci. We provide usable criteria for identification at the genus or species level, depending on the availability of sequence data in curated databases and repositories. Particular attention is paid to dealing with possible misidentifications in DNA databases and utilizing current taxonomy.
Collapse
Affiliation(s)
- Marvin W Fawley
- Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| | - Karen P Fawley
- Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR 72830, USA
| |
Collapse
|
24
|
Gong W, Hall N, Paerl H, Marchetti A. Phytoplankton composition in a eutrophic estuary: Comparison of multiple taxonomic approaches and influence of environmental factors. Environ Microbiol 2020; 22:4718-4731. [PMID: 32881227 DOI: 10.1111/1462-2920.15221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Abstract
To assess the comparability between taxonomic identification methods for phytoplankton, multiple approaches were used to characterize phytoplankton community composition within the Neuse River Estuary (NRE), North Carolina. Small subunit 18S rRNA gene sequencing and accessory pigment analysis displayed similar trends, indicating chlorophytes were the dominant microalgal group during most of the year, whereas results from microscopic cell counts, biovolume analysis and metatranscriptomics suggested diatom and dinoflagellate-dominated communities. Spatial environmental gradients drove variation in taxonomic composition due to preferences for specific environmental conditions among different microalgal groups. Cryptophytes were a greater proportion of the phytoplankton community within high nutrient, fresher environments whereas diatoms and dinoflagellates dominated higher salinity sections of the estuary. This study provides a detailed examination of phytoplankton communities associated with environmental gradients present in the NRE. The high level of taxonomic resolution offered by DNA sequencing (i.e., species to sub-species level) provides a better understanding of population dynamics at the base of estuarine food webs.
Collapse
Affiliation(s)
- Weida Gong
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Murray Hall, 123 South Rd. Chapel Hill, NC 27514, USA
| | - Nathan Hall
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA
| | - Hans Paerl
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA
| | - Adrian Marchetti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Murray Hall, 123 South Rd. Chapel Hill, NC 27514, USA
| |
Collapse
|
25
|
A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. J Colloid Interface Sci 2020; 582:81-89. [PMID: 32814225 DOI: 10.1016/j.jcis.2020.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022]
Abstract
Three-dimensional (3D) printing technology is actively utilized in various industrial fields because it facilitates effective and customizable fabrication of complex structures. An important processing route for 3D printing is the extrusion of inks in the form of colloidal suspensions or emulsions, which has recently attracted considerable attention because it allows for selection of a wide range of printing materials and is operable under ambient processing conditions. Herein, we investigate the 3D printability of complex fluids containing chlorella microalgae as an eco-friendly material for 3D printing. Two possible ink types are considered: aqueous chlorella suspensions and emulsions of oil and water mixtures. While the aqueous chlorella suspensions at high particle loading display the 3D-printable rheological properties such as high yield stress and good shape retention, the final structures after extruding and drying the suspensions under ambient conditions show a significant number of macroscopic defects, limiting their practical application. In contrast, the 3D structures produced from the oil-in-water Pickering emulsions stabilized by chlorella microalgae, which are amphiphilic and active at the oil-water interface, show significantly reduced defect formation. Addition of a fast-evaporable oil phase, hexane, is crucial in the mechanisms of enhanced cementation between the individual microalgae via increased inter-particle packing, capillary attraction, and hydrophobic interaction. Furthermore, addition of solid paraffin wax, which is crystalline but well-soluble in the hydrocarbon oil phase under ambient conditions, completely eliminates the undesirable defect formation via enhanced inter-particle binding, while maintaining the overall rheological properties of the emulsion. The optimal formulation of the Pickering emulsion is finally employed to produce a 3D scaffold of satisfactory structural integrity, suggesting that the chlorella-based ink, in the form of an emulsion, has potential as an eco-friendly 3D printing ink processable under ambient conditions.
Collapse
|
26
|
Algal Diversity in Paramecium bursaria: Species Identification, Detection of Choricystis parasitica, and Assessment of the Interaction Specificity. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12080287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ‘green’ ciliate Paramecium bursaria lives in mutualistic symbiosis with green algae belonging to the species Chlorella variabilis or Micractinium conductrix. We analysed the diversity of algal endosymbionts and their P. bursaria hosts in nine strains from geographically diverse origins. Therefore, their phylogenies using different molecular markers were inferred. The green paramecia belong to different syngens of P. bursaria. The intracellular algae were assigned to Chl. variabilis, M. conductrix or, surprisingly, Choricystis parasitica. This usually free-living alga co-occurs with M. conductrix in the host’s cytoplasm. Addressing the potential status of Chor. parasitica as second additional endosymbiont, we determined if it is capable of symbiosis establishment and replication within a host cell. Symbiont-free P. bursaria were generated by cycloheximid treatment. Those aposymbiotic P. bursaria were used for experimental infections to investigate the symbiosis specificity not only between P. bursaria and Chor. parasitica but including also Chl. variabilis and M. conductrix. For each algae we observed the uptake and incorporation in individual perialgal vacuoles. These host-symbiont associations are stable since more than five months. Thus, Chor. parasitica and P. bursaria can form an intimate and long-term interaction. This study provides new insights into the diversity of P. bursaria algal symbionts.
Collapse
|
27
|
Mikhailyuk T, Holzinger A, Tsarenko P, Glaser K, Demchenko E, Karsten U. Dictyosphaerium-like morphotype in terrestrial algae: what is Xerochlorella (Trebouxiophyceae, Chlorophyta)? 1. JOURNAL OF PHYCOLOGY 2020; 56:671-686. [PMID: 31994728 PMCID: PMC7317402 DOI: 10.1111/jpy.12974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Several strains of terrestrial algae isolated from biological soil crusts in Germany and Ukraine were identified by morphological methods as the widely distributed species Dictyosphaerium minutum (=Dictyosphaerium chlorelloides). Investigation of the phylogeny showed their position unexpectedly outside of Chlorellaceae (Trebouxiophyceae) and distantly from Chlorella chlorelloides, to which this taxon was attributed after revision of the genus Chlorella based on an integrative approach. SSU rRNA phylogeny determined the position of our strains inside a clade recently described as a new genus of the cryptic alga Xerochlorella olmiae isolated from desert biological soil crusts in the United States. Investigation of the morphology of the authentic strain of X. olmiae showed Dictyosphaerium-like morphology, as well as some other characters, common for our strains and morphospecies D. minutum. The latter alga was described as terrestrial and subsequently united with the earlier described aquatic representative D. chlorelloides because of their similar morphology. The revision of Chlorella mentioned above provided only one aquatic strain (D. chlorelloides), which determined its position in the genus. But terrestrial strains of the morphospecies were not investigated phylogenetically. Our study showed that the terrestrial D. minutum is not related to the morphologically similar D. chlorelloides (=Chlorella chlorelloides, Chlorellaceae), and instead represented a separate lineage in the Trebouxiophyceae, recently described as genus Xerochlorella. Therefore, revision of Xerochlorella is proposed, including nomenclatural combinations, epitypifications, and emendations of two species: X. minuta and X. dichotoma. New characters of the genus based on investigation of morphology and ultrastructure were determined.
Collapse
Affiliation(s)
- Tatiana Mikhailyuk
- M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineTereschenkivska Str. 2Kyiv01004Ukraine
| | - Andreas Holzinger
- Functional Plant BiologyDepartment of BotanyUniversity of InnsbruckSternwartestrasse 15A‐6020InnsbruckAustria
| | - Petro Tsarenko
- M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineTereschenkivska Str. 2Kyiv01004Ukraine
| | - Karin Glaser
- Applied Ecology and PhycologyInstitute of Biological SciencesUniversity of RostockAlbert‐Einstein‐Strasse 3D‐18059RostockGermany
| | - Eduard Demchenko
- M.G. Kholodny Institute of BotanyNational Academy of Sciences of UkraineTereschenkivska Str. 2Kyiv01004Ukraine
| | - Ulf Karsten
- Applied Ecology and PhycologyInstitute of Biological SciencesUniversity of RostockAlbert‐Einstein‐Strasse 3D‐18059RostockGermany
| |
Collapse
|
28
|
Procházková L, Leya T, Křížková H, Nedbalová L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol Ecol 2020; 95:5487888. [PMID: 31074825 PMCID: PMC6545352 DOI: 10.1093/femsec/fiz064] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Melting snowfields in polar and alpine regions often exhibit a red and orange colouration caused by microalgae. The diversity of these organisms is still poorly understood. We applied a polyphasic approach using three molecular markers and light and electron microscopy to investigate spherical cysts sampled from alpine mountains in Europe, North America and South America as well as from both polar regions. Molecular analyses revealed the presence of a single independent lineage within the Chlamydomonadales. The genus Sanguina is described, with Sanguina nivaloides as its type. It is distinguishable from other red cysts forming alga by the number of cell wall layers, cell size, cell surface morphology and habitat preference. Sanguina nivaloides is a diverse species containing a total of 18 haplotypes according to nuclear ribosomal DNA internal transcribed spacer 2, with low nucleotide divergence (≤3.5%). Based on molecular data we demonstrate that it has a cosmopolitan distribution with an absence of geographical structuring, indicating an effective dispersal strategy with the cysts being transported all around the globe, including trans-equatorially. Additionally, Sanguina aurantia is described, with small spherical orange cysts often clustered by means of mucilaginous sheaths, and causing orange blooms in snow in subarctic and Arctic regions.
Collapse
Affiliation(s)
- Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research & Biobank CCCryo, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Heda Křížková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic.,The Czech Academy of Sciences, Institute of Botany, Dukelská 135, Třeboň, 379 82, Czech Republic
| |
Collapse
|
29
|
Shukla SP, Kvíderová J, Adamec L, Elster J. Ecophysiological Features of Polar Soil Unicellular Microalgae 1. JOURNAL OF PHYCOLOGY 2020; 56:481-495. [PMID: 31833070 DOI: 10.1111/jpy.12953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Due to their ecological, physiological, and molecular adaptations to low and varying temperatures, as well as varying seasonal irradiances, polar non-marine eukaryotic microalgae could be suitable for low-temperature biotechnology. Adaptations include the synthesis of compounds from different metabolic pathways that protect them against stress. Production of biological compounds and various biotechnological applications, for instance, water treatment technology, are of interest to humans. To select prospective strains for future low-temperature biotechnology in polar regions, temperature and irradiance of growth requirements (Q10 and Ea of 10 polar soil unicellular strains) were evaluated. In terms of temperature, three groups of strains were recognized: (i) cold-preferring where temperature optima ranged between 10.1 and 18.4°C, growth rate 0.252 and 0.344 · d-1 , (ii) cold- and warm-tolerating with optima above 10°C and growth rate 0.162-0.341 · d-1 , and (iii) warm-preferring temperatures above 20°C and growth rate 0.249-0.357 · d-1 . Their light requirements were low. Mean values Q10 for specific growth rate ranged from 0.7 to 3.1. The lowest Ea values were observed on cold-preferring and the highest in the warm-preferring strains. One strain from each temperature group was selected for PN and RD measurements. The PN :RD ratio of the warm-preferring strains was less affected by temperature similarly as Q10 and Ea. For future biotechnological applications, the strains with broad temperature tolerance (i.e., the group of cold- and warm-tolerating and warm-preferring strains) will be most useful.
Collapse
Affiliation(s)
- Satya P Shukla
- Central Institute of Fisheries and Education, Indian Council of Agricultural Research, Panch Marg, Off. Yari Road, Versova, Andheri (west), Mumbai, 400 061, India
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
| | - Jana Kvíderová
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 370 05, České Budějovice, Czech Republic
| | - Lubomír Adamec
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
| | - Josef Elster
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
- Centre for Polar Ecology, Faculty of Science, University of South Bohemia, Na Zlaté Stoce 3, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
30
|
Barcytė D, Pilátová J, Mojzeš P, Nedbalová L. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) Green Algae are Genetically and Morphologically Diverse and Exhibit Effective Accumulation of Polyphosphate. JOURNAL OF PHYCOLOGY 2020; 56:217-232. [PMID: 31610035 DOI: 10.1111/jpy.12931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The green algal genus Cylindrocystis is widespread in various types of environments, including extreme habitats. However, very little is known about its diversity, especially in polar regions. In the present study, we isolated seven new Cylindrocystis-like strains from terrestrial and freshwater habitats in Svalbard (High Arctic). We aimed to compare the new isolates on a molecular (rbcL and 18S rDNA), morphological (light and confocal laser scanning microscopy), and cytological (Raman microscopy) basis. Our results demonstrated that the Arctic Cylindrocystis were not of a monophyletic origin and that the studied strains clustered within two clades (tentatively named the soil and freshwater/glacier clades) and four separate lineages. Morphological data (cell size, shape, and chloroplast morphology) supported the presence of several distinct taxa among the new isolates. Moreover, the results showed that the Arctic Cylindrocystis strains were closely related to strains originating from the temperate zone, indicating high ecological versatility and successful long-distance dispersal of the genus. Large amounts of inorganic polyphosphate (polyP) grains were detected within the chloroplasts of the cultured Arctic Cylindrocystis strains, suggesting effective luxury uptake of phosphorus. Additionally, various intracellular structures were identified using Raman microscopy and cytochemical and fluorescent staining. This study represents the first attempt to combine molecular, morphological, ecological, and biogeographical data for Arctic Cylindrocystis. Our novel cytological observations partially explain the success of Cylindrocystis-like microalgae in polar regions.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-128 44, Czech Republic
| | - Jana Pilátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague 2, CZ-128 44, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague 2, CZ-128 44, Czech Republic
| |
Collapse
|
31
|
Mn oxide formation by phototrophs: Spatial and temporal patterns, with evidence of an enzymatic superoxide-mediated pathway. Sci Rep 2019; 9:18244. [PMID: 31796791 PMCID: PMC6890756 DOI: 10.1038/s41598-019-54403-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/13/2019] [Indexed: 12/05/2022] Open
Abstract
Manganese (Mn) oxide minerals influence the availability of organic carbon, nutrients and metals in the environment. Oxidation of Mn(II) to Mn(III/IV) oxides is largely promoted by the direct and indirect activity of microorganisms. Studies of biogenic Mn(II) oxidation have focused on bacteria and fungi, with phototrophic organisms (phototrophs) being generally overlooked. Here, we isolated phototrophs from Mn removal beds in Pennsylvania, USA, including fourteen Chlorophyta (green algae), three Bacillariophyta (diatoms) and one cyanobacterium, all of which consistently formed Mn(III/IV) oxides. Isolates produced cell-specific oxides (coating some cells but not others), diffuse biofilm oxides, and internal diatom-specific Mn-rich nodules. Phototrophic Mn(II) oxidation had been previously attributed to abiotic oxidation mediated by photosynthesis-driven pH increases, but we found a decoupling of Mn oxide formation and pH alteration in several cases. Furthermore, cell-free filtrates of some isolates produced Mn oxides at specific time points, but this activity was not induced by Mn(II). Manganese oxide formation in cell-free filtrates occurred via reaction with the oxygen radical superoxide produced by soluble extracellular proteins. Given the known widespread ability of phototrophs to produce superoxide, the contribution of phototrophs to Mn(II) oxidation in the environment may be greater and more nuanced than previously thought.
Collapse
|
32
|
Grossmann L, Hinrichs J, Weiss J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit Rev Food Sci Nutr 2019; 60:2961-2989. [DOI: 10.1080/10408398.2019.1672137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lutz Grossmann
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jörg Hinrichs
- Department of Soft Matter Science and Dairy Technology, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
33
|
Metz S, Singer D, Domaizon I, Unrein F, Lara E. Global distribution of Trebouxiophyceae diversity explored by high-throughput sequencing and phylogenetic approaches. Environ Microbiol 2019; 21:3885-3895. [PMID: 31299138 DOI: 10.1111/1462-2920.14738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/22/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022]
Abstract
Trebouxiophyceae are a ubiquitous class of Chlorophyta encountered in aquatic and terrestrial environments. Most taxa are photosynthetic, and many acts as photobionts in symbiotic relationships, while others are free-living. Trebouxiophyceae have also been widely investigated for their use for biotechnological applications. In this work, we aimed at obtaining a comprehensive image of their diversity by compiling the information of 435 freshwater, soil and marine environmental DNA samples surveyed with Illumina sequencing technology in order to search for the most relevant environments for bioprospecting. Freshwater and soil were most diverse and shared more than half of all operational taxonomic units (OTUs), however, their communities were significantly distinct. Oceans hosted the highest genetic novelty, and did not share any OTUs with the other environments; also, marine samples host more diversity in warm waters. Symbiotic genera usually found in lichens such as Trebouxia, Myrmecia and Symbiochloris were also abundantly detected in the ocean, suggesting either free-living lifestyles or unknown symbiotic relationships with marine planktonic organisms. Altogether, our study opens the way to new prospection for trebouxiophycean strains, especially in understudied environments like the ocean.
Collapse
Affiliation(s)
- Sebastian Metz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - David Singer
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Zoology, Institute of Biosciences, University of São Paulo, Butantã, São Paulo, Brazil
| | | | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Madrid, Spain
| |
Collapse
|
34
|
The pioneer lichen Placopsis in maritime Antarctica: Genetic diversity of their mycobionts and green algal symbionts, and their correlation with deglaciation time. Symbiosis 2019. [DOI: 10.1007/s13199-019-00624-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Zhu H, Li S, Hu Z, Liu G. Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene. BMC PLANT BIOLOGY 2018; 18:365. [PMID: 30563464 PMCID: PMC6299628 DOI: 10.1186/s12870-018-1588-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/04/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUD Foliicolous algae are a common occurrence in tropical forests. They are referable to a few simple morphotypes (unicellular, sarcinoid-like or filamentous), which makes their morphology of limited usefulness for taxonomic studies and species diversity assessments. The relationship between algal community and their host phyllosphere was not clear. In order to obtain a more accurate assessment, we used single molecule real-time sequencing of the 18S rDNA gene to characterize the eukaryotic algal community in an area of South-western China. RESULT We annotated 2922 OTUs belonging to five classes, Ulvophyceae, Trebouxiophyceae, Chlorophyceae, Dinophyceae and Eustigmatophyceae. Novel clades formed by large numbers sequences of green algae were detected in the order Trentepohliales (Ulvophyceae) and the Watanabea clade (Trebouxiophyceae), suggesting that these foliicolous communities may be substantially more diverse than so far appreciated and require further research. Species in Trentepohliales, Watanabea clade and Apatococcus clade were detected as the core members in the phyllosphere community studied. Communities from different host trees and sampling sites were not significantly different in terms of OTUs composition. However, the communities of Musa and Ravenala differed from other host plants significantly at the genus level, since they were dominated by Trebouxiophycean epiphytes. CONCLUSION The cryptic diversity of eukaryotic algae especially Chlorophytes in tropical phyllosphere is very high. The community structure at species-level has no significant relationship either with host phyllosphere or locations. The core algal community in tropical phyllopshere is consisted of members from Trentepohliales, Watanabea clade and Apatococcus clade. Our study provided a large amount of novel 18S rDNA sequences that will be useful to unravel the cryptic diversity of phyllosphere eukaryotic algae and for comparisons with similar future studies on this type of communities.
Collapse
Affiliation(s)
- Huan Zhu
- Key Laboratory of algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Shuyin Li
- Key Laboratory of algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Zhengyu Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Guoxiang Liu
- Key Laboratory of algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
36
|
Soria-Verdugo A, Goos E, García-Hernando N, Riedel U. Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the Distributed Activation Energy Model. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Hotter V, Glaser K, Hartmann A, Ganzera M, Karsten U, Henley W. Polyols and UV-sunscreens in the Prasiola-clade (Trebouxiophyceae, Chlorophyta) as metabolites for stress response and chemotaxonomy. JOURNAL OF PHYCOLOGY 2018; 54:264-274. [PMID: 29345725 PMCID: PMC5947255 DOI: 10.1111/jpy.12619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/07/2018] [Indexed: 05/22/2023]
Abstract
In many regions of the world, aeroterrestrial green algae of the Trebouxiophyceae (Chlorophyta) represent very abundant soil microorganisms, and hence their taxonomy is crucial to investigate their physiological performance and ecological importance. Due to a lack in morphological features, taxonomic and phylogenetic studies of Trebouxiophycean algae can be a challenging task. Since chemotaxonomic markers could be a great assistance in this regard, 22 strains of aeroterrestrial Trebouxiophyceae were chemically screened for their polyol-patterns as well as for mycosporine-like amino acids (MAAs) in their aqueous extracts using RP-HPLC and LC-MS. d-sorbitol was exclusively detected in members of the Prasiolaceae family. The novel MAA prasiolin and a related compound ("prasiolin-like") were present in all investigated members of the Prasiola-clade, but missing in all other tested Trebouxiophyceae. While prasiolin could only be detected in field material directly after extraction, the "prasiolin-like" compound present in the other algae was fully converted into prasiolin after 24 h. These findings suggest d-sorbitol and prasiolin-like compounds are suitable chemotaxonomic markers for the Prasiolaceae and Prasiola-clade, respectively. Additional UV-exposure experiments with selected strains show that MAA formation and accumulation can be induced, supporting their role as UV-sunscreen.
Collapse
Affiliation(s)
- Vivien Hotter
- Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockAlbert‐Einstein‐Straße 3D‐18059RostockGermany
| | - Karin Glaser
- Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockAlbert‐Einstein‐Straße 3D‐18059RostockGermany
| | - Anja Hartmann
- Institute of Pharmacy, PharmacognosyUniversity of InnsbruckInnrain 80‐82/IVA‐6020InnsbruckAustria
| | - Markus Ganzera
- Institute of Pharmacy, PharmacognosyUniversity of InnsbruckInnrain 80‐82/IVA‐6020InnsbruckAustria
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockAlbert‐Einstein‐Straße 3D‐18059RostockGermany
| | | |
Collapse
|
38
|
Rippin M, Borchhardt N, Williams L, Colesie C, Jung P, Büdel B, Karsten U, Becker B. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 2018. [DOI: 10.1007/s00300-018-2252-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Extremophiles 2016; 21:187-200. [PMID: 27888351 DOI: 10.1007/s00792-016-0894-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day-1) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.
Collapse
|
40
|
Elster J, Margesin R, Wagner D, Häggblom M. Editorial: Polar and Alpine Microbiology—Earth's cryobiosphere. FEMS Microbiol Ecol 2016; 93:fiw221. [DOI: 10.1093/femsec/fiw221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/12/2022] Open
|