1
|
Marasini S, Craig JP, Dean SJ, Leanse LG. Managing Corneal Infections: Out with the old, in with the new? Antibiotics (Basel) 2023; 12:1334. [PMID: 37627753 PMCID: PMC10451842 DOI: 10.3390/antibiotics12081334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
There have been multiple reports of eye infections caused by antibiotic-resistant bacteria, with increasing evidence of ineffective treatment outcomes from existing therapies. With respect to corneal infections, the most commonly used antibiotics (fluoroquinolones, aminoglycosides, and cephalosporines) are demonstrating reduced efficacy against bacterial keratitis isolates. While traditional methods are losing efficacy, several novel technologies are under investigation, including light-based anti-infective technology with or without chemical substrates, phage therapy, and probiotics. Many of these methods show non-selective antimicrobial activity with potential development as broad-spectrum antimicrobial agents. Multiple preclinical studies and a limited number of clinical case studies have confirmed the efficacy of some of these novel methods. However, given the rapid evolution of corneal infections, their treatment requires rapid institution to limit the impact on vision and prevent complications such as scarring and corneal perforation. Given their rapid effects on microbial viability, light-based technologies seem particularly promising in this regard.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Jennifer P. Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Simon J. Dean
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Leon G. Leanse
- Health and Sports Sciences Hub, Europa Point Campus, University of Gibraltar, Gibraltar GX11 1AA, Gibraltar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Xu X, Rao H, Fan X, Pang X, Wang Y, Zhao L, Xing J, Lv X, Wang T, Tao J, Zhang X, Qian J, Lou H. HPV-related cervical diseases: Alteration of vaginal microbiotas and promising potential for diagnosis. J Med Virol 2023; 95:e28351. [PMID: 36437385 DOI: 10.1002/jmv.28351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/29/2022]
Abstract
Vaginal microbiota is closely associated with women's health, however, the correlation between HPV-related cervical disease (HRCD) and vaginal microbiota is still obscure. In this study, patients with HRCD (n = 98) and healthy controls (n = 58) in Hangzhou were recruited, and their vaginal microbiota were collected and analyzed. The composition of the vaginal microbial community was explored, and a disease classification model was developed by random forest algorithm. The results suggested that the diversity of vaginal microbiota was significantly higher in HRCDs than that in healthy controls (p < 0.05). Firmicutes is the dominant phylum in vaginal microbiota, and Lactobacillus was identified as the most altered genus between two groups (p < 0.01). Kyoto Encyclopedia of Genes and Genomes analysis suggested the difference in vaginal microbial community functions between two groups. Furthermore, we identified 10 biomarkers as the optimal marker sets for the random forest model and found a higher probability of disease values in HRCD group in discovery cohort (p < 0.0001), with an area under the receiver operating characteristic curve reaching 89.7% (95% confidence interval: 78.3%-100%). We further validated the model in both validation and independent diagnosis cohorts, confirming its accuracy in the prediction of HRCD. In conclusion, this study revealed the community composition of vaginal microbiota in HRCDs and successfully constructed a diagnostic model for HRCD.
Collapse
Affiliation(s)
- Xiaoxian Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China
| | - Huiting Rao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoji Fan
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiangwei Pang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yichen Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lingqin Zhao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jie Xing
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaojuan Lv
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Jin Tao
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaojing Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jianhua Qian
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanmei Lou
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Chiang MC, Chern E. Ocular surface microbiota: Ophthalmic infectious disease and probiotics. Front Microbiol 2022; 13:952473. [PMID: 36060740 PMCID: PMC9437450 DOI: 10.3389/fmicb.2022.952473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, increasing studies have emphasized the importance of commensal bacteria in humans, including microbiota in the oral cavity, gut, vagina, or skin. Ocular surface microbiota (OSM) is gaining great importance as new methodologies for bacteria DNA sequencing have been published. This review outlines the current understanding and investigation of OSM and introduces the new concept of the gut–eye axis. Moreover, we have collected current studies that focus on the relationship between ophthalmic infectious disease and alterations in the OSM or human gut microbiota. Finally, we discuss the current application of probiotics in ophthalmic infectious disease, its limitations to date, and futural directions.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Edward Chern
| |
Collapse
|
4
|
Chiang MC, Chern E. More than Antibiotics: Latest Therapeutics in the Treatment and Prevention of Ocular Surface Infections. J Clin Med 2022; 11:4195. [PMID: 35887958 PMCID: PMC9323953 DOI: 10.3390/jcm11144195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular surface infections have been common issues for ophthalmologists for decades. Traditional strategies for infection include antibiotics, antiviral agents, and steroids. However, multiple drug-resistant bacteria have become more common with the prevalence of antibiotic use. Furthermore, an ideal treatment for an infectious disease should not only emphasize eliminating the microorganism but also maintaining clear and satisfying visual acuity. Immunogenetic inflammation, tissue fibrosis, and corneal scarring pose serious threats to vision, and they are not attenuated or prevented by traditional antimicrobial therapeutics. Herein, we collected information about current management techniques including stem-cell therapy, probiotics, and gene therapy as well as preventive strategies related to Toll-like receptors. Finally, we will introduce the latest research findings in ocular drug-delivery systems, which may enhance the bioavailability and efficiency of ocular therapeutics. The clinical application of improved delivery systems and novel therapeutics may support people suffering from ocular surface infections.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
5
|
Niode NJ, Adji A, Rimbing J, Tulung M, Alorabi M, El-Shehawi AM, Idroes R, Celik I, Fatimawali, Adam AA, Dhama K, Mostafa-Hedeab G, Mohamed AAR, Tallei TE, Emran TB. In Silico and In Vitro Evaluation of the Antimicrobial Potential of Bacillus cereus Isolated from Apis dorsata Gut against Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:1401. [PMID: 34827339 PMCID: PMC8614935 DOI: 10.3390/antibiotics10111401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is a major public health and development concern on a global scale. The increasing resistance of the pathogenic bacteria Neisseria gonorrhoeae to antibiotics necessitates efforts to identify potential alternative antibiotics from nature, including insects, which are already recognized as a source of natural antibiotics by the scientific community. This study aimed to determine the potential of components of gut-associated bacteria isolated from Apis dorsata, an Asian giant honeybee, as an antibacterial against N. gonorrhoeae by in vitro and in silico methods as an initial process in the stage of new drug discovery. The identified gut-associated bacteria of A. dorsata included Acinetobacter indicus and Bacillus cereus with 100% identity to referenced bacteria from GenBank. Cell-free culture supernatants (CFCS) of B. cereus had a very strong antibacterial activity against N. gonorrhoeae in an in vitro antibacterial testing. Meanwhile, molecular docking revealed that antimicrobial lipopeptides from B. cereus (surfactin, fengycin, and iturin A) had a comparable value of binding-free energy (BFE) with the target protein receptor for N. gonorrhoeae, namely penicillin-binding protein (PBP) 1 and PBP2 when compared with the ceftriaxone, cefixime, and doxycycline. The molecular dynamics simulation (MDS) study revealed that the surfactin remains stable at the active site of PBP2 despite the alteration of the H-bond and hydrophobic interactions. According to this finding, surfactin has the greatest antibacterial potential against PBP2 of N. gonorrhoeae.
Collapse
Affiliation(s)
- Nurdjannah Jane Niode
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, RD Kandou Hospital, Jl. Raya Tanawangko No. 56, Manado 95163, North Sulawesi, Indonesia
| | - Aryani Adji
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
- Department of Dermatology and Venereology, Faculty of Medicine, University of Sam Ratulangi, RD Kandou Hospital, Jl. Raya Tanawangko No. 56, Manado 95163, North Sulawesi, Indonesia
| | - Jimmy Rimbing
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
| | - Max Tulung
- Entomology Study Program, Graduate School, University of Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia; (N.J.N.); (A.A.); (J.R.); (M.T.)
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (M.A.); (A.M.E.-S.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Aceh, Indonesia
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, University of Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia;
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, University of Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Health Sciences Research Unit, Medical College, Jouf University, Skaka 11564, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
6
|
Lamont RF, van den Munckhof EHA, Luef BM, Vinter CA, Jørgensen JS. Recent advances in cultivation-independent molecular-based techniques for the characterization of vaginal eubiosis and dysbiosis. Fac Rev 2020; 9:21. [PMID: 33659953 PMCID: PMC7886079 DOI: 10.12703/r/9-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
“The bacterial vaginosis syndrome” has significant adverse effects for women and babies, including preterm birth and increased risk of acquisition of sexually transmitted infections and HIV. Currently, the gold standard for diagnosis is Gram stain microscopy of vaginal secretions, which is not readily available, is somewhat subjective, and does not differentiate between the likely different subtypes of vaginal dysbioses that may have different etiologies, microbiology, responses to antibiotics, and phenotypic outcomes. With new information from molecular-based, cultivation-independent studies, there is increasing interest in the use of molecular techniques for the diagnosis of bacterial vaginosis. We reviewed the current evidence on and the rationale behind the use of molecular techniques for the diagnosis of bacterial vaginosis. We found a number of commercially available molecular diagnostic tests, a few of which have US Food and Drug Administration (FDA) and/or Conformité Européenne in vitro diagnostic (CE-IVD) approval, and we have compared their performance with respect to sensitivities and specificities. Molecular-based tests have the advantage of objectivity, quantification, detection of fastidious organisms, and validity for self-obtained vaginal swabs. The performance of the molecular tests against standard microscopy is impressive, but further education of users on interpretation is needed. Bacterial vaginosis is the major cause of vaginal dysbiosis and should be recognized for the threat it is to women’s genital tract health. Quantitative assessment of microbial abundance, the diversity of other organisms present, specific primers for gene sequence regions, and clades and biovars of target microbes should be recognized and incorporated into future molecular diagnostic tests to better differentiate between vaginal eubiosis and dysbiosis.
Collapse
Affiliation(s)
- Ronald F Lamont
- Department of Gynecology and Obstetrics, University of Southern Denmark, Institute of Clinical Research, Research Unit of Gynaecology and Obstetrics, Kløvervænget 10, 10th floor, 5000 Odense C, Denmark
- Division of Surgery, University College London, Northwick Park Institute of Medical Research Campus, London, HA1 3UJ, UK
| | | | - Birgitte Møller Luef
- Department of Gynecology and Obstetrics, University of Southern Denmark, Institute of Clinical Research, Research Unit of Gynaecology and Obstetrics, Kløvervænget 10, 10th floor, 5000 Odense C, Denmark
| | - Christina Anne Vinter
- Department of Gynecology and Obstetrics, University of Southern Denmark, Institute of Clinical Research, Research Unit of Gynaecology and Obstetrics, Kløvervænget 10, 10th floor, 5000 Odense C, Denmark
| | - Jan Stener Jørgensen
- Department of Gynecology and Obstetrics, University of Southern Denmark, Institute of Clinical Research, Research Unit of Gynaecology and Obstetrics, Kløvervænget 10, 10th floor, 5000 Odense C, Denmark
| |
Collapse
|
7
|
Aho EL, Ogle JM, Finck AM. The Human Microbiome as a Focus of Antibiotic Discovery: Neisseria mucosa Displays Activity Against Neisseria gonorrhoeae. Front Microbiol 2020; 11:577762. [PMID: 33343520 PMCID: PMC7744932 DOI: 10.3389/fmicb.2020.577762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 01/06/2023] Open
Abstract
Neisseria gonorrhoeae infections are a serious global health problem. This organism has developed disturbing levels of antibiotic resistance, resulting in the need for new approaches to prevent and treat gonorrhea. The genus Neisseria also includes several members of the human microbiome that live in close association with an array of microbial partners in a variety of niches. We designed an undergraduate antibiotic discovery project to examine a panel of nonpathogenic Neisseria species for their ability to produce antimicrobial secondary metabolites. Five strains belonging to the N. mucosa species group displayed activity against other Neisseria in delayed antagonism assays; three of these were active against N. gonorrhoeae. The antimicrobial compound secreted by N. mucosa NRL 9300 remained active in the presence of catalase, trypsin, and HEPES buffer, and effectively inhibited a DNA uptake mutant of N. gonorrhoeae. Antimicrobial activity was also retained in an ethyl acetate extract of plate grown N. mucosa NRL 9300. These data suggest N. mucosa produces an antimicrobial secondary metabolite that is distinct from previously described antigonococcal agents. This work also serves as a demonstration project that could easily be adapted to studying other members of the human microbiome in undergraduate settings. We offer the perspective that both introductory and more advanced course-based and apprentice-style antibiotic discovery projects focused on the microbiome have the potential to enrich undergraduate curricula and we describe transferrable techniques and strategies to facilitate project design.
Collapse
Affiliation(s)
- Ellen L Aho
- Department of Biology, Concordia College, Moorhead, MN, United States
| | - Jenie M Ogle
- Department of Biology, Concordia College, Moorhead, MN, United States
| | - Anna M Finck
- Department of Biology, Concordia College, Moorhead, MN, United States
| |
Collapse
|
8
|
Kim H, Kang SS. Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Arch Oral Biol 2019; 99:113-119. [PMID: 30658319 DOI: 10.1016/j.archoralbio.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/24/2018] [Accepted: 01/09/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the antifungal activities of cell-free supernatants of a probiotic strain, Pediococcus acidilactici HW01, against Candida albicans. DESIGN C. albicans was cultured in the presence of different concentration of cell-free supernatants obtained from P. acidilactici HW01 (HW01 CFS) and the growth of C. albicans was determined. C. albicans was incubated with HW01 CFS for 24 h and the biofilm formation of C. albicans was determined by staining crystal violet and by using a scanning electron microscope. Biofilm quantification was determined by 2, 3-Bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. RESULTS HW01 CFS inhibitedC. albicans growth, whereas bacteriocin, which is a well-known antimicrobial peptide of lactic acid bacteria, failed to inhibit C. albicans growth. Pre-treatment and simultaneous treatment with HW01 CFS exhibited a significant inhibition of C. albicans biofilm. Although post-treatment with HW01 CFS did not disrupt the established biofilm of C. albicans at 3 h-incubation, significant reduced C. albicans biofilm was observed after 6 h-incubation in the presence of HW01 CFS. CONCLUSION These results suggested that the CFS fromP. acidilactici HW01 was revealed as an effective antifungal agent against C. albicans by reducing the growth and biofilm formation.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
9
|
Lenz JD, Shirk KA, Jolicoeur A, Dillard JP. Selective Inhibition of Neisseria gonorrhoeae by a Dithiazoline in Mixed Infections with Lactobacillus gasseri. Antimicrob Agents Chemother 2018; 62:e00826-18. [PMID: 30275084 PMCID: PMC6256793 DOI: 10.1128/aac.00826-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/22/2018] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative human pathogen Neisseria gonorrhoeae has progressively developed resistance to antibiotic monotherapies, and recent failures of dual-drug therapy have heightened concerns that strains resistant to all available antibiotics will begin circulating globally. Targeting bacterial cell wall assembly has historically been effective at treating infections with N. gonorrhoeae, but as the effectiveness of β-lactams (including cephalosporins) is challenged by increasing resistance, research has expanded into compounds that target the numerous other enzymes with roles in peptidoglycan metabolism. One example is the dithiazoline compound JNJ-853346 (DTZ), which inhibits the activity of an Escherichia coli serine protease l,d-carboxypeptidase (LdcA). Recently, the characterization of an LdcA homolog in N. gonorrhoeae revealed localization and activity differences from the characterized E. coli LdcA, prompting us to explore the effectiveness of DTZ against N. gonorrhoeae We found that DTZ is effective at inhibiting N. gonorrhoeae in all growth phases, unlike the specific stationary-phase inhibition seen in E. coli Surprisingly, DTZ does not inhibit gonococcal LdcA enzyme activity, and DTZ sensitivity is not significantly decreased in ldcA mutants. While effective against numerous N. gonorrhoeae strains, including recent multidrug-resistant isolates, DTZ is much less effective at inhibiting growth of the commensal species Lactobacillus gasseri DTZ treatment during coinfections of epithelial cells resulted in significant lowering of gonococcal burden and interleukin-8 secretion without significantly impacting recovery of viable L. gasseri This selective toxicity presents a possible pathway for the use of DTZ as an effective antigonococcal agent at concentrations that do not impact vaginal commensals.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristina A Shirk
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrienne Jolicoeur
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Lenz JD, Dillard JP. Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube. Front Immunol 2018; 9:2710. [PMID: 30524442 PMCID: PMC6258741 DOI: 10.3389/fimmu.2018.02710] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that causes mucosal surface infections of male and female reproductive tracts, pharynx, rectum, and conjunctiva. Asymptomatic or unnoticed infections in the lower reproductive tract of women can lead to serious, long-term consequences if these infections ascend into the fallopian tube. The damage caused by gonococcal infection and the subsequent inflammatory response produce the condition known as pelvic inflammatory disease (PID). Infection can lead to tubal scarring, occlusion of the oviduct, and loss of critical ciliated cells. Consequences of the damage sustained on the fallopian tube epithelium include increased risk of ectopic pregnancy and tubal-factor infertility. Additionally, the resolution of infection can produce new adhesions between internal tissues, which can tear and reform, producing chronic pelvic pain. As a bacterium adapted to life in a human host, the gonococcus presents a challenge to the development of model systems for probing host-microbe interactions. Advances in small-animal models have yielded previously unattainable data on systemic immune responses, but the specificity of N. gonorrhoeae for many known (and unknown) host targets remains a constant hurdle. Infections of human volunteers are possible, though they present ethical and logistical challenges, and are necessarily limited to males due to the risk of severe complications in women. It is routine, however, that normal, healthy fallopian tubes are removed in the course of different gynecological surgeries (namely hysterectomy), making the very tissue most consequentially damaged during ascending gonococcal infection available for laboratory research. The study of fallopian tube organ cultures has allowed the opportunity to observe gonococcal biology and immune responses in a complex, multi-layered tissue from a natural host. Forty-five years since the first published example of human fallopian tube being infected ex vivo with N. gonorrhoeae, we review what modeling infections in human tissue explants has taught us about the gonococcus, what we have learned about the defenses mounted by the human host in the upper female reproductive tract, what other fields have taught us about ciliated and non-ciliated cell development, and ultimately offer suggestions regarding the next generation of model systems to help expand our ability to study gonococcal pathogenesis.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Yausheva Е, Miroshnikov S, Sizova Е. Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18109-18120. [PMID: 29691748 DOI: 10.1007/s11356-018-1991-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The research included the study of influence of ultrafine particle preparations (nanoparticles of copper, zinc, iron, CuZn alloy) and metal salts (iron pyrophosphate, copper asparginate, zinc asparginate) on the composition of cecal microbiota of broiler chickens. Before adding the studied nanoparticles and metal salts to the diet, cecal microbiota of broiler chickens was represented by 76% Firmicutes taxon and 16% Bacteroidetes. Numerous among them were the bacteria of the taxa Anaerotruncus spp., Lactobacillus spp., Blautia spp., Alistipes spp., and Bacteroides spp.; they constituted 18, 17, 11, and 6%, respectively. A peculiarity of action of the most analyzed metals in nanoform and in the form of salts was a decrease in the number of phylum Firmicutes bacteria and an increase in the number of microorganisms of the phylum Bacteroidetes. The number of bacteria belonging to the families Ruminococcaceae (III, IV, V, VII, and VIII groups), Bacteroidaceae (in all experimental groups), and Lachnospiraceae (I, IV, V, and VII groups) was registered within the taxa of Firmicutes and Bacteroidetes. At the same time, in some experimental groups, the number of bacteria of the family Lachnospiraceae (II, III, and VIII) decreased in the intestine. The data obtained can be used to assess the possibility of using metal nanoparticles in the poultry diet, as a micronutrient preparation, to correct dysbiosis and to improve the utilization of fodder energy.
Collapse
Affiliation(s)
- Еlena Yausheva
- State Educational Institution All-Russian Research Institute of Beef Cattle Breeding, 29, 9-Yanvarya Street, Orenburg, Russia, 460000
| | - Sergey Miroshnikov
- State Educational Institution All-Russian Research Institute of Beef Cattle Breeding, 29, 9-Yanvarya Street, Orenburg, Russia, 460000
| | - Еlena Sizova
- State Educational Institution All-Russian Research Institute of Beef Cattle Breeding, 29, 9-Yanvarya Street, Orenburg, Russia, 460000.
- Orenburg State University, Pobedy pr. 13, Orenburg, Russia, 460018.
| |
Collapse
|
12
|
Camilletti AL, Ruíz FO, Pascual LM, Barberis IL. First Steps towards the Pharmaceutical Development of Ovules Containing Lactobacillus Strains: Viability and Antimicrobial Activity as Basic First Parameters in Vaginal Formulations. AAPS PharmSciTech 2018; 19:886-895. [PMID: 29043604 DOI: 10.1208/s12249-017-0895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022] Open
Abstract
In the majority of Latin-American countries, including Argentina, there is a limited availability of vaginal bioproducts containing probiotics in the market. In addition, the conventional treatments of genital tract infections in women represent a high cost to the public health systems. The future development of this type of bioproducts that employ specific lactobacilli strains would not only have a meaningful impact on women's health but would also represent a significant challenge to the pharmaceutical industry. The aims of the work described in this paper were (i) to study different pharmaceutical formulations of vaginal ovules containing Lactobacillus fermentum L23 and L. rhamnosus L60, to determine in which formulation lactobacilli viability was sustained for longer time and (ii) to evaluate if probiotic strains maintained both the antimicrobial activity and biofilm-producing ability after being recovered from the ovules. In this study, we developed and characterized three pharmaceutical formulations containing different glycerol amounts and specific lactobacilli strains. Three relevant parameters, cell viability, antimicrobial activity, and biofilm production, by lactobacilli recovered from the ovules were tested. Although the viability of L23 and L60 strains was mainly influenced by high ovule's glycerol proportion, they survived at 4 °C during the 180 days. Both lactobacilli's antimicrobial activity and biofilm-producing ability were maintained for all treatments. In conclusion, employing a much reduced number of components, we were able to select the most suitable pharmaceutical formulation which maintained not only lactobacilli viability for a long period of time but also their antimicrobial activity and biofilm-producing ability.
Collapse
|
13
|
Foschi C, Salvo M, Cevenini R, Parolin C, Vitali B, Marangoni A. Vaginal Lactobacilli Reduce Neisseria gonorrhoeae Viability through Multiple Strategies: An in Vitro Study. Front Cell Infect Microbiol 2017; 7:502. [PMID: 29270390 PMCID: PMC5723648 DOI: 10.3389/fcimb.2017.00502] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 11/22/2022] Open
Abstract
The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae (GC) underline the need of “antibiotic-free” strategies for the control of gonorrhea. The aim of this study was to assess the anti-gonococcal activity of 14 vaginal Lactobacillus strains, belonging to different species (L. crispatus, L. gasseri, L. vaginalis), isolated from healthy pre-menopausal women. In particular, we performed “inhibition” experiments, evaluating the ability of both lactobacilli cells and culture supernatants in reducing GC viability, at two different contact times (7 and 60 min). First, we found that the acidic environment, associated to lactobacilli metabolism, is extremely effective in counteracting GC growth, in a pH- and time-dependent manner. Indeed, a complete abolishment of GC viability by lactobacilli supernatants was observed only for pH values < 4.0, even at short contact times. On the contrary, for higher pH values, no 100%-reduction of GC growth was reached at any contact time. Experiments with organic/inorganic acid solutions confirmed the strict correlation between the pH levels and the anti-gonococcal effect. In this context, the presence of lactate seemed to be crucial for the anti-gonococcal activity, especially for pH values in the range 4.4–5.3, indicating that the presence of H+ ions is necessary but not sufficient to kill gonococci. Moreover, experiments with buffered supernatants led to exclude a direct role in the GC killing by other bioactive molecules produced by lactobacilli. Second, we noticed that lactobacilli cells are able to reduce GC viability and to co-aggregate with gonococci. In this context, we demonstrated that released-surface components with biosurfactant properties, isolated from “highly-aggregating” lactobacilli, could affect GC viability. The antimicrobial potential of biosurfactants isolated from lactobacilli against pathogens has been largely investigated, but this is the first report about a possible use of these molecules in order to counteract GC infectivity. In conclusion, we identified specific Lactobacillus strains, mainly belonging to L. crispatus species, able to counteract GC viability through multiple mechanisms. These L. crispatus strains could represent a new potential probiotic strategy for the prevention of GC infections in women.
Collapse
Affiliation(s)
- Claudio Foschi
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Melissa Salvo
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Roberto Cevenini
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Marangoni
- Microbiology, Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Al-Madboly L, Gheida S. Case Report of Urethritis in a Male Patient Infected with Two Different Isolates of Multiple Drug-Resistant Neisseria gonorrhoeae. Front Med (Lausanne) 2017; 4:194. [PMID: 29167794 PMCID: PMC5682295 DOI: 10.3389/fmed.2017.00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
We report a brief description of a case suffering from bacterial urethritis, conjunctivitis, and arthritis, caused by two different isolates of multiple drug-resistant Neisseria gonorrhoeae. Initial diagnosis was dependent on the patient history, clinical findings, symptoms, and the bacteriological data. Polymerase chain reaction confirmed the identification of the pathogens. Random amplified polymorphic DNA revealed two different patterns. Susceptibility testing was performed using Kirby-Bauer disk diffusion method and the minimum inhibitory concentration was also determined. It revealed multiple drug resistance associated with β-lactamase production. Only gentamicin, rifampicin, and azithromycin were active against the test pathogens. A dual therapy was initiated using gentamicin as well as azithromycin to treat the possible co-infection with Chlamydia trachomatis. Complete recovery of the patient achieved with resolved symptoms a week later.
Collapse
Affiliation(s)
- Lamiaa Al-Madboly
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Tanta University, Tanta, Egypt
| | - Shereen Gheida
- Faculty of Medicine, Department of Dermatology and Venereology, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Vaginal Microbiome and Its Relationship to Behavior, Sexual Health, and Sexually Transmitted Diseases. Obstet Gynecol 2017; 129:643-654. [PMID: 28277350 DOI: 10.1097/aog.0000000000001932] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vaginal microbiota has great significance in maintaining vaginal health and protecting the host from disease. Recent advances in molecular techniques and informatics allow researchers to explore microbial composition in detail and to compare the structure of vaginal microbial communities with behavior and health outcomes, particularly acquisition and transmission of sexually transmitted diseases (STDs) and poor birth outcomes. Vaginal flora have been found to cluster into a limited number of communities, although community structure is dynamic. Certain community types are more associated with poor reproductive outcomes and STDs; communities dominated by Lactobacillus species, particularly Lactobacillus crispatus, are most associated with vaginal health. Modifiable and nonmodifiable factors are strongly associated with community composition, including behavior, race or ethnicity, and hygiene. In this review, we describe the state of the science on the vaginal microbiome and its relationship to behavior, sexual health, and STDs, including determinants of the microbiome that go beyond an individual level.
Collapse
|
16
|
Vasilchenko AS, Rogozhin EA, Valyshev AV. Purification of a Novel Bacteriocin-Like Inhibitory Substance Produced byEnterococcus faeciumICIS 8 and Characterization of Its Mode of Action. Microb Drug Resist 2017; 23:447-456. [DOI: 10.1089/mdr.2016.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alexey S. Vasilchenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
- Orenburg State University, Orenburg, Russian Federation
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Gause Institute of New Antibiotics, Moscow, Russian Federation
| | - Alexander V. Valyshev
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
| |
Collapse
|
17
|
The Application of Molecular Methods Towards an Understanding of the Role of the Vaginal Microbiome in Health and Disease. METHODS IN MICROBIOLOGY 2017. [DOI: 10.1016/bs.mim.2017.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Cirkovic I, Bozic DD, Draganic V, Lozo J, Beric T, Kojic M, Arsic B, Garalejic E, Djukic S, Stankovic S. Licheniocin 50.2 and Bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria monocytogenes Clinical Isolates. PLoS One 2016; 11:e0167995. [PMID: 27930711 PMCID: PMC5145223 DOI: 10.1371/journal.pone.0167995] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023] Open
Abstract
Background Coagulase negative staphylococci (CoNS) and Listeria monocytogenes have important roles in pathogenesis of various genital tract infections and fatal foetomaternal infections, respectively. The aim of our study was to investigate the inhibitory effects of two novel bacteriocins on biofilms of CoNS and L. monocytogenes genital isolates. Methods The effects of licheniocin 50.2 from Bacillus licheniformis VPS50.2 and crude extract of bacteriocins produced by Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 (BGBU1-4 crude extract) were evaluated on biofilm formation and formed biofilms of eight CoNS (four S. epidermidis, two S. hominis, one S. lugdunensis and one S. haemolyticus) and 12 L. monocytogenes genital isolates. Results Licheniocin 50.2 and BGBU1-4 crude extract inhibited the growth of both CoNS and L. monocytogenes isolates, with MIC values in the range between 200–400 AU/ml for licheniocin 50.2 and 400–3200 AU/ml for BGBU1-4 crude extract. Subinhibitory concentrations (1/2 × and 1/4 × MIC) of licheniocin 50.2 inhibited biofilm formation by all CoNS isolates (p < 0.05, respectively), while BGBU1-4 crude extract inhibited biofilm formation by all L. monocytogenes isolates (p < 0.01 and p < 0.05, respectively). Both bacteriocins in concentrations of 100 AU/mL and 200 AU/mL reduced the amount of 24 h old CoNS and L. monocytogenes biofilms (p < 0.05, p < 0.01, p < 0.001). Conclusions This study suggests that novel bacteriocins have potential to be used for genital application, to prevent biofilm formation and/or to eradicate formed biofilms, and consequently reduce genital and neonatal infections by CoNS and L. monocytogenes.
Collapse
Affiliation(s)
- Ivana Cirkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- * E-mail:
| | - Dragana D. Bozic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Veselin Draganic
- Clinic for Gynecology and Obstetrics “Narodni front”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Tanja Beric
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milan Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Biljana Arsic
- Clinic for Gynecology and Obstetrics “Narodni front”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eliana Garalejic
- Clinic for Gynecology and Obstetrics “Narodni front”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodanka Djukic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
19
|
Nasioudis D, Linhares IM, Ledger WJ, Witkin SS. Bacterial vaginosis: a critical analysis of current knowledge. BJOG 2016; 124:61-69. [PMID: 27396541 DOI: 10.1111/1471-0528.14209] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 01/12/2023]
Abstract
Bacterial vaginosis (BV), the change from a Lactobacillus-dominant vaginal microbiota to an anaerobic and facultative bacterial dominance, is associated with pathological sequelae. In many BV-positive women their microbiota is in fact normal and unrelated to pathology. Whether or not the dominance of BV-associated bacteria persists depends upon interactions between host and bacterial factors. Inconsistencies in diagnosis and erroneous associations with pathology may be due to a failure to differentiate between sub-populations of women. It is only in those women with a BV diagnosis in which the identified bacteria are atypical and persist that BV may be a clinical problem requiring intervention. TWEETABLE ABSTRACT Improved diagnosis of bacterial vaginosis is needed to accurately determine its role in pathology.
Collapse
Affiliation(s)
- D Nasioudis
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - I M Linhares
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.,Department of Gynaecology and Obstetrics, Sao Paulo University Medical School, Sao Paulo, Brazil
| | - W J Ledger
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - S S Witkin
- Division of Immunology and Infectious Diseases, Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|