1
|
Mas Martinez I, Pushkareva E, Keilholz LA, Linne von Berg KH, Karsten U, Kammann S, Becker B. Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic. Microorganisms 2024; 12:2606. [PMID: 39770808 PMCID: PMC11676250 DOI: 10.3390/microorganisms12122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. This study investigates how the microbial community composition within Arctic biocrusts is influenced by environmental factors along an altitudinal gradient (101 m to 314 m). Metagenomic analyses were used to provide insights into the community composition, revealing that temperature, pH, and nutrient availability significantly shaped the community. In contrast, altitude did not directly influence the microbial composition significantly. Eukaryotic communities were dominated by Chloroplastida and fungi, while Proteobacteria and Actinobacteria prevailed among prokaryotes. Cyanobacteria, particularly orders such as Pseudoanabaenales, Pleurocapsales, and Nostocales, emerged as the most abundant photoautotrophic organisms. Our findings highlight the impact of environmental gradients on microbial diversity and the functional dynamics of biocrusts, emphasizing their critical role in Arctic tundra ecosystems. Arctic biocrusts are intricate micro-ecosystems, whose structure is strongly shaped by local physicochemical parameters, likely affecting essential ecological functions.
Collapse
Affiliation(s)
- Isabel Mas Martinez
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ekaterina Pushkareva
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Leonie Agnes Keilholz
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Karl-Heinz Linne von Berg
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ulf Karsten
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Sandra Kammann
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Burkhard Becker
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| |
Collapse
|
2
|
Giraldo-Silva A, Masiello CA. Environmental conditions play a key role in controlling the composition and diversity of Colombian biocrust microbiomes. Front Microbiol 2024; 15:1236554. [PMID: 38725684 PMCID: PMC11081033 DOI: 10.3389/fmicb.2024.1236554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
Drylands soils worldwide are naturally colonized by microbial communities known as biocrusts. These soil microbiomes render important ecosystem services associated with soil fertility, water holding capacity, and stability to the areas they cover. Because of the importance of biocrusts in the global cycling of nutrients, there is a growing interest in describing the many microbial configurations these communities display worldwide. However, comprehensive 16S rRNA genes surveys of biocrust communities do not exist for much of the planet: for example, in the continents of South America and the northern part of Africa. The absence of a global understanding of biocrust biodiversity has lead us to assign a general importance to community members that may, in fact, be regional. Here we report for the first time the presence of biocrusts in Colombia (South America) through 16S rRNA genes surveys across an arid, a semi-arid and a dry subtropical region within the country. Our results constitute the first glance of the Bacterial/Archaeal communities associated with South American biocrust microbiomes. Communities where cyanobacteria other than Microcoleus vaginatus prevail, despite the latter being considered a key species elsewhere, illustrate differentiable results in these surveys. We also find that the coastal biocrust communities in Colombia include halo-tolerant and halophilic species, and that niche preference of some nitrogen fixing organisms deviate from previously described global trends. In addition, we identified a high proportion (ranging from 5 to 70%, in average) of cyanobacterial sequences that did not match any formally described cyanobacterial species. Our investigation of Colombian biocrusts points to highly diverse communities with climatic regions controlling taxonomic configurations. They also highlight an extensive local diversity to be discovered which is central to better design management and restoration strategies for drylands soils currently undergoing disturbances due to land use and global warming. Finally, this field study highlights the need for an improved mechanistic understanding of the response of key biocrust community members to changes in moisture and temperature.
Collapse
Affiliation(s)
- Ana Giraldo-Silva
- Department of Science, Ecology Group and Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre (UPNA), Pamplona, Spain
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| |
Collapse
|
3
|
Roncero-Ramos B, Savaglia V, Durieu B, Van de Vreken I, Richel A, Wilmotte A. Ecophysiological and genomic approaches to cyanobacterial hardening for restoration. JOURNAL OF PHYCOLOGY 2024; 60:465-482. [PMID: 38373045 DOI: 10.1111/jpy.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/20/2024]
Abstract
Cyanobacteria inhabit extreme environments, including drylands, providing multiple benefits to the ecosystem. Soil degradation in warm drylands is increasing due to land use intensification. Restoration methods adapted to the extreme stress in drylands are being developed, such as cyanobacteria inoculation to recover biocrusts. For this type of restoration method to be a success, it is crucial to optimize the survival of inoculated cyanobacteria in the field. One strategy is to harden them to be acclimated to stressful conditions after laboratory culturing. Here, we analyzed the genome and ecophysiological response to osmotic desiccation and UVR stresses of an Antarctic cyanobacterium, Stenomitos frigidus ULC029, which is closely related to other cyanobacteria from warm and cold dryland soils. Chlorophyll a concentrations showed that preculturing ULC029 under moderate osmotic stress improved its survival during an assay of desiccation plus rehydration under UVR. Additionally, its sequential exposure to these stress factors increased the production of exopolysaccharides, carotenoids, and scytonemin. Desiccation, but not osmotic stress, increased the concentrations of the osmoprotectants trehalose and sucrose. However, osmotic stress might induce the production of other osmoprotectants, for which the complete pathways were observed in the ULC029 genome. In total, 140 genes known to be involved in stress resistance were annotated. Here, we confirm that the sequential application of moderate osmotic stress and dehydration could improve cyanobacterial hardening for soil restoration by inducing several resistance mechanisms. We provide a high-quality genome of ULC029 and a description of the main resistance mechanisms (i.e., production of exopolysaccharides, osmoprotectants, chlorophyll, and carotenoids; DNA repair; and oxidative stress protection).
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Valentina Savaglia
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Benoit Durieu
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| | | | - Aurore Richel
- TERRA-Biomass and Green Technologies, University of Liège, Gembloux, Belgium
| | - Annick Wilmotte
- InBios-Molecular Diversity and Ecology of Cyanobacteria, University of Liège, Liege, Belgium
| |
Collapse
|
4
|
Ko JT, Li YY, Chen PY, Liu PY, Ho MY. Use of 16S rRNA gene sequences to identify cyanobacteria that can grow in far-red light. Mol Ecol Resour 2024; 24:e13871. [PMID: 37772760 DOI: 10.1111/1755-0998.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Although most cyanobacteria use visible light (VL; λ = 400-700 nm) for photosynthesis, some have evolved strategies to use far-red light (FRL; λ = 700-800 nm). These cyanobacteria are defined as far-red light-utilizing cyanobacteria (FRLCyano), including two groups: (1) chlorophyll d-producing Acaryochloris spp. and (2) polyphyletic cyanobacteria that produce chlorophylls d and f in response to FRL. Numerous ecological studies examine pigments, such as chlorophylls d and f, to investigate the presence of FRLCyano in the environment. This method is not ideal because it can only detect FRLCyano that have made chlorophylls d or f. Here we develop a new method, far-red cyanobacteria identification (FRCI), to identify FRLCyano based on 16S rRNA gene sequences. From public databases and published articles, 62 16S rRNA gene sequences of FRLCyano were extracted. Comparing with related lineages, we determined that 97% sequence identity is the optimal cut-off for distinguishing FRLCyano from other cyanobacteria. To test the method experimentally, we collected samples from 17 sites in Taipei, Taiwan, and conducted VL and FRL enrichments. Our results demonstrate that FRCI can detect FRLCyano during FRL enrichments more sensitively than pigment analysis. FRCI can also resolve the composition of FRLCyano at the genus level, which pigment analysis cannot do. In addition, we applied FRCI to published datasets and discovered putative FRLCyano in diverse environments, including soils, hot springs and deserts. Overall, our results indicate that FRCI is a sensitive and high-resolution method using 16S rRNA gene sequences to identify FRLCyano.
Collapse
Affiliation(s)
- Jui-Tse Ko
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ying-Yang Li
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pa-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Abrantes GH, Gücker B, Chaves RC, Boëchat IG, Figueredo CC. Epilithic biofilms provide large amounts of nitrogen to tropical mountain landscapes. Environ Microbiol 2023; 25:3592-3603. [PMID: 37816630 DOI: 10.1111/1462-2920.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023]
Abstract
We show that epilithic biofilms are a relevant nitrogen (N) source in a rocky mountain range in Brazil. During different seasons, we quantified nitrate, ammonium, dissolved organic N (DON) and total dissolved N (TDN) leached by a simulated short rain event. We quantified the epilithic autotrophic biomass by taxonomic groups and its correlation with leached N. We hypothesized that leached N would be correlated to heterocystous cyanobacteria biomass since they are more efficient N2 fixers. We estimated a landscape N supply of 8.5 kg.ha-1 .year-1 considering the mean precipitation in the region. TDN in leachate was mainly composed of DON (83.8% ± 22%), followed by nitrate (12.1% ± 3%) and ammonium (5% ± 5%). The autotrophic epilithic community was mainly composed of non-heterocystous (Gloeocapsopsis) and heterocystous cyanobacteria (Scytonema and Stigonema), except for a site more commonly affected by fire events that showed a dominance of Chlorophyta. Biogeochemical upscaling was facilitated by the fact that N leaching was not different among sites or related to autotrophic epilithic biomass or assemblage composition. In conclusion, the capacity of epilithic biofilms to provide N to surrounding systems is an ecosystem service that underscores the necessity to conserve them and their habitats.
Collapse
Affiliation(s)
| | - Björn Gücker
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| | - Ronaldo César Chaves
- Department of Botany, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Iola Gonçalves Boëchat
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil
| | | |
Collapse
|
6
|
Pessi IS, Popin RV, Durieu B, Lara Y, Tytgat B, Savaglia V, Roncero-Ramos B, Hultman J, Verleyen E, Vyverman W, Wilmotte A. Novel diversity of polar Cyanobacteria revealed by genome-resolved metagenomics. Microb Genom 2023; 9:mgen001056. [PMID: 37417735 PMCID: PMC10438808 DOI: 10.1099/mgen.0.001056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.
Collapse
Affiliation(s)
- Igor S. Pessi
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | - Rafael V. Popin
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Benoit Durieu
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Yannick Lara
- Early Life Traces & Evolution-Astrobiology, UR-Astrobiology, University of Liège, Liège, Belgium
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Valentina Savaglia
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Beatriz Roncero-Ramos
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Jenni Hultman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Wim Vyverman
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Annick Wilmotte
- InBioS – Centre for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Chen Q, Yan N, Xiong K, Zhao J. Cyanobacterial diversity of biological soil crusts and soil properties in karst desertification area. Front Microbiol 2023; 14:1113707. [PMID: 36992925 PMCID: PMC10040852 DOI: 10.3389/fmicb.2023.1113707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
As important components of the biological soil crusts (BSCs) and of the primary stage of crust succession, cyanobacterial communities occupy an important ecological niche and play an important ecological role in desertification areas. In this study, we focused on the karst desertification area, which also belongs to the same category of desertification, and selected three study areas, Guanling-Zhenfeng Huajiang (HJ), Bijie Salaxi (SLX), and Shibing (SB), in the Guizhou Plateau, which represents the overall ecological environment of South China karst, to conduct surveys on the diversity of BSC species and soil properties. Analysis of the cyanobacterial communities and physicochemical properties using the Shannon-Wiener diversity index, principal component analysis, and redundancy analysis revealed that: (1) The three study areas had common cyanobacterial species, with a total of 200 species distributed across 22 genera, 2 classes, 5 orders, and 6 families belonging to the Oscillatoriales (39%), Scytonematales (24.5%), Chroococcales (23%), Nostocales (11.5%), and Rivulariales (2%), (2) The number of species increased with the intensity of karst desertification—while Oscillatoriaceae was the dominant family in HJ and moderate–severe desertification areas, Chroococcaceae and Scytonemataceae were dominant in the mild and potential desertification areas SLX and SB, (3) The Shannon-Wiener diversity indices followed the trend: SLX (3.56) > SB (3.08) > HJ (3.01), indicating that the species were more evenly distributed in mild desertification, (4) In the carbonate background, shrubland harbored the largest number of cyanobacterial species compared to grassland, bare land, and arbor woodland; however, the highest number was documented in arbor woodland in dolomite karst, (5) The soil is weathered limestone or yellow soil in all three areas, with pH ranging from 5.73 to 6.85, fine sand dominated, and soil nutrients increased with the intensity of desertification, and (6) Redundancy analysis showed that organic carbon, soil moisture content (0–5 cm), and total nitrogen substantially influenced cyanobacterial diversity. These results reveal that differences in soil nutrient content play an important role in regulating the cyanobacterial diversity and composition, thereby establishing a foundation for further research and application of soil ecological restoration of cyanobacteria in BSCs of karst desertification areas.
Collapse
Affiliation(s)
- Qian Chen
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| | - Ni Yan
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
- School of Life Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
- *Correspondence: Kangning Xiong,
| | - Jiawei Zhao
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guizhou Normal University, Guiyang, China
| |
Collapse
|
8
|
Pushkareva E, Elster J, Holzinger A, Niedzwiedz S, Becker B. Biocrusts from Iceland and Svalbard: Does microbial community composition differ substantially? Front Microbiol 2022; 13:1048522. [PMID: 36590427 PMCID: PMC9800606 DOI: 10.3389/fmicb.2022.1048522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
A wide range of microorganisms inhabit biocrusts of arctic and sub-arctic regions. These taxa live and thrive under extreme conditions and, moreover, play important roles in biogeochemical cycling. Nevertheless, their diversity and abundance remain ambiguous. Here, we studied microbial community composition in biocrusts from Svalbard and Iceland using amplicon sequencing and epifluorescence microscopy. Sequencing of 16S rRNA gene revealed the dominance of Chloroflexi in the biocrusts from Iceland and Longyearbyen, and Acidobacteria in the biocrusts from Ny-Ålesund and South Svalbard. Within the 18S rRNA gene sequencing dataset, Chloroplastida prevailed in all the samples with dominance of Trebouxiophyceae in the biocrusts from Ny-Ålesund and Embryophyta in the biocrusts from the other localities. Furthermore, cyanobacterial number of cells and biovolume exceeded the microalgal in the biocrusts. Community compositions in the studied sites were correlated to the measured chemical parameters such as conductivity, pH, soil organic matter and mineral nitrogen contents. In addition, co-occurrence analysis showed the dominance of positive potential interactions and, bacterial and eukaryotic taxa co-occurred more frequently together.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany,*Correspondence: Ekaterina Pushkareva,
| | - Josef Elster
- Institute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czechia,Centre for Polar Ecology, University of South Bohemia, Ceske Budejovice, Czechia
| | - Andreas Holzinger
- Functional Plant Biology, Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry & MARUM, University of Bremen, Bremen, Germany
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Glaser K, Van AT, Pushkareva E, Barrantes I, Karsten U. Microbial Communities in Biocrusts Are Recruited From the Neighboring Sand at Coastal Dunes Along the Baltic Sea. Front Microbiol 2022; 13:859447. [PMID: 35783389 PMCID: PMC9245595 DOI: 10.3389/fmicb.2022.859447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Biological soil crusts occur worldwide as pioneer communities stabilizing the soil surface. In coastal primary sand dunes, vascular plants cannot sustain due to scarce nutrients and the low-water-holding capacity of the sand sediment. Thus, besides planted dune grass, biocrusts are the only vegetation there. Although biocrusts can reach high coverage rates in coastal sand dunes, studies about their biodiversity are rare. Here, we present a comprehensive overview of the biodiversity of microorganisms in such biocrusts and the neighboring sand from sampling sites along the Baltic Sea coast. The biodiversity of Bacteria, Cyanobacteria, Fungi, and other microbial Eukaryota were assessed using high-throughput sequencing (HTS) with a mixture of universal and group-specific primers. The results showed that the biocrusts recruit their microorganisms mainly from the neighboring sand rather than supporting a universal biocrust microbiome. Although in biocrusts the taxa richness was lower than in sand, five times more co-occurrences were identified using network analysis. This study showed that by comparing neighboring bare surface substrates with biocrusts holds the potential to better understand biocrust development. In addition, the target sequencing approach helps outline potential biotic interactions between different microorganisms groups and identify key players during biocrust development.
Collapse
Affiliation(s)
- Karin Glaser
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- *Correspondence: Karin Glaser
| | - Ahn Tu Van
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Latorre-Pérez A, Gimeno-Valero H, Tanner K, Pascual J, Vilanova C, Porcar M. A Round Trip to the Desert: In situ Nanopore Sequencing Informs Targeted Bioprospecting. Front Microbiol 2021; 12:768240. [PMID: 34966365 PMCID: PMC8710813 DOI: 10.3389/fmicb.2021.768240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Bioprospecting expeditions are often performed in remote locations, in order to access previously unexplored samples. Nevertheless, the actual potential of those samples is only assessed once scientists are back in the laboratory, where a time-consuming screening must take place. This work evaluates the suitability of using Nanopore sequencing during a journey to the Tabernas Desert (Spain) for forecasting the potential of specific samples in terms of bacterial diversity and prevalence of radiation- and desiccation-resistant taxa, which were the target of the bioprospecting activities. Samples collected during the first day were analyzed through 16S rRNA gene sequencing using a mobile laboratory. Results enabled the identification of locations showing the greatest and the least potential, and a second, informed sampling was performed focusing on those sites. After finishing the expedition, a culture collection of 166 strains belonging to 50 different genera was established. Overall, Nanopore and culturing data correlated well, since samples holding a greater potential at the microbiome level also yielded a more interesting set of microbial isolates, whereas samples showing less biodiversity resulted in a reduced (and redundant) set of culturable bacteria. Thus, we anticipate that portable sequencers hold potential as key, easy-to-use tools for in situ-informed bioprospecting strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Manuel Porcar
- Darwin Bioprospecting Excellence S.L., Paterna, Spain
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain
| |
Collapse
|
11
|
Lan S, Thomas AD, Rakes JB, Garcia-Pichel F, Wu L, Hu C. Cyanobacterial community composition and their functional shifts associated with biocrust succession in the Gurbantunggut Desert. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:884-898. [PMID: 34533274 DOI: 10.1111/1758-2229.13011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria, as key biocrust components, provide a variety of ecosystem functions in drylands. In this study, to identify whether a cyanobacterial community shift is involved in biocrust succession and whether this is linked to altered ecological functions, we investigated cyanobacterial composition, total carbon and nitrogen contents of biocrusts in the Gurbantunggut Desert. Our findings showed that the biocrust cyanobacteria in the Gurbantunggut desert were mostly filamentous, coexisting with abundant unicellular colonial Chroococcidiopsis. Heterocystous Nostoc, Scytonema and Tolypothrix always represented the majority of biocrust nitrogen-fixing organisms, comprising an average of 92% of the nifH gene reads. Community analysis showed a clear shift in prokaryotic community composition associated with biocrust succession from cyanobacteria- to lichen- and moss-dominated biocrusts, and filamentous non-nitrogen-fixing cyanobacteria-dominated communities were gradually replaced by nitrogen-fixing and unicellular colonial communities. Along the succession, there were concomitant reductions in cyanobacterial relative abundance, whereas Chl-a, total carbon and nitrogen contents increased. Concurrently, distinct carbon and nitrogen stores shifts occurred, implying that the main ecological contribution of cyanobacteria in biocrusts changes from carbon- to nitrogen-fixation along with the succession. Our results suggest that any activity that reverses biocrust succession will influence cyanobacterial community composition and eventually lead to large reductions in soil carbon and nitrogen stores.
Collapse
Affiliation(s)
- Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Andrew David Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Julie Bethany Rakes
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
12
|
Moreira C Fernandes V, Giraldo-Silva A, Roush D, Garcia-Pichel F. Coleofasciculaceae, a Monophyletic Home for the Microcoleus steenstrupii Complex and Other Desiccation-tolerant Filamentous Cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:1563-1579. [PMID: 34289106 DOI: 10.1111/jpy.13199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria classified as Microcoleus steenstrupii play a significant role as pioneers of biological soil crusts (biocrusts), but this taxon is recognized to constitute a diverse complex of strains and field populations. With the aim of clarifying its systematics, we conducted a polyphasic characterization of this and allied taxa. A 16S ribosomal gene meta-analysis of published environmental sequences showed that the complex encompasses a variety of well supported genus-level clades with clade-specific environmental preferences, indicating significant niche differentiation. Fifteen strains in the M. steenstrupii complex were selected as representative of naturally occurring clades and studied using 16S rRNA gene phylogeny, morphology, and niche delineation with respect to temperature and rainfall. Bayesian phylogenetic reconstructions within a comprehensive, curated database of long 16S rRNA cyanobacterial sequences (1,000 base pairs or more) showed that they all belonged in a monophyletic, family-level clade (91.4% similarity) that included some other known genera of desiccation-resistant, largely terrestrial, filamentous, nonheterocystous cyanobacteria, including Coleofasciculus, the type genus for the family Coleofasciculaceae. To accommodate this biodiversity, we redescribe the Coleofasciculaceae, now composed of 11 genera, among which six are newly described herein (Funiculus, Parifilum, Arizonema, Crassifilum, Crustifilum, and Allocoleopsis), and five were previously recognized (Porphyrosiphon, Coleofasciculus, Pycnacronema, Potamolinea, and Wilmottia). We provide an evaluation of their respective niches and global distributions within biocrusts based on published molecular data. This new systematics treatment should help simplify and improve our understanding of the biology of terrestrial cyanobacteria.
Collapse
Affiliation(s)
- Vanessa Moreira C Fernandes
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Ana Giraldo-Silva
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Daniel Roush
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| |
Collapse
|
13
|
Oren N, Timm S, Frank M, Mantovani O, Murik O, Hagemann M. Red/far-red light signals regulate the activity of the carbon-concentrating mechanism in cyanobacteria. SCIENCE ADVANCES 2021; 7:7/34/eabg0435. [PMID: 34407941 PMCID: PMC8373116 DOI: 10.1126/sciadv.abg0435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/28/2021] [Indexed: 05/11/2023]
Abstract
Desiccation-tolerant cyanobacteria can survive frequent hydration/dehydration cycles likely affecting inorganic carbon (Ci) levels. It was recently shown that red/far-red light serves as signal-preparing cells toward dehydration. Here, the effects of desiccation on Ci assimilation by Leptolyngbya ohadii isolated from Israel's Negev desert were investigated. Metabolomic investigations indicated a decline in ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation activity, and this was accelerated by far-red light. Far-red light negatively affected the Ci affinity of L. ohadii during desiccation and in liquid cultures. Similar effects were evident in the non-desiccation-tolerant cyanobacterium Synechocystis The Synechocystis Δcph1 mutant lacking the major phytochrome exhibited reduced photosynthetic Ci affinity when exposed to far-red light, whereas the mutant ΔsbtB lacking a Ci uptake inhibitory protein lost the far-red light inhibition. Collectively, these results suggest that red/far-red light perception likely via phytochromes regulates Ci uptake by cyanobacteria and that this mechanism contributes to desiccation tolerance in strains such as L. ohadii.
Collapse
Affiliation(s)
- Nadav Oren
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Medical Faculty, University of Rostock, Strempelstr. 14, 18057 Rostock, Germany
- Department of Life, Light, and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Oliver Mantovani
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
| | - Omer Murik
- Medical Genetics Institute, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany
- Department of Life, Light, and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
14
|
Xu HF, Raanan H, Dai GZ, Oren N, Berkowicz S, Murik O, Kaplan A, Qiu BS. Reading and surviving the harsh conditions in desert biological soil crust: The cyanobacterial viewpoint. FEMS Microbiol Rev 2021; 45:6308820. [PMID: 34165541 DOI: 10.1093/femsre/fuab036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Biological soil crusts (BSCs) are found in drylands, cover ∼12% of the Earth's surface in arid and semi-arid lands and their destruction is considered an important promoter of desertification. These crusts are formed by the adhesion of soil particles to polysaccharides excreted mostly by filamentous cyanobacteria, which are the pioneers and main primary producers in BSCs. Desert BSCs survive in one of the harshest environments on Earth, and are exposed to daily fluctuations of extreme conditions. The cyanobacteria inhabiting these habitats must precisely read the changing conditions and predict, for example, the forthcoming desiccation. Moreover, they evolved a comprehensive regulation of multiple adaptation strategies to enhance their stress tolerance. Here we focus on what distinguishes cyanobacteria able to revive after dehydration from those that cannot. While important progress has been made in our understanding of physiological, biochemical and omics aspects, clarification of the sensing, signal transduction and responses enabling desiccation tolerance are just emerging. We plot the trajectory of current research and open questions ranging from general strategies and regulatory adaptations in the hydration/desiccation cycle, to recent advances in our understanding of photosynthetic adaptation. The acquired knowledge provides new insights to mitigate desertification and improve plant productivity under drought conditions.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Hagai Raanan
- Department of Plant Pathology and Weed Research, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 2, 8531100 Israel
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Nadav Oren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Simon Berkowicz
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel.,Interuniversity Institute for Marine Sciences in Eilat, P.O.B 469, Eilat, 8810302 Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| |
Collapse
|
15
|
Pietrasiak N, Reeve S, Osorio-Santos K, Lipson DA, Johansen JR. Trichotorquatus gen. nov. - a new genus of soil cyanobacteria discovered from American drylands 1. JOURNAL OF PHYCOLOGY 2021; 57:886-902. [PMID: 33583028 DOI: 10.1111/jpy.13147] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/15/2020] [Accepted: 12/06/2020] [Indexed: 05/25/2023]
Abstract
Cyanobacteria are crucial ecosystem components in dryland soils. Advances in describing α-level taxonomy are needed to understand what drives their abundance and distribution. We describe Trichotorquatus gen. nov. (Oculatellaceae, Synechococcales, Cyanobacteria) based on four new species isolated from dryland soils including the coastal sage scrub near San Diego, California (USA), the Mojave and Colorado Deserts with sites at Joshua Tree National Park and Mojave National Preserve, California (USA), and the Atacama Desert (Chile). The genus is morphologically characterized by having thin trichomes (<4.5 μm wide), cells both shorter and longer than wide, rarely occurring single and double false branching, necridia appearing singly or in rows, and sheaths with a distinctive collar-like fraying and widening mid-filament, the feature for which the genus is named. The genus is morphologically nearly identical with Leptolyngbya sensu stricto but is phylogenetically quite distant from that genus. It is consequently a cryptic genus that will likely be differentiated in future studies based on 16S rRNA sequence data. The type species, T. maritimus sp. nov. is morphologically distinct from the other three species, T. coquimbo sp. nov., T. andrei sp. nov. and T. ladouxae sp. nov. However, these latter three species are morphologically very close and are considered by the authors to be cryptic species. All species are separated phylogenetically based on sequence of the 16S-23S ITS region. Three distinct ribosomal operons were recovered from the genus, lending difficulty to recognizing further diversity in this morphologically cryptic genus.
Collapse
Affiliation(s)
- Nicole Pietrasiak
- Plant and Environmental Sciences Department, New Mexico State University, 945 College Drive, Las Cruces, New Mexico, 88003, USA
| | - Sharon Reeve
- Department of Biology, San Diego State University, 5500 Campanile Drive, Mail Code 4614, San Diego, California, 92182, USA
| | - Karina Osorio-Santos
- Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), Colonia Coyoacán, Código Postal 04451070474, P.O. Box 70-474, Ciudad de México, México
| | - David A Lipson
- Department of Biology, San Diego State University, 5500 Campanile Drive, Mail Code 4614, San Diego, California, 92182, USA
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, 44118, USA
- Department of Botany, Faculty of Sciences, University of South Bohemia, Branišovská 31, České Budějovice, 370 05, Czech Republic
| |
Collapse
|
16
|
Pushkareva E, Sommer V, Barrantes I, Karsten U. Diversity of Microorganisms in Biocrusts Surrounding Highly Saline Potash Tailing Piles in Germany. Microorganisms 2021; 9:714. [PMID: 33808463 PMCID: PMC8066527 DOI: 10.3390/microorganisms9040714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/04/2022] Open
Abstract
Potash tailing piles located in Germany represent extremely hypersaline locations that negatively affect neighbouring environments and limit the development of higher vegetation. However, biocrusts, as cryptogamic covers, inhabit some of these areas and provide essential ecological functions, but, nevertheless, they remain poorly described. Here, we applied high-throughput sequencing (HTS) and targeted four groups of microorganisms: bacteria, cyanobacteria, fungi and other eukaryotes. The sequencing of the 16S rRNA gene revealed the dominance of Proteobacteria, Cyanobacteria and Actinobacteria. Additionally, we applied yanobacteria-specific primers for a detailed assessment of the cyanobacterial community, which was dominated by members of the filamentous orders Synechococcales and Oscillatoriales. Furthermore, the majority of reads in the studied biocrusts obtained by sequencing of the 18S rRNA gene belonged to eukaryotic microalgae. In addition, sequencing of the internal rDNA transcribed spacer region (ITS) showed the dominance of Ascomycota within the fungal community. Overall, these molecular data provided the first detailed overview of microorganisms associated with biocrusts inhabiting highly saline potash tailing piles and showed the dissimilarities in microbial diversity among the samples.
Collapse
Affiliation(s)
- Ekaterina Pushkareva
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany; (V.S.); (U.K.)
- Department of Biology, Botanical Institute, University of Cologne, 50674 Cologne, Germany
| | - Veronika Sommer
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany; (V.S.); (U.K.)
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany; (V.S.); (U.K.)
| |
Collapse
|
17
|
Rott E, Kurmayer R, Holzinger A, Sanders DG. Contrasting endolithic habitats for cyanobacteria in spring calcites of the European Alps. NOVA HEDWIGIA 2021; 112:17-48. [PMID: 35282312 PMCID: PMC7612483 DOI: 10.1127/nova_hedwigia/2021/0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is often difficult to decide which cyanobacteria found in endolithic habitats of calcite spring-tufa deposits are present as ephemeral components of the biota or are persistent, structural elements. To answer this question, we repeatedly studied two microhabitats of contrasting calcareous tufa springs in the European Alps. Pigment extracts, fluorescence probe measurements of in situ samples and traditional microscopy confirmed the dominance of cyanobacteria over eukaryotic algae and their viability in both microhabitats. Spring Site 1 (Laas, Northern Italy) is characterized by a highly variable, moist to dry and sun-exposed waterfall tufa consisting of fibrous calcite. A segment of these deposits in the lateral flank of a grotto contained dark endolithic layers in dim light, 1-2 mm below the surface, where aggregated cyanobacterial cells were dominant but not directly attached to calcites, a potential sign of gentle endolithic dissolution rather than calcite precipitation induced by cyanobacteria. Site 2 (Mühlau, Austria), in contrast, is a moss-tufa microhabitat associated with a seepage spring situated in a shady gorge, where the targeted stromatolites consisted of bark-like sheets of friable, orange to light-brown when wet (drying violet) 'styrofoam'- like aggregates of minute crystallites on the day-light exposed surfaces. These calcites were observed to nucleate directly on external sheaths of viable cyanobacteria trichomes. A polyphasic approach including LM, SEM, TEM exhibited a number of identical but also some divergent cyanobacteria of which two key taxa were specific for each of the two microhabitats (Nostoc and Pseudoscytonema at Sites 1 and 2 respectively). Both cyanobacterial communities characterised, by the cloning of 16S rDNA showed a dominance of mostly unknown and partly divergent filamentous cyanobacteria assigned to the order of Synechococcales. Our microhabitat study of alpine crenal calcites highlights the rather divergent biotic responses of cyanobacteria within spring tufa deposits.
Collapse
Affiliation(s)
- Eugen Rott
- Institut für Botanik, University of Innsbruck, Innsbruck, Austria
| | - Rainer Kurmayer
- Forschungsinstitut für Limnologie, University of Innsbruck, Mondsee, Austria
| | | | | |
Collapse
|
18
|
Wang J, Zhang P, Bao JT, Zhao JC, Song G, Yang HT, Huang L, He MZ, Li XR. Comparison of cyanobacterial communities in temperate deserts: A cue for artificial inoculation of biological soil crusts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140970. [PMID: 32731072 DOI: 10.1016/j.scitotenv.2020.140970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
The topsoil cyanobacteria in biological soil crusts (BSCs) play a vital role in stabilizing soil surface of disturbed habitats in water and nutrient-poor ecosystems. Currently, artificial inoculation of BSCs is considered as an effective approach to restore habitats and accelerate ecosystem regeneration. Understanding the character of cyanobacterial communities is the necessary prerequisite to explore the artificial inoculation of BSCs. For this reason, cyanobacterial communities in BSCs were compared between two mid-latitute temperate deserts with distinct precipitation patterns. The results showed that Oscillatoriales and Nostocales dominated crusts in the Tengger desert with majority of rainfall in summer and early autumn while Oscillatoriales dominated crusts in the Kyzyl kum desert with more rainfall in winter and early spring. Moreover, filamentous Microcoleus vaginatus overwhelmingly dominated all the crusts in both deserts with Mastigocladopsis sp. and Chroococcidiopsis spp. as the dominant heterocystous cyanobacteria. Of note, genus Wilmottia kept a relative stable and high abundance in both deserts. The top two abundantly shared cyanobacteria (> 1% of total sequences) were M. vaginatus and Mastigocladopsis sp. in both deserts, while 16 genera with significant variances were found between the two deserts (P <0.05). Total variations of cyanobacterial communities across the deserts were largely explained by a combination of biotic factors (microbial biomass C and N) and abiotic factors (soil pH, soil water content, soil water holding capacity, and soil available potassium). Compared to better-developed crusts, cyanobacterial abundance was higher in cyanobacterial crusts. BSC type and/or geographic location significantly affected cyanobacterial Shannon diversity without significantly influencing species richness. Our data suggest that the basic and major groups (e.g. M. vaginatus, Wilmottia spp., Mastigocladopsis sp., and Chroococcidiopsis spp.), and the abundantly shared phylotypes which showed significant difference in cyanobacterial communities between deserts, should be focused on to further explore the artificial inoculation of BSCs in temperate drylands.
Collapse
Affiliation(s)
- Jin Wang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Peng Zhang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing-Ting Bao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jie-Cai Zhao
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Guang Song
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hao-Tian Yang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Huang
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ming-Zhu He
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xin-Rong Li
- Shapotou Desert Research and Experiment Station, Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
19
|
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms 2020; 8:E1667. [PMID: 33121104 PMCID: PMC7692164 DOI: 10.3390/microorganisms8111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
Collapse
Affiliation(s)
- Veronika Sommer
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
- upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany
| | - Tatiana Mikhailyuk
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine;
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| |
Collapse
|
20
|
Churro C, Semedo-Aguiar AP, Silva AD, Pereira-Leal JB, Leite RB. A novel cyanobacterial geosmin producer, revising GeoA distribution and dispersion patterns in Bacteria. Sci Rep 2020; 10:8679. [PMID: 32457360 PMCID: PMC7251104 DOI: 10.1038/s41598-020-64774-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/21/2020] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are ubiquitous organisms with a relevant contribution to primary production in all range of habitats. Cyanobacteria are well known for their part in worldwide occurrence of aquatic blooms while producing a myriad of natural compounds, some with toxic potential, but others of high economical impact, as geosmin. We performed an environmental survey of cyanobacterial soil colonies to identify interesting metabolic pathways and adaptation strategies used by these microorganisms and isolated, sequenced and assembled the genome of a cyanobacterium that displayed a distinctive earthy/musty smell, typical of geosmin, confirmed by GC-MS analysis of the culture's volatile extract. Morphological studies pointed to a new Oscillatoriales soil ecotype confirmed by phylogenetic analysis, which we named Microcoleus asticus sp. nov. Our studies of geosmin gene presence in Bacteria, revealed a scattered distribution among Cyanobacteria, Actinobacteria, Delta and Gammaproteobacteria, covering different niches. Careful analysis of the bacterial geosmin gene and gene tree suggests an ancient bacterial origin of the gene, that was probably successively lost in different time frames. The high sequence similarities in the cyanobacterial geosmin gene amidst freshwater and soil strains, reinforce the idea of an evolutionary history of geosmin, that is intimately connected to niche adaptation.
Collapse
Affiliation(s)
- Catarina Churro
- Laboratório de Fitoplâncton, Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisboa, Portugal.
- Blue Biotechnology and Ecotoxicology (BBE), CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208, Matosinhos, Portugal.
| | - Ana P Semedo-Aguiar
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Programa de Pós-Graduação Ciência para o Desenvolvimento, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Universidade Jean Piaget de Cabo Verde, Campus da Praia, Caixa Postal 775, Palmarejo Grande, Praia, Cabo Verde
| | - Alexandra D Silva
- Laboratório de Fitoplâncton, Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisboa, Portugal
| | - Jose B Pereira-Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Ophiomics-Precision Medicine, Pólo Tecnológico de Lisboa, Rua Cupertino de Miranda, 9, Lote 8, 1600-513, Lisbon, Portugal
| | - Ricardo B Leite
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
| |
Collapse
|
21
|
Giraldo-Silva A, Fernandes VMC, Bethany J, Garcia-Pichel F. Niche Partitioning with Temperature among Heterocystous Cyanobacteria ( Scytonema spp., Nostoc spp., and Tolypothrix spp.) from Biological Soil Crusts. Microorganisms 2020; 8:microorganisms8030396. [PMID: 32178304 PMCID: PMC7142793 DOI: 10.3390/microorganisms8030396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Heterocystous cyanobacteria of biocrusts are key players for biological fixation in drylands, where nitrogen is only second to water as a limiting resource. We studied the niche partitioning among the three most common biocrust heterocystous cyanobacteria sts using enrichment cultivation and the determination of growth responses to temperature in 30 representative isolates. Isolates of Scytonema spp. were most thermotolerant, typically growing up to 40 °C, whereas only those of Tolypothrix spp. grew at 4 °C. Nostoc spp. strains responded well at intermediate temperatures. We could trace the heat sensitivity in Nostoc spp. and Tolypothrix spp. to N2-fixation itself, because the upper temperature for growth increased under nitrogen replete conditions. This may involve an inability to develop heterocysts (specialized N2-fixing cells) at high temperatures. We then used a meta-analysis of biocrust molecular surveys spanning four continents to test the relevance of this apparent niche partitioning in nature. Indeed, the geographic distribution of the three types was clearly constrained by the mean local temperature, particularly during the growth season. This allows us to predict a potential shift in dominance in many locales as a result of global warming, to the benefit of Scytonema spp. populations.
Collapse
Affiliation(s)
- Ana Giraldo-Silva
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Vanessa M. C. Fernandes
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Julie Bethany
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: , Tel.: +1-4807270498
| |
Collapse
|
22
|
Machado-de-Lima NM, Fernandes VMC, Roush D, Velasco Ayuso S, Rigonato J, Garcia-Pichel F, Branco LHZ. The Compositionally Distinct Cyanobacterial Biocrusts From Brazilian Savanna and Their Environmental Drivers of Community Diversity. Front Microbiol 2019; 10:2798. [PMID: 31921007 PMCID: PMC6929519 DOI: 10.3389/fmicb.2019.02798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023] Open
Abstract
The last decade was marked by efforts to define and identify the main cyanobacterial players in biological crusts around the world. However, not much is known about biocrusts in Brazil’s tropical savanna (cerrado), despite the existence of environments favorable to their development and ecological relevance. We examined the community composition of cyanobacteria in biocrusts from six sites distributed in the Southeast of the country using high throughput sequencing of 16S rRNA and phylogenetic placement in the wider context of biocrusts from deserts. Sequences ascribable to 22 genera of cyanobacteria were identified. Although a significant proportion of sequences did not match those of known cyanobacteria, several clades of Leptolyngbya and Porphyrosiphon were found to be the most abundant. We identified significant differences in dominance and overall composition among the cerrado sites, much larger than within-site variability. The composition of cerrado cyanobacterial communities was distinct from those known in biocrusts from North American deserts. Among several environmental drivers considered, the opposing trend of annual precipitation and mean annual temperature best explained the variability in community composition within Brazilian biocrusts. Their compositional uniqueness speaks of the need for dedicated efforts to study the ecophysiology of tropical savanna biocrust and their roles in ecosystem function for management and preservation.
Collapse
Affiliation(s)
- Náthali Maria Machado-de-Lima
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Daniel Roush
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Sergio Velasco Ayuso
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, Brazil
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Luis Henrique Zanini Branco
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
23
|
Pushkareva E, Wilmotte A, Láska K, Elster J. Comparison of Microphototrophic Communities Living in Different Soil Environments in the High Arctic. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Becerra-Absalón I, Muñoz-Martín MÁ, Montejano G, Mateo P. Differences in the Cyanobacterial Community Composition of Biocrusts From the Drylands of Central Mexico. Are There Endemic Species? Front Microbiol 2019; 10:937. [PMID: 31130933 PMCID: PMC6510263 DOI: 10.3389/fmicb.2019.00937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
In drylands worldwide, biocrusts, topsoil microbial communities, are prevalent, contributing to the biostabilization of soils and allowing the subsequent establishment and growth of vascular plants. In early successional biocrusts, cyanobacteria are the first dominant colonizers of bare ground, largely determining their functioning. However, there are large gaps in our knowledge of the cyanobacterial diversity in biocrusts, particularly in understudied geographic regions, such as the tropical latitudes. We analyzed the diversity of the cyanobacteria inhabiting the biocrusts of semideserts from Central Mexico in two localities belonging to the same desert system (Chihuahuan Desert) that are separated by a cordillera that crosses the center of Mexico. Morphological identification of the cyanobacteria was carried out after cultivation in parallel with the direct observation of the environmental samples and was supported by genetic characterization through analysis of the 16S rRNA gene of the isolated strains and by next-generation sequencing of the soil samples. Taxonomic assignment revealed a clear dominance of heterocystous cyanobacteria at one of the studied locations (Actopan, Hidalgo state). Although heterocystous forms were abundant at the other location (Atexcac, Puebla state), almost a third of the cyanobacterial phylotypes were represented by unicellular/colonial cyanobacteria, mostly Chroococcidiopsis spp. Only 28.4% of the phylotypes were found to be common to both soils. Most of the other taxa, however, were biocrust-type specific, and approximately 35% of the phylotypes were found to be unique to the soil they were collected in. In addition, differences in the abundances of the shared cyanobacteria between the locations were also found. These differences in the cyanobacterial distribution were supported by the distinct responses of the isolated strains representative of the sites to extreme heat and desiccation in bioassays. Some cyanobacteria with high abundance or only present at the hottest Actopan site, such as Scytonema hyalinum, Scytonema crispum, Nostoc commune, Nostoc sp., and Calothrix parietina, survived extreme heat and desiccation. However, Tolypothrix distorta and Chroococcidiopsis spp. were clearly sensitive to these extreme conditions in relation to their lower abundances at Actopan as opposed to Atexcac. Since novel biocrust-associated phylotypes were also found, the emergence of endemic cyanobacterial taxa is discussed.
Collapse
Affiliation(s)
- Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M. Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gustavo Montejano
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol Ecol 2019; 28:2305-2320. [DOI: 10.1111/mec.15074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Nadav Oren
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences Rutgers University New Brunswick New Jersey
| | - Isaac Kedem
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Adi Turjeman
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Michal Bronstein
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
26
|
Roncero-Ramos B, Muñoz-Martín MÁ, Chamizo S, Fernández-Valbuena L, Mendoza D, Perona E, Cantón Y, Mateo P. Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ 2019; 7:e6169. [PMID: 30627491 PMCID: PMC6321753 DOI: 10.7717/peerj.6169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are key microbes in topsoil communities that have important roles in preventing soil erosion, carbon and nitrogen fixation, and influencing soil hydrology. However, little is known regarding the identity and distribution of the microbial components in the photosynthetic assemblages that form a cohesive biological soil crust (biocrust) in drylands of Europe. In this study, we investigated the cyanobacterial species colonizing biocrusts in three representative dryland ecosystems from the most arid region in Europe (SE Spain) that are characterized by different soil conditions. Isolated cyanobacterial cultures were identified by a polyphasic approach, including 16S rRNA gene sequencing, phylogenetic relationship determination, and morphological and ecological habitat assessments. Three well-differentiated groups were identified: heterocystous-cyanobacteria (Nostoc commune, Nostoc calcicola, Tolypothrix distorta and Scytonema hyalinum), which play an important role in N and C cycling in soil; nonheterocystous bundle-forming cyanobacteria (Microcoleus steenstrupii, Trichocoleus desertorum, and Schizothrix cf. calcicola); and narrow filamentous cyanobacteria (Leptolyngbya frigida and Oculatella kazantipica), all of which are essential genera for initial biocrust formation. The results of this study contribute to our understanding of cyanobacterial species composition in biocrusts from important and understudied European habitats, such as the Mediterranean Basin, a hotspot of biodiversity, where these species are keystone pioneer organisms.
Collapse
Affiliation(s)
| | | | - Sonia Chamizo
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| | | | - Diego Mendoza
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elvira Perona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda Cantón
- Departamento de Agronomía, Universidad de Almería, Almería, Spain.,Centro de Investigación de Colecciones Científicas de la Universidad de Almería, Universidad de Almería, Almería, Spain
| | - Pilar Mateo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Muñoz-Martín MÁ, Becerra-Absalón I, Perona E, Fernández-Valbuena L, Garcia-Pichel F, Mateo P. Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. THE NEW PHYTOLOGIST 2019; 221:123-141. [PMID: 30047599 DOI: 10.1111/nph.15355] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria are a key biotic component as primary producers in biocrusts, topsoil communities that have important roles in the functioning of drylands. Yet, major knowledge gaps exist regarding the composition of biocrust cyanobacterial diversity and distribution in Mediterranean ecosystems. We describe cyanobacterial diversity in Mediterranean semiarid soil crusts along an aridity gradient by using next-generation sequencing and bioinformatics analyses, and detect clear shifts along it in cyanobacterial dominance. Statistical analyses show that temperature and precipitation were major parameters determining cyanobacterial composition, suggesting the presence of differentiated climatic niches for distinct cyanobacteria. The responses to temperature of a set of cultivated, pedigreed strains representative of the field populations lend direct support to that contention, with psychrotolerant vs thermotolerant physiology being strain dependent, and consistent with their dominance along the natural gradient. Our results suggest a possible replacement, as global warming proceeds, of cool-adapted by warm-adapted nitrogen-fixing cyanobacteria (such as Scytonema) and a switch in the dominance of Microcoleus vaginatus by thermotolerant, novel phylotypes of bundle-forming cyanobacteria. These differential sensitivities of cyanobacteria to rising temperatures and decreasing precipitation, their ubiquity, and their low generation time point to their potential as bioindicators of global change.
Collapse
Affiliation(s)
- M Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lara Fernández-Valbuena
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Jung P, Briegel-Williams L, Schermer M, Büdel B. Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. Microbiologyopen 2018; 8:e00729. [PMID: 30239166 PMCID: PMC6528576 DOI: 10.1002/mbo3.729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar and Alpine ecosystems, serve as indicators for ecological condition and climate change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen input. The characterization of cyanobacteria from both polar regions remains extremely important to understand geographic distribution patterns and community compositions. This study is the first of its kind revealing the efficiency of combining denaturing gradient gel electrophoresis (DGGE), light microscopy and culture‐based 16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated BSCs. This study aimed to show the living proportion of cyanobacteria as an extension to previously published meta‐transcriptome data of the same study sites. Molecular fingerprints showed a distinct clustering of cyanobacterial communities with a close relationship between Arctic and Alpine populations, which differed from those found in Antarctica. Species richness and diversity supported these results, which were also confirmed by microscopic investigations of living cyanobacteria from the BSCs. Isolate‐based sequencing corroborated these trends as cold biome clades were assigned, which included a potentially new Arctic clade of Oculatella. Thus, our results contribute to the debate regarding biogeography of cyanobacteria of cold biomes.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Laura Briegel-Williams
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
29
|
O’Brien FJM, Dumont MG, Webb JS, Poppy GM. Rhizosphere Bacterial Communities Differ According to Fertilizer Regimes and Cabbage ( Brassica oleracea var. capitata L.) Harvest Time, but Not Aphid Herbivory. Front Microbiol 2018; 9:1620. [PMID: 30083141 PMCID: PMC6064718 DOI: 10.3389/fmicb.2018.01620] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/28/2018] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere microbial communities are known to be highly diverse and strongly dependent on various attributes of the host plant, such as species, nutritional status, and growth stage. High-throughput 16S rRNA gene amplicon sequencing has been used to characterize the rhizosphere bacterial community of many important crop species, but this is the first study to date to characterize the bacterial and archaeal community of Brassica oleracea var. capitata. The study also tested the response of the bacterial community to fertilizer type (organic or synthetic) and N dosage (high or low), in addition to plant age (9 or 12 weeks) and aphid (Myzus persicae) herbivory (present/absent). The impact of aboveground herbivory on belowground microbial communities has received little attention in the literature, and since the type (organic or mineral) and amount of fertilizer applications are known to affect M. percicae populations, these treatments were applied at agricultural rates to test for synergistic effects on the soil bacterial community. Fertilizer type and plant growth were found to result in significantly different rhizosphere bacterial communities, while there was no effect of aphid herbivory. Several operational taxonomic units were identified as varying significantly in abundance between the treatment groups and age cohorts. These included members of the S-oxidizing genus Thiobacillus, which was significantly more abundant in organically fertilized 12-week-old cabbages, and the N-fixing cyanobacteria Phormidium, which appeared to decline in synthetically fertilized soils relative to controls. These responses may be an effect of accumulating root-derived glucosinolates in the B. oleracea rhizosphere and increased N-availability, respectively.
Collapse
Affiliation(s)
- Flora J. M. O’Brien
- Biological Sciences, University of Southampton, Southampton, United Kingdom
- NIAB EMR, East Malling, United Kingdom
| | - Marc G. Dumont
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Jeremy S. Webb
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Guy M. Poppy
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
30
|
Cano-Díaz C, Mateo P, Muñoz-Martín MÁ, Maestre FT. Diversity of biocrust-forming cyanobacteria in a semiarid gypsiferous site from Central Spain. JOURNAL OF ARID ENVIRONMENTS 2018; 151:83-89. [PMID: 30038450 PMCID: PMC6054298 DOI: 10.1016/j.jaridenv.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cyanobacteria are a key constituent of biocrusts, communities dominated by lichens, mosses and associated microorganisms, which are prevalent in drylands worldwide and that largely determine their functioning. Despite their importance, there are large gaps in our knowledge of the composition and diversity of cyanobacteria associated with biocrusts, particularly in areas such as the Mediterranean Basin. We studied the diversity of these cyanobacteria in a gypsiferous grassland from Central Spain using both morphological identification after cultivation and genetic analyses with the 16S rRNA gene. Nine different morphotypes were observed, eight corresponding to filamentous, and one to unicellular cyanobacteria. We found cyanobacterial genera typical of biocrust communities, such as Microcoleus and Trichocoleus, and N-fixing cyanobacteria such as Scytonema and Nostoc. Genetic information allowed us to identify cultures belonging to recently described genera such as Roholtiella, Nodosilinea and Mojavia. We also describe two new phylotypes of Microcoleus and Scytonema, which are key genera contributing to ecosystem functioning in biocrust-dominated ecosystems worldwide.
Collapse
Affiliation(s)
- Concha Cano-Díaz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles 28933, Spain
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - M. Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando T. Maestre
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles 28933, Spain
| |
Collapse
|
31
|
Rippin M, Borchhardt N, Williams L, Colesie C, Jung P, Büdel B, Karsten U, Becker B. Genus richness of microalgae and Cyanobacteria in biological soil crusts from Svalbard and Livingston Island: morphological versus molecular approaches. Polar Biol 2018. [DOI: 10.1007/s00300-018-2252-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Williams L, Jung P, Zheng LJ, Maier S, Peer T, Grube M, Weber B, Büdel B. Assessing recovery of biological soil crusts across a latitudinal gradient in Western Europe. Restor Ecol 2017. [DOI: 10.1111/rec.12579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Laura Williams
- Plant Ecology and Systematics, Biology Institute; University of Kaiserslautern; PO Box 3049, 67653 Kaiserslautern Germany
| | - Patrick Jung
- Plant Ecology and Systematics, Biology Institute; University of Kaiserslautern; PO Box 3049, 67653 Kaiserslautern Germany
| | - Ling-Juan Zheng
- FB Organismische Biologie; University of Salzburg; Hellbrunnerstrasse 34, 5020 Salzburg Austria
| | - Stefanie Maier
- Institute of Plant Sciences; University of Graz; 8010 Graz Austria
- Multiphase Chemistry Department; Max Planck Institute for Chemistry; Hahn-Meitner-Weg 1, 55128 Mainz Germany
| | - Thomas Peer
- FB Organismische Biologie; University of Salzburg; Hellbrunnerstrasse 34, 5020 Salzburg Austria
| | - Martin Grube
- Institute of Plant Sciences; University of Graz; 8010 Graz Austria
| | - Bettina Weber
- Multiphase Chemistry Department; Max Planck Institute for Chemistry; Hahn-Meitner-Weg 1, 55128 Mainz Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute; University of Kaiserslautern; PO Box 3049, 67653 Kaiserslautern Germany
| |
Collapse
|
33
|
Williams L, Colesie C, Ullmann A, Westberg M, Wedin M, Büdel B. Lichen acclimation to changing environments: Photobiont switching vs. climate-specific uniqueness in Psora decipiens. Ecol Evol 2017; 7:2560-2574. [PMID: 28428847 PMCID: PMC5395455 DOI: 10.1002/ece3.2809] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/25/2023] Open
Abstract
Unraveling the complex relationship between lichen fungal and algal partners has been crucial in understanding lichen dispersal capacity, evolutionary processes, and responses in the face of environmental change. However, lichen symbiosis remains enigmatic, including the ability of a single fungal partner to associate with various algal partners. Psora decipiens is a characteristic lichen of biological soil crusts (BSCs), across semi-arid, temperate, and alpine biomes, which are particularly susceptible to habitat loss and climate change. The high levels of morphological variation found across the range of Psora decipiens may contribute to its ability to withstand environmental change. To investigate Psora decipiens acclimation potential, individuals were transplanted between four climatically distinct sites across a European latitudinal gradient for 2 years. The effect of treatment was investigated through a morphological examination using light and SEM microscopy; 26S rDNA and rbcL gene analysis assessed site-specific relationships and lichen acclimation through photobiont switching. Initial analysis revealed that many samples had lost their algal layers. Although new growth was often determined, the algae were frequently found to have died without evidence of a new photobiont being incorporated into the thallus. Mycobiont analysis investigated diversity and determined that new growth was a part of the transplant, thus, revealing that four distinct fungal clades, closely linked to site, exist. Additionally, P. decipiens was found to associate with the green algal genus Myrmecia, with only two genetically distinct clades between the four sites. Our investigation has suggested that P. decipiens cannot acclimate to the substantial climatic variability across its environmental range. Additionally, the different geographical areas are home to genetically distinct and unique populations. The variation found within the genotypic and morpho-physiological traits of P. decipiens appears to have a climatic determinant, but this is not always reflected by the algal partner. Although photobiont switching occurs on an evolutionary scale, there is little evidence to suggest an active environmentally induced response. These results suggest that this species, and therefore, other lichen species, and BSC ecosystems themselves may be significantly vulnerable to climate change and habitat loss.
Collapse
Affiliation(s)
- Laura Williams
- Plant Ecology and SystematicsBiology InstituteUniversity of KaiserslauternKaiserslauternGermany
| | - Claudia Colesie
- Plant Ecology and SystematicsBiology InstituteUniversity of KaiserslauternKaiserslauternGermany
| | - Anna Ullmann
- Plant Ecology and SystematicsBiology InstituteUniversity of KaiserslauternKaiserslauternGermany
| | | | - Mats Wedin
- Department of BotanySwedish Museum of Natural HistoryStockholmSweden
| | - Burkhard Büdel
- Plant Ecology and SystematicsBiology InstituteUniversity of KaiserslauternKaiserslauternGermany
| |
Collapse
|
34
|
Baldrian P. Editorial: Special thematic issue on the ecology of soil microorganisms. FEMS Microbiol Ecol 2016; 93:fiw237. [PMID: 27915282 DOI: 10.1093/femsec/fiw237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Videnska 1083, 14220 Praha 4, Czech Republic E-mail:
| |
Collapse
|