1
|
Shinfuku MS, Domeignoz-Horta LA, Choudoir MJ, Frey SD, Mitchell MF, Ranjan R, DeAngelis KM. Seasonal effects of long-term warming on ecosystem function and bacterial diversity. PLoS One 2024; 19:e0311364. [PMID: 39446706 PMCID: PMC11500971 DOI: 10.1371/journal.pone.0311364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024] Open
Abstract
Across biomes, soil biodiversity promotes ecosystem functions. However, whether this relationship will be maintained within ecosystems under climate change is uncertain. Here, using two long-term soil warming experiments, we investigated how warming affects the relationship between ecosystem functions and bacterial diversity across seasons, soil horizons, and warming duration. Soils were sampled from these warming experiments located at the Harvard Forest Long-Term Ecological Research (LTER) site, where soils had been heated +5°C above ambient for 13 or 28 years at the time of sampling. We assessed seven measurements representative of different ecosystem functions and nutrient pools. We also surveyed bacterial community diversity. We found that ecosystem function was significantly affected by season, with autumn samples having a higher intercept than summer samples in our model, suggesting a higher overall baseline of ecosystem function in the fall. The effect of warming on bacterial diversity was similarly affected by season, where warming in the summer was associated with decreased bacterial evenness in the organic horizon. Despite the decreased bacterial evenness in the warmed plots, we found that the relationship between ecosystem function and bacterial diversity was unaffected by warming or warming duration. Our findings highlight that season is a consistent driver of ecosystem function as well as a modulator of climate change effects on bacterial community evenness.
Collapse
Affiliation(s)
- Melissa S. Shinfuku
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Luiz A. Domeignoz-Horta
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, Palaiseau, France
| | - Mallory J. Choudoir
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Serita D. Frey
- Center for Soil Biogeochemistry and Microbial Ecology, Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States of America
| | - Megan F. Mitchell
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States of America
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Kristen M. DeAngelis
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
2
|
Arunrat N, Sansupa C, Sereenonchai S, Hatano R, Lal R. Fire-Induced Changes in Soil Properties and Bacterial Communities in Rotational Shifting Cultivation Fields in Northern Thailand. BIOLOGY 2024; 13:383. [PMID: 38927263 PMCID: PMC11200764 DOI: 10.3390/biology13060383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Fire is a common practice in rotational shifting cultivation (RSC), but little is known about the dynamics of bacterial populations and the impact of fire disturbance in northern Thailand. To fill the research gap, this study aims to investigate the dynamics of soil bacterial communities and examine how the soil's physicochemical properties influence the bacterial communities in RSC fields over a period of one year following a fire. Surface soil samples (0-2 cm depth) were collected from sites with 6 (RSC-6Y) and 12 (RSC-12Y) years of fallow in Chiang Mai Province, northern Thailand at six different time points: before burning, 5 min after burning (summer), 3 months after burning (rainy season), 6 months after burning (rainy season), 9 months after burning (winter), and 12 months after burning (summer). The results revealed a reduction in the soil bacterial communities' diversity and an increase in soil nutrient levels immediately after the fire. The fire significantly influenced the abundance of Firmicutes, Proteobacteria, Acidobacteria, and Planctomycetes, but not that of Actinobacteria. At the genus level, Bacillus, Conexibacter, and Chthoniobacter showed increased abundance following the fire. During the rainy season, a recovery in the abundance of the soil bacterial communities was observed, although soil nutrient availability declined. Soil physicochemical properties such as pH, organic matter, organic carbon, electrical conductivity, cation exchange capacity, nitrate-nitrogen, available phosphorus, exchangeable potassium, total nitrogen, bulk density, sand, and silt contents significantly influenced the composition of bacterial communities. Alpha diversity indices indicated a decrease in diversity immediately after burning, followed by an increase from the early rainy season until the summer season, indicating that seasonal variation affected the composition of the soil bacterial communities. After one year of burning, an increase in bacterial richness was observed, while the diversity of the bacterial communities reverted to pre-burning levels.
Collapse
Affiliation(s)
- Noppol Arunrat
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sukanya Sereenonchai
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Ryusuke Hatano
- Laboratory of Soil Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan;
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Fickling NW, Abbott CA, Brame JE, Cando‐Dumancela C, Liddicoat C, Robinson JM, Breed MF. Light-dark cycles may influence in situ soil bacterial networks and diurnally-sensitive taxa. Ecol Evol 2024; 14:e11018. [PMID: 38357595 PMCID: PMC10864733 DOI: 10.1002/ece3.11018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024] Open
Abstract
Soil bacterial taxa have important functional roles in ecosystems (e.g. nutrient cycling, soil formation, plant health). Many factors influence their assembly and regulation, with land cover types (e.g. open woodlands, grasslands), land use types (e.g. nature reserves, urban green space) and plant-soil feedbacks being well-studied factors. However, changes in soil bacterial communities in situ over light-dark cycles have received little attention, despite many plants and some bacteria having endogenous circadian rhythms that could influence soil bacterial communities. We sampled surface soils in situ across 24-h light-dark cycles (at 00:00, 06:00, 12:00, 18:00) at two land cover types (remnant vegetation vs. cleared, grassy areas) and applied 16S rRNA amplicon sequencing to investigate changes in bacterial communities. We show that land cover type strongly affected soil bacterial diversity, with soils under native vegetation expressing 15.4%-16.4% lower alpha diversity but 4.9%-10.6% greater heterogeneity than soils under cleared vegetation. In addition, we report time-dependent and site-specific changes in bacterial network complexity and between 598-922 ASVs showing significant changes in relative abundance across times. Native site node degree (bacterial interactions) at the phylum level was 16.0% higher in the early morning than in the afternoon/evening. Our results demonstrate for the first time that light-dark cycles have subtle yet important effects on soil bacterial communities in situ and that land cover influences these dynamics. We provide a new view of soil microbial ecology and suggest that future studies should consider the time of day when sampling soil bacteria.
Collapse
Affiliation(s)
- Nicole W. Fickling
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Catherine A. Abbott
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Joel E. Brame
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | | | - Craig Liddicoat
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Jake M. Robinson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Martin F. Breed
- College of Science and EngineeringFlinders UniversityBedford ParkSouth AustraliaAustralia
| |
Collapse
|
4
|
Brock MT, Morrison HG, Maignien L, Weinig C. Impacts of sample handling and storage conditions on archiving physiologically active soil microbial communities. FEMS Microbiol Lett 2024; 371:fnae044. [PMID: 38866716 DOI: 10.1093/femsle/fnae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Soil microbial communities are fundamental to ecosystem processes and plant growth, yet community composition is seasonally and successionally dynamic, which interferes with long-term iterative experimentation of plant-microbe interactions. We explore how soil sample handling (e.g. filtering) and sample storage conditions impact the ability to revive the original, physiologically active, soil microbial community. We obtained soil from agricultural fields in Montana and Oklahoma, USA and samples were sieved to 2 mm or filtered to 45 µm. Sieved and filtered soil samples were archived at -20°C or -80°C for 50 days and revived for 2 or 7 days. We extracted DNA and the more transient RNA pools from control and treatment samples and characterized microbial communities using 16S amplicon sequencing. Filtration and storage treatments significantly altered soil microbial communities, impacting both species richness and community composition. Storing sieved soil at -20°C did not alter species richness and resulted in the least disruption to the microbial community composition in comparison to nonarchived controls as characterized by RNA pools from soils of both sites. Filtration significantly altered composition but not species richness. Archiving sieved soil at -20°C could allow for long-term and repeated experimentation on preserved physiologically active microbial communities.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
| | - Loïs Maignien
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, MA 02543, United States
- Laboratory of Microbiology of Extreme Environments, UMR 6197 - CNRS-Ifremer-UBO, Institut Universitaire Européen de la Mer (IUEM), Université de Bretagne Occidentale (UBO), Technopole Brest-Iroise, 4 rue Dumont d'Urville, 29280 Plouzané, France
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Program in Ecology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, United States
| |
Collapse
|
5
|
Moldovan OT, Carrell AA, Bulzu PA, Levei E, Bucur R, Sitar C, Faur L, Mirea IC, Șenilă M, Cadar O, Podar M. The gut microbiome mediates adaptation to scarce food in Coleoptera. ENVIRONMENTAL MICROBIOME 2023; 18:80. [PMID: 37957741 PMCID: PMC10644639 DOI: 10.1186/s40793-023-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Beetles are ubiquitous cave invertebrates worldwide that adapted to scarce subterranean resources when they colonized caves. Here, we investigated the potential role of gut microbiota in the adaptation of beetles to caves from different climatic regions of the Carpathians. The beetles' microbiota was host-specific, reflecting phylogenetic and nutritional adaptation. The microbial community structure further resolved conspecific beetles by caves suggesting microbiota-host coevolution and influences by local environmental factors. The detritivore species hosted a variety of bacteria known to decompose and ferment organic matter, suggesting turnover and host cooperative digestion of the sedimentary microbiota and allochthonous-derived nutrients. The cave Carabidae, with strong mandibula, adapted to predation and scavenging of animal and plant remains, had distinct microbiota dominated by symbiotic lineages Spiroplasma or Wolbachia. All beetles had relatively high levels of fermentative Carnobacterium and Vagococcus involved in lipid accumulation and a reduction of metabolic activity, and both features characterize adaptation to caves.
Collapse
Affiliation(s)
- Oana Teodora Moldovan
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania.
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania.
- Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Paseo Sierra de Atapuerca 3, Burgos, 09002, Spain.
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, 370 05, Czech Republic
| | - Erika Levei
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Ruxandra Bucur
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania
| | - Cristian Sitar
- Cluj-Napoca Department, Emil Racovita Institute of Speleology, Clinicilor 5, Cluj- Napoca, 400006, Romania
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Zoological Museum, Babeș Bolyai University, Clinicilor 5, Cluj-Napoca, 400006, Romania
| | - Luchiana Faur
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, 13 Septembrie 13, Bucharest, 050711, Romania
| | - Ionuț Cornel Mirea
- Romanian Institute of Science and Technology, V. Fulicea 3, Cluj-Napoca, 400022, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, 13 Septembrie 13, Bucharest, 050711, Romania
| | - Marin Șenilă
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Donath 67, Cluj-Napoca, 400293, Romania
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
6
|
Bell-Dereske LP, Benucci GMN, da Costa PB, Bonito G, Friesen ML, Tiemann LK, Evans SE. Regional biogeography versus intra-annual dynamics of the root and soil microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:50. [PMID: 37287059 DOI: 10.1186/s40793-023-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil). RESULTS To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community. CONCLUSIONS Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.
Collapse
Affiliation(s)
- Lukas P Bell-Dereske
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague 4, 1083, 142 20, Czech Republic.
| | - Gian Maria Niccolò Benucci
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Pedro Beschoren da Costa
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Gregory Bonito
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Maren L Friesen
- Department of Plant Pathology, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Lisa K Tiemann
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah E Evans
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Zhao C, Hu J, Li Q, Fang Y, Liu D, Liu Z, Zhong R. Transfer of Nitrogen and Phosphorus From Cattle Manure to Soil and Oats Under Simulative Cattle Manure Deposition. Front Microbiol 2022; 13:916610. [PMID: 35774448 PMCID: PMC9238326 DOI: 10.3389/fmicb.2022.916610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Simulated cattle manure deposition was used to estimate nutrient transfer to soil and oats and to investigate changes in microbial community composition and functional groups in oat rhizospheres. Nutrient absorption and return efficiency were calculated as a series of standard calculation formulas, and total nutrient transfer efficiency was nutrient absorption efficiency plus nutrient return efficiency. In total, 74.83% of nitrogen (N) and 59.30% of phosphorus (P) in cattle manure were transferred to soil and oats, with 11.79% of N and 7.89% of P in cattle manure absorbed by oats, and the remainder sequestered in the soil for 80 days after sowing. Cattle manure increased oat root length, surface, and volume under 0.2 mm diameter, and improved relative abundance of the microbiome known to be beneficial. In response to cattle manure, several bacteria known to be beneficial, such as Proteobacteria, Bacteroidota, and Firmicutes at phyla the level and Pseudoxanthomonas, Pseudomonas, and Sphingomonas at the genus level, were positively related to oat biomass and nutrient accumulation. For fungal communities, the relative abundance of Ascomycota is the predominant phylum, which varied in a larger range in the control treatment (81.0–63.3%) than the cattle manure deposition treatment (37.0–42.9%) as plant growing days extend. The relevant abundance of Basidiomycota known as decomposer was higher in cattle manure deposition treatment compared to that in control treatment at 15 days after sowing. More importantly, cattle manure deposition inhibited trophic mode within pathotroph like Alternaria and Fusarium fungal genus and promoted saprotroph and symbiotroph.
Collapse
Affiliation(s)
- Chengzhen Zhao
- Jilin Provincial Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- School of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Hu
- Jilin Provincial Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Qiang Li
- Jilin Provincial Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Jilin Provincial Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture, Animal Husbandry Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rongzhen Zhong
- Jilin Provincial Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Rongzhen Zhong,
| |
Collapse
|
8
|
Assessment of Biodegradation and Eco-Toxic Properties of Novel Starch and Gelatine Blend Bioplastics. RECYCLING 2021. [DOI: 10.3390/recycling6040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To combat the release of petroleum-derived plastics into the environment the European Commission has adopted the EU plastics strategy, which aims for a complete ban on single-use plastics by 2030. Environmentally friendly and sustainable packaging like bioplastic is being up taken at significant levels by companies and consumers. In this study, the environmental impact of novel gelatine–starch blend bioplastics is investigated. The assessments included ecotoxicology with different species that can be found in marine and soil environments to simulate natural conditions. Microalgae, plant, and nematode species were chosen as these are representative of their habitats and are known for their sensitivity to pollutants. Degradation rates of these novel bioplastics were assessed as well as microbiome analysis of the soil before and after bioplastic degradation. The main findings of this study are that (i) the bioplastic generated can be fully biodegraded in soil environments at moderate conditions (20 °C) leaving no physical traces; (ii) bioplastic did not exhibit significantly adverse effects on any organisms assessed in this study; (iii) microbiome analysis of the soil after biodegradation showed a decrease in alpha diversity and a significant increase of Actinobacteria and Firmicutes phyla, which were dominative in the soil.
Collapse
|
9
|
Ma W, Yang Z, Liang L, Ma Q, Wang G, Zhao T. Seasonal Changes in Soil Microbial Community and Co-Occurrence Network of Species of the Genus Corylus. Microorganisms 2021; 9:microorganisms9112228. [PMID: 34835354 PMCID: PMC8625130 DOI: 10.3390/microorganisms9112228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Hazelnut is one of the four major nuts in the world and has high nutritional and economic value. This study employed Illumina sequencing of ITS rDNA and 16S rRNA genes to identify the seasonal changes in soil microbial community, the predominant environmental factors driving microbial community composition, and the differences in soil microbial composition among different species of the genus Corylus. We found that the soil microbial community composition of species of Corylus changed significantly with the change in seasons. Corylus heterophylla and Corylus kweichowensis had more ectomycorrhiza in their soil compared to Corylus avellane. The main factor influencing fungal community composition in soil was the available potassium, while that of bacteria was the total phosphorus content. Co-occurrence network analysis revealed that the ratio of positive interaction to negative interaction in soil of C. heterophylla and Ping’ou (C. heterophylla × C. avellane) was higher, while the negative interaction of soil community structure in C. avellane was greater. The bacterial community was more stable than the fungal community according to microbial diversity and co-occurrence network analyses. The findings of this research may facilitate improvements to the production and soil system management in hazel planting processes.
Collapse
Affiliation(s)
- Wenxu Ma
- State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; (W.M.); (Z.Y.); (L.L.); (Q.M.); (G.W.)
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing 100091, China
| | - Zhen Yang
- State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; (W.M.); (Z.Y.); (L.L.); (Q.M.); (G.W.)
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing 100091, China
| | - Lisong Liang
- State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; (W.M.); (Z.Y.); (L.L.); (Q.M.); (G.W.)
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing 100091, China
| | - Qinghua Ma
- State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; (W.M.); (Z.Y.); (L.L.); (Q.M.); (G.W.)
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing 100091, China
| | - Guixi Wang
- State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; (W.M.); (Z.Y.); (L.L.); (Q.M.); (G.W.)
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing 100091, China
| | - Tiantian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China; (W.M.); (Z.Y.); (L.L.); (Q.M.); (G.W.)
- Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing 100091, China
- National Forestry and Grassland Innovation Alliance on Hazelnut, Beijing 100091, China
- Correspondence: ; Tel.: +86-010-62888537
| |
Collapse
|
10
|
Kuthyar S, Reese AT. Variation in Microbial Exposure at the Human-Animal Interface and the Implications for Microbiome-Mediated Health Outcome. mSystems 2021; 6:e0056721. [PMID: 34342530 PMCID: PMC8407385 DOI: 10.1128/msystems.00567-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The human gut microbiome varies between populations, largely reflecting ecological differences. One ecological variable that is rarely considered but may contribute substantially to microbiome variation is the multifaceted nature of human-animal interfaces. We present the hypothesis that different interactions with animals contribute to shaping the human microbiome globally. We utilize a One Health framework to explore how changes in microbial exposure from human-animal interfaces shape the microbiome and, in turn, contribute to differential human health across populations, focusing on commensal and pathogen exposure, changes in colonization resistance and immune system training, and the potential for other functional shifts. Although human-animal interfaces are known to underlie human health and particularly infectious disease disparities, since their impact on the human microbiome remains woefully understudied, we propose foci for future research. We believe it will be crucial to understand this critical aspect of biology and its impacts on human health around the globe.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Aspen T. Reese
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Munoz‐Ucros J, Zwetsloot MJ, Cuellar‐Gempeler C, Bauerle TL. Spatiotemporal patterns of rhizosphere microbiome assembly: From ecological theory to agricultural application. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13850] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juana Munoz‐Ucros
- School of Integrative Plant Science Cornell University Ithaca NY USA
| | | | | | - Taryn L. Bauerle
- School of Integrative Plant Science Cornell University Ithaca NY USA
| |
Collapse
|
12
|
Qin Q, Liu Y. Changes in microbial communities at different soil depths through the first rainy season following severe wildfire in North China artificial Pinus tabulaeformis forest. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111865. [PMID: 33360742 DOI: 10.1016/j.jenvman.2020.111865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Wildfire could result in dramatic changes to soil temperatures and environments, with immediate, short- or long-lasting impacts on soil microbes. However, relatively little research has documented how fire disturbance, soil depth, time variation and their interactions affect soil microbial communities in wet conditions. This study investigated a severe wildfire influenced on bacterial and fungal communities at four soil depths (0-5, 5-10, 10-15 and 15-20 cm) after two quarters (with similar precipitation and exactly during the rainy season). Soil sampling was conducted in a burned site relative to an undisturbed contiguous site in the North China artificial Pinus tabulaeformis forest. Results indicated that fire had significant effects on bacterial and fungal richness, diversity, composition and structure, including most impacts on the surface mineral soil (0-5 cm) within the first period post-fire and minor impacts on the subsoils (5-20 cm) up to the second period. The microbial richness and some dominant taxa in the undisturbed soils changed with time and depth, suggesting spatiotemporal variation in soil microbial communities although the effects of rainfall were weakened. These differences in microbes between burned and undisturbed soils were mainly driven by soil pH, whereas organic matter and available potassium mediated the distribution of microbial communities along depth and time, respectively. In addition, fungal community was more sensitive to fire and time than bacterial community but an opposite result was found in depth. Nevertheless, soil microbes showed some signs of adaptation to fire. This work advocate that non-intervention should be considered in the short term after a fire or low-intensity water replenishment in the case of aridity.
Collapse
Affiliation(s)
- Qianqian Qin
- School of Ecology and Nature Conservation, Beijing Forestry University, 100083, Beijing, China.
| | - Yanhong Liu
- Beijing Key Laboratory of Forest Resources and Ecosystem Process, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
13
|
Andrade VHGZD, Redmile-Gordon M, Barbosa BHG, Andreote FD, Roesch LFW, Pylro VS. Artificially intelligent soil quality and health indices for ‘next generation’ food production systems. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Richter-Heitmann T, Hofner B, Krah FS, Sikorski J, Wüst PK, Bunk B, Huang S, Regan KM, Berner D, Boeddinghaus RS, Marhan S, Prati D, Kandeler E, Overmann J, Friedrich MW. Stochastic Dispersal Rather Than Deterministic Selection Explains the Spatio-Temporal Distribution of Soil Bacteria in a Temperate Grassland. Front Microbiol 2020; 11:1391. [PMID: 32695081 PMCID: PMC7338559 DOI: 10.3389/fmicb.2020.01391] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/29/2020] [Indexed: 01/15/2023] Open
Abstract
Spatial and temporal processes shaping microbial communities are inseparably linked but rarely studied together. By Illumina 16S rRNA sequencing, we monitored soil bacteria in 360 stations on a 100 square meter plot distributed across six intra-annual samplings in a rarely managed, temperate grassland. Using a multi-tiered approach, we tested the extent to which stochastic or deterministic processes influenced the composition of local communities. A combination of phylogenetic turnover analysis and null modeling demonstrated that either homogenization by unlimited stochastic dispersal or scenarios, in which neither stochastic processes nor deterministic forces dominated, explained local assembly processes. Thus, the majority of all sampled communities (82%) was rather homogeneous with no significant changes in abundance-weighted composition. However, we detected strong and uniform taxonomic shifts within just nine samples in early summer. Thus, community snapshots sampled from single points in time or space do not necessarily reflect a representative community state. The potential for change despite the overall homogeneity was further demonstrated when the focus shifted to the rare biosphere. Rare OTU turnover, rather than nestedness, characterized abundance-independent β-diversity. Accordingly, boosted generalized additive models encompassing spatial, temporal and environmental variables revealed strong and highly diverse effects of space on OTU abundance, even within the same genus. This pure spatial effect increased with decreasing OTU abundance and frequency, whereas soil moisture – the most important environmental variable – had an opposite effect by impacting abundant OTUs more than the rare ones. These results indicate that – despite considerable oscillation in space and time – the abundant and resident OTUs provide a community backbone that supports much higher β-diversity of a dynamic rare biosphere. Our findings reveal complex interactions among space, time, and environmental filters within bacterial communities in a long-established temperate grassland.
Collapse
Affiliation(s)
- Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,International Max Planck Research School of Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Benjamin Hofner
- Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franz-Sebastian Krah
- Biodiversity Conservation, Institute for Ecology, Evolution and Diversity, Biologicum, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Pia K Wüst
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sixing Huang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kathleen M Regan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Doreen Berner
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Runa S Boeddinghaus
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Daniel Prati
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Soil Biology Department, University of Hohenheim, Stuttgart, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
15
|
Pennanen T, Fritze H, de Boer W, Baldrian P. Editorial: special issue on the ecology of soil microorganisms. FEMS Microbiol Ecol 2019; 95:5628114. [PMID: 31738407 DOI: 10.1093/femsec/fiz154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hannu Fritze
- Natural Resources Institute Finland (Luke), Helsinki
| | | | | |
Collapse
|