1
|
Zhu Q, Liu J, Liu L, El-Tarabily KA, Uwiragiye Y, Dan X, Tang S, Wu Y, Zhu T, Meng L, Zhang J, Müller C, Elrys AS. Fire Reduces Soil Nitrate Retention While Increasing Soil Nitrogen Production and Loss Globally. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23004-23017. [PMID: 39680856 DOI: 10.1021/acs.est.4c06208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Elucidating the response of soil gross nitrogen (N) transformations to fires could improve our understanding of how fire affects N availability and loss. Yet, how internal soil gross N transformation rates respond to fires remains unexplored globally. Here, we investigate the general response of gross soil N transformations to fire and its consequences for N availability and loss. The results showed that fire increased gross N mineralization rate (GNM; +38%) and ammonium concentration (+47%) as a result of decreased soil C/N ratio but decreased microbial nitrate immobilization (INO3; -56%), resulting in increased nitrous oxide (N2O; +50%) and nitric oxide (+121%) emissions and N leaching (+308%). Time since fire affected soil N cycling and loss. Fire increased GNM, ammonium concentration, and N2O emission, and decreased INO3 only when time since fire was less than one year, while increased N leaching in the short (one year) terms. Thus, the consequences of fire were a short-lived increase in N availability and N2O emissions (lasting less than one year) but with persistent risks of N loss by leaching over time. Overall, fire increased the potential risks of N loss by stimulating N production and inhibiting nitrate retention.
Collapse
Affiliation(s)
- Qilin Zhu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Juan Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijun Liu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Yves Uwiragiye
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, Byumba 25, Rwanda
| | - Xiaoqian Dan
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Shuirong Tang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yanzheng Wu
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Tongbin Zhu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Karst Dynamics Laboratory, MLR and Guangxi, Guilin 541004, China
| | - Lei Meng
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jinbo Zhang
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Christoph Müller
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin D4, Ireland
| | - Ahmed S Elrys
- School of Tropical Agriculture and Forest, Hainan University, Haikou 570228, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
2
|
Jiao Y, Zhang Y, Wang X, Altshuler I, Zhou F, Fang M, Rinnan R, Chen J, Wang Z. Awakening: Potential Release of Dormant Chemicals from Thawing Permafrost Soils under Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20336-20344. [PMID: 39484699 DOI: 10.1021/acs.est.4c06014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Permafrost is a crucial part of the Earth's cryosphere. These millennia-old frozen soils not only are significant carbon reservoirs but also store a variety of chemicals. Accelerated permafrost thaw due to global warming leads to profound consequences such as infrastructure damage, hydrological changes, and, notably, environmental concerns from the release of various chemicals. In this perspective, we metaphorically term long-preserved substances as "dormant chemicals" that experience an "awakening" during permafrost thaw. We begin by providing a comprehensive overview and categorization of these chemicals and their potential transformations, utilizing a combination of field observations, laboratory studies, and modeling approaches to assess their environmental impacts. Following this, we put forward several perspectives on how to enhance the scientific understanding of their ensuing environmental impacts in the context of climate change. Ultimately, we advocate for broader research engagement in permafrost exploration and emphasize the need for extensive environmental chemical studies. This will significantly enhance our understanding of the consequences of permafrost thaw and its broader impact on other ecosystems under rapid climate warming.
Collapse
Affiliation(s)
- Yi Jiao
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Yulan Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ianina Altshuler
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1950, Switzerland
| | - Fengwu Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, International Centre of Excellence-Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, International Centre of Excellence-Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Shanghai 200062, China
| | - Riikka Rinnan
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Copenhagen Ø 2100, Denmark
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, International Centre of Excellence-Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Shanghai 200062, China
| | - Zimeng Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, International Centre of Excellence-Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Shanghai 200062, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
3
|
Hashemi J, Lipson DA, Arndt KA, Davidson SJ, Kalhori A, Lunneberg K, van Delden L, Oechel WC, Zona D. Thermokarst landscape exhibits large nitrous oxide emissions in Alaska's coastal polygonal tundra. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:473. [PMID: 39220210 PMCID: PMC11364506 DOI: 10.1038/s43247-024-01583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Global atmospheric concentrations of nitrous oxide have been increasing over previous decades with emerging research suggesting the Arctic as a notable contributor. Thermokarst processes, increasing temperature, and changes in drainage can cause degradation of polygonal tundra landscape features resulting in elevated, well-drained, unvegetated soil surfaces that exhibit large nitrous oxide emissions. Here, we outline the magnitude and some of the dominant factors controlling variability in emissions for these thermokarst landscape features in the North Slope of Alaska. We measured strong nitrous oxide emissions during the growing season from unvegetated high centered polygons (median (mean) = 104.7 (187.7) µg N2O-N m-2 h-1), substantially higher than mean rates associated with Arctic tundra wetlands and of similar magnitude to unvegetated hotspots in peat plateaus and palsa mires. In the absence of vegetation, isotopic enrichment of 15N in these thermokarst features indicates a greater influence of microbial processes, (denitrification and nitrification) from barren soil. Findings reveal that the thermokarst features discussed here (~1.5% of the study area) are likely a notable source of nitrous oxide emissions, as inferred from chamber-based estimates. Growing season emissions, estimated at 16 (28) mg N2O-N ha-1 h-1, may be large enough to affect landscape-level greenhouse gas budgets.
Collapse
Affiliation(s)
- Josh Hashemi
- Biology Department, San Diego State University, San Diego, CA USA
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA USA
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - David A. Lipson
- Biology Department, San Diego State University, San Diego, CA USA
| | | | - Scott J. Davidson
- University of Plymouth School of Geography, Earth and Environmental Sciences, Plymouth, UK
| | - Aram Kalhori
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Kyle Lunneberg
- Biology Department, San Diego State University, San Diego, CA USA
| | - Lona van Delden
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Walter C. Oechel
- Biology Department, San Diego State University, San Diego, CA USA
- Department of Geography, University of Exeter, Exeter, UK
| | - Donatella Zona
- Biology Department, San Diego State University, San Diego, CA USA
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Cerda Á, Rodríguez C, González M, González H, Serrano J, Leiva E. Feammox bacterial biofilm formation in HFMB. CHEMOSPHERE 2024; 358:142072. [PMID: 38657691 DOI: 10.1016/j.chemosphere.2024.142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Nitrogen pollution has been increasing with the development of industrialization. Consequently, the excessive deposition of reactive nitrogen in the environment has generated the loss of biodiversity and eutrophication of different ecosystems. In 2005, a Feammox process was discovered that anaerobically metabolizes ammonium. Feammox with the use of hollow fiber membrane bioreactors (HFMB), based on the formation of biofilms of bacterial communities, has emerged as a possible efficient and sustainable method for ammonium removal in environments with high iron concentrations. This work sought to study the possibility of implementing, at laboratory scale, an efficient method by evaluating the use of HFMB. Samples from an internal circulation reactor (IC) incubated in culture media for Feammox bacteria. The cultures were enriched in a batch reactor to evaluate growth conditions. Next, HFMB assembly was performed, and Feammox parameters were monitored. Also, conventional PCR and scanning electron microscopy (SEM) analysis were performed to characterize the bacterial communities associated with biofilm formation. The use of sodium acetate presented the best performance for Feammox activity. The HFMB operation showed an ammonium (NH4+) removal of 50%. SEM analysis of the fibers illustrated the formation of biofilm networks formed by bacteria, which were identified as Albidiferax ferrireducens, Geobacter spp, Ferrovum myxofaciens, Shewanella spp., and Anammox. Functional genes Archaea/Bacteria ammonia monooxygenase, nrxA, hzsB, nirS and nosZ were also identified. The implementation of HFMB Feammox could be used as a sustainable tool for the removal of ammonium from wastewater produced because of anthropogenic activities.
Collapse
Affiliation(s)
- Ámbar Cerda
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Macarena González
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Heylin González
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
5
|
Zhang Y, Zhao Q, Uroz S, Gao T, Li J, He F, Rosazlina R, Martin F, Xu L. The cultivation regimes of Morchella sextelata trigger shifts in the community assemblage and ecological traits of soil bacteria. Front Microbiol 2023; 14:1257905. [PMID: 37808313 PMCID: PMC10552182 DOI: 10.3389/fmicb.2023.1257905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The successful large-scale cultivation of morel mushrooms (Morchella sextelata) requires a comprehensive understanding of the soil bacterial communities associated with morel-farming beds, as the interactions between fungi and bacteria play a crucial role in shaping the soil microbiome. In this study, we investigated the temporal distribution and ecological characteristics of soil bacteria associated with morel fruiting bodies at different stages, specifically the conidial and primordial stages, under two cropping regimes, non-continuous cropping (NCC) and continuous cropping (CC). Our findings revealed a significant reduction in the yield of morel primordia during the third year following 2 years of CC (0.29 ± 0.25 primordia/grid), in comparison to the NCC regime (12.39 ± 6.09 primordia/grid). Furthermore, inoculation with morel mycelia had a notable impact on soil bacterial diversity, decreasing it in the NCC regime and increasing the number of generalist bacterial members in the CC regime. The latter regime also led to the accumulation of nutrients in the soil beds, resulting in a shift from a stochastic to a deterministic process in the composition of the bacterial community, which differed from the NCC regime. Additionally, mycelial inoculation had a positive effect on the abundance of potential copiotrophic/denitrifying and N-fixing bacteria while decreasing the abundance of oligotrophic/nitrifying bacteria. Interestingly, this effect was more pronounced in the NCC regime than in the CC regime. These results suggest that the increase in potential copiotrophic/denitrifying and N-fixing bacteria facilitated the decomposition of nutrients in exogenous nutrient bags by morel mushrooms, thereby maintaining nitrogen balance in the soil. Overall, our study provides valuable insights into the interactions between morel mycelia and the associated soil bacteriome as well as the influence of different cultivation regimes on these interactions. These findings contribute to our understanding of the complex dynamics of the soil microbiome and can inform strategies for optimizing morel mushroom cultivation.
Collapse
Affiliation(s)
- Yan Zhang
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Tianpeng Gao
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Jing Li
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Fengqin He
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
| | - Rusly Rosazlina
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| | - Lingling Xu
- Xi'an Key Laboratory of Plant Stress Physiology and Ecological Restoration Technology, Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, School of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, China
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, France
| |
Collapse
|
6
|
Zhong S, Li B, Hou B, Xu X, Hu J, Jia R, Yang S, Zhou S, Ni J. Structure, stability, and potential function of groundwater microbial community responses to permafrost degradation on varying permafrost of the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162693. [PMID: 36898548 DOI: 10.1016/j.scitotenv.2023.162693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The ongoing permafrost degradation under climate warming has modified aboveground biogeochemical processes mediated by microbes, yet groundwater microbial structure and function as well as their response to permafrost degradation remain poorly understood. We separately collect 20 and 22 sub-permafrost groundwater samples from Qilian Mountain (alpine and seasonal permafrost) and Southern Tibet Valley (plateau isolated permafrost) on the Qinghai-Tibet Plateau (QTP) to investigate the effects of permafrost groundwater characteristics on the diversity, structure, stability, and potential function of bacterial and fungal communities. Regional discrepancy of groundwater microbes between two permafrost regions reveals that permafrost degradation might reshape microbial community structure, increase community stability and potential functions relevant to carbon metabolism. Bacterial community assembly in permafrost groundwater is governed by deterministic processes, whereas fungal communities are mainly controlled by stochastic processes, suggesting that bacterial biomarkers might provide the better 'early warning signals' to permafrost degradation in deeper layers. Our study highlights the importance of groundwater microbes in ecological stability and carbon emission on the QTP.
Collapse
Affiliation(s)
- Sining Zhong
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Bin Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Bowen Hou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Jinyun Hu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Rong Jia
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan Province 610066, China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Shungui Zhou
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou 350002, China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
7
|
Purkamo L, Ó Dochartaigh B, MacDonald A, Cousins C. Following the flow-Microbial ecology in surface- and groundwaters in the glacial forefield of a rapidly retreating glacier in Iceland. Environ Microbiol 2022; 24:5840-5858. [PMID: 35706139 PMCID: PMC11497258 DOI: 10.1111/1462-2920.16104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 01/12/2023]
Abstract
The retreat of glaciers in response to climate change has major impacts on the hydrology and ecosystems of glacier forefield catchments. Microbes are key players in ecosystem functionality, supporting the supply of ecosystem services that glacier systems provide. The interaction between surface and groundwaters in glacier forefields has only recently gained much attention, and how these interactions influence the microbiology is still unclear. Here, we identify the microbial communities in groundwater from shallow (<15 m deep) boreholes in a glacial forefield floodplain ('sandur') aquifer at different distances from the rapidly retreating Virkisjökull glacier, Iceland, and with varying hydraulic connectivity with the glacial meltwater river that flows over the sandur. Groundwater communities are shown to differ from those in nearby glacial and non-glacial surface water communities. Groundwater-meltwater interactions and groundwater flow dynamics affect the microbial community structure, leading to different microbial communities at different sampling points in the glacier forefield. Groundwater communities differ from those in nearby glacial and non-glacial surface waters. Functional potential for microbial nitrogen and methane cycling was detected, although the functional gene copy numbers of specific groups were low.
Collapse
Affiliation(s)
- Lotta Purkamo
- Geological Survey of FinlandEspooFinland
- School of Earth and Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| | | | | | - Claire Cousins
- School of Earth and Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
8
|
Microbiogeochemical Traits to Identify Nitrogen Hotspots in Permafrost Regions. NITROGEN 2022. [DOI: 10.3390/nitrogen3030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.
Collapse
|
9
|
Abstract
Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.
Collapse
|
10
|
Raymond-Bouchard I, Maggiori C, Brennan L, Altshuler I, Manchado JM, Parro V, Whyte LG. Assessment of Automated Nucleic Acid Extraction Systems in Combination with MinION Sequencing As Potential Tools for the Detection of Microbial Biosignatures. ASTROBIOLOGY 2022; 22:87-103. [PMID: 34962136 DOI: 10.1089/ast.2020.2349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions. In this study, we tested pre-existing, automated, or semiautomated NA extraction technologies, coupled with automated ONT VolTRAX NA sample preparation, and verification with Nanopore MinION sequencing. All of the extraction systems tested (SuperFastPrep2, ClaremontX1, and SOLID-Sample Preparation Unit) showed potential for extracting DNA from Canadian High Arctic environments analogous to Mars, Europa, and Enceladus, which could subsequently be detected and sequenced with the MinION. However, they differed with regard to efficacy, yield, purity, and sequencing and annotation quality. Overall, bead beating-based systems performed the best for these parameters. In addition, we showed that the MinION could sequence unpurified DNA contained in crude cell lysates. This is valuable from an astrobiology perspective because purification steps are time-consuming and complicate the requirements for an automated extraction and life detection system. Our results indicate that semiautomated NA extraction and preparation technologies hold much promise, and with increased optimization and automation could be coupled to a larger platform incorporating nanopore detection and sequencing of NAs for life detection applications.
Collapse
Affiliation(s)
| | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Laura Brennan
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | | | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| |
Collapse
|
11
|
Wu X, Chauhan A, Layton AC, Lau Vetter MCY, Stackhouse BT, Williams DE, Whyte L, Pfiffner SM, Onstott TC, Vishnivetskaya TA. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12683-12693. [PMID: 34472853 DOI: 10.1021/acs.est.1c00802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 87% of the Arctic consists of low-organic carbon mineral soil, but knowledge of microbial activity in low-carbon permafrost (PF) and active layer soils remains limited. This study investigated the taxonomic composition and genetic potential of microbial communities at contrasting depths of the active layer (5, 35, and 65 cm below surface, bls) and PF (80 cm bls). We showed microbial communities in PF to be taxonomically and functionally different from those in the active layer. 16S rRNA gene sequence analysis revealed higher biodiversity in the active layer than in PF, and biodiversity decreased significantly with depth. The reconstructed 91 metagenome-assembled genomes showed that PF was dominated by heterotrophic, fermenting Bacteroidota using nitrite as their main electron acceptor. Prevalent microbes identified in the active layer belonged to bacterial taxa, gaining energy via aerobic respiration. Gene abundance in metagenomes revealed enrichment of genes encoding the plant-derived polysaccharide degradation and metabolism of nitrate and sulfate in PF, whereas genes encoding methane/ammonia oxidation, cold-shock protein, and two-component systems were generally more abundant in the active layer, particularly at 5 cm bls. The results of this study deepen our understanding of the low-carbon Arctic soil microbiome and improve prediction of the impacts of thawing PF.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Archana Chauhan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alice C Layton
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maggie C Y Lau Vetter
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon T Stackhouse
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
Varsadiya M, Urich T, Hugelius G, Bárta J. Microbiome structure and functional potential in permafrost soils of the Western Canadian Arctic. FEMS Microbiol Ecol 2021; 97:6102547. [PMID: 33452882 DOI: 10.1093/femsec/fiab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 01/12/2023] Open
Abstract
Substantial amounts of topsoil organic matter (OM) in Arctic Cryosols have been translocated by the process of cryoturbation into deeper soil horizons (cryoOM), reducing its decomposition. Recent Arctic warming deepens the Cryosols´ active layer, making more topsoil and cryoOM carbon accessible for microbial transformation. To quantify bacteria, archaea and selected microbial groups (methanogens - mcrA gene and diazotrophs - nifH gene) and to investigate bacterial and archaeal diversity, we collected 83 soil samples from four different soil horizons of three distinct tundra types located in Qikiqtaruk (Hershel Island, Western Canada). In general, the abundance of bacteria and diazotrophs decreased from topsoil to permafrost, but not for cryoOM. No such difference was observed for archaea and methanogens. CryoOM was enriched with oligotrophic (slow-growing microorganism) taxa capable of recalcitrant OM degradation. We found distinct microbial patterns in each tundra type: topsoil from wet-polygonal tundra had the lowest abundance of bacteria and diazotrophs, but the highest abundance of methanogens. Wet-polygonal tundra, therefore, represented a hotspot for methanogenesis. Oligotrophic and copiotrophic (fast-growing microorganism) genera of methanogens and diazotrophs were distinctly distributed in topsoil and cryoOM, resulting in different rates of nitrogen flux into these horizons affecting OM vulnerability and potential CO2 and CH4 release.
Collapse
Affiliation(s)
- Milan Varsadiya
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8 17487 Greifswald, Germany
| | - Gustaf Hugelius
- Department of Physical Geography, Stockholm University, 106 91, Stockholm, Sweden
| | - Jiří Bárta
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
13
|
Cary C, Cowan DA, McMinn A, Häggblom MM. Editorial: Thematic issue on polar and alpine microbiology. FEMS Microbiol Ecol 2020; 96:5875089. [PMID: 32697840 DOI: 10.1093/femsec/fiaa136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato - Te Whare Wānanga o Waikato, Hamilton 3240, New Zealand
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Hatfield 0028, Pretoria, South Africa
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, College of Science and Engineering, University of Tasmania, Battery Point, Tasmania, Australia
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|