1
|
Lin C, Li LJ, Yang K, Xu JY, Fan XT, Chen QL, Zhu YG. Protozoa-enhanced conjugation frequency alters the dissemination of soil antibiotic resistance. THE ISME JOURNAL 2025; 19:wraf009. [PMID: 39869787 PMCID: PMC11845867 DOI: 10.1093/ismejo/wraf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes (ARGs). However, the effects of protozoan predation on ARGs dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of ARGs to soil microbial communities. Protozoan predation reduced the absolute abundance of plasmids but promoted the expression of conjugation-associated genes, leading to a 5-fold and 4.5-fold increase in conjugation frequency in the presence of C. steinii and A. castellanii, respectively. Excessive oxidative stress, increased membrane permeability, and the provoked SOS response closely associated with the increased conjugative transfer. Protozoan predation also altered the plasmid host range and selected for specific transconjugant taxa along with ARGs and virulence factors carried by transconjugant communities. This study underscores the role of protozoa in the plasmid-mediated conjugative transfer of ARGs, providing new insights into microbial mechanisms that drive the dissemination of environmental antibiotic resistance.
Collapse
Affiliation(s)
- Chenshuo Lin
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Li-Juan Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Kai Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Jia-Yang Xu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qing-Lin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Blanco P, Trigo da Roza F, Toribio-Celestino L, García-Pastor L, Caselli N, Morón Á, Ojeda F, Darracq B, Vergara E, Amaro F, San Millán Á, Skovgaard O, Mazel D, Loot C, Escudero J. Chromosomal integrons are genetically and functionally isolated units of genomes. Nucleic Acids Res 2024; 52:12565-12581. [PMID: 39385642 PMCID: PMC11551772 DOI: 10.1093/nar/gkae866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Integrons are genetic elements that increase the evolvability of bacteria by capturing new genes and stockpiling them in arrays. Sedentary chromosomal integrons (SCIs) can be massive and highly stabilized structures encoding hundreds of genes, whose function remains generally unknown. SCIs have co-evolved with the host for aeons and are highly intertwined with their physiology from a mechanistic point of view. But, paradoxically, other aspects, like their variable content and location within the genome, suggest a high genetic and functional independence. In this work, we have explored the connection of SCIs to their host genome using as a model the Superintegron (SI), a 179-cassette long SCI in the genome of Vibrio cholerae N16961. We have relocated and deleted the SI using SeqDelTA, a novel method that allows to counteract the strong stabilization conferred by toxin-antitoxin systems within the array. We have characterized in depth the impact in V. cholerae's physiology, measuring fitness, chromosome replication dynamics, persistence, transcriptomics, phenomics, natural competence, virulence and resistance against protist grazing. The deletion of the SI did not produce detectable effects in any condition, proving that-despite millions of years of co-evolution-SCIs are genetically and functionally isolated units of genomes.
Collapse
Affiliation(s)
- Paula Blanco
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Filipa Trigo da Roza
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Laura Toribio-Celestino
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro Morón
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Ojeda
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
- Sorbonne Université, ED515, F-75005 Paris, France
| | - Ester Vergara
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Francisco Amaro
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Álvaro San Millán
- Departamento de Microbiología Microbiana, Centro Nacional de Biotecnología–CSIC, Madrid 28049, Spain
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, 75015 Paris, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation, Departamento de Sanidad Animal, Universidad Complutense de Madrid, Madrid 28040, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
3
|
Moustafa DA, Wu L, Ivey M, Fankhauser SC, Goldberg JB. Mutation of hmgA, encoding homogentisate 1,2-dioxygenase, is responsible for pyomelanin production but does not impact the virulence of Burkholderia cenocepacia in a chronic granulomatous disease mouse lung infection. Microbiol Spectr 2024; 12:e0041024. [PMID: 38809005 PMCID: PMC11218447 DOI: 10.1128/spectrum.00410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis (CF) and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals; pigment production has been reported to enable Bcc strains to overcome the host cell oxidative burst. In this work, we investigated the role of pyomelanin in resistance to oxidative stress and virulence in strains J2315 and K56-2, two epidemic CF isolates belonging to the Burkholderia cenocepacia ET-12 lineage. We previously reported that a single amino acid change from glycine to arginine at residue 378 in homogentisate 1,2-dioxygenase (HmgA) affects the pigment production phenotype: pigmented J2315 has an arginine at position 378, while non-pigmented K56-2 has a glycine at this position. Herein, we performed allelic exchange to generate isogenic non-pigmented and pigmented strains of J2315 and K56-2, respectively, and tested these to determine whether pyomelanin contributes to the protection against oxidative stress in vitro as well as in a respiratory infection in CGD mice in vivo. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist oxidative stress with H2O2 and NO in vitro and did not change the virulence and infection outcome in CGD mice in vivo suggesting that other factors besides pyomelanin are contributing to the pathophysiology of these strains.IMPORTANCEThe Burkholderia cepacia complex (Bcc) is a group of Gram-negative opportunistic bacteria that are often associated with fatal pulmonary infections in patients with impaired immunity, particularly those with cystic fibrosis and chronic granulomatous disease (CGD). Some Bcc strains are known to naturally produce pyomelanin, a brown melanin-like pigment known for scavenging free radicals and overcoming the host cell oxidative burst. We investigated the role of pyomelanin in Burkholderia cenocepacia strains J2315 (pigmented) and K56-2 (non-pigmented) and performed allelic exchange to generate isogenic non-pigmented and pigmented strains, respectively. Our results indicate that the altered pigment phenotype does not significantly impact these strains' ability to resist H2O2 or NO in vitro and did not alter the outcome of a respiratory infection in CGD mice in vivo. These results suggest that pyomelanin may not always constitute a virulence factor and suggest that other features are contributing to the pathophysiology of these strains.
Collapse
Affiliation(s)
- Dina A Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Linda Wu
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Melissa Ivey
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarah C Fankhauser
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biology, Oxford College of Emory University, Oxford, Georgia, USA
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Bunma C, Noinarin P, Phetcharaburanin J, Chareonsudjai S. Burkholderia pseudomallei biofilm resists Acanthamoeba sp. grazing and produces 8-O-4'-diferulic acid, a superoxide scavenging metabolite after passage through the amoeba. Sci Rep 2023; 13:16578. [PMID: 37789212 PMCID: PMC10547685 DOI: 10.1038/s41598-023-43824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Burkholderia pseudomallei, an etiological agent of melioidosis is an environmental bacterium that can survive as an intracellular pathogen. The biofilm produced by B. pseudomallei is crucial for cellular pathogenesis of melioidosis. The purpose of this investigation is to explore the role of biofilm in survival of B. pseudomallei during encounters with Acanthamoeba sp. using B. pseudomallei H777 (a biofilm wild type), M10 (a biofilm defect mutant) and C17 (a biofilm-complemented strain). The results demonstrated similar adhesion to amoebae by both the biofilm wild type and biofilm mutant strains. There was higher initial internalisation, but the difference diminished after longer encounter with the amoeba. Interestingly, confocal laser scanning microscopy demonstrated that pre-formed biofilm of B. pseudomallei H777 and C17 were markedly more persistent in the face of Acanthamoeba sp. grazing than that of M10. Metabolomic analysis revealed a significant increased level of 8-O-4'-diferulic acid, a superoxide scavenger metabolite, in B. pseudomallei H777 serially passaged in Acanthamoeba sp. The interaction between B. pseudomallei with a free-living amoeba may indicate the evolutionary pathway that enables the bacterium to withstand superoxide radicals in intracellular environments. This study supports the hypothesis that B. pseudomallei biofilm persists under grazing by amoebae and suggests a strategy of metabolite production that turns this bacterium from saprophyte to intracellular pathogen.
Collapse
Affiliation(s)
- Chainarong Bunma
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Parumon Noinarin
- Department of Occupational Health and Safety, Faculty of Public Health, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University Phenome Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand.
| |
Collapse
|
5
|
Suyama H, Luu LDW, Zhong L, Raftery MJ, Lan R. Integrating proteomic data with metabolic modeling provides insight into key pathways of Bordetella pertussis biofilms. Front Microbiol 2023; 14:1169870. [PMID: 37601354 PMCID: PMC10435875 DOI: 10.3389/fmicb.2023.1169870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Pertussis, commonly known as whooping cough is a severe respiratory disease caused by the bacterium, Bordetella pertussis. Despite widespread vaccination, pertussis resurgence has been observed globally. The development of the current acellular vaccine (ACV) has been based on planktonic studies. However, recent studies have shown that B. pertussis readily forms biofilms. A better understanding of B. pertussis biofilms is important for developing novel vaccines that can target all aspects of B. pertussis infection. This study compared the proteomic expression of biofilm and planktonic B. pertussis cells to identify key changes between the conditions. Major differences were identified in virulence factors including an upregulation of toxins (adenylate cyclase toxin and dermonecrotic toxin) and downregulation of pertactin and type III secretion system proteins in biofilm cells. To further dissect metabolic pathways that are altered during the biofilm lifestyle, the proteomic data was then incorporated into a genome scale metabolic model using the Integrative Metabolic Analysis Tool (iMAT). The generated models predicted that planktonic cells utilised the glyoxylate shunt while biofilm cells completed the full tricarboxylic acid cycle. Differences in processing aspartate, arginine and alanine were identified as well as unique export of valine out of biofilm cells which may have a role in inter-bacterial communication and regulation. Finally, increased polyhydroxybutyrate accumulation and superoxide dismutase activity in biofilm cells may contribute to increased persistence during infection. Taken together, this study modeled major proteomic and metabolic changes that occur in biofilm cells which helps lay the groundwork for further understanding B. pertussis pathogenesis.
Collapse
Affiliation(s)
- Hiroki Suyama
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Hoque MM, Espinoza-Vergara G, McDougald D. Protozoan predation as a driver of diversity and virulence in bacterial biofilms. FEMS Microbiol Rev 2023; 47:fuad040. [PMID: 37458768 DOI: 10.1093/femsre/fuad040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Protozoa are eukaryotic organisms that play a crucial role in nutrient cycling and maintaining balance in the food web. Predation, symbiosis and parasitism are three types of interactions between protozoa and bacteria. However, not all bacterial species are equally susceptible to protozoan predation as many are capable of defending against predation in numerous ways and may even establish either a symbiotic or parasitic life-style. Biofilm formation is one such mechanism by which bacteria can survive predation. Structural and chemical components of biofilms enhance resistance to predation compared to their planktonic counterparts. Predation on biofilms gives rise to phenotypic and genetic heterogeneity in prey that leads to trade-offs in virulence in other eukaryotes. Recent advances, using molecular and genomics techniques, allow us to generate new information about the interactions of protozoa and biofilms of prey bacteria. This review presents the current state of the field on impacts of protozoan predation on biofilms. We provide an overview of newly gathered insights into (i) molecular mechanisms of predation resistance in biofilms, (ii) phenotypic and genetic diversification of prey bacteria, and (iii) evolution of virulence as a consequence of protozoan predation on biofilms.
Collapse
Affiliation(s)
- M Mozammel Hoque
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Gustavo Espinoza-Vergara
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Diane McDougald
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Environmental Reservoirs of Pathogenic Vibrio spp. and Their Role in Disease: The List Keeps Expanding. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:99-126. [PMID: 36792873 DOI: 10.1007/978-3-031-22997-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio species are natural inhabitants of aquatic environments and have complex interactions with the environment that drive the evolution of traits contributing to their survival. These traits may also contribute to their ability to invade or colonize animal and human hosts. In this review, we attempt to summarize the relationships of Vibrio spp. with other organisms in the aquatic environment and discuss how these interactions could potentially impact colonization of animal and human hosts.
Collapse
|
8
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
9
|
Tai JSB, Ferrell MJ, Yan J, Waters CM. New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:17-39. [PMID: 36792869 PMCID: PMC10726288 DOI: 10.1007/978-3-031-22997-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.
Collapse
Affiliation(s)
- Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Micah J Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Rayamajhee B, Willcox MDP, Henriquez FL, Petsoglou C, Subedi D, Carnt N. Acanthamoeba, an environmental phagocyte enhancing survival and transmission of human pathogens. Trends Parasitol 2022; 38:975-990. [PMID: 36109313 DOI: 10.1016/j.pt.2022.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
The opportunistic protist Acanthamoeba, which interacts with other microbes such as bacteria, fungi, and viruses, shows significant similarity in cellular and functional aspects to human macrophages. Intracellular survival of microbes in this microbivorous amoebal host may be a crucial step for initiation of infection in higher eukaryotic cells. Therefore, Acanthamoeba-microbe adaptations are considered an evolutionary model of macrophage-pathogen interactions. This paper reviews Acanthamoeba as an emerging human pathogen and different ecological interactions between Acanthamoeba and microbes that may serve as environmental training grounds and a genetic melting pot for the evolution, persistence, and transmission of potential human pathogens.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Mark D P Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia.
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Blantyre, South Lanarkshire, G72 0LH, UK
| | - Constantinos Petsoglou
- Sydney and Sydney Eye Hospital, Southeastern Sydney Local Health District, Sydney, Australia; Save Sight Institute, University of Sydney, Sydney, Australia
| | - Dinesh Subedi
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
11
|
Protozoal food vacuoles enhance transformation in Vibrio cholerae through SOS-regulated DNA integration. THE ISME JOURNAL 2022; 16:1993-2001. [PMID: 35577916 PMCID: PMC9296650 DOI: 10.1038/s41396-022-01249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Vibrio cholerae, the bacterial pathogen responsible for the diarrheal disease cholera, resides in the aquatic environment between outbreaks. For bacteria, genetic variation by lateral gene transfer (LGT) is important for survival and adaptation. In the aquatic environment, V. cholerae is predominantly found in biofilms associated with chitinous organisms or with chitin "rain". Chitin induces competency in V. cholerae, which can lead to LGT. In the environment, V. cholerae is also subjected to predation pressure by protist. Here we investigated whether protozoal predation affected LGT using the integron as a model. Integrons facilitate the integration of mobile DNA (gene cassettes) into the bacterial chromosome. We report that protozoal predation enhances transformation of a gene cassette by as much as 405-fold. We show that oxidative radicals produced in the protozoal phagosome induces the universal SOS response, which in turn upregulates the integron-integrase, the recombinase that facilitates cassette integration. Additionally, we show that during predation, V. cholerae requires the type VI secretion system to acquire the gene cassette from Escherichia coli. These results show that protozoal predation enhances LGT thus producing genetic variants that may have increased capacity to survive grazing. Additionally, the conditions in the food vacuole may make it a "hot spot" for LGT by accumulating diverse bacteria and inducing the SOS response helping drive genetic diversification and evolution.
Collapse
|
12
|
Hoque MM, Noorian P, Espinoza-Vergara G, Manuneedhi Cholan P, Kim M, Rahman MH, Labbate M, Rice SA, Pernice M, Oehlers SH, McDougald D. Adaptation to an amoeba host drives selection of virulence-associated traits in Vibrio cholerae. THE ISME JOURNAL 2022; 16:856-867. [PMID: 34654895 PMCID: PMC8857207 DOI: 10.1038/s41396-021-01134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/02/2022]
Abstract
Predation by heterotrophic protists drives the emergence of adaptive traits in bacteria, and often these traits lead to altered interactions with hosts and persistence in the environment. Here we studied adaptation of the cholera pathogen, Vibrio cholerae during long-term co-incubation with the protist host, Acanthamoeba castellanii. We determined phenotypic and genotypic changes associated with long-term intra-amoebal host adaptation and how this impacts pathogen survival and fitness. We showed that adaptation to the amoeba host leads to temporal changes in multiple phenotypic traits in V. cholerae that facilitate increased survival and competitive fitness in amoeba. Genome sequencing and mutational analysis revealed that these altered lifestyles were linked to non-synonymous mutations in conserved regions of the flagellar transcriptional regulator, flrA. Additionally, the mutations resulted in enhanced colonisation in zebrafish, establishing a link between adaptation of V. cholerae to amoeba predation and enhanced environmental persistence. Our results show that pressure imposed by amoeba on V. cholerae selects for flrA mutations that serves as a key driver for adaptation. Importantly, this study provides evidence that adaptive traits that evolve in pathogens in response to environmental predatory pressure impact the colonisation of eukaryotic organisms by these pathogens.
Collapse
Affiliation(s)
- M. Mozammel Hoque
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Parisa Noorian
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Gustavo Espinoza-Vergara
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia
| | - Pradeep Manuneedhi Cholan
- grid.1013.30000 0004 1936 834XTuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health & Marie Bashir Institute, The University of Sydney, Camperdown, NSW Australia
| | - Mikael Kim
- grid.117476.20000 0004 1936 7611Climate Change Cluster, University of Technology Sydney, Sydney, NSW Australia
| | - Md Hafizur Rahman
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW Australia
| | - Maurizio Labbate
- grid.117476.20000 0004 1936 7611School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW Australia
| | - Scott A. Rice
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia ,grid.59025.3b0000 0001 2224 0361Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mathieu Pernice
- grid.117476.20000 0004 1936 7611Climate Change Cluster, University of Technology Sydney, Sydney, NSW Australia
| | - Stefan H. Oehlers
- grid.1013.30000 0004 1936 834XTuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health & Marie Bashir Institute, The University of Sydney, Camperdown, NSW Australia
| | - Diane McDougald
- grid.117476.20000 0004 1936 7611The iThree Institute, University of Technology Sydney, Sydney, NSW Australia ,grid.59025.3b0000 0001 2224 0361Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Malych R, Füssy Z, Ženíšková K, Arbon D, Hampl V, Hrdý I, Sutak R. The response of Naegleria gruberi to oxidative stress. Metallomics 2022; 14:6527579. [PMID: 35150262 DOI: 10.1093/mtomcs/mfac009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 11/14/2022]
Abstract
Aerobic organisms require oxygen for respiration but must simultaneously cope with oxidative damages inherently linked with this molecule. Unicellular amoeboflagellates of the genus Naegleria, containing both free-living species and opportunistic parasite, thrive in aerobic environments. However, they are also known to maintain typical features of anaerobic organisms. Here, we describe the mechanisms of oxidative damage mitigation in Naegleria gruberi and focus on the molecular characteristics of three noncanonical proteins interacting with oxygen and its derived reactive forms. We show that this protist expresses hemerythrin, protoglobin and an aerobic-type rubrerythrin, with spectral properties characteristic of the cofactors they bind. We provide evidence that protoglobin and hemerythrin interact with oxygen in vitro and confirm the mitochondrial localization of rubrerythrin by immunolabeling. Our proteomic analysis and immunoblotting following heavy metal treatment revealed upregulation of hemerythrin, while rotenone treatment resulted in an increase in rubrerythrin protein levels together with vast upregulation of alternative oxidase. Our study provided new insights into the mechanisms employed by N. gruberi to cope with different types of oxidative stress and allowed us to propose specific roles for three unique and understudied proteins: hemerythrin, protoglobin and rubrerythrin.
Collapse
Affiliation(s)
- Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Dominik Arbon
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
14
|
Loss of the acetate switch in Vibrio vulnificus enhances predation defence against Tetrahymena pyriformis. Appl Environ Microbiol 2021; 88:e0166521. [PMID: 34731052 PMCID: PMC8788688 DOI: 10.1128/aem.01665-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with antipredation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defense mechanisms. To identify antipredator strategies, 13 V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan Tetrahymena pyriformis, and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which are toxic to T. pyriformis. As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete conditions were compared. This analysis revealed that ENV1 ferments pyruvate and the resultant acetyl-CoA leads to acetate synthesis under aerobic conditions, a hallmark of overflow metabolism. The anaerobic respiration global regulator arcA was upregulated when iron was available. An ΔarcA deletion mutant of ENV1 accumulated less acetate and, importantly, was sensitive to grazing by T. pyriformis. Based on the transcriptome response and quantification of metabolites, we conclude that ENV1 has adapted to overflow metabolism and has lost a control switch that shifts metabolism from acetate excretion to acetate assimilation, enabling it to excrete acetate continuously. We show that overflow metabolism and the acetate switch contribute to prey-predator interactions. IMPORTANCE Bacteria in the environment, including Vibrio spp., interact with protozoan predators. To defend against predation, bacteria evolve antipredator mechanisms ranging from changing morphology, biofilm formation, and secretion of toxins or virulence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defense strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is known about the defense mechanisms V. vulnificus expresses against predation. Here, we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism, enabling the production of excess organic acid that is toxic to the protozoan predator T. pyriformis. This is a previously unknown mechanism of predation defense that protects against protozoan predators.
Collapse
|
15
|
Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 2021; 78:3843-3852. [PMID: 34554299 DOI: 10.1007/s00284-021-02655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.
Collapse
|
16
|
Pyomelanin produced by Streptomyces sp. ZL-24 and its protective effects against SH-SY5Y cells injury induced by hydrogen peroxide. Sci Rep 2021; 11:16649. [PMID: 34404820 PMCID: PMC8371117 DOI: 10.1038/s41598-021-94598-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
A soluble melanin pigment produced by Streptomyces sp. ZL-24 was purified and named StrSM. The elemental analysis of StrSM showed it consists of carbon, hydrogen, and oxygen. The spectrum analysis, including ultraviolet-visible absorption spectrum, Fourier-transform infrared spectrum, and pyrolysis-gas chromatography-mass spectrometry, indicated that StrSM might be pyomelanin. High performance liquid chromatography and liquid chromatography-mass spectra analysis of intermediate metabolite showed the presence of homogentisic acid (HGA). Moreover, the enzyme 4-hydroxyphenylpyruvate dioxygenase, involved in HGA biosynthesis, showed high activity during melanin production. Subsequently, a tyrosinase gene (melC2) and hydroxyphenylpyruvate dioxygenase gene double mutant demonstrated StrSM is pyomelanin. In vitro bioactivity assay showed that StrSM had excellent protective capability against SH-SY5Y cell oxidative injury. To our knowledge, the results firstly provide comprehensive data on Streptomyces pyomelanin identification and a promising candidate compound to treat oxidative injury of neurocytes.
Collapse
|
17
|
Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens. Toxins (Basel) 2021; 13:toxins13080526. [PMID: 34437397 PMCID: PMC8402458 DOI: 10.3390/toxins13080526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022] Open
Abstract
Numerous microorganisms, pathogenic for mammals, come from the environment where they encounter predators such as free-living amoebae (FLA). The selective pressure due to this interaction could have generated virulence traits that are deleterious for amoebae and represents a weapon against mammals. Toxins are one of these powerful tools that are essential for bacteria or fungi to survive. Which amoebae are used as a model to study the effects of toxins? What amoeba functions have been reported to be disrupted by toxins and bacterial secreted factors? Do bacteria and fungi effectors affect eukaryotic cells similarly? Here, we review some studies allowing to answer these questions, highlighting the necessity to extend investigations of microbial pathogenicity, from mammals to the environmental reservoir that are amoebae.
Collapse
|
18
|
The role of Acanthamoeba spp. in biofilm communities: a systematic review. Parasitol Res 2021; 120:2717-2729. [PMID: 34292376 DOI: 10.1007/s00436-021-07240-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Acanthamoeba spp. have always caused disease in immunosuppressed patients, but since 1986, they have become a worldwide public health issue by causing infection in healthy contact lens wearers. Amoebae of the Acanthamoeba genus are broadly distributed in nature, living either freely or as parasites, and are frequently associated with biofilms throughout the environment. These biofilms provide the parasite with protection against external aggression, thus favoring its increased pathogeny. This review aims to assess observational studies on the association between Acanthamoeba spp. and biofilms, opening potential lines of research on this severe ocular infection. A systematic literature search was conducted in May 2020 in the following databases: PubMed Central®/Medline, LILACS, The Cochrane Library, and EMBASE®. The studies were selected following the inclusion and exclusion criteria specifically defined for this review. Electronic research recovered 353 publications in the literature. However, none of the studies met the inclusion criterion of biofilm-producing Acanthamoeba spp., inferring that the parasite does not produce biofilms. Nonetheless, 78 studies were classified as potentially included regarding any association of Acanthamoeba spp. and biofilms. These studies were allocated across six different locations (hospital, aquatic, ophthalmic and dental environments, biofilms produced by bacteria, and other places). Acanthamoeba species use biofilms produced by other microorganisms for their benefit, in addition to them providing protection to and facilitating the dissemination of pathogens residing in them.
Collapse
|
19
|
Tran T, Dawrs SN, Norton GJ, Virdi R, Honda JR. Brought to you courtesy of the red, white, and blue-pigments of nontuberculous mycobacteria. AIMS Microbiol 2020; 6:434-450. [PMID: 33364537 PMCID: PMC7755587 DOI: 10.3934/microbiol.2020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Pigments are chromophores naturally synthesized by animals, plants, and microorganisms, as well as produced synthetically for a wide variety of industries such as food, pharmaceuticals, and textiles. Bacteria produce various pigments including melanin, pyocyanin, bacteriochlorophyll, violacein, prodigiosin, and carotenoids that exert diverse biological activities as antioxidants and demonstrate anti-inflammatory, anti-cancer, and antimicrobial properties. Nontuberculous mycobacteria (NTM) include over 200 environmental and acid-fast species; some of which can cause opportunistic disease in humans. Early in the study of mycobacteriology, the vast majority of mycobacteria were not known to synthesize pigments, particularly NTM isolates of clinical significance such as the Mycobacterium avium complex (MAC) species. This paper reviews the overall understanding of microbial pigments, their applications, as well as highlights what is currently known about pigments produced by NTM, the circumstances that trigger their production, and their potential roles in NTM survival and virulence.
Collapse
Affiliation(s)
- Tru Tran
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Stephanie N Dawrs
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Grant J Norton
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Ravleen Virdi
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Honda
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
20
|
Espinoza-Vergara G, Hoque MM, McDougald D, Noorian P. The Impact of Protozoan Predation on the Pathogenicity of Vibrio cholerae. Front Microbiol 2020; 11:17. [PMID: 32038597 PMCID: PMC6985070 DOI: 10.3389/fmicb.2020.00017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
In the aquatic environment, Vibrio spp. interact with many living organisms that can serve as a replication niche, including heterotrophic protists, or protozoa. Protozoa engulf bacteria and package them into phagosomes where the cells are exposed to low pH, antimicrobial peptides, reactive oxygen/nitrogen species, proteolytic enzymes, and low concentrations of essential metal ions such as iron. However, some bacteria can resist these digestive processes. For example, Vibrio cholerae and Vibrio harveyi can resist intracellular digestion. In order to survive intracellularly, bacteria have acquired and/or developed specific factors that help them to resist the unfavorable conditions encountered inside of the phagosomes. Many of these intra-phagosomal factors used to kill and digest bacteria are highly conserved between eukaryotic cells and thus are also expressed by the innate immune system in the gastrointestinal tract as the first line of defense against bacterial pathogens. Since pathogenic bacteria have been shown to be hypervirulent after they have passed through protozoa, the resistance to digestion by protist hosts in their natural environment plays a key role in enhancing the infectious potential of pathogenic Vibrio spp. This review will investigate the current knowledge in interactions of bacteria with protozoa and human host to better understand the mechanisms used by both protozoa and human hosts to kill bacteria and the bacterial response to them.
Collapse
Affiliation(s)
- Gustavo Espinoza-Vergara
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - M Mozammel Hoque
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Diane McDougald
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Faculty of Science, Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Parisa Noorian
- Faculty of Science, The ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol 2019; 104:1357-1370. [PMID: 31811318 DOI: 10.1007/s00253-019-10245-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
The production of black pigments in bacteria was discovered more than a century ago and related to tyrosine metabolism. However, their diverse biological roles and the control of melanin synthesis in different bacteria have only recently been investigated. The broad distribution of these pigments suggests that they have an important role in a variety of organisms. Melanins protect microorganisms from many environmental stress conditions, ranging from ultraviolet radiation and toxic heavy metals to oxidative stress. Melanins can also affect bacterial interactions with other organisms and are important in pathogenesis and survival in many environments. Bacteria produce several types of melanin through dedicated pathways or as a result of enzymatic imbalances in altered metabolic routes. The control of the melanin synthesis in bacteria involves metabolic and transcriptional regulation, but many aspects remain still largely unknown. The diverse properties of melanins have spurred a large number of applications, and recent efforts have been done to produce the pigment at biotechnologically relevant scales.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Vibrio cholerae residing in food vacuoles expelled by protozoa are more infectious in vivo. Nat Microbiol 2019; 4:2466-2474. [PMID: 31570868 DOI: 10.1038/s41564-019-0563-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/19/2019] [Indexed: 11/09/2022]
Abstract
Vibrio cholerae interacts with many organisms in the environment, including heterotrophic protists (protozoa). Several species of protozoa have been reported to release undigested bacteria in expelled food vacuoles (EFVs) when feeding on some pathogens. While the production of EFVs has been reported, their biological role as a vector for the transmission of pathogens remains unknown. Here we report that ciliated protozoa release EFVs containing V. cholerae. The EFVs are stable, the cells inside them are protected from multiple stresses, and large numbers of cells escape when incubated at 37 °C or in the presence of nutrients. We show that OmpU, a major outer membrane protein positively regulated by ToxR, has a role in the production of EFVs. Notably, cells released from EFVs have growth and colonization advantages over planktonic cells both in vitro and in vivo. Our results suggest that EFVs facilitate V. cholerae survival in the environment, enhancing their infectious potential and may contribute to the dissemination of epidemic V. cholerae strains. These results improve our understanding of the mechanisms of persistence and the modes of transmission of V. cholerae and may further apply to other opportunistic pathogens that have been shown to be released by protists in EFVs.
Collapse
|
23
|
Levin TC, Goldspiel BP, Malik HS. Density-dependent resistance protects Legionella pneumophila from its own antimicrobial metabolite, HGA. eLife 2019; 8:46086. [PMID: 31134893 PMCID: PMC6598767 DOI: 10.7554/elife.46086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
To persist in microbial communities, the bacterial pathogen Legionella pneumophila must withstand competition from neighboring bacteria. Here, we find that L. pneumophila can antagonize the growth of other Legionella species using a secreted inhibitor: HGA (homogentisic acid). Unexpectedly, L. pneumophila can itself be inhibited by HGA secreted from neighboring, isogenic strains. Our genetic approaches further identify lpg1681 as a gene that modulates L. pneumophila susceptibility to HGA. We find that L. pneumophila sensitivity to HGA is density-dependent and cell intrinsic. Resistance is not mediated by the stringent response nor the previously described Legionella quorum-sensing pathway. Instead, L. pneumophila cells secrete HGA only when they are conditionally HGA-resistant, which allows these bacteria to produce a potentially self-toxic molecule while restricting the opportunity for self-harm. We propose that established Legionella communities may deploy molecules such as HGA as an unusual public good that can protect against invasion by low-density competitors. In the environment, bacteria frequently compete with each other for resources and space. These battles often involve the bacteria releasing toxins, antibiotics or other molecules that make it more difficult for their neighbors to grow. The bacteria also carry specific resistance genes that protect them from the effects of the molecules that they produce. Legionella pneumophila is a species of bacteria that infects people and causes a severe form of pneumonia known as Legionnaires’ disease. The bacteria spread in droplets of water from contaminated water systems such as sink faucets, cooling towers, water tanks, and other plumbing systems. In these water systems, L. pneumophila cells live within communities known as biofilms, which contain many different species of bacteria. These communities often include other species of Legionella that compete with L. pneumophila for similar nutrients. However, L. pneumophila was not known to produce any toxins or antibiotics, so it was not clear how it is able to survive in biofilms. Levin et al. used genetic approaches to investigate how L. pneumophila competes with other species of Legionella. The experiments found that this bacterium released a molecule called homogentisic acid (HGA) that reduced the growth of neighboring Legionella bacteria. Unexpectedly, L. pneumophila was not always resistant to HGA, despite secreting large quantities of this molecule. Instead, L. pneumophila cells were only resistant to HGA when the bacteria were living in crowded conditions. Previous studies have shown that HGA is widely produced by bacteria and other organisms – including humans – but this is the first time it has been shown that this molecule limits the ability of bacteria to grow. The work of Levin et al. suggests that HGA may help L. pneumophila bacteria to persist in biofilms, but more work needs to be done to test this idea. A possible next step is to test whether drugs that inhibit the production of HGA can eliminate Legionella bacteria from water systems. If so, similar treatments could potentially be used to stop and prevent outbreaks of Legionnaires’ disease in the future.
Collapse
Affiliation(s)
- Tera C Levin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Brian P Goldspiel
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
24
|
Pavan ME, Venero ES, Egoburo DE, Pavan EE, López NI, Julia Pettinari M. Glycerol inhibition of melanin biosynthesis in the environmental Aeromonas salmonicida 34mel T. Appl Microbiol Biotechnol 2018; 103:1865-1876. [PMID: 30539256 DOI: 10.1007/s00253-018-9545-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
The environmental strain Aeromonas salmonicida subsp. pectinolytica 34melT produces abundant melanin through the homogentisate pathway in several culture media, but unexpectedly not when grown in a medium containing glycerol. Using this observation as a starting point, this study investigated the underlying causes of the inhibition of melanin synthesis by glycerol, to shed light on factors that affect melanin production in this microorganism. The effect of different carbon sources on melanin formation was related to the degree of oxidation of their C atoms, as the more reduced substrates delayed melanization more than the more oxidized ones, although only glycerol completely abolished melanin production. Glyphosate, an inhibitor of aromatic amino acid synthesis, did not affect melanization, while bicyclopyrone, an inhibitor of 4-hydroxyphenylpyruvate dioxygenase (Hpd), the enzyme responsible for the synthesis of homogentisate, prevented melanin synthesis. These results showed that melanin production in 34melT depends on the degradation of aromatic amino acids from the growth medium and not on de novo aromatic amino acid synthesis. The presence of glycerol changed the secreted protein profile, but none of the proteins affected could be directly connected with melanin synthesis or transport. Transcription analysis of hpd, encoding the key enzyme for melanin synthesis, showed a clear inhibition caused by glycerol. The results obtained in this work indicate that a significant decrease in the transcription of hpd, together with a more reduced intracellular state, would lead to the abolishment of melanin synthesis observed. The effect of glycerol on melanization can thus be attributed to a combination of metabolic and regulatory effects.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esmeralda Solar Venero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego E Egoburo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Azman AS, Mawang CI, Abubakar S. Bacterial Pigments: The Bioactivities and as an Alternative for Therapeutic Applications. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthetic pigments have been widely used in various applications since the 1980s. However, the hyperallergenicity or carcinogenicity effects of synthetic dyes have led to the increased research on natural pigments. Among the natural resources, bacterial pigments are a good alternative to synthetic pigments because of their significant properties. Bacterial pigments are also one of the emerging fields of research since it offers promising opportunities for different applications. Besides its use as safe coloring agents in the cosmetic and food industry, bacterial pigments also possess biological properties such as antimicrobial, antiviral, antioxidant and anticancer activities. This review article highlights the various types of bacterial pigments, the latest studies on the discovery of bacterial pigments and the therapeutic insights of these bacterial pigments which hopefully provides useful information, guidance and improvement in future study.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Christina-Injan Mawang
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|