1
|
Pharkjaksu S, Cai H, Walter PJ, Chang YC, Kwon-Chung KJ. Elevated UDP-glucuronic acid levels mend drug resistance and stress responses via a protease and a transporter in Cryptococcus gattii. Proc Natl Acad Sci U S A 2025; 122:e2503960122. [PMID: 40267138 DOI: 10.1073/pnas.2503960122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
UDP-glucuronic acid (UDP-GlcUA) is a nucleotide sugar essential for various biological processes in many organisms, and its excess within the cell can disrupt cellular functions. In Cryptococcus, mutations in the UXS1 gene which encodes an enzyme responsible for converting UDP-GlcUA into UDP-xylose, result in excessive accumulation of UDP-GlcUA and confer resistance to the antifungal drug 5-fluorocytosine. Here, we demonstrate that elevation of UDP-GlcUA affects several cellular processes in Cryptococcus gattii, including growth rate, ability to grow under various stress conditions and resistance to fluorinated pyrimidine analogs. RNA-seq analyses of the uxs1Δ mutant identify three acid protease genes, notably PEP401, that are differentially expressed. The absence of PEP401 in the uxs1Δ background significantly reduces UDP-GlcUA levels and reverts all the phenotypes of the uxs1Δ mutant to the wild-type characteristics. High levels of UDP-GlcUA not only regulate expression of PEP401 at RNA and protein levels but also enhance the proteolytic activity of total protein extracts in a PEP401-dependent manner, establishing a functional link between nucleotide sugar metabolism and proteolytic regulation. Moreover, the UDP-GlcUA transporter gene, UUT1, can further modulate the levels of UDP-GlcUA in the uxs1Δ pep401Δ double mutant and manifests drug resistance phenotypes observed in the uxs1Δ mutant. Collectively, these findings reveal a previously unrecognized regulatory network that links UDP-GlcUA metabolism to protease-mediated cellular processes and the transport of UDP-GlcUA. This interaction provides a foundation for targeting nucleotide sugar metabolism and protease regulation in the development of enhanced therapeutic strategies against cryptococcosis.
Collapse
Affiliation(s)
- Sujiraphong Pharkjaksu
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Hongyi Cai
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Peter J Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892
| | - Yun C Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
2
|
Martins Oliveira-Brito PK, de Campos GY, Guimarães JG, Machado MP, Serafim LC, Lazo Chica JE, Roque-Barreira MC, da Silva TA. Adjuvant ArtinM favored the host immunity against Cryptococcus gattii infection in C57BL/6 mice. Immunotherapy 2024; 16:733-748. [PMID: 38940276 PMCID: PMC11421300 DOI: 10.1080/1750743x.2024.2360384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Aim: Cryptococcus gattii causes a severe fungal infection with high mortality rate among immunosuppressed and immunocompetent individuals. Due to limitation of current antifungal treatment, new immunotherapeutic approaches are explored.Methods: This study investigated an immunization strategy utilizing heat-inactivated C. gattii with ArtinM as an adjuvant. C57BL/6 mice were intranasally immunized with heat-killed C. gattii and ArtinM was administrated either before immunization or along with HK-C. gattii. Mice were infected with C. gattii and the efficacy of the immunization protocol was evaluated.Results: Mice that received ArtinM exhibited increased levels of IL-10 and relative expression of IL-23 in the lungs, reduced fungal burden and preserved tissue integrity post-infection.Conclusion: Adjuvant ArtinM improved immunization against C. gattii infection in C57BL/6 mice.
Collapse
Affiliation(s)
- Patrícia Kellen Martins Oliveira-Brito
- Department of Cell & Molecular Biology & Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Yamazaki de Campos
- Department of Cell & Molecular Biology & Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlia Garcia Guimarães
- Department of Cell & Molecular Biology & Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michele Procópio Machado
- Department of Cell & Molecular Biology & Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Letícia Costa Serafim
- Microbiology Postgraduate Program of the Microbiology Department of the Biomedical Sciences Institute (ICB) of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Javier Emílio Lazo Chica
- Institute of Natural & Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Maria Cristina Roque-Barreira
- Department of Cell & Molecular Biology & Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Aparecido da Silva
- Department of Cell & Molecular Biology & Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Clinical Hematology Lab, Department of Clinical Analysis, School of Pharmaceutical Sciences in Araraquara (FCFAR), Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- National Institute of Science & Technology in Human Pathogenic Fungi, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo,Brazil
| |
Collapse
|
3
|
Andrade-Silva LE, Vilas-Boas A, Ferreira-Paim K, Andrade-Silva J, Santos DDA, Ferreira TB, Borges AS, Mora DJ, Melhem MDSC, Silva-Vergara ML. Genotyping Analysis of Cryptococcus deuterogattii and Correlation with Virulence Factors and Antifungal Susceptibility by the Clinical and Laboratory Standards Institute and the European Committee on Antifungal Susceptibility Testing Methods. J Fungi (Basel) 2023; 9:889. [PMID: 37754997 PMCID: PMC10532325 DOI: 10.3390/jof9090889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Data about the relationship between their molecular types, virulence factors, clinical presentation, antifungal susceptibility profile, and outcome are still limited for Cryptococcus deuterogattii. This study aimed to evaluate the molecular and phenotypic characteristics of 24 C. deuterogattii isolates from the southeast region of Brazil. The molecular characterization was performed by multilocus sequence typing (MLST). The antifungal susceptibility profile was obtained according to CLSI-M27-A3 and EUCAST-EDef 7.1 methods. The virulence factors were evaluated using classic techniques. The isolates were divided into four populations. The molecular analysis suggests recombinant events in most of the groups evaluated. Resistance and susceptibility dose-dependent to fluconazole were evidenced in four isolates (16%) by EUCAST and in four isolates (16%) by CLSI methods. The agreement at ±two dilutions for both methods was 100% for itraconazole, ketoconazole, and voriconazole, 96% for amphotericin B, and 92% for fluconazole. Significant differences in virulence factor expression and antifungal susceptibility to itraconazole and amphotericin B were found. The mixed infection could be suggested by the presence of variable sequence types, differences in virulence factor production, and decreased antifungal susceptibility in two isolates from the same patient. The data presented herein corroborate previous reports about the molecular diversity of C. deuterogattii around the world.
Collapse
Affiliation(s)
- Leonardo Euripedes Andrade-Silva
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Anderson Vilas-Boas
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Kennio Ferreira-Paim
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Juliana Andrade-Silva
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Daniel de Assis Santos
- Microbiology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Thatiana Bragine Ferreira
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| | - Aercio Sebastião Borges
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Uberlândia, Uberlândia 38496-017, MG, Brazil
| | - Delio Jose Mora
- Center of Health Sciences, Federal University of Sul da Bahia, Teixeira de Freitas 85866-000, BA, Brazil;
| | | | - Mario Léon Silva-Vergara
- Infectious Diseases Unit, Internal Medicine Department, Federal University of Triangulo Mineiro, Uberaba 38001-170, MG, Brazil; (A.V.-B.); (K.F.-P.); (J.A.-S.); (T.B.F.); (M.L.S.-V.)
| |
Collapse
|
4
|
Sousa NSOD, Almeida JDRD, Frickmann H, Lacerda MVG, Souza JVBD. Searching for new antifungals for the treatment of cryptococcosis. Rev Soc Bras Med Trop 2023; 56:e01212023. [PMID: 37493736 PMCID: PMC10367226 DOI: 10.1590/0037-8682-0121-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/19/2023] [Indexed: 07/27/2023] Open
Abstract
There is a consensus that the antifungal repertoire for the treatment of cryptococcal infections is limited. Standard treatment involves the administration of an antifungal drug derived from natural sources (i.e., amphotericin B) and two other drugs developed synthetically (i.e., flucytosine and fluconazole). Despite treatment, the mortality rates associated with fungal cryptococcosis are high. Amphotericin B and flucytosine are toxic, require intravenous administration, and are usually unavailable in low-income countries because of their high cost. However, fluconazole is cost-effective, widely available, and harmless with regard to its side effects. However, fluconazole is a fungistatic agent that has contributed considerably to the increase in fungal resistance and frequent relapses in patients with cryptococcal meningitis. Therefore, there is an unquestionable need to identify new alternatives or adjuvants to conventional drugs for the treatment of cryptococcosis. A potential antifungal agent should be able to kill cryptococci and "bypass" the virulence mechanism of the yeast. Furthermore, it should have fungicidal action, low toxicity, high selectivity, easily penetrate the central nervous system, and widely available. In this review, we describe cryptococcosis, its conventional therapy, and failures arising from the use of drugs traditionally considered to be the reference standard. Additionally, we present the approaches used for the discovery of new drugs to counteract cryptococcosis, ranging from the conventional screening of natural products to the inclusion of structural modifications to optimize anticryptococcal activity, as well as drug repositioning and combined therapies.
Collapse
Affiliation(s)
| | | | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, Germany
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- University of Texas Medical Branch, Galveston, USA
| | - João Vicente Braga de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| |
Collapse
|
5
|
Hansakon A, Ngamphiw C, Tongsima S, Angkasekwinai P. Arginase 1 Expression by Macrophages Promotes Cryptococcus neoformans Proliferation and Invasion into Brain Microvascular Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:408-419. [PMID: 36548474 DOI: 10.4049/jimmunol.2200592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Cryptococcal meningoencephalitis caused by Cryptococcus neoformans infection is the most common cause of death in HIV/AIDS patients. Macrophages are pivotal for the regulation of immune responses to cryptococcal infection by either playing protective function or facilitating fungal dissemination. However, the mechanisms underlying macrophage responses to C. neoformans remain unclear. To analyze the transcriptomic changes and identify the pathogenic factors of macrophages, we performed a comparative transcriptomic analysis of alveolar macrophage responses during C. neoformans infection. Alveolar macrophages isolated from C. neoformans-infected mice showed dynamic gene expression patterns, with expression change from a protective M1 (classically activated)-like to a pathogenic M2 (alternatively activated)-like phenotype. Arg1, the gene encoding the enzyme arginase 1, was found as the most upregulated gene in alveolar macrophages during the chronic infection phase. The in vitro inhibition of arginase activity resulted in a reduction of cryptococcal phagocytosis, intracellular growth, and proliferation, coupled with an altered macrophage response from pathogenic M2 to a protective M1 phenotype. In an in vitro model of the blood-brain barrier, macrophage-derived arginase was found to be required for C. neoformans invasion of brain microvascular endothelium. Further analysis of the degree of virulence indicated a positive correlation between arginase 1 expression in macrophages and cryptococcal brain dissemination in vivo. Thus, our data suggest that a dynamic macrophage activation that involves arginase expression may contribute to the cryptococcal disease by promoting cryptococcal growth, proliferation, and the invasion to the brain endothelium.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
6
|
Saidykhan L, Onyishi CU, May RC. The Cryptococcus gattii species complex: Unique pathogenic yeasts with understudied virulence mechanisms. PLoS Negl Trop Dis 2022; 16:e0010916. [PMID: 36520688 PMCID: PMC9754292 DOI: 10.1371/journal.pntd.0010916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of Cryptococcus gattii/neoformans species complex are the etiological agents of the potentially fatal human fungal infection cryptococcosis. C. gattii and its sister species cause disease in both immunocompetent and immunocompromised hosts, while the closely related species C. neoformans and C. deneoformans predominantly infect immunocompromised hosts. To date, most studies have focused on similarities in pathogenesis between these two groups, but over recent years, important differences have become apparent. In this review paper, we highlight some of the major phenotypic differences between the C. gattii and neoformans species complexes and justify the need to study the virulence and pathogenicity of the C. gattii species complex as a distinct cryptococcal group.
Collapse
Affiliation(s)
- Lamin Saidykhan
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Division of Physical and Natural Science, University of The Gambia, Brikama Campus, West Coast Region, The Gambia
| | - Chinaemerem U. Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Robin C. May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
7
|
Li L, Wu H, Zhu S, Ji Z, Chi X, Xie F, Hao Y, Lu H, Yang F, Yan L, Zhang D, Jiang Y, Ni T. Discovery of Novel 7-Hydroxy-5-oxo-4,5-dihydrothieno[3,2- b]pyridine-6-carboxamide Derivatives with Potent and Selective Antifungal Activity against Cryptococcus Species. J Med Chem 2022; 65:11257-11269. [PMID: 35922963 DOI: 10.1021/acs.jmedchem.2c00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii can cause fatal invasive infections, especially in immunocompromised patients. However, few antifungal drugs are available to help treat cryptococcosis. In this study, by compound library screening, we presented the first report of hit compound P163-0892, which had potent in vitro and in vivo antifungal activity against Cryptococcus spp. In vitro tests showed that P163-0892 was not cytotoxic and had highly selective and strong antifungal activities against Cryptococcus spp. with MIC values less than 1 μg/mL. Synergism of P163-0892 and fluconazole was also observed in vitro. The in vivo antifungal efficacy of P163-0892 was assessed in a wax moth larval fungal infection model, and treatment with 10 mg/kg P163-0892 caused a significant reduction in fungal burden and significant extension of the survival time. Taken together, our data indicate that the hit compound P163-0892 warrants further investigation as a novel anti-Cryptococcus agent.
Collapse
Affiliation(s)
- Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Shuo Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Zhe Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xiaochen Chi
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
- Department of Organic Chemistry, School of Pharmacy, Navy Medical University, PLA, No. 325 Guohe Road, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
8
|
Saidykhan L, Correia J, Romanyuk A, Peacock AFA, Desanti GE, Taylor-Smith L, Makarova M, Ballou ER, May RC. An in vitro method for inducing titan cells reveals novel features of yeast-to-titan switching in the human fungal pathogen Cryptococcus gattii. PLoS Pathog 2022; 18:e1010321. [PMID: 35969643 PMCID: PMC9426920 DOI: 10.1371/journal.ppat.1010321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/30/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cryptococcosis is a potentially lethal fungal infection of humans caused by organisms within the Cryptococcus neoformans/gattii species complex. Whilst C. neoformans is a relatively common pathogen of immunocompromised individuals, C. gattii is capable of acting as a primary pathogen of immunocompetent individuals. Within the host, both species undergo morphogenesis to form titan cells: exceptionally large cells that are critical for disease establishment. To date, the induction, defining attributes, and underlying mechanism of titanisation have been mainly characterized in C. neoformans. Here, we report the serendipitous discovery of a simple and robust protocol for in vitro induction of titan cells in C. gattii. Using this in vitro approach, we reveal a remarkably high capacity for titanisation within C. gattii, especially in strains associated with the Pacific Northwest Outbreak, and characterise strain-specific differences within the clade. In particular, this approach demonstrates for the first time that cell size changes, DNA amplification, and budding are not always synchronous during titanisation. Interestingly, however, exhibition of these cell cycle phenotypes was correlated with genes associated with cell cycle progression including CDC11, CLN1, BUB2, and MCM6. Finally, our findings reveal exogenous p-Aminobenzoic acid to be a key inducer of titanisation in this organism. Consequently, this approach offers significant opportunities for future exploration of the underlying mechanism of titanisation in this genus.
Collapse
Affiliation(s)
- Lamin Saidykhan
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- Division of Physical and Natural Science, University of The Gambia, Brikama, The Gambia
| | - Joao Correia
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Andrey Romanyuk
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- School of Chemistry, University of Birmingham, Edgbaston, United Kingdom
| | - Anna F. A. Peacock
- School of Chemistry, University of Birmingham, Edgbaston, United Kingdom
| | - Guillaume E. Desanti
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Leanne Taylor-Smith
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Maria Makarova
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Elizabeth R. Ballou
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- * E-mail: (ERB); (RCM)
| | - Robin C. May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
- * E-mail: (ERB); (RCM)
| |
Collapse
|
9
|
Dyląg M, Colón-Reyes RJ, Loperena-Álvarez Y, Kozubowski L. Establishing Minimal Conditions Sufficient for the Development of Titan-like Cells in Cryptococcus neoformans/ gattii Species Complex. Pathogens 2022; 11:pathogens11070768. [PMID: 35890013 PMCID: PMC9322185 DOI: 10.3390/pathogens11070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Opportunistic pathogens of the anamorphic genus Cryptococcus are unique considering their virulence factors that in the context of pathogenesis allowed them to achieve evolutionary success. Morphological transformation into giant (Titan) cells is one of the factors contributing to cryptococcosis. Recently established in vitro protocols demonstrate that 5 or 10% fetal bovine serum (FBS) combined with 5% CO2, 37 °C, and sufficiently low cell density, triggers cellular enlargement (Serum protocols). However, the FBS components that promote this morphological transition remain incompletely characterized. In search of minimal conditions necessary for stimulating the formation of Titan cells, we performed a study where we eliminated serum from the protocol (Serum-free protocol) and instead systematically adjusted the amount of glucose, source of nitrogen (ammonium sulfate), and the pH. We found that exposing cells to PBS with adjusted pH to 7.3, and supplemented with 0.05% glucose, 0.025% ammonium sulfate, 0.004% K2HPO4, 0.0035% MgSO4, in the presence of 5% CO2 at 37 °C triggers Titan-like cell formation to the same degree as the previously established protocol that utilized 10% FBS as the sole nutrient source. Titan-like cells obtained according to this Serum-free protocol were characterized by cell body size over ten microns, a single enlarged vacuole, thick cell wall, extensive polysaccharide capsule, and changes in the level of cell ploidy, all currently known hallmarks of Titan cells found in vivo. Strikingly, we found that in both, Serum and Serum-free protocols, an optimal pH for Titan-like cell development is ~7.3 whereas relatively acidic pH (5.5) prevents this morphological transition and promotes robust proliferation, while alkaline pH (~8.0) has a profound growth inhibitory effect. Our study demonstrates a critical role of pH response to the formation of Titan cells and indicates that conditions that allow restricted proliferation in the presence of 5% CO2 are sufficient for this morphological transition to form enlarged cells in Cryptococcus neoformans and Cryptococcus gattii species complex.
Collapse
Affiliation(s)
- Mariusz Dyląg
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA;
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
- Correspondence: (M.D.); (L.K.)
| | - Rodney J. Colón-Reyes
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA;
| | - Yaliz Loperena-Álvarez
- Department of Science, Pontifical Catholic University of Puerto Rico-Mayagüez Campus, Mayagüez PR 00681, Puerto Rico;
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA;
- Correspondence: (M.D.); (L.K.)
| |
Collapse
|
10
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
11
|
de Sousa HR, de Oliveira GP, Frazão SDO, Gorgonha KCDM, Rosa CP, Garcez EM, Lucas J, Correia AF, de Freitas WF, Borges HM, de Brito Alves LG, Paes HC, Trilles L, Lazera MDS, Teixeira MDM, Pinto VL, Felipe MSS, Casadevall A, Silva-Pereira I, Albuquerque P, Nicola AM. Faster Cryptococcus Melanization Increases Virulence in Experimental and Human Cryptococcosis. J Fungi (Basel) 2022; 8:393. [PMID: 35448624 PMCID: PMC9029458 DOI: 10.3390/jof8040393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Cryptococcus spp. are human pathogens that cause 181,000 deaths per year. In this work, we systematically investigated the virulence attributes of Cryptococcus spp. clinical isolates and correlated them with patient data to better understand cryptococcosis. We collected 66 C. neoformans and 19 C. gattii clinical isolates and analyzed multiple virulence phenotypes and host-pathogen interaction outcomes. C. neoformans isolates tended to melanize faster and more intensely and produce thinner capsules in comparison with C. gattii. We also observed correlations that match previous studies, such as that between secreted laccase and disease outcome in patients. We measured Cryptococcus colony melanization kinetics, which followed a sigmoidal curve for most isolates, and showed that faster melanization correlated positively with LC3-associated phagocytosis evasion, virulence in Galleria mellonella and worse prognosis in humans. These results suggest that the speed of melanization, more than the total amount of melanin Cryptococcus spp. produces, is crucial for virulence.
Collapse
Affiliation(s)
- Herdson Renney de Sousa
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Getúlio Pereira de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Stefânia de Oliveira Frazão
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
| | - Kaio César de Melo Gorgonha
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Camila Pereira Rosa
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Emãnuella Melgaço Garcez
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Joaquim Lucas
- Oswaldo Cruz Foundation (Fiocruz–Brasília), Brasília 70904-130, DF, Brazil; (J.L.J.); (V.L.P.J.)
| | | | - Waleriano Ferreira de Freitas
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Higor Matos Borges
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Lucas Gomes de Brito Alves
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Hugo Costa Paes
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz–Rio de Janeiro), Rio de Janeiro 21045-900, RJ, Brazil; (L.T.); (M.d.S.L.)
| | - Márcia dos Santos Lazera
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz–Rio de Janeiro), Rio de Janeiro 21045-900, RJ, Brazil; (L.T.); (M.d.S.L.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Vitor Laerte Pinto
- Oswaldo Cruz Foundation (Fiocruz–Brasília), Brasília 70904-130, DF, Brazil; (J.L.J.); (V.L.P.J.)
| | - Maria Sueli Soares Felipe
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
| |
Collapse
|
12
|
Wang Y, Pawar S, Dutta O, Wang K, Rivera A, Xue C. Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Front Cell Infect Microbiol 2022; 12:859049. [PMID: 35402316 PMCID: PMC8987709 DOI: 10.3389/fcimb.2022.859049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Macrophages are key cellular components of innate immunity, acting as the first line of defense against pathogens to modulate homeostatic and inflammatory responses. They help clear pathogens and shape the T-cell response through the production of cytokines and chemokines. The facultative intracellular fungal pathogen Cryptococcus neoformans has developed a unique ability to interact with and manipulate host macrophages. These interactions dictate how Cryptococcus infection can remain latent or how dissemination within the host is achieved. In addition, differences in the activities of macrophages have been correlated with differential susceptibilities of hosts to Cryptococcus infection, highlighting the importance of macrophages in determining disease outcomes. There is now abundant information on the interaction between Cryptococcus and macrophages. In this review we discuss recent advances regarding macrophage origin, polarization, activation, and effector functions during Cryptococcus infection. The importance of these strategies in pathogenesis and the potential of immunotherapy for cryptococcosis treatment is also discussed.
Collapse
Affiliation(s)
- Yan Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Department of Microbiology and Immunology , Guangdong Medical University, Dongguan, China
| | - Siddhi Pawar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Orchi Dutta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
13
|
Identification and Characterization of an Intergenic “Safe Haven” Region in Human Fungal Pathogen Cryptococcus gattii. J Fungi (Basel) 2022; 8:jof8020178. [PMID: 35205930 PMCID: PMC8874978 DOI: 10.3390/jof8020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Cryptococcus gattii is a primary fungal pathogen, which causes pulmonary and brain infections in healthy as well as immunocompromised individuals. Genetic manipulations in this pathogen are widely employed to study its biology and pathogenesis, and require integration of foreign DNA into the genome. Thus, identification of gene free regions where integrated foreign DNA can be expressed without influencing, or being influenced by, nearby genes would be extremely valuable. To achieve this goal, we examined publicly available genomes and transcriptomes of C. gattii, and identified two intergenic regions in the reference strain R265 as potential “safe haven” regions, named as CgSH1 and CgSH2. We found that insertion of a fluorescent reporter gene and a selection marker at these two intergenic regions did not affect the expression of their neighboring genes and were also expressed efficiently, as expected. Furthermore, DNA integration at CgSH1 or CgSH2 had no apparent effect on the growth of C. gattii, its response to various stresses, or phagocytosis by macrophages. Thus, the identified safe haven regions in C. gattii provide an effective tool for researchers to reduce variation and increase reproducibility in genetic experiments.
Collapse
|
14
|
Wang L, Wang Y, Wang F, Zhao M, Gao X, Chen H, Li N, Zhu Q, Liu L, Zhu W, Liu X, Chen Y, Zhou P, Lu Y, Wang K, Zhao W, Liang W. Development and Application of Rapid Clinical Visualization Molecular Diagnostic Technology for Cryptococcus neoformans/ C. gattii Based on Recombinase Polymerase Amplification Combined With a Lateral Flow Strip. Front Cell Infect Microbiol 2022; 11:803798. [PMID: 35096653 PMCID: PMC8790172 DOI: 10.3389/fcimb.2021.803798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans)/C. gattii can easily invade the human central nervous system and cause cryptococcal meningitis (CM). The clinical fatality rate of these fungi is extremely high and causes more than 180,000 deaths worldwide every year. At present, the common clinical identification methods of these fungi are traditional culture methods and Indian ink staining. In addition, enzyme-linked immunosorbent assay (ELISAs), polymerase chain reaction (PCR), real-time quantitative PCR detecting system (qPCR), mass spectrometry, and metagenomic next-generation sequencing (mNGS) have also been applied to detect these fungus. Due to the rapid progress of meningitis caused by C. neoformans/C. gattii infection, there is a desperate need for fast, sensitive, and on-site detection methods to meet the clinical diagnosis. Recombinase polymerase amplification (RPA) is a promising isothermal amplification technique that can compensate for the shortcomings of the above techniques, featuring short reaction time, high specificity, and high sensitivity, thus meeting the demand for in-field detection of C.neoformans/C. gattii. In our study, RPA- lateral flow strip (LFS) was used to amplify the capsule-associated gene, CAP64, of C. neoformans/C. gattii, and the primer-probe design was optimized by introducing base mismatches to obtain a specific and sensitive primer-probe combination for clinical testing, and specificity of the detection system was determined for 26 common clinical pathogens. This system was developed to obtain results in 20 min at an isothermal temperature of 37°C with a lower limit of detection as low as 10 CFU/μL or 1 fg/μL. A total of 487 clinical samples collected from multicenter multiplexes were tested to evaluate the detection performance of the RPA-LFS system, which revealed that the system could specifically detect C. neoformans/C. gattii, meeting the need for rapid, specific, and sensitive detection.
Collapse
Affiliation(s)
- Lei Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yan Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Fang Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xuzhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Huimin Chen
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Na Li
- Lianyungang Second People's Hospital Affiliated to Bengbu Medical College, Lianyungang, China
| | - Qing Zhu
- Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China
| | - Lipin Liu
- Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, China
| | - Wenjun Zhu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Xia Liu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Yujiao Chen
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Ping Zhou
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Yingzhi Lu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Kun Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| | - Weiguo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wei Liang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, China
| |
Collapse
|
15
|
A Peptide from Budding Yeast GAPDH Serves as a Promising Antifungal against Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0082621. [PMID: 35019693 PMCID: PMC8754130 DOI: 10.1128/spectrum.00826-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infection of Cryptococcus neoformans is one of the leading causes of morbidity and mortality, particularly among immunocompromised patients. However, currently available drugs for the treatment of C. neoformans infection are minimal. Here, we report SP1, a peptide derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Saccharomyces cerevisiae, efficiently kills C. neoformans and Cryptococcus gattii. SP1 causes damages to the capsule. Unlike many antimicrobial peptides, SP1 does not form pores on the cell membrane of C. neoformans. It interacts with membrane ergosterol and enters vacuole possibly through membrane trafficking. C. neoformans treated with SP1 show the apoptotic phenotypes such as imbalance of calcium ion homeostasis, reactive oxygen increment, phosphatidylserine exposure, and nuclear fragmentation. Our data imply that SP1 has the potential to be developed into a treatment option for cryptococcosis. IMPORTANCE Cryptococcus neoformans and Cryptococcus gattii can cause cryptococcosis, which has a high mortality rate. To treat the disease, amphotericin B and fluconazole are often used in clinic. However, amphotericin B has rather high renal toxicity, and tolerance to these drugs are quicky developed. The peptide SP1 derived from baker's yeast GAPDH shows antifungal function to kill Cryptococcus neoformans and Cryptococcus gattii efficiently with a high specificity, even for the drug-resistant strains. Our data demonstrate that SP1 induces the apoptosis-like death of Cryptococcus neoformans at low concentrations. The finding of this peptide may shed light on a new direction to treat cryptococcosis.
Collapse
|
16
|
Chang CY, Mohd Shah SH, Lio JY, Bahari N, Radhakrishnan AP. Cryptococcus gattii meningitis complicated by immune reconstitution inflammatory syndrome in an apparent immunocompetent host in Malaysia. Med Mycol Case Rep 2022; 35:1-4. [PMID: 34984166 PMCID: PMC8693149 DOI: 10.1016/j.mmcr.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Cryptococcosis is a systemic fungal infection caused by Cryptococcus neoformans or Cryptococcus gattii. Cryptococcus causes a wide range of diseases, ranging from asymptomatic pulmonary lesions to disseminated disease involving the central nervous system, particularly meningoencephalitis. C. gattii infection has rarely been reported in Malaysia. We present a case of C. gattii meningitis with pulmonary cryptococcosis complicated by immune reconstitution inflammatory syndrome in an apparently immunocompetent person with no prior travel history. Cryptococcosis is a fungal infection causing significant morbidity and mortality. Cryptococcus gattii can present with meningitis and pulmonary cryptococcosis. CSF examination is the cornerstone of diagnosis in cryptococcal meningitis. IRIS is a rare complication of C. gattii infection that can be treated with steroids.
Collapse
Affiliation(s)
- Chee Yik Chang
- Infectious Disease Unit, Medical Department, Hospital Selayang, 68100, Batu Caves, Selangor, Malaysia
- Corresponding author.
| | - Syarul Hafiz Mohd Shah
- Infectious Disease Unit, Medical Department, Hospital Selayang, 68100, Batu Caves, Selangor, Malaysia
| | - Jia Yin Lio
- Infectious Disease Unit, Medical Department, Hospital Selayang, 68100, Batu Caves, Selangor, Malaysia
| | - Norazlah Bahari
- Microbiology Unit, Pathology Department, Hospital Selayang, 68100, Batu Caves, Selangor, Malaysia
| | - Anuradha P. Radhakrishnan
- Infectious Disease Unit, Medical Department, Hospital Selayang, 68100, Batu Caves, Selangor, Malaysia
| |
Collapse
|
17
|
Mohammed R, Nader SM, Hamza DA, Sabry MA. Horse: a potential source of Cryptococcus neoformans and Cryptococcus gattii in Egypt. BMC Vet Res 2022; 18:17. [PMID: 34983525 PMCID: PMC8725405 DOI: 10.1186/s12917-021-03127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Cryptococcosis is an opportunistic mycozoonosis of global significance in a wide variety of host species. In equines, cryptococcosis is uncommon, and sporadic cases have been reported with rhinitis, sinusitis, pneumonia, and meningitis. Cryptococcus spp. represents a potential risk for immunosuppressed and healthy persons. In Egypt, epidemiological data on cryptococcal infection in horses are limited. The current study was carried out to investigate the occurrence of Cryptococcus spp. in horses and its possible role in the epidemiology of such disease in Egypt. A total of 223 samples was collected from different localities in Egypt included 183 nasal swabs from horses, 28 nasal swabs from humans, and 12 soil samples. Bacteriological examination and the identification of Cryptococcus spp. were performed. Molecular serotyping of Cryptococcus spp. was determined by multiplex PCR using CNa-70S/A-CNb-49S/A. The virulence genes (LAC1, CAP59, and PLB1) of the identified isolates were detected by PCR. Moreover, sequencing and phylogenetic analysis of the C. gattii gene from horses, humans, and soil isolates found nearby were performed. Result The overall occurrence of Cryptococcus spp. in horses were 9.3, 25, and 10.7% in horses, the soil, and humans, respectively. Molecular serotyping of the Cryptococcus spp. isolates recovered from the nasal passages of horses proved that C. gattii (B), C. neoformans, and two hybrids between C. neoformans (A) and C. gattii (B) were identified. Meanwhile, in case of soil samples, the isolates were identified as C. gattii (B). The human isolates were serotyped as C. gattii in two isolates and C. neoformans in only one isolate. Molecular detection of some virulence genes (LAC1), (CAP59), and (PLB1) were identified in both C. gattii and C. neoformans isolates. The C. gattii gene amplicons of the isolates from horses, humans, and the soil were closely related. Conclusion This study provides the first insights into the Egyptian horse ecology of Cryptococcus species and highlights the role of horses as asymptomatic carriers in disseminating the potentially pathogenic Cryptococcus spp. It also presents the possible risk of cryptococcosis infection in humans.
Collapse
Affiliation(s)
- Rahma Mohammed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Dalia A Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
18
|
Bastos RW, Rossato L, Goldman GH, Santos DA. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog 2021; 17:e1010073. [PMID: 34882756 PMCID: PMC8659312 DOI: 10.1371/journal.ppat.1010073] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.
Collapse
Affiliation(s)
- Rafael W. Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Luana Rossato
- Federal University of Grande Dourados, Dourados-MS, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniel A. Santos
- Laboratory of Mycology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| |
Collapse
|
19
|
Cortez de Almeida RF, Daxbacher ELR, Fonte Boa MA, Halpern M, Campos CV, Jeunon T. Erythematous Infiltrated Plaque in the Arm: Answer. Am J Dermatopathol 2021; 43:667-669. [PMID: 34411019 DOI: 10.1097/dad.0000000000001890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | - Márcia Halpern
- Infectology Department, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
- Infectology Department, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, Brazil ; and
| | | | - Thiago Jeunon
- Dermatology Department, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
- ID-Investigação em Dermatologia, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
|
21
|
Piffer AC, Santos FMD, Thomé MP, Diehl C, Garcia AWA, Kinskovski UP, Schneider RDO, Gerber A, Feltes BC, Schrank A, Vasconcelos ATR, Lenz G, Kmetzsch L, Vainstein MH, Staats CC. Transcriptomic analysis reveals that mTOR pathway can be modulated in macrophage cells by the presence of cryptococcal cells. Genet Mol Biol 2021; 44:e20200390. [PMID: 34352067 PMCID: PMC8341293 DOI: 10.1590/1678-4685-gmb-2020-0390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/05/2021] [Indexed: 11/21/2022] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the etiological agents of cryptococcosis, a high mortality disease. The development of such disease depends on the interaction of fungal cells with macrophages, in which they can reside and replicate. In order to dissect the molecular mechanisms by which cryptococcal cells modulate the activity of macrophages, a genome-scale comparative analysis of transcriptional changes in macrophages exposed to Cryptococcus spp. was conducted. Altered expression of nearly 40 genes was detected in macrophages exposed to cryptococcal cells. The major processes were associated with the mTOR pathway, whose associated genes exhibited decreased expression in macrophages incubated with cryptococcal cells. Phosphorylation of p70S6K and GSK-3β was also decreased in macrophages incubated with fungal cells. In this way, Cryptococci presence could drive the modulation of mTOR pathway in macrophages possibly to increase the survival of the pathogen.
Collapse
Affiliation(s)
- Alícia C Piffer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Francine M Dos Santos
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marcos P Thomé
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Camila Diehl
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Ane Wichine Acosta Garcia
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Uriel Perin Kinskovski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Rafael de Oliveira Schneider
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Alexandra Gerber
- Laboratório Nacional de Computação Científica, Petrópolis, RJ, Brazil
| | - Bruno César Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Augusto Schrank
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | | | - Guido Lenz
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Lívia Kmetzsch
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Marilene H Vainstein
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| | - Charley C Staats
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Kim J, Lee KT, Lee JS, Shin J, Cui B, Yang K, Choi YS, Choi N, Lee SH, Lee JH, Bahn YS, Cho SW. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat Biomed Eng 2021; 5:830-846. [PMID: 34127820 DOI: 10.1038/s41551-021-00743-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The neurovascular unit, which consists of vascular cells surrounded by astrocytic end-feet and neurons, controls cerebral blood flow and the permeability of the blood-brain barrier (BBB) to maintain homeostasis in the neuronal milieu. Studying how some pathogens and drugs can penetrate the human BBB and disrupt neuronal homeostasis requires in vitro microphysiological models of the neurovascular unit. Here we show that the neurotropism of Cryptococcus neoformans-the most common pathogen causing fungal meningitis-and its ability to penetrate the BBB can be modelled by the co-culture of human neural stem cells, brain microvascular endothelial cells and brain vascular pericytes in a human-neurovascular-unit-on-a-chip maintained by a stepwise gravity-driven unidirectional flow and recapitulating the structural and functional features of the BBB. We found that the pathogen forms clusters of cells that penetrate the BBB without altering tight junctions, suggesting a transcytosis-mediated mechanism. The neurovascular-unit-on-a-chip may facilitate the study of the mechanisms of brain infection by pathogens, and the development of drugs for a range of brain diseases.
Collapse
Affiliation(s)
- Jin Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soo Hyun Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Institute for Basic Science (IBS), Center for Nanomedicine, Seoul, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea. .,Institute for Basic Science (IBS), Center for Nanomedicine, Seoul, Republic of Korea. .,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Abstract
Members of the Cryptococcus species complex stand out by unique virulence factors that allowed evolutionary transition to pathogenesis. Among the factors contributing to cryptococcosis is a morphological transformation into giant (Titan) cells. It remains unclear whether species outside of the C. neoformans/C. gattii species complex are capable of titanization. We utilized two recently developed protocols that allow obtaining Titan cells in vitro to test if titanization occurs in non-C. neoformans/C. gattii species. We find that none of the tested strains, representing 10 species of basidiomycetous yeasts and the ascomycetous yeast Saccharomyces cerevisiae, undergo significant titanization under conditions that promote robust Titan cell formation in C. neoformans/C. gattii species complex. C. terreus formed occasional enlarged cells through a mechanism potentially similar to that of titanization. Our findings suggest that titanization is a rare phenomenon among basidiomycetous yeasts that occurs mostly in members of the C. neoformans/C. gattii species complex.
Collapse
Affiliation(s)
- Mariusz Dyląg
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University , Clemson, SC, USA
| | - Rodney J Colon-Reyes
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University , Clemson, SC, USA
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University , Clemson, SC, USA
| |
Collapse
|
24
|
Vilas-Bôas AM, Andrade-Silva LE, Ferreira-Paim K, Mora DJ, Ferreira TB, Santos DDA, Borges AS, Melhem MDSC, Silva-Vergara ML. High genetic variability of clinical and environmental Cryptococcus gattii isolates from Brazil. Med Mycol 2021; 58:1126-1137. [PMID: 32343345 DOI: 10.1093/mmy/myaa019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Among Cryptococcus gattii genotypes, VGII has gained pivotal relevance in epidemiological, clinical and genetic contexts due to its association with several outbreaks in temperate regions and due to the high variability of this genotype. The aim of this study was to compare 25 isolates of C. gattii from the Southeast region of Brazil with previously described isolates from other regions of the country and around the world. Among the 25 isolates, 24 were VGII and one was VGI. All of them were newly identified. Three new allele types (AT) (AT47 for the URA5 locus, AT56 for the LAC1 locus, and AT96 for the IGS1 region) were also described. Compared with other Brazilian isolates, those from the Southeast region presented the greatest haplotype diversity. In general, the regions presented different sequence types (STs), and only nine STs were found in more than one location. GoeBURST analysis showed two large groups among the Brazilian isolates. The largest group consists of 59 STs predominantly from the North and Northeast regions; the other large group includes 57 STs from the Southeast and Midwest regions. In a global context the South American isolates presented the highest genetic diversity (STs = 145, haplotype diversity (Hd) = 0.999 and π = 0.00464), while the African populations showed the lowest genetic diversity (STs = 3, Hd = 0.667 and π = 0.00225). These results confirm that the Brazilian C. gattii VGII population is highly diverse and reinforce the hypothesis of dispersion of this genotype from South America.
Collapse
Affiliation(s)
- Anderson Mançan Vilas-Bôas
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Leonardo Euripedes Andrade-Silva
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Kennio Ferreira-Paim
- Department of Microbiology, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Delio José Mora
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thatiana Bragine Ferreira
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Daniel de Assis Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aercio Sebastião Borges
- Universidade Federal de Uberlândia, Hospital de Clínicas de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Mario Léon Silva-Vergara
- Infectious Diseases Unit, Internal Medicine Department, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
25
|
Paccoud O, Bougnoux ME, Desnos-Ollivier M, Varet B, Lortholary O, Lanternier F. Cryptococcus gattii in Patients with Lymphoid Neoplasms: An Illustration of Evolutive Host-Fungus Interactions. J Fungi (Basel) 2021; 7:212. [PMID: 33809570 PMCID: PMC8001097 DOI: 10.3390/jof7030212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Recent outbreaks of Cryptococcus gattii (CG) infections in North America have sparked renewed interest in the pathogenic potential of CG, and have underscored notable differences with Cryptococcus neoformans in terms of geographic distribution, pathogen virulence, and host susceptibility. While cases of CG are increasingly reported in patients with a wide variety of underlying conditions, only very few have been reported in patients with lymphoid neoplasms. Herein, we report a case of autochthonous CG meningitis in a patient receiving ibrutinib for chronic lymphocytic leukemia in France, and review available data on the clinical epidemiology of CG infections in patients with lymphoid neoplasms. We also summarise recent data on the host responses to CG infection, as well as the potential management pitfalls associated with its treatment in the haematological setting. The clinical epidemiology, clinical presentation, and course of disease during infections caused by CG involve complex interactions between environmental exposure to CG, infecting genotype, pathogen virulence factors, host susceptibility, and host immune responses. Future treatment guidelines should address the challenges associated with the management of antifungal treatments in the onco-haematological setting and the potential drug-drug interactions.
Collapse
Affiliation(s)
- Olivier Paccoud
- University of Paris, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (O.P.); (O.L.)
| | - Marie-Elisabeth Bougnoux
- University of Paris, Department of Mycology, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France;
| | - Marie Desnos-Ollivier
- Molecular Mycology Unit, Centre National de la Recherche Scientifique (CNRS), National Reference Center for Invasive Mycoses & Antifungals (NRCMA), Pasteur Institute, UMR2000, 75015 Paris, France;
| | - Bruno Varet
- University of Paris, Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France;
| | - Olivier Lortholary
- University of Paris, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (O.P.); (O.L.)
- Molecular Mycology Unit, Centre National de la Recherche Scientifique (CNRS), National Reference Center for Invasive Mycoses & Antifungals (NRCMA), Pasteur Institute, UMR2000, 75015 Paris, France;
| | - Fanny Lanternier
- University of Paris, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75015 Paris, France; (O.P.); (O.L.)
- Molecular Mycology Unit, Centre National de la Recherche Scientifique (CNRS), National Reference Center for Invasive Mycoses & Antifungals (NRCMA), Pasteur Institute, UMR2000, 75015 Paris, France;
| |
Collapse
|
26
|
Zhou B, She J, Yang L, Zhu B. Coexistent pulmonary cryptococcal infection and pulmonary sarcoidosis: a case report and literature review. J Int Med Res 2020; 48:300060520903870. [PMID: 32070156 PMCID: PMC7110916 DOI: 10.1177/0300060520903870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus is an encapsulated, yeast-like fungus commonly responsible for infections in individuals with impaired T cell-mediated immune responses, including those with acquired immune deficiency syndrome or taking immunosuppressive agents such as steroids or cyclosporine. However, pulmonary fungal infection is rare in patients with untreated sarcoidosis. We report a case of coexistent pulmonary cryptococcal infection in a 43-year-old man with pulmonary sarcoidosis in North-western China. The patient was diagnosed with sarcoidosis via right anterior mediastinal lymph node biopsy and lung biopsy by bronchoscopy. He was treated with oral prednisone 25 mg/day and achieved complete remission of all symptoms. However, repeat chest computed tomography examination revealed enlarged nodules in the left lower lobe, but decreased bilateral diffuse small nodules in the lungs. Computed tomography-guided percutaneous lung puncture biopsy revealed cryptococcal infection. This case highlights the need to consider fungal infection in patients with sarcoidosis at initial presentation, irrespective of their use of immunosuppressive medication.
Collapse
Affiliation(s)
- Bo Zhou
- Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianqing She
- Cardiovascular Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lan Yang
- Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Zhu
- Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Snarr BD, Drummond RA, Lionakis MS. It's all in your head: antifungal immunity in the brain. Curr Opin Microbiol 2020; 58:41-46. [PMID: 32828989 PMCID: PMC7438209 DOI: 10.1016/j.mib.2020.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
As the incidence rate of invasive fungal infections has increased with the use of modern medical interventions, so too has the occurrence of fungi invading the brain. Fungi such as Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus often infect immunocompromised individuals, and can use several strategies to invade the central nervous system (CNS) by penetrating the blood-brain barrier. Once in the brain parenchyma the specialized resident immune cells need to effectively recognize the fungus and mount an appropriate immune response to clear the infection, without causing debilitating immune-mediated toxicity and neuronal damage. Here we review the current knowledge pertaining to the antifungal response of the CNS and highlight areas where future research is required.
Collapse
Affiliation(s)
- Brendan D Snarr
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
28
|
Soares LW, Bailão AM, Soares CMDA, Bailão MGS. Zinc at the Host-Fungus Interface: How to Uptake the Metal? J Fungi (Basel) 2020; 6:jof6040305. [PMID: 33233335 PMCID: PMC7711662 DOI: 10.3390/jof6040305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/31/2022] Open
Abstract
Zinc is an essential nutrient for all living organisms. However, firm regulation must be maintained since micronutrients also can be toxic in high concentrations. This notion is reinforced when we look at mechanisms deployed by our immune system, such as the use of chelators or membrane transporters that capture zinc, when threatened with pathogens, like fungi. Pathogenic fungi, on the other hand, also make use of a variety of transporters and specialized zinc captors to survive these changes. In this review, we sought to explain the mechanisms, grounded in experimental analysis and described to date, utilized by pathogenic fungi to maintain optimal zinc levels.
Collapse
|
29
|
Huang C, Tsui CKM, Chen M, Pan K, Li X, Wang L, Chen M, Zheng Y, Zheng D, Chen X, Jiang L, Wei L, Liao W, Cao C. Emerging Cryptococcus gattii species complex infections in Guangxi, southern China. PLoS Negl Trop Dis 2020; 14:e0008493. [PMID: 32845884 PMCID: PMC7449396 DOI: 10.1371/journal.pntd.0008493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
The emergence and spread of cryptococcosis caused by the Cryptococcus gattii species complex has become a major public concern worldwide. C. deuterogattii (VGIIa) outbreaks in the Pacific Northwest region demonstrate the expansion of this fungal infection to temperate climate regions. However, infections due to the C. gattii species complex in China have rarely been reported. In this study, we studied eleven clinical strains of the C. gattii species complex isolated from Guangxi, southern China. The genetic identity and variability of these isolates were analyzed via multi-locus sequence typing (MLST), and the phylogenetic relationships among these isolates and global isolates were evaluated. The mating type, physiological features and antifungal susceptibilities of these isolates were also characterized. Among the eleven isolates, six belonged to C. deuterogattii, while five belonged to C. gattii sensu stricto. The C. deuterogattii strains from Guangxi, southern China were genetically variable and clustered with different clinical isolates from Brazil. All strains were MATα, and three C. deuterogattii isolates (GX0104, GX0105 and GX0147) were able to undergo sexual reproduction. Moreover, most strains had capsule and were capable of melanin production when compared to the outbreak strain from Canada. Most isolates were susceptible to antifungal drugs; yet one of eleven immunocompetent patients died of cryptococcal meningitis caused by C. deuterogattii (GX0147). Our study indicated that the highly pathogenic C. deuterogattii may be emerging in southern China, and effective nationwide surveillance of C. gattii species complex infection is necessary. Cryptococcosis is a fatal systemic fungal disease caused by Cryptococcus neoformans/gattii species complexes. As a former member of the C. neoformans, C. gattii had been easily neglected before being elevated to species level. Human C. gattii species complex infection was previously confined to the tropical and subtropical regions worldwide. However, in 1999, an outbreak of C. gattii species complex occurred on Vancouver Island in Canada then expanded to the Pacific Northwest in the USA, causing over 200 infections. The highly virulent, highly pathogenic and more resistant to antifungal drugs of this species have become a therapeutic problem. To initiate a better understanding of the infection characteristics and pathogenicity of C. gattii species complex in Guangxi, southern China, the current study aimed to characterize the C. gattii species complex isolates genetically and phenotypically. The ISHAM consensus MLST scheme was utilized to investigate the genetic structure of C. gattii species complex and to correlate their geographic origin, clinical source, virulence factors and antifungal susceptibility. The authors expect that this work can support surveillance and encourage more research and public health initiatives to prevent and control the cryptococcosis cause by C. gattii species complex.
Collapse
Affiliation(s)
- Chunyang Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Clement K. M. Tsui
- Department of Pathology, Sidra Medicine, Qatar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine–Qatar, Doha, Qatar
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Kaisu Pan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Meini Chen
- Clinical Medicine (8-year program), XiangYa School of Medicine, Central South University, Changsha, P. R. China
| | - Yanqing Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Dongyan Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xingchun Chen
- The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Li Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Lili Wei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
- * E-mail: (WL); (CC)
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
- * E-mail: (WL); (CC)
| |
Collapse
|
30
|
Rippee-Brooks MD, Marcinczyk RN, Lupfer CR. What came first, the virus or the egg: Innate immunity during viral coinfections. Immunol Rev 2020; 297:194-206. [PMID: 32761626 DOI: 10.1111/imr.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Infections with any pathogen can be severe and present with numerous complications caused by the pathogen or the host immune response to the invading microbe. However, coinfections, also called polymicrobial infections or secondary infections, can further exacerbate disease. Coinfections are more common than is often appreciated. In this review, we focus specifically on coinfections between viruses and other viruses, bacteria, parasites, or fungi. Importantly, innate immune signaling and innate immune cells that facilitate clearance of the initial viral infection can affect host susceptibility to coinfections. Understanding these immune imbalances may facilitate better diagnosis, prevention, and treatment of such coinfections.
Collapse
|
31
|
Jin L, Cao JR, Xue XY, Wu H, Wang LF, Guo L, Shen DX. Clinical and microbiological characteristics of Cryptococcus gattii isolated from 7 hospitals in China. BMC Microbiol 2020; 20:73. [PMID: 32228457 PMCID: PMC7106762 DOI: 10.1186/s12866-020-01752-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Infection, even outbreak, caused by Cryptococcus gattii (C. gattii) has been reported in Canada and the United States, but there were sparsely-reported cases of C. gattii in China. Our interest in occurrence, clinical manifestation, laboratory identification and molecular characterization of Chinese C. gattii strains leads us to this research. Results Out of 254 clinical isolates, initially identified as Cryptococcus neoformans (C. neoformans), eight strains were re-identified as C. gattii. Multi-locus sequence typing (MLST) showed genotype VGI accounted for the most (6 / 8), the other two strains were genotype VGII (VGIIa and VGIIb respectively) with 3 specific spectra of molecular weight about 4342, 8686, 9611 Da by MALDI-TOF MS. The minimal inhibitory concentrations (MICs) of Fluconazole with Yeast one was 2~4 times higher than that with ATB fungus 3 and MICs of antifungal agents against VGII strains were higher than against VGI strains. Comparative proteome analysis showed that 329 and 180 proteins were highly expressed by C. gattii VGI and VGII respectively. The enrichment of differentially expressed proteins was directed to Golgi complex. Conclusions Infection by C. gattii in China occurred sparsely. Genotype VGI was predominant but VGII was more resistant to antifungal agents. There was significant difference in protein expression profile between isolates of VGI and VGII C. gattii.
Collapse
Affiliation(s)
- Liang Jin
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Department of Clinical Laboratory, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Jing-Rong Cao
- Department of Clinical Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xin-Ying Xue
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Department of Respiratory and Critical Care Medicine, the Affiliated Beijing Shijitan Hospital of Capital Medical University, Beijing, 100038, China
| | - Hua Wu
- Department of Clinical Laboratory, Hainan General Hospital, Haikou, 570311, China
| | - Li-Feng Wang
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ling Guo
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ding-Xia Shen
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
32
|
Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat Commun 2020; 11:1521. [PMID: 32251295 PMCID: PMC7090016 DOI: 10.1038/s41467-020-15329-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, we study the roles played by fungal kinases and transcription factors (TFs) in blood-brain barrier (BBB) crossing and brain infection in mice. We use a brain infectivity assay to screen signature-tagged mutagenesis (STM)-based libraries of mutants defective in kinases and TFs, generated in the C. neoformans H99 strain. We also monitor in vivo transcription profiles of kinases and TFs during host infection using NanoString technology. These analyses identify signalling components involved in BBB adhesion and crossing, or survival in the brain parenchyma. The TFs Pdr802, Hob1, and Sre1 are required for infection under all the conditions tested here. Hob1 controls the expression of several factors involved in brain infection, including inositol transporters, a metalloprotease, PDR802, and SRE1. However, Hob1 is dispensable for most cellular functions in Cryptococcus deuterogattii R265, a strain that does not target the brain during infection. Our results indicate that Hob1 is a master regulator of brain infectivity in C. neoformans. Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, the authors identify fungal kinases and transcription factors involved in blood-brain barrier crossing and brain infection in mice.
Collapse
|
33
|
Contribution of Laccase Expression to Immune Response against Cryptococcus gattii Infection. Infect Immun 2020; 88:IAI.00712-19. [PMID: 31871099 DOI: 10.1128/iai.00712-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cryptococcosis is an infectious disease caused by two fungal species, Cryptococcus neoformans and Cryptococcus gattii While C. neoformans affects mainly immunocompromised patients, C. gattii infects both immunocompetent and immunocompromised individuals. Laccase is an important virulence factor that contributes to the virulence of C. neoformans by promoting pulmonary growth and dissemination to the brain. The presence of laccase in C. neoformans can shift the host immune response toward a nonprotective Th2-type response. However, the role of laccase in the immune response against C. gattii remains unclear. In this study, we characterized laccase activity in C. neoformans and C. gattii isolates from Thailand and investigated whether C. gattii that is deficient in laccase might modulate immune responses during infection. C. gattii was found to have higher laccase activity than C. neoformans, indicating the importance of laccase in the pathogenesis of C. gattii infection. The expression of laccase promoted intracellular proliferation in macrophages and inhibited in vitro fungal clearance. Mice infected with a lac1Δ mutant strain of C. gattii had reduced lung burdens at the early but not the late stage of infection. Without affecting type-1 and type-2 responses, the deficiency of laccase in C. gattii induced cryptococcus-specific interleukin-17 (IL-17) cytokine, neutrophil accumulation, and expression of the neutrophil-associated cytokine gene Csf3 and chemokine genes Cxcl1, Cxcl2, and Cxcl5 in vivo, as well as enhanced neutrophil-mediated phagocytosis and killing in vitro Thus, our data suggest that laccase constitutes an important virulence factor of C. gattii that plays roles in attenuating Th17-type immunity, neutrophil recruitment, and function during the early stage of infection.
Collapse
|
34
|
Abstract
Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. This phenomenon has been most often studied for Cryptococcus neoformans, a yeast that causes roughly 180,000 deaths per year, primarily in immunocompromised (e.g., human immunodeficiency virus [HIV]) patients. Existing dogma purports that vomocytosis involves distinctive cellular pathways and intracellular physicochemical cues in the host cell during phagosomal maturation. Moreover, it has been observed that the immunological state of the individual and macrophage phenotype affect vomocytosis outcomes. Here we compile the current knowledge on the factors (with respect to the phagocytic cell) that promote vomocytosis of C. neoformans from macrophages.
Collapse
|
35
|
Abstract
Cryptococcus gattii R265 is a hypervirulent fungal strain responsible for the recent outbreak of cryptococcosis in Vancouver Island of British Columbia in Canada. It differs significantly from Cryptococcus neoformans in its natural environment, its preferred site in the mammalian host, and its pathogenesis. Our previous studies of C. neoformans have shown that the presence of chitosan, the deacetylated form of chitin, in the cell wall attenuates inflammatory responses in the host, while its absence induces robust immune responses, which in turn facilitate clearance of the fungus and induces a protective response. The results of the present investigation reveal that the cell wall of C. gattii R265 contains a two- to threefold larger amount of chitosan than that of C. neoformans The genes responsible for the biosynthesis of chitosan are highly conserved in the R265 genome; the roles of the three chitin deacetylases (CDAs) have, however, been modified. To deduce their roles, single and double CDA deletion strains and a triple CDA deletion strain were constructed in a R265 background and were subjected to mammalian infection studies. Unlike C. neoformans where Cda1 has a discernible role in fungal pathogenesis, in strain R265, Cda3 is critical for virulence. Deletion of either CDA3 alone or in combination with another CDA (cda1Δ3Δ or cda2Δ3Δ) or both (cda1Δ2Δ3Δ) rendered the fungus avirulent and cleared from the infected host. Moreover, the cda1Δ2Δ3Δ strain of R265 induced a protective response to a subsequent infection with R265. These studies begin to illuminate the regulation of chitosan biosynthesis of C. gattii and its subsequent effect on fungal virulence.IMPORTANCE The fungal cell wall is an essential organelle whose components provide the first line of defense against host-induced antifungal activity. Chitosan is one of the carbohydrate polymers in the cell wall that significantly affects the outcome of host-pathogen interaction. Chitosan-deficient strains are avirulent, implicating chitosan as a critical virulence factor. C. gattii R265 is an important fungal pathogen of concern due to its ability to cause infections in individuals with no apparent immune dysfunction and an increasing geographical distribution. Characterization of the fungal cell wall and understanding the contribution of individual molecules of the cell wall matrix to fungal pathogenesis offer new therapeutic avenues for intervention. In this report, we show that the C. gattii R265 strain has evolved alternate regulation of chitosan biosynthesis under both laboratory growth conditions and during mammalian infection compared to that of C. neoformans.
Collapse
|
36
|
Bastos RW, Freitas GJC, Carneiro HCS, Oliveira LVN, Gouveia-Eufrasio L, Santos APN, Moyrand F, Maufrais C, Janbon G, Santos DA. From the environment to the host: How non-azole agrochemical exposure affects the antifungal susceptibility and virulence of Cryptococcus gattii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:516-523. [PMID: 31121401 DOI: 10.1016/j.scitotenv.2019.05.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Agrochemicals such as the non-azoles, used to improve crop productivity, poses severe undesirable effects on the environment and human health. In addition, they induce cross-resistance (CR) with clinical drugs in pathogenic fungi. However, till date emphasis has been given to the role of azoles on the induction of CR. Herein, we analyzed the effect of a non-azole agrochemical, pyraclostrobin (PCT), on the antifungal susceptibility and virulence of the human and animal pathogens Cryptococcus gattii and C. neoformans. We determined the minimum inhibitory concentration (MIC) of fluconazole (FLC), itraconazole, ravuconazole, amphotericin B, and PCT on colonies: (i) that were not exposed to PCT (non-adapted-NA-cultures), (ii) were exposed at the maximum concentration of PCT (adapted-A-cultures) and (iii) the adapted colonies after cultivation 10 times in PCT-free media (10 passages-10p-cultures). Our results showed that exposure to PCT induced both temporary and permanent CR to clinical azoles in a temperature-dependent manner. With the objective to understand the mechanism of induction of CR through non-azoles, the transcriptomes of NA and 10p cells from C. gattii R265 were analyzed. The transcriptomic analysis showed that expression of the efflux-pump genes (AFR1 and MDR1) and PCT target was higher in resistant 10p cells than that in NA. Moreover, the virulence of 10p cells was reduced as compared to NA cells in mice, as observed by the differential gene expression analysis of genes related to ion-metabolism. Additionally, we observed that FLC could not increase the survival rate of mice infected with 10p cells, confirming the occurrence of permanent CR in vivo. The findings of the present study demonstrate that the non-azole agrochemical PCT can induce permanent CR to clinical antifungals through increased expression of efflux pump genes in resistant cells and that such phenomenon also manifests in vivo.
Collapse
Affiliation(s)
- Rafael Wesley Bastos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo José Cota Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hellem Cristina Silva Carneiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lorena Vívien Neves Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila Gouveia-Eufrasio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Philip Nonato Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Guilhem Janbon
- Département de Mycologie, Institut Pasteur, Paris, France
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
37
|
Bielska E, May RC. Extracellular vesicles of human pathogenic fungi. Curr Opin Microbiol 2019; 52:90-99. [PMID: 31280026 DOI: 10.1016/j.mib.2019.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles play a significant role in many aspects of cellular life including cell-to-cell communication, pathogenesis and cancer progression. However very little is known about their role in fungi and we are just at the beginning of understanding their influence on fungal pathophysiology and host-pathogen interactions. Recent findings have revealed a role for fungal vesicles in triggering anti-microbial activities as well as in modulating virulence strategies, suggesting potential new avenues for antifungal therapies. In this review, we summarize our current understanding of fungal extracellular vesicles, including their biogenesis, secretion and size variation, and discuss how they may influence the human immune response and some key questions that remain unanswered.
Collapse
Affiliation(s)
- Ewa Bielska
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Robin C May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
38
|
Aleksic Sabo V, Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. INDUSTRIAL CROPS AND PRODUCTS 2019; 132:413-429. [PMID: 32288268 PMCID: PMC7126574 DOI: 10.1016/j.indcrop.2019.02.051] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 05/15/2023]
Abstract
Eucalyptus has become one of the world's most widely planted genera and E. camaldulensis (The River Red Gum) is a plantation species in many parts of the world. The plant traditional medical application indicates great antimicrobial properties, so E. camaldulensis essential oils and plant extracts have been widely examined. Essential oil of E. camaldulensis is active against many Gram positive (0.07-1.1%) and Gram negative bacteria (0.01-3.2%). The antibacterial effect is confirmed for bark and leaf extracts (conc. from 0.08 μg/mL to 200 mg/mL), with significant variations depending on extraction procedure. Eucalyptus camaldulensis essential oil and extracts are among the most active against bacteria when compared with those from other species of genus Eucalyptus. The most fungal model organisms are sensitive to 0.125-1.0% of E. camaldulensis essential oil. The extracts are active against C. albicans (0.2-200 mg/mL leaf extracts and 0.5 mg/mL bark extracts), and against various dermatophytes. Of particular importance is considerable the extracts' antiviral activity against animal and human viruses (0.1-50 μg/mL). Although the antiprotozoal activity of E. camaldulensis essential oil and extracts is in the order of magnitude of concentration several hundred mg/mL, it is considerable when taking into account current therapy cost, toxicity, and protozoal growing resistance. Some studies show that essential oils' and extracts' antimicrobial activity can be further potentiated in combinations with antibiotics (beta-lactams, fluorochinolones, aminoglycosides, polymyxins), antivirals (acyclovir), and extracts of other plants (e.g. Annona senegalensis; Psidium guajava). The present data confirm the river red gum considerable antimicrobial properties, which should be further examined with particular attention to the mechanisms of antimicrobial activity.
Collapse
Affiliation(s)
- Verica Aleksic Sabo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, Novi Sad, Vojvodina, Serbia
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, Novi Sad, Vojvodina, Serbia
| |
Collapse
|
39
|
Hurtado JC, Castillo P, Fernandes F, Navarro M, Lovane L, Casas I, Quintó L, Marco F, Jordao D, Ismail MR, Lorenzoni C, Martinez-Palhares AE, Ferreira L, Lacerda M, Monteiro W, Sanz A, Letang E, Marimon L, Jesri S, Cossa A, Mandomando I, Vila J, Bassat Q, Ordi J, Menéndez C, Carrilho C, Martínez MJ. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep 2019; 9:7493. [PMID: 31097746 PMCID: PMC6522501 DOI: 10.1038/s41598-019-43941-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Cryptococcosis is a major opportunistic infection and is one of the leading causes of death in adults living with HIV in sub-Saharan Africa. Recent estimates indicate that more than 130,000 people may die annually of cryptococcal meningitis in this region. Although complete diagnostic autopsy (CDA) is considered the gold standard for determining the cause of death, it is seldom performed in low income settings. In this study, a CDA was performed in 284 deceased patients from Mozambique (n = 223) and Brazil (n = 61). In depth histopathological and microbiological analyses were carried out in all cases dying of cryptococcosis. We determined the cryptococcal species, the molecular and sero-mating types and antifungal susceptibility. We also described the organs affected and reviewed the clinical presentation and patient management. Among the 284 cases included, 17 fatal cryptococcal infections were diagnosed. Cryptococcus was responsible for 16 deaths among the 163 HIV-positive patients (10%; 95%CI: 6-15%), including four maternal deaths. One third of the cases corresponded to C. gattii (VGI and VGIV molecular types, Bα and Cα strains) and the remaining infections typed were caused by C. neoformans var. Grubii (all VNI and Aα strains). The level of pre-mortem clinical suspicion was low (7/17, 41%), and 7/17 patients (41%) died within the first 72 hours of admission. Cryptococcosis was responsible for a significant proportion of AIDS-related mortality. The clinical diagnosis and patient management were inadequate, supporting the need for cryptococcal screening for early detection of the disease. This is the first report of the presence of C. gattii infection in Mozambique.
Collapse
Affiliation(s)
- Juan Carlos Hurtado
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Paola Castillo
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Fabiola Fernandes
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique
| | - Mireia Navarro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Lucilia Lovane
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique
| | - Isaac Casas
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Llorenç Quintó
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Francesc Marco
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Dercio Jordao
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique
| | - Mamudo R Ismail
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique.,Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Cesaltina Lorenzoni
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique.,Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | | | - Luiz Ferreira
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado, Manaus, Amazonas, Brazil
| | - Marcus Lacerda
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado, Manaus, Amazonas, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, Fiocruz, Manaus, Brazil
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Doutor Heitor Viera Dourado, Manaus, Amazonas, Brazil
| | - Ariadna Sanz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Emilio Letang
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Hospital del Mar. Service of Infectious Diseases, Hospital del Mar, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Lorena Marimon
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Susan Jesri
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Anelsio Cossa
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Jordi Vila
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ICREA, Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Jaume Ordi
- Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.,Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Carla Carrilho
- Department of Pathology, Maputo Central Hospital, Maputo, Mozambique.,Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Miguel J Martínez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Department of Microbiology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
40
|
Shourian M, Qureshi ST. Resistance and Tolerance to Cryptococcal Infection: An Intricate Balance That Controls the Development of Disease. Front Immunol 2019; 10:66. [PMID: 30761136 PMCID: PMC6361814 DOI: 10.3389/fimmu.2019.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental yeast and a leading cause of invasive fungal infection in humans. The most recent estimate of global disease burden includes over 200,000 cases of cryptococcal meningitis each year. Cryptococcus neoformans expresses several virulence factors that may have originally evolved to protect against environmental threats, and human infection may be an unintended consequence of these acquired defenses. Traditionally, C. neoformans has been viewed as a purely opportunistic pathogen that targets severely immune compromised hosts; however, during the past decade the spectrum of susceptible individuals has grown considerably. In addition, the closely related strain Cryptococcus gattii has recently emerged in North America and preferentially targets individuals with intact immunity. In parallel to the changing epidemiology of cryptococcosis, an increasing role for host immunity in the pathogenesis of severe disease has been elucidated. Initially, the HIV/AIDS epidemic revealed the capacity of C. neoformans to cause host damage in the absence of adaptive immunity. Subsequently, the development and clinical implementation of highly active antiretroviral treatment (HAART) led to recognition of an immune reconstitution inflammatory syndrome (IRIS) in a subset of HIV+ individuals, demonstrating the pathological role of host immunity in disease. A post-infectious inflammatory syndrome (PIIRS) characterized by abnormal T cell-macrophage activation has also been documented in HIV-negative individuals following antifungal therapy. These novel clinical conditions illustrate the highly complex host-pathogen relationship that underlies severe cryptococcal disease and the intricate balance between tolerance and resistance that is necessary for effective resolution. In this article, we will review current knowledge of the interactions between cryptococci and mammalian hosts that result in a tolerant phenotype. Future investigations in this area have potential for translation into improved therapies for affected individuals.
Collapse
Affiliation(s)
- Mitra Shourian
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Salman T Qureshi
- Translational Research in Respiratory Diseases Program, Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
41
|
Zimbres ACG, Reuwsaat JCV, Barcellos VA, Joffe LS, Fonseca FL, Staats CC, Schrank A, Kmetzsch L, Vainstein MH, Rodrigues ML. Pharmacological inhibition of pigmentation inCryptococcus. FEMS Yeast Res 2018; 19:5173039. [DOI: 10.1093/femsyr/foy119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ana Claudia G Zimbres
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Julia C V Reuwsaat
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Vanessa A Barcellos
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Luna S Joffe
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil
| | - Fernanda L Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro 21941-902, Brazil
| | - Charley C Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Livia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Marilene H Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Marcio L Rodrigues
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratory of Gene Expression Regulation (LabReg), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR 81310-020, Brazil
| |
Collapse
|
42
|
Zhou X, Ballou ER. The Cryptococcus neoformans Titan Cell: From In Vivo Phenomenon to In Vitro Model. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0107-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Freij JB, Fu MS, De Leon Rodriguez CM, Dziedzic A, Jedlicka AE, Dragotakes Q, Rossi DCP, Jung EH, Coelho C, Casadevall A. Conservation of Intracellular Pathogenic Strategy among Distantly Related Cryptococcal Species. Infect Immun 2018; 86:e00946-17. [PMID: 29712729 PMCID: PMC6013651 DOI: 10.1128/iai.00946-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/02/2018] [Indexed: 01/22/2023] Open
Abstract
The genus Cryptococcus includes several species pathogenic for humans. Until recently, the two major pathogenic species were recognized to be Cryptococcus neoformans and Cryptococcus gattii We compared the interaction of murine macrophages with three C. gattii species complex strains (WM179, R265, and WM161, representing molecular types VGI, VGIIa, and VGIII, respectively) and one C. neoformans species complex strain (H99, molecular type VNI) to ascertain similarities and differences in the yeast intracellular pathogenic strategy. The parameters analyzed included nonlytic exocytosis frequency, phagolysosomal pH, intracellular capsular growth, phagolysosomal membrane permeabilization, and macrophage transcriptional response, assessed using time-lapse microscopy, fluorescence microscopy, flow cytometry, and gene expression microarray analysis. The most striking result was that the intracellular pathogenic strategies of C. neoformans and C. gattii species complex strains were qualitatively similar, despite the species having separated an estimated 100 million years ago. Macrophages exhibited a leaky phagolysosomal membrane phenotype and nonlytic exocytosis when infected with either C. gattii or C. neoformans Conservation of the intracellular strategy among species that separated long ago suggests that it is ancient and possibly maintained by similar selection pressures through eons.
Collapse
Affiliation(s)
- Joudeh B Freij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne E Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diego C P Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eric H Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Albert Einstein School of Medicine, Department of Microbiology and Immunology, New York, New York, USA
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
44
|
A Predicted Mannoprotein Participates in Cryptococcus gattii Capsular Structure. mSphere 2018; 3:3/2/e00023-18. [PMID: 29897877 PMCID: PMC5917426 DOI: 10.1128/msphere.00023-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
The yeast-like pathogen Cryptococcus gattii is an etiological agent of cryptococcosis. The major cryptococcal virulence factor is the polysaccharide capsule, which is composed of glucuronoxylomannan (GXM), galactoxylomannan (GalXM), and mannoproteins (MPs). The GXM and GalXM polysaccharides have been extensively characterized; however, there is little information about the role of mannoproteins in capsule assembly and their participation in yeast pathogenicity. The present study characterized the function of a predicted mannoprotein from C. gattii, designated Krp1. Loss-of-function and gain-of-function mutants were generated, and phenotypes associated with the capsular architecture were evaluated. The null mutant cells were more sensitive to a cell wall stressor that disrupts beta-glucan synthesis. Also, these cells displayed increased GXM release to the culture supernatant than the wild-type strain did. The loss of Krp1 influenced cell-associated cryptococcal polysaccharide thickness and phagocytosis by J774.A1 macrophages in the early hours of interaction, but no difference in virulence in a murine model of cryptococcosis was observed. In addition, recombinant Krp1 was antigenic and differentially recognized by serum from an individual with cryptococcosis, but not with serum from an individual with candidiasis. Taken together, these results indicate that C. gattii Krp1 is important for the cell wall structure, thereby influencing capsule assembly, but is not essential for virulence in vivoIMPORTANCECryptococcus gattii has the ability to escape from the host's immune system through poorly understood mechanisms and can lead to the death of healthy individuals. The role of mannoproteins in C. gattii pathogenicity is not completely understood. The present work characterized a protein, Kpr1, that is essential for the maintenance of C. gattii main virulence factor, the polysaccharide capsule. Our data contribute to the understanding of the role of Kpr1 in capsule structuring, mainly by modulating the distribution of glucans in C. gattii cell wall.
Collapse
|
45
|
Abstract
The “centromere paradox” refers to rapidly evolving and highly diverse centromere DNA sequences even in closely related eukaryotes. However, factors contributing to this rapid divergence are largely unknown. Here, we identified large regional, LTR retrotransposon-rich centromeres in a group of human fungal pathogens belonging to the Cryptococcus species complex. We provide evidence that loss-of-functional RNAi machinery and possibly cytosine DNA methylation trigger instability of the genome by activation of centromeric retrotransposons presumably suppressed by RNAi. We propose that RNAi, together with cytosine DNA methylation, serves as a critical determinant that maintains repetitive transposon-rich centromere structures. This study explores the direct link between RNAi and centromere structure evolution. The centromere DNA locus on a eukaryotic chromosome facilitates faithful chromosome segregation. Despite performing such a conserved function, centromere DNA sequence as well as the organization of sequence elements is rapidly evolving in all forms of eukaryotes. The driving force that facilitates centromere evolution remains an enigma. Here, we studied the evolution of centromeres in closely related species in the fungal phylum of Basidiomycota. Using ChIP-seq analysis of conserved inner kinetochore proteins, we identified centromeres in three closely related Cryptococcus species: two of which are RNAi-proficient, while the other lost functional RNAi. We find that the centromeres in the RNAi-deficient species are significantly shorter than those of the two RNAi-proficient species. While centromeres are LTR retrotransposon-rich in all cases, the RNAi-deficient species lost all full-length retroelements from its centromeres. In addition, centromeres in RNAi-proficient species are associated with a significantly higher level of cytosine DNA modifications compared with those of RNAi-deficient species. Furthermore, when an RNAi-proficient Cryptococcus species and its RNAi-deficient mutants were passaged under similar conditions, the centromere length was found to be occasionally shortened in RNAi mutants. In silico analysis of predicted centromeres in a group of closely related Ustilago species, also belonging to the Basidiomycota, were found to have undergone a similar transition in the centromere length in an RNAi-dependent fashion. Based on the correlation found in two independent basidiomycetous species complexes, we present evidence suggesting that the loss of RNAi and cytosine DNA methylation triggered transposon attrition, which resulted in shortening of centromere length during evolution.
Collapse
|
46
|
Barcellos VA, Martins LMS, Fontes ACL, Reuwsaat JCV, Squizani ED, de Sousa Araújo GR, Frases S, Staats CC, Schrank A, Kmetzsch L, Vainstein MH. Genotypic and Phenotypic Diversity of Cryptococcus gattii VGII Clinical Isolates and Its Impact on Virulence. Front Microbiol 2018; 9:132. [PMID: 29467743 PMCID: PMC5808156 DOI: 10.3389/fmicb.2018.00132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/19/2018] [Indexed: 12/11/2022] Open
Abstract
The Cryptococcus gattii species complex harbors the main etiological agents of cryptococcosis in immunocompetent patients. C. gattii molecular type VGII predominates in the north and northeastern regions of Brazil, leading to high morbidity and mortality rates. C. gattii VGII isolates have a strong clinical relevance and phenotypic variations. These phenotypic variations among C. gattii species complex isolates suggest that some strains are more virulent than others, but little information is available related to the pathogenic properties of those strains. In this study, we analyzed some virulence determinants of C. gattii VGII strains (CG01, CG02, and CG03) isolated from patients in the state of Piauí, Brazil. The C. gattii R265 VGIIa strain, which was isolated from the Vancouver outbreak, differed from C. gattii CG01, CG02 and CG03 isolates (also classified as VGII) when analyzed the capsular dimensions, melanin production, urease activity, as well as the glucuronoxylomannan (GXM) secretion. Those differences directly reflected in their virulence potential. In addition, CG02 displayed higher virulence compared to R265 (VGIIa) strain in a cryptococcal murine model of infection. Lastly, we examined the genotypic diversity of these strains through Multilocus Sequence Type (MLST) and one new subtype was described for the CG02 isolate. This study confirms the presence and the phenotypic and genotypic diversity of highly virulent strains in the Northeast region of Brazil.
Collapse
Affiliation(s)
- Vanessa A Barcellos
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Liline M S Martins
- Laboratório de Imunogenética e Biologia Molecular, Universidade Federal do Piauí, Teresina, Brazil.,Faculdade de Ciências Médicas da Universidade Estadual do Piauí, Teresina, Brazil
| | - Alide C L Fontes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julia C V Reuwsaat
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eamim D Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Glauber R de Sousa Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Charley C Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Livia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilene H Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
47
|
Environmental Triazole Induces Cross-Resistance to Clinical Drugs and Affects Morphophysiology and Virulence of Cryptococcus gattii and C. neoformans. Antimicrob Agents Chemother 2017; 62:AAC.01179-17. [PMID: 29109169 DOI: 10.1128/aac.01179-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus gattii and Cryptococcus neoformans are environmental fungi that cause cryptococcosis, which is usually treated with amphotericin B and fluconazole. However, therapeutic failure is increasing because of the emergence of resistant strains. Because these species are constantly isolated from vegetal materials and the usage of agrochemicals is growing, we postulate that pesticides could be responsible for the altered susceptibility of these fungi to clinical drugs. Therefore, we evaluated the influence of the pesticide tebuconazole on the susceptibility to clinical drugs, morphophysiology, and virulence of C. gattii and C. neoformans strains. The results showed that tebuconazole exposure caused in vitro cross-resistance (CR) between the agrochemical and clinical azoles (fluconazole, itraconazole, and ravuconazole) but not with amphotericin B. In some strains, CR was observed even after the exposure ceased. Further, tebuconazole exposure changed the morphology, including formation of pseudohyphae in C. neoformans H99, and the surface charge of the cells. Although the virulence of both species previously exposed to tebuconazole was decreased in mice, the tebuconazole-exposed colonies recovered from the lungs were more resistant to azole drugs than the nonexposed cells. This in vivo CR was confirmed when fluconazole was not able to reduce the fungal burden in the lungs of mice. The tolerance to azoles could be due to increased expression of the ERG11 gene in both species and of efflux pump genes (AFR1 and MDR1) in C. neoformans Our study data support the idea that agrochemical usage can significantly affect human pathogens present in the environment by affecting their resistance to clinical drugs.
Collapse
|
48
|
Boral H, Metin B, Döğen A, Seyedmousavi S, Ilkit M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 2017; 111:92-107. [PMID: 29102684 DOI: 10.1016/j.fgb.2017.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
The incidence of fungal diseases has been increasing since 1980, and is associated with excessive morbidity and mortality, particularly among immunosuppressed patients. Of the known 625 pathogenic fungal species, infections caused by the genera Aspergillus, Candida, Cryptococcus, and Trichophyton are responsible for more than 300 million estimated episodes of acute or chronic infections worldwide. In addition, a rather neglected group of opportunistic fungi known as black yeasts and their filamentous relatives cause a wide variety of recalcitrant infections in both immunocompetent and immunosuppressed hosts. This article provides an overview of selected virulence factors that are known to suppress host immunity and enhance the infectivity of these fungi.
Collapse
Affiliation(s)
- Hazal Boral
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Banu Metin
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, Turkey
| | - Seyedmojtaba Seyedmousavi
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands; Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Center of Excellence for Infection Biology and Antimicrobial Pharmacology, Tehran, Iran
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey.
| |
Collapse
|
49
|
Oliveira LVN, Costa MC, Magalhães TFF, Bastos RW, Santos PC, Carneiro HCS, Ribeiro NQ, Ferreira GF, Ribeiro LS, Gonçalves APF, Fagundes CT, Pascoal-Xavier MA, Djordjevic JT, Sorrell TC, Souza DG, Machado AMV, Santos DA. Influenza A Virus as a Predisposing Factor for Cryptococcosis. Front Cell Infect Microbiol 2017; 7:419. [PMID: 29018774 PMCID: PMC5622999 DOI: 10.3389/fcimb.2017.00419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/11/2017] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus (IAV) infects millions of people annually and predisposes to secondary bacterial infections. Inhalation of fungi within the Cryptococcus complex causes pulmonary disease with secondary meningo-encephalitis. Underlying pulmonary disease is a strong risk factor for development of C. gattii cryptococcosis though the effect of concurrent infection with IAV has not been studied. We developed an in vivo model of Influenza A H1N1 and C. gattii co-infection. Co-infection resulted in a major increase in morbidity and mortality, with severe lung damage and a high brain fungal burden when mice were infected in the acute phase of influenza multiplication. Furthermore, IAV alters the host response to C. gattii, leading to recruitment of significantly more neutrophils and macrophages into the lungs. Moreover, IAV induced the production of type 1 interferons (IFN-α4/β) and the levels of IFN-γ were significantly reduced, which can be associated with impairment of the immune response to Cryptococcus during co-infection. Phagocytosis, killing of cryptococci and production of reactive oxygen species (ROS) by IAV-infected macrophages were reduced, independent of previous IFN-γ stimulation, leading to increased proliferation of the fungus within macrophages. In conclusion, IAV infection is a predisposing factor for severe disease and adverse outcomes in mice co-infected with C. gattii.
Collapse
Affiliation(s)
- Lorena V N Oliveira
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaís F F Magalhães
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael W Bastos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia C Santos
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hellem C S Carneiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Noelly Q Ribeiro
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriella F Ferreira
- Departamento de Farmácia, Universidade Federal de Juiz de Fora-Campus Governador Valadares, Centro, Governador Valadares, Brazil
| | - Lucas S Ribeiro
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana P F Gonçalves
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Caio T Fagundes
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo A Pascoal-Xavier
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Julianne T Djordjevic
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney and Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Daniele G Souza
- Laboratório de Interação Micro-organismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre M V Machado
- Centro de Pesquisas René Rachou (CPqRR)/Fundação Oswaldo Cruz (Fiocruz Minas), Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
50
|
Ribeiro NS, Dos Santos FM, Garcia AWA, Ferrareze PAG, Fabres LF, Schrank A, Kmetzsch L, Rott MB, Vainstein MH, Staats CC. Modulation of Zinc Homeostasis in Acanthamoeba castellanii as a Possible Antifungal Strategy against Cryptococcus gattii. Front Microbiol 2017; 8:1626. [PMID: 28883816 PMCID: PMC5573748 DOI: 10.3389/fmicb.2017.01626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Cryptococcus gattii is a basidiomycetous yeast that can be found in the environment and is one of the agents of cryptococcosis, a life-threatening disease. During its life cycle, cryptococcal cells take hold inside environmental predators such as amoebae. Despite their evolutionary distance, macrophages and amoebae share conserved similar steps of phagocytosis and microbial killing. To evaluate whether amoebae also share other antifungal strategies developed by macrophages, we investigated nutritional immunity against cryptococcal cells. We focused on zinc homeostasis modulation in Acanthamoeba castellanii infected with C. gattii. The intracellular proliferation rate (IPR) in amoebae was determined using C. gattii R265 and mutants for the ZIP1 gene, which displays defects of growth in zinc-limiting conditions. We detected a reduced IPR in cells lacking the ZIP1 gene compared to wild-type strains, suggesting that amoebae produce a low zinc environment to engulfed cells. Furthermore, flow cytometry analysis employing the zinc probe Zinpyr-1 confirmed the reduced concentration of zinc in cryptococcal-infected amoebae. qRT-PCR analysis of zinc transporter-coding genes suggests that zinc export by members of the ZnT family would be involved in the reduced intracellular zinc concentration. These results indicate that amoebae may use nutritional immunity to reduce fungal cell proliferation by reducing zinc availability for the pathogen.
Collapse
Affiliation(s)
- Nicole S Ribeiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Francine M Dos Santos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Ane W A Garcia
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Patrícia A G Ferrareze
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Laura F Fabres
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Augusto Schrank
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Livia Kmetzsch
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Marilise B Rott
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Marilene H Vainstein
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Charley C Staats
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|