1
|
Matos ADO, Dantas PHDS, Queiroz HAGDB, Silva-Sales M, Sales-Campos H. TREM-2: friend or foe in infectious diseases? Crit Rev Microbiol 2024; 50:1-19. [PMID: 36403150 DOI: 10.1080/1040841x.2022.2146481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM-2) is an immune receptor expressed on immune and non-immune cells, more frequently investigated in neurodegenerative disorders and considered a marker for microglia activation. In infectious diseases, the receptor was initially believed to be an anti-inflammatory molecule, opposing the inflammation triggered by TREM-1. Currently, TREM-2 is associated with different aspects in response to infectious stimuli, including the induction of bacterial phagocytosis and clearance, containment of exacerbated pro-inflammatory responses, induction of M2 differentiation and activation of Th1 lymphocytes, besides of neurological damage after viral infection. Here, we present and discuss results published in the last two decades regarding the expression, activation and functions of TREM-2 during the course of bacterial, viral, fungal and parasitic infections. A surprisingly plasticity was observed regarding the roles of the receptor in the aforementioned contexts, which largely varied according to the cell/organ and pathogen type, besides influencing disease outcome. Therefore, our review aimed to critically overview the role of TREM-2 in infectious diseases, highlighting its potential to be used as a clinical biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
2
|
Fink MY, Qi X, Shirey KA, Fanaroff R, Chapoval S, Viscardi RM, Vogel SN, Keegan AD. Mice Expressing Cosegregating Single Nucleotide Polymorphisms (D298G and N397I) in TLR4 Have Enhanced Responses to House Dust Mite Allergen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2085-2097. [PMID: 35396219 PMCID: PMC9176710 DOI: 10.4049/jimmunol.2100926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Abstract
Asthma is a common and ubiquitous chronic respiratory disease that is associated with airway inflammation and hyperreactivity resulting in airway obstruction. It is now accepted that asthma is controlled by a combination of host genetics and environment in a rather complex fashion; however, the link between sensing of the environment and development and exacerbation of allergic lung inflammation is unclear. Human populations expressing cosegregating D299G and T399I polymorphisms in the TLR4 gene are associated with a decreased risk for asthma in adults along with hyporesponsiveness to inhaled LPS, the TLR4 ligand. However, these data do not account for other human genetic or environmental factors. Using a novel mouse strain that expresses homologous human TLR4 polymorphisms (TLR4-single nucleotide polymorphism [SNP]), we directly tested the effect of these TLR4 polymorphisms on in vivo responses to allergens using two models of induction. We report that intact TLR4 is required for allergic inflammation when using the OVA and LPS model of induction, as cellular and pathological benchmarks were diminished in both TLR4-SNP and TLR4-deficent mice. However, in the more clinically relevant model using house dust mite extract for induction, responses were enhanced in the TLR4-SNP mice, as evidenced by greater levels of eosinophilic inflammation, Th2 cytokine production, and house dust mite-specific IgG1 production compared with wild-type mice; however, mucus production and airway hyperreactivity were not affected. These results suggest that the TLR4 polymorphic variants (genes) interact differently with the allergic stimulation (environment).
Collapse
Affiliation(s)
- Marc Y Fink
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Xiulan Qi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Rachel Fanaroff
- Department of Anatomical Pathology, University of Maryland Medical Center, Baltimore, MD
| | - Svetlana Chapoval
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Rose M Viscardi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD; and
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD;
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD
- Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD
| |
Collapse
|
3
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
4
|
Abstract
Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of IL-4 were initially discovered for B and T cells, but this cytokine acts on more than a dozen different target cells spanning the innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand. There are important new advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in a range of cell types. IL-4 is critical not only for careful control of immunoglobulin production but also related to inflammation, fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of which is also used by IL-13, a closely related cytokine with partially overlapping actions. In this review, we cover critical older information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling pathway to treat atopic dermatitis and asthma. Thus, this cytokine is historically important, and research in this area has both elucidated major biological pathways and led to therapeutic advances for diseases that affect millions of individuals.
Collapse
Affiliation(s)
- Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
5
|
Early-life EV-A71 infection augments allergen-induced airway inflammation in asthma through trained macrophage immunity. Cell Mol Immunol 2021; 18:472-483. [PMID: 33441966 PMCID: PMC8027667 DOI: 10.1038/s41423-020-00621-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Virus-induced asthma is prevalent among children, but its underlying mechanisms are unclear. Accumulated evidence indicates that early-life respiratory virus infection increases susceptibility to allergic asthma. Nonetheless, the relationship between systemic virus infections, such as enterovirus infection, and the ensuing effects on allergic asthma development is unknown. Early-life enterovirus infection was correlated with higher risks of allergic diseases in children. Adult mice exhibited exacerbated mite allergen-induced airway inflammation following recovery from EV-A71 infection in the neonatal period. Bone marrow-derived macrophages (BMDMs) from recovered EV-A71-infected mice showed sustained innate immune memory (trained immunity) that could drive naïve T helper cells toward Th2 and Th17 cell differentiation when in contact with mites. Adoptive transfer of EV-A71-trained BMDMs induced augmented allergic inflammation in naïve recipient mice, which was inhibited by 2-deoxy-D-glucose (2-DG) pretreatment, suggesting that trained macrophages following enterovirus infection are crucial in the progression of allergic asthma later in life.
Collapse
|
6
|
Polumuri S, Perkins DJ, Vogel SN. cAMP levels regulate macrophage alternative activation marker expression. Innate Immun 2020; 27:133-142. [PMID: 33241977 PMCID: PMC7882807 DOI: 10.1177/1753425920975082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The capacity for macrophages to polarize into distinct functional activation states (e.g., M1, M2) is critical to tune an inflammatory response to the relevant infection or injury. Alternative or M2 polarization of macrophages is most often achieved in vitro in response to IL-4/IL-13 and results in the transcriptional up-regulation of a constellation of characteristic M2 marker genes. In vivo, additional signals from the inflammatory milieu can further increase or decrease M2 marker expression. Particularly, activation of cAMP-generating G protein-coupled receptors is reported to increase M2 markers, but whether this is strictly dependent upon cAMP production is unclear. We report herein that increased cAMP alone can increase IL-4-dependent M2 marker expression through a PKA/C/EBPβ/CREB dependent pathway in murine macrophages.
Collapse
Affiliation(s)
- Swamy Polumuri
- Food and Drug Administration (FDA), White Oak Campus, Silver Spring, MD, USA
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Hiremath J, Renu S, Tabynov K, Renukaradhya GJ. Pulmonary inflammatory response to influenza virus infection in pigs is regulated by DAP12 and macrophage M1 and M2 phenotypes. Cell Immunol 2020; 352:104078. [PMID: 32164997 DOI: 10.1016/j.cellimm.2020.104078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 01/07/2023]
Abstract
We delineated the expression of DAP12 (DNAX-Activating Protein) and its associated receptors, TREM-1, TREM-2 and MDL-1 in pig alveolar monocyte/macrophages (AMM) that have attained M1 or M2 phenotypes. Pig AMM stimulated in vitro with IFN-γ and IL-4 induced the expression of M1 (TNFα and iNOS) and M2 (ARG1 and no MMR) phenotypic markers, respectively. In influenza virus infected pigs at seven days post-infection, in addition to substantial modulations in the M1 and M2 markers expression, DAP12, TREM-1 and MDL-1 were downregulated in AMM. Thus, DAP12 signaling promoted the anti-inflammatory pathway in AMM of influenza virus infected pigs.
Collapse
Affiliation(s)
- Jagadish Hiremath
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA; ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Sankar Renu
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA
| | - Kaissar Tabynov
- Kazakh National Agrarian University, Almaty 050010, Kazakhstan and Research Institute of Cardiology and Internal Medicine, Almaty 050000, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, College of Food, Agricultural and Environmental Sciences, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, USA.
| |
Collapse
|
8
|
Liu LW, Xing QQ, Zhao X, Tan M, Lu Y, Dong YM, Dai C, Zhang Y. Proteomic Analysis Provides Insights Into the Therapeutic Effect of GU-BEN-FANG-XIAO Decoction on a Persistent Asthmatic Mouse Model. Front Pharmacol 2019; 10:441. [PMID: 31133848 PMCID: PMC6514195 DOI: 10.3389/fphar.2019.00441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/08/2019] [Indexed: 01/21/2023] Open
Abstract
Gubenfangxiao decoction (GBFXD) is a traditional Chinese medicine based on a combination of Yu-Ping-Feng-San and Erchen decoctions. GBFXD has been widely used for decades in treating asthma at the Affiliated Hospital of Nanjing University of Chinese Medicine. Previously, GBFXD was found to reduce lung inflammation and airway remodeling; however, the underlying mechanism remains unknown. In this study, the effects of GBFXD on asthmatic mice were evaluated based on pathology and lung function; airway hyperresponsiveness (AHR) and pathology were compared among the two different mouse models utilized. Furthermore, the mechanism of action of GBFXD on asthmatic mice was analyzed using iTRAQ labeling technology combined with ingenuity pathway analysis (IPA). Modeling analysis of pre- and post-treatment proteins identified 75 differentially expressed proteins. These proteins were related to B-cell development, calcium-induced lymphocyte apoptosis, antigen presentation, and Th1 and Th2 activation pathways. Moreover, 68 differentially expressed proteins were identified in the GBFXD treatment group compared with the model group. Upstream regulatory factors predicted that interleukin (IL)-4 (necessary for inducing polarization of type 2 [M2] macrophages), cyclooxygenase, and prostaglandin E2 are significantly elevated in the model group. Based on IPA analysis, it was concluded that several pathways, including mitochondrial dysfunction and oxidative phosphorylation, are closely associated with the therapeutic effects of GBFXD in asthma. Moreover, the differential expression of several proteins, including the M2 markers, MRC1, ARG1, Retnla, Chil3, and CHIA, were validated by western blotting, confirming that GBFXD can reduce airway inflammation, which fits the pattern of an alternative M2 activation state, and attenuate AHR. Overall, our findings indicate that GBFXD significantly suppresses M2 macrophage polarization, providing further insights into the mechanism underlying the protective effects of GBFXD.
Collapse
Affiliation(s)
- Li-Wei Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiong-Qiong Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xia Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Tan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Lu
- Children's Hospital of Soochow University, Suzhou, China
| | - Ying-Mei Dong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Zhang
- Department of Chemistry and Institute of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Jankauskaitė L, Misevičienė V, Vaidelienė L, Kėvalas R. Lower Airway Virology in Health and Disease-From Invaders to Symbionts. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:E72. [PMID: 30344303 PMCID: PMC6262431 DOI: 10.3390/medicina54050072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Studies of human airway virome are relatively recent and still very limited. Culture-independent microbial techniques showed growing evidence of numerous viral communities in the respiratory microbial ecosystem. The significance of different acute respiratory viruses is already known in the pathogenesis of chronic conditions, such as asthma, cystic fibrosis (CF), or chronic obstructive lung disease (COPD), and their exacerbations. Viral pathogens, such as influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, or rhinovirus, have been associated with impaired immune response, acute exacerbations, and decrease in lung function in chronic lung diseases. However, more data have attributed a role to Herpes family viruses or the newly identified Anelloviridae family of viruses in chronic diseases, such as asthma, idiopathic pulmonary fibrosis (IPF), or CF. Impaired antiviral immunity, bacterial colonization, or used medication, such as glucocorticoids or antibiotics, contribute to the imbalance of airway microbiome and may shape the local viral ecosystem. A specific part of virome, bacteriophages, frames lung microbial communities through direct contact with its host, the specific bacteria known as Pseudomonas aeruginosa or their biofilm formation. Moreover, antibiotic resistance is induced through phages via horizontal transfer and leads to more severe exacerbations of chronic airway conditions. Morbidity and mortality of asthma, COPD, CF, and IPF remains high, despite an increased understanding and knowledge about the impact of respiratory virome in the pathogenesis of these conditions. Thus, more studies focus on new prophylactic methods or therapeutic agents directed toward viral⁻host interaction, microbial metabolic function, or lung microbial composition rearrangement.
Collapse
Affiliation(s)
- Lina Jankauskaitė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Valdonė Misevičienė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Laimutė Vaidelienė
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Rimantas Kėvalas
- Department of Paediatrics, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| |
Collapse
|
10
|
Restori KH, Srinivasa BT, Ward BJ, Fixman ED. Neonatal Immunity, Respiratory Virus Infections, and the Development of Asthma. Front Immunol 2018; 9:1249. [PMID: 29915592 PMCID: PMC5994399 DOI: 10.3389/fimmu.2018.01249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
Infants are exposed to a wide range of potential pathogens in the first months of life. Although maternal antibodies acquired transplacentally protect full-term neonates from many systemic pathogens, infections at mucosal surfaces still occur with great frequency, causing significant morbidity and mortality. At least part of this elevated risk is attributable to the neonatal immune system that tends to favor T regulatory and Th2 type responses when microbes are first encountered. Early-life infection with respiratory viruses is of particular interest because such exposures can disrupt normal lung development and increase the risk of chronic respiratory conditions, such as asthma. The immunologic mechanisms that underlie neonatal host-virus interactions that contribute to the subsequent development of asthma have not yet been fully defined. The goals of this review are (1) to outline the differences between the neonatal and adult immune systems and (2) to present murine and human data that support the hypothesis that early-life interactions between the immune system and respiratory viruses can create a lung environment conducive to the development of asthma.
Collapse
Affiliation(s)
- Katherine H Restori
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Bharat T Srinivasa
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Brian J Ward
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Elizabeth D Fixman
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
11
|
Lee SW, Lee S, Sheen YH, Ha EK, Choi SH, Yang MS, Hwang S, Kim SS, Choi JH, Han MY. Seasonal Cycle and Relationship of Seasonal Rhino- and Influenza Virus Epidemics With Episodes of Asthma Exacerbation in Different Age Groups. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:517-525. [PMID: 28913991 PMCID: PMC5603480 DOI: 10.4168/aair.2017.9.6.517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/20/2017] [Accepted: 06/07/2017] [Indexed: 12/17/2022]
Abstract
Purpose Seasonal variations in asthma exacerbation (AE) are associated with respiratory virus outbreaks and the return of children to school after vacation. This study aims to elucidate the period, phase, and amplitude of seasonal cycles of AE in 5 different age groups with regard to rhino- and influenza virus epidemics in Korea. Methods The number of daily emergency department (ED) visits for AE in all age groups of Korea and the nationwide weekly incidence of rhino- and influenza virus, were obtained for 2008-2012. Fourier regression was used to model rhythmicity, and the Cosinor method was used to determine the amplitude and phase of the cycles in each age group. The cross-correlation function (CCF) between AE and the rhino- and influenza virus epidemics was also calculated. Results There were 157,559 events of AE (0.62 events/1,000 individuals/year) during the study period. There were spring and fall peaks of AE in children and adults, but only 1 winter peak in the elderly. The amplitude of the AE peak in infants was higher in spring than in fall (9.16 vs 3.04, P<0.010), and the fall peak was approximately 1 month later in infants than in school children (October 11 vs November 13, P<0.010). The association between AE and rhinovirus was greatest in school children (rho=0.331), and the association between AE and influenza virus was greatest in those aged ≥60 years (rho=0.682). Conclusions The rhythmicity, amplitude, and phase of the annual cycle of AE differed among different age groups. The patterns of AE were related to the annual rhino- and influenza virus epidemics.
Collapse
Affiliation(s)
- Seung Won Lee
- Department of Pediatrics, CHA University School of Medicine, Seongnam, Korea
| | - Shinhae Lee
- Department of Pediatrics, CHA University School of Medicine, Seongnam, Korea
| | - Youn Ho Sheen
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, CHA University School of Medicine, Seongnam, Korea
| | - Sun Hee Choi
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Min Suk Yang
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Korea
| | - Sung Soon Kim
- Division of Respiratory Viruses Center for Infectious Diseases, National Institutes of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Jang Hoon Choi
- Division of Respiratory Viruses Center for Infectious Diseases, National Institutes of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
12
|
Kaper JB, Flajnik MF, Mobley HLT. Editorial: Infection and immunity research at the University of Maryland, Baltimore. Pathog Dis 2016; 74:ftw100. [PMID: 27702794 DOI: 10.1093/femspd/ftw100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James B Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF I-Rm 380, Baltimore, MD 21201, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St. HSF I-Rm 380, Baltimore, MD 21201, USA
| | - Harry L T Mobley
- University of Michigan, Microbiology and Immunology, 5641 Medical Science II 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|