1
|
Oh H, Choi Y, Lee J. Antibiotic-Resistant Salmonella in Animal Products Jeopardize Human Health. Food Sci Anim Resour 2025; 45:409-428. [PMID: 40093628 PMCID: PMC11907419 DOI: 10.5851/kosfa.2025.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Despite the significance of antibiotics in treating bacterial infections, antibiotic resistance is continuously increasing, thus posing a significant threat. In addition to strains resistant to individual drugs, multidrug-resistant (MDR) and pandrug-resistant strains, are emerging. Salmonella, a primary cause of global foodborne illness, is often transmitted through animal products. Antibiotic treatment is crucial for immunocompromised individuals, such as older adults and patients with weakened immune systems, due to their increased susceptibility to severe effects. MDR Salmonella, which can arise following antibiotic use in food animals, may transfer to humans, leading to significant health challenges. The emergence of Salmonella strains resistant to carbapenems, often considered a last-resort antibiotic class, is particularly concerning. Salmonella neutralizes antibiotics through mechanisms, such as horizontal gene transfer via plasmids, efflux/influx system regulation, and enzyme production that deactivate or alter antibiotics. The rise of megaplasmids in Salmonella is particularly alarming, as it may enable resistance to a broader range of antibiotics. This review summarizes the current state of the growing threat of MDR Salmonella and underscores the urgent need for a coordinated response.
Collapse
Affiliation(s)
- Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Korea
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yukyung Choi
- Chong Kun Dang Bio Research Institute, Ansan 15604, Korea
| | - Jeeyeon Lee
- Department of Food & Nutrition, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
2
|
Iduu NV, Kitchens S, Price SB, Wang C. Mutation in Wzz(fepE) Linked to Altered O-Antigen Biosynthesis and Attenuated Virulence in Rough Salmonella Infantis Variant. Vet Sci 2024; 11:603. [PMID: 39728943 DOI: 10.3390/vetsci11120603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Salmonella enterica serovar Infantis has emerged as a prevalent foodborne pathogen in poultry with significant global health implications. This study investigates the molecular characteristics influencing virulence in a S. Infantis rough variant collected from a poultry farm in the USA. In this study, whole genome sequencing and comparative genomics were performed on smooth and rough poultry S. Infantis isolates, while chicken embryo lethality assay was conducted to assess their virulence. Comparative genomics between isolates was analyzed using Mauve pairwise Locally Collinear Blocks to measure the genetic conservation. Embryo survival rates between the isolates were compared using the Kaplan-Meier curves. High genomic conservation was observed between the two isolates, but a frameshift mutation was detected in the Wzz(fepE) gene of the rough variant, resulting in early protein truncation. The chicken embryo lethality assay showed that the lethality rate of the smooth strain was higher than that of the rough strain (p < 0.05). This study identifies a frameshift mutation in the Wzz(fepE) gene, leading to protein truncation, which may reduce bacterial virulence by impacting O-antigen biosynthesis in the rough Salmonella Infantis variant. These findings deepen our understanding of S. Infantis pathogenesis and suggest that targeting the Wzz(fepE) gene or related pathways could be a promising strategy for developing effective vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Nneka Vivian Iduu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| | - Steven Kitchens
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| | - Stuart B Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA
| |
Collapse
|
3
|
Guzinski J, Potter J, Tang Y, Davies R, Teale C, Petrovska L. Geographical and temporal distribution of multidrug-resistant Salmonella Infantis in Europe and the Americas. Front Microbiol 2024; 14:1244533. [PMID: 38414709 PMCID: PMC10896835 DOI: 10.3389/fmicb.2023.1244533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/04/2023] [Indexed: 02/29/2024] Open
Abstract
Recently emerged S. Infantis strains carrying resistance to several commonly used antimicrobials have been reported from different parts of the globe, causing human cases of salmonellosis and with occurrence reported predominantly in broiler chickens. Here, we performed phylogenetic and genetic clustering analyses to describe the population structure of 417 S. Infantis originating from multiple European countries and the Americas collected between 1985 and 2019. Of these, 171 were collected from 56 distinct premises located in England and Wales (E/W) between 2009 and 2019, including isolates linked to incursions of multidrug-resistant (MDR) strains from Europe associated with imported poultry meat. The analysis facilitated the comparison of isolates from different E/W sources with isolates originating from other countries. There was a high degree of congruency between the outputs of different types of population structure analyses revealing that the E/W and central European (Germany, Hungary, and Poland) isolates formed several disparate groups, which were distinct from the cluster relating to the United States (USA) and Ecuador/Peru, but that isolates from Brazil were closely related to the E/W and the central European isolates. Nearly half of the analysed strains/genomes (194/417) harboured the IncFIB(pN55391) replicon typical of the "parasitic" pESI-like megaplasmid found in diverse strains of S. Infantis. The isolates that contained the IncFIB(pN55391) replicon clustered together, despite originating from different parts of the globe. This outcome was corroborated by the time-measured phylogeny, which indicated that the initial acquisition of IncFIB(pN55391) likely occurred in Europe in the late 1980s, with a single introduction of IncFIB(pN55391)-carrying S. Infantis to the Americas several years later. Most of the antimicrobial resistance (AMR) genes were identified in isolates that harboured one or more different plasmids, but based on the short-read assemblies, only a minority of the resistance genes found in these isolates were identified as being associated with the detected plasmids, whereas the hybrid assemblies comprising the short and long reads demonstrated that the majority of the identified AMR genes were associated with IncFIB(pN55391) and other detected plasmid replicon types. This finding underlies the importance of applying appropriate methodologies to investigate associations of AMR genes with bacterial plasmids.
Collapse
Affiliation(s)
- Jaromir Guzinski
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joshua Potter
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Yue Tang
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Rob Davies
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | | | | |
Collapse
|
4
|
Grote A, Piscon B, Manson AL, Adani B, Cohen H, Livny J, Earl AM, Gal-Mor O. Persistent Salmonella infections in humans are associated with mutations in the BarA/SirA regulatory pathway. Cell Host Microbe 2024; 32:79-92.e7. [PMID: 38211565 PMCID: PMC11410052 DOI: 10.1016/j.chom.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Several bacterial pathogens, including Salmonella enterica, can cause persistent infections in humans by mechanisms that are poorly understood. By comparing genomes of isolates longitudinally collected from 256 prolonged salmonellosis patients, we identified repeated mutations in global regulators, including the barA/sirA two-component regulatory system, across multiple patients and Salmonella serovars. Comparative RNA-seq analysis revealed that distinct mutations in barA/sirA led to diminished expression of Salmonella pathogenicity islands 1 and 4 genes, which are required for Salmonella invasion and enteritis. Moreover, barA/sirA mutants were attenuated in an acute salmonellosis mouse model and induced weaker transcription of host immune responses. In contrast, in a persistent infection mouse model, these mutants exhibited long-term colonization and prolonged shedding. Taken together, these findings suggest that selection of mutations in global virulence regulators facilitates persistent Salmonella infection in humans, by attenuating Salmonella virulence and inducing a weaker host inflammatory response.
Collapse
Affiliation(s)
- Alexandra Grote
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bar Piscon
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Boaz Adani
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Helit Cohen
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Diamant I, Adani B, Sylman M, Rahav G, Gal-Mor O. The transcriptional regulation of the horizontally acquired iron uptake system, yersiniabactin and its contribution to oxidative stress tolerance and pathogenicity of globally emerging salmonella strains. Gut Microbes 2024; 16:2369339. [PMID: 38962965 PMCID: PMC11225919 DOI: 10.1080/19490976.2024.2369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
Collapse
Affiliation(s)
- Imbar Diamant
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Adani
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Meir Sylman
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Alvarez DM, Barrón-Montenegro R, Conejeros J, Rivera D, Undurraga EA, Moreno-Switt AI. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica Serovar Infantis. Int J Food Microbiol 2023; 403:110297. [PMID: 37406596 DOI: 10.1016/j.ijfoodmicro.2023.110297] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
Salmonella enterica serovar Infantis is an emergent foodborne and zoonotic Salmonella serovar with critical implications for global health. In recent years, the prevalence of S. Infantis infections has increased in the United States, Europe, and Latin America, due to contaminated chicken and other foods. An essential trait of S. Infantis is its resistance to multiple antibiotics, including the critically important third-generation cephalosporins and quinolones, undermining effective medical treatment, particularly in low-resource settings. We describe the emergence of multidrug-resistant (MDR) S. Infantis, focusing on humans, animals, the environment, and food. We conducted a systematic review (1979-2021), selected 183 studies, and analyzed the origin, source, antimicrobial resistance, and presence of a conjugative plasmid of emerging S. Infantis (pESI) in reported isolates. S. Infantis has been detected worldwide, with a substantial increase since 2011. We found the highest number of isolations in the Americas (42.9 %), Europe (29.8 %), Western Pacific (17.2 %), Eastern Mediterranean (6.6 %), Africa (3.4 %), and South-East Asia (0.1 %). S. Infantis showed MDR patterns and numerous resistant genes in all sources. The primary source of MDR S. Infantis is broiler and their meat; however, this emerging pathogen is also present in other reservoirs such as food, wildlife, and the environment. Clinical cases of MDR S. Infantis have been reported in children and adults. The global emergence of S. Infantis is related to a plasmid (pESI) with antibiotic and arsenic- and mercury-resistance genes. Additionally, a new megaplasmid (pESI-like), carrying blaCTX-M-65 and antibiotic-resistant genes reported in an ancestral version, was detected in the broiler, human, and chicken meat isolates. Strains harboring pESI-like were primarily observed in the Americas and Europe. MDR S. Infantis has spread globally, potentially becoming a major public health threat, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Diana M Alvarez
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rocío Barrón-Montenegro
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Conejeros
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Macul, Santiago, Región Metropolitana, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Eduardo A Undurraga
- Escuela de Gobierno, Pontificia Universidad Católica de Chile, Macul, Santiago, Región Metropolitana, Chile; Research Center for Integrated Disaster Risk Management (CIGIDEN), Av. Vicuña Mackenna 4860, Macul, Santiago, Región Metropolitana, Chile; CIFAR Azrieli Global Scholars program, CIFAR, 661 University Ave., Toronto, ON M5G 1M1, Canada
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
7
|
Rodríguez EC, Saavedra SY, Montaño LA, Sossa DP, Correa FP, Vaca JA, Duarte C. Characterization of extended spectrum β-lactamases in Colombian clinical isolates of non-typhoidal Salmonella enterica between 1997 and 2022. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:374-384. [PMID: 37871566 PMCID: PMC10637434 DOI: 10.7705/biomedica.6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/11/2023] [Indexed: 10/25/2023]
Abstract
Introduction. Salmonella spp. is a zoonotic pathogen transmitted to humans through contaminated water or food. The presence of extended-spectrum β-lactamases is a growing public health problem because these enzymes are resistant to third and fourth generation cephalosporins. Objective. To characterize extended-spectrum β-lactamases in Salmonella spp. isolates received by the acute diarrheal disease/foodborne disease surveillance program of the Grupo de Microbiología of the Instituto Nacional de Salud. Materials and methods. A total of 444 Salmonella spp. isolates, resistant to at least one of the cephalosporins, were obtained between January 1997 and June 2022. The extendedspectrum β-lactamases phenotype was identified by the double disk test. DNA extraction was carried out by the boiling method, and the blaCTX-M, blaSHV, and blaTEM genes were amplified by PCR. Results. All the isolates were positive for the extended-spectrum β-lactamases test. The genes identified were: blaCTX-M + blaTEM (n=200), blaCTX-M (n=177), blaSHV (n=16), blaSHV + blaCTX-M (n=6), blaTEM (n=13) and blaSHV + blaCTX-M + blaTEM (n=3). Twenty-six isolates were negative for the evaluated genes. Positive extended-spectrum β-lactamases isolates were identified in Bogotá and 21 departments: Chocó, Magdalena, Meta, Bolívar, Casanare, Cesar, Córdoba, Quindío, Atlántico, Tolima, Cauca, Cundinamarca, Huila, Boyacá, Caldas, Norte de Santander, Risaralda, Antioquia, Nariño, Santander y Valle del Cauca. Conclusion. Resistance to third generation cephalosporins in Salmonella spp. isolates was mainly caused by blaCTX-M. Isolates were resistant to ampicillin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole (44 %; 197/444). The most frequent extended-spectrum β-lactamases-expressing serotypes were Salmonella Typhimurium and Salmonella Infantis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
8
|
Effects of Lactobacillus fermentum Administration on Intestinal Morphometry and Antibody Serum Levels in Salmonella-Infantis-Challenged Chickens. Microorganisms 2023; 11:microorganisms11020256. [PMID: 36838221 PMCID: PMC9963312 DOI: 10.3390/microorganisms11020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
There are no studies reporting the effects of Salmonella enterica subsp. enterica serovar Infantis (S. Infantis) on intestinal architecture and immunoglobulin serum levels in chickens. Here, we measured these parameters and hypothesized whether probiotic administration could modulate the observed outcomes. Two-hundred 1-day-old COBB 500 male chicks were allocated into four groups: (I) the control, (II) the group treated with L. fermentum, (III) the group exposed to S. Infantis, and (IV) the group inoculated with both bacteria. At 11 days post infection, blood was gathered from animals which were then euthanized, and samples from the small intestine were collected. Intestinal conditions, as well as IgA and IgM serum levels, were assessed. S. Infantis reduced villus-height-to-crypt-depth (VH:CD) ratios in duodenal, jejunal, and ileal sections compared to control conditions, although no differences were found regarding the number of goblet cells, muc-2 expression, and immunoglobulin concentration. L. fermentum improved intestinal measurements compared to the control; this effect was also evidenced in birds infected with S. Infantis. IgM serum levels augmented in response to the probiotic in infected animals. Certainly, the application of L. fermentum elicited positive outcomes in S. Infantis-challenged chickens and thus must be considered for developing novel treatments designed to reduce unwanted infections.
Collapse
|
9
|
Alba P, Carfora V, Feltrin F, Diaconu EL, Sorbara L, Dell'Aira E, Cerci T, Ianzano A, Donati V, Franco A, Battisti A. Evidence of structural rearrangements in ESBL-positive pESI(like) megaplasmids of S.Infantis. FEMS Microbiol Lett 2023; 370:7049104. [PMID: 36806934 PMCID: PMC9990980 DOI: 10.1093/femsle/fnad014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
The increasing prevalence of pESI(like)-positive, multidrug-resistant (MDR) S. Infantis in Europe is a cause of major concern. As previously demonstrated, the pESI(like) megaplasmid is not only a carrier of antimicrobial resistant (AMR) genes (at least tet, dfr, and sul genes), but also harbours several virulence and fitness genes, and toxin/antitoxin systems that enhance its persistence in the S. Infantis host. In this study, five prototype pESI(like) plasmids, of either CTX-M-1 or CTX-M-65 ESBL-producing strains, were long-read sequenced using Oxford Nanopore Technology (ONT), and their complete sequences were resolved. Comparison of the structure and gene content of the five sequenced plasmids, and further comparison with previously published pESI(like) sequences, indicated that although the sequence of such pESI(like) 'mosaic' plasmids remains almost identical, their structures appear different and composed of regions inserted or transposed after different events. The results obtained in this study are essential to better understand the plasticity and the evolution of the pESI(like) megaplasmid, and therefore to better address risk management options and policy decisions to fight against AMR and MDR in Salmonella and other food-borne pathogens. Graphical representation of the pESI-like plasmid complete sequence (ID 12037823/11). Block colours indicate the function of the genes: red: repB gene; pink: class I integrons (IntI); yellow; mobile elements; blue: resistance genes; green: toxin/anti-toxin systems; grey: mer operon; light green: genes involve in conjugation.
Collapse
Affiliation(s)
- Patricia Alba
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Fabiola Feltrin
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Elena Lavinia Diaconu
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Luigi Sorbara
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Elena Dell'Aira
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Tamara Cerci
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Angela Ianzano
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Valentina Donati
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Alessia Franco
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| | - Antonio Battisti
- National Reference Laboratory for Antimicrobial Resistance, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri," General Diagnostics Department, Rome 00178, Italy
| |
Collapse
|
10
|
Papić B, Kušar D, Mićunović J, Pirš M, Ocepek M, Avberšek J. Clonal Spread of pESI-Positive Multidrug-Resistant ST32 Salmonella enterica Serovar Infantis Isolates among Broilers and Humans in Slovenia. Microbiol Spectr 2022; 10:e0248122. [PMID: 36250854 PMCID: PMC9769575 DOI: 10.1128/spectrum.02481-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Infantis is the most prevalent serovar found in broilers and broiler meat and is among the top five serovars responsible for human infections in Europe. In 2008, a multidrug-resistant S. Infantis isolate emerged in Israel with a mosaic megaplasmid named pESI, associated with increased virulence, biofilm formation, and multidrug resistance. Since then, S. Infantis clones with pESI-like plasmids have been reported worldwide, replacing pESI-free clones. Here, we typed 161 S. Infantis isolates of poultry (n = 133) and human clinical (n = 28) origin using whole-genome sequencing. The isolates were collected between 2007 and 2021. In addition, we performed PacBio/Illumina sequencing for two representative pESI-like plasmids and compared them with publicly available sequences. All isolates belonged to sequence type 32 (ST32), except for one isolate that represented a novel single-locus variant of ST32. Core genome MLST (cgMLST) analysis revealed 14 clusters of genetically closely related isolates, of which four suggested broiler-to-human transmission of S. Infantis. pESI-like plasmids were present in 148/161 (91.9%) isolates; all were highly similar to the publicly available pESI-like sequences but lacked extended-spectrum beta-lactamase (ESBL) genes. PacBio/Illumina hybrid assembly allowed the reconstruction of two novel complete pESI variants. The present study revealed that the multidrug-resistant, pESI-positive S. Infantis clone became the predominant S. Infantis clone in Slovenian broilers and humans during the last decade. Continued surveillance of resistant S. Infantis clones along the food chain is needed to guide public health efforts. IMPORTANCE Salmonella Infantis clones with pESI-like plasmids harboring several virulence and resistance genes have been reported worldwide. In the present study, we compared the population structure of 161 Salmonella Infantis isolates obtained from humans and broilers in Slovenia from 2007 to 2021. Whole-genome sequencing showed that most human isolates clustered apart from broiler isolates, suggesting an alternative source of infection. Most isolates were multidrug resistant due to the presence of pESI-like plasmids, of which two variants (pS89 and pS19) were fully reconstructed using long-read sequencing. Both exhibited high similarity with the original Israeli pESI plasmid and German p2747 plasmid. The prototype plasmid pS89 harbored the typical pESI-associated resistance genes aadA1, qacEΔ1, sul1, and tet(A), which were absent in the truncated plasmid pS19.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jasna Mićunović
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Pirš
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Chahar M, Gollop R, Kroupitski Y, Shemesh M, Sela Saldinger S. Control of Salmonella in mung bean sprouts by antagonistic spore-forming bacilli. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Vázquez X, Fernández J, Rodríguez-Lozano J, Calvo J, Rodicio R, Rodicio MR. Genomic Analysis of Two MDR Isolates of Salmonella enterica Serovar Infantis from a Spanish Hospital Bearing the blaCTX-M-65 Gene with or without fosA3 in pESI-like Plasmids. Antibiotics (Basel) 2022; 11:786. [PMID: 35740192 PMCID: PMC9219668 DOI: 10.3390/antibiotics11060786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica serovar Infantis (S. Infantis) is a broiler-associated pathogen which ranks in the fourth position as a cause of human salmonellosis in the European Union. Here, we report a comparative genomic analysis of two clinical S. Infantis isolates recovered in Spain from children who just returned from Peru. The isolates were selected on the basis of resistance to cefotaxime, one of the antibiotics of choice for treatment of S. enterica infections. Antimicrobial susceptibility testing demonstrated that they were resistant to eight classes of antimicrobial agents: penicillins, cephalosporins, phenicols, aminoglycosides, tetracyclines, inhibitors of folate synthesis, (fluoro)quinolones and nitrofurans, and one of them was also resistant to fosfomycin. As shown by whole-genome sequence analysis, each isolate carried a pESI-like megaplasmid of ca. 300 kb harboring multiple resistance genes [blaCTX-M-65, aph(4)-Ia, aac(3)-IVa, aph(3')-Ia, floR, dfrA14, sul1, tet(A), aadA1 ± fosA3], as well as genes for resistance to heavy metals and disinfectants (mer, ars and qacEΔ1). These genes were distributed in two complex regions, separated by DNA belonging to the plasmid backbone, and associated with a wealth of transposable elements. The two isolates had a D87Y amino acid substitution in the GyrA protein, and truncated variants of the nitroreductase genes nfsA and nsfB, accounting for chromosomally encoded resistances to nalidixic acid and nitrofurantoin, respectively. The two S. Infantis isolates were assigned to sequence type ST32 by in silico multilocus sequence typing (MLST). Phylogenetic analysis revealed that they were closely related, differing only by 12 SNPs, although they were recovered from different children two years apart. They were also genetically similar to blaCTX-M-65-positive ± fosA3 isolates obtained from humans and along the poultry production chain in the USA, South America, as well as from humans in several European countries, usually associated with a travel history to America. However, this is the first time that the S. Infantis blaCTX-M-65 ± fosA3 MDR clone has been reported in Spain.
Collapse
Affiliation(s)
- Xenia Vázquez
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| | - Javier Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33003 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 20029 Madrid, Spain
| | - Jesús Rodríguez-Lozano
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
| | - Jorge Calvo
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla (IDIVAL), 39008 Santander, Spain; (J.R.-L.); (J.C.)
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosaura Rodicio
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - M. Rosario Rodicio
- Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo (UO), 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (J.F.); (R.R.)
| |
Collapse
|
13
|
Cohen E, Kriger O, Amit S, Davidovich M, Rahav G, Gal-Mor O. The emergence of a multidrug resistant Salmonella Muenchen in Israel is associated with horizontal acquisition of the epidemic pESI plasmid. Clin Microbiol Infect 2022; 28:1499.e7-1499.e14. [PMID: 35654317 DOI: 10.1016/j.cmi.2022.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Horizontal acquisition of mobile genetic elements is a powerful evolutionary driving force that can profoundly affect pathogens epidemiology and their interactions with the environment and host. In the last decade, the role of the epidemic megaplasmid, pESI was demonstrated in the global emergence of multi-drug resistant (MDR) Salmonella enterica serovar Infantis strains, but it was unknown if this was a one-time phenomenon, or that pESI can drive the emergence of other pathogens. METHODS Epidemiological, molecular, whole genome sequencing, de-novo assembly, bioinformatics and genetic approaches were used to analyze the emergence of a pESI-positive Salmonella enterica serovar Muenchen strain in Israel. RESULTS Since 2018, we report the emergence and high prevalence of S. Muenchen in Israel, which consisted at 2020, 40% (1055/2671) of all clinical Salmonella isolates. We show that the emergence of S. Muenchen is dominated by a clonal MDR strain, report its complete assembled genome sequence, and demonstrate that in contrast to preemergent strains, it harbors the epidemic megaplasmid, pESI, which can be self-mobilized into E. coli and other Salmonella serovars. Additionally, we identified bioinformatically highly similar genomes of clinical isolates that were recently collected in South Africa, UK and USA. CONCLUSIONS This is a second documented case of a pathogen emergence associated with pESI acquisition. Considering the genetic cargo of pESI that enhances resistance, stress tolerance and virulence, and its ability to conjugate into prevalent Salmonella serovars, we provide further support that pESI facilities the emergence and spreading of new Salmonella strains.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Or Kriger
- Microbiology Laboratory, Sheba Medical Center
| | - Sharon Amit
- Microbiology Laboratory, Sheba Medical Center
| | - Maya Davidovich
- Public Health Laboratories - Jerusalem, Ministry of Health, Jerusalem, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
14
|
Medina-Santana JL, Ortega-Paredes D, de Janon S, Burnett E, Ishida M, Sauders B, Stevens M, Vinueza-Burgos C. Investigating the dynamics of Salmonella contamination in integrated poultry companies using a whole genome sequencing approach. Poult Sci 2022; 101:101611. [PMID: 34953378 PMCID: PMC8715213 DOI: 10.1016/j.psj.2021.101611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
The study of non-typhoid Salmonella in broiler integrations has been limited by the resolution of typing techniques. Although serotyping of Salmonella isolates is used as a traditional approach, it is not of enough resolution to clearly understand the dynamics of this pathogen within poultry companies. The aim of this research was to investigate the epidemiology and population dynamics of Salmonella serotypes in 2 poultry integrations using a whole genome sequencing approach. Two hundred and forty-three Salmonella isolates recovered from the broiler production chain of 2 integrated poultry companies were whole genome sequenced and analyzed with dedicated databases and bioinformatic software. The analyses of sequences revealed that S. Infantis was the most frequent serotype (82.3%). Most isolates showed a potential for resistance against medically important antibiotics and disinfectants. Furthermore, 97.5% of isolates harbored the pESI-like mega plasmid, that plays an important role in the global dissemination of AMR. SNP tree analysis showed that there were clones that are niche-specific while other ones were distributed throughout the broiler production chains. In this study, we demonstrated the potential of whole genome sequencing analysis for a comprehensive understanding of Salmonella distribution in integrated poultry companies. Data obtained with these techniques allow determination of the presence of genetic factors that play an important role in the environmental fitness and pathogenicity of Salmonella.
Collapse
Affiliation(s)
- José L Medina-Santana
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador
| | - David Ortega-Paredes
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador
| | - Sofia de Janon
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador
| | - Elton Burnett
- Institute of Parasitology, McGill University, Montreal, QC H9X3V9, Canada
| | - Maria Ishida
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, NY 12206, USA
| | - Brian Sauders
- Division of Food Laboratory, New York State Department of Agriculture and Markets, Albany, NY 12206, USA
| | | | - Christian Vinueza-Burgos
- Unidad de investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito 170103, Ecuador.
| |
Collapse
|
15
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Rakitin AL, Yushina YK, Zaiko EV, Bataeva DS, Kuznetsova OA, Semenova AA, Ermolaeva SA, Beletskiy AV, Kolganova TV, Mardanov AV, Shapovalov SO, Tkachik TE. Evaluation of Antibiotic Resistance of Salmonella Serotypes and Whole-Genome Sequencing of Multiresistant Strains Isolated from Food Products in Russia. Antibiotics (Basel) 2021; 11:1. [PMID: 35052878 PMCID: PMC8773070 DOI: 10.3390/antibiotics11010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Food products may be a source of Salmonella, one of the main causal agents of food poisoning, especially after the emergence of strains resistant to antimicrobial preparations. The present work dealt with investigation of the occurrence of resistance to antimicrobial preparations among S. enterica strains isolated from food. The isolates belonged to 11 serovars, among which Infantis (28%), Enteritidis (19%), and Typhimurium (13.4%) predominated. The isolates were most commonly resistant to trimethoprim/sulfamethoxazole (n = 19, 59.38%), cefazolin (n = 15, 46.86%), tetracycline (n = 13, 40.63%), and amikacin (n = 9, 28.13%). Most of the strains (68.75%) exhibited multiple resistance to commonly used antibiotics. High-throughput sequencing was used to analyse three multidrug-resistant strains (resistant to six or more antibiotics). Two of them (SZL 30 and SZL 31) belonged to S. Infantis, while one strain belonged to S. Typhimurium (SZL 38). Analysis of the genomes of the sequenced strains revealed the genes responsible for antibiotic resistance. In the genomes of strains SZL 30 and SZL 31 the genes of antibiotic resistance were shown to be localized mostly in integrons within plasmids, while most of the antibiotic resistance genes of strain SZL 38 were localized in a chromosomal island (17,949 nt). Genomes of the Salmonella strains SZL 30, SZL 31, and SZL 38 were shown to contain full-size pathogenicity islands: SPI-1, SPI-2, SPI-4, SPI-5, SPI-9, SPI-11, SPI-13, SPI-14, and CS54. Moreover, the genome of strain SZL 38 was also found to contain the full-size pathogenicity islands SPI-3, SPI-6, SPI-12, and SPI-16. The emergence of multidrug-resistant strains of various Salmonella serovars indicates that further research on the transmission pathways for these genetic determinants and monitoring of the distribution of these microorganisms are necessary.
Collapse
Affiliation(s)
- Andrey L. Rakitin
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Yulia K. Yushina
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Elena V. Zaiko
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Dagmara S. Bataeva
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Oksana A. Kuznetsova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Anastasia A. Semenova
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia; (E.V.Z.); (D.S.B.); (O.A.K.); (A.A.S.)
| | - Svetlana A. Ermolaeva
- Federal Research Center for Virology and Microbiology, Nizhny Novgorod Research Veterinary Institute Branch, 603950 Nizhny Novgorod, Russia;
- Gamaleya National Research Centre for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Aleksey V. Beletskiy
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Tat’yana V. Kolganova
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Andrey V. Mardanov
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences, 119071 Moscow, Russia; (A.L.R.); (A.V.B.); (T.V.K.); (A.V.M.)
| | - Sergei O. Shapovalov
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| | - Timofey E. Tkachik
- Research and Scientific Testing Center “Cherkizovo”, 108805 Moscow, Russia; (S.O.S.); (T.E.T.)
| |
Collapse
|
17
|
Drauch V, Kornschober C, Palmieri N, Hess M, Hess C. Infection dynamics of Salmonella Infantis strains displaying different genetic backgrounds - with or without pESI-like plasmid - vary considerably. Emerg Microbes Infect 2021; 10:1471-1480. [PMID: 34197273 PMCID: PMC8300933 DOI: 10.1080/22221751.2021.1951124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022]
Abstract
Food-borne infections with Salmonella are among the most common causes of human diseases worldwide, and infections with the serovar Infantis are becoming increasingly important. So far, diverse phenotypes and genotypes of S. Infantis have been reported. Therefore, the present study aimed to investigate the infection dynamics of two different S. Infantis strains in broilers. For this purpose, 15 birds were infected on day 2 of life with 108 CFU/ml of a pESI+ or a pESI- S. Infantis strain, respectively. Ten uninfected birds served as in-contact birds to monitor transmission. In both groups, an increase of infection was observed from 7 days of age onwards, reaching its peak at 28 days. However, the pESI+ strain proved significantly more virulent being re-isolated from most cloacal swabs and organs by direct plating. In contrast, the pESI- strain could be re-isolated from cloacal swabs and caeca only when enrichment was applied. Although the excretion of this strain was limited, the transmission level to in-contact birds was similar to the pESI+ strain. Differences in infection dynamics were also reflected in the antibody response: whereas the pESI+ strain provoked a significant increase in antibodies, antibody levels following infection with the pESI- strain remained in the range of negative control birds. The actual findings provide for the first time evidence of S. Infantis strain-specific infectivity in broilers and confirm previous observations in the field regarding differences in persistence on farms and resistance against disinfectants.
Collapse
Affiliation(s)
- Victoria Drauch
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
18
|
Pardo-Esté C, Lorca D, Castro-Severyn J, Krüger G, Alvarez-Thon L, Zepeda P, Sulbaran-Bracho Y, Hidalgo A, Tello M, Molina F, Molina L, Remonsellez F, Castro-Nallar E, Saavedra C. Genetic Characterization of Salmonella Infantis with Multiple Drug Resistance Profiles Isolated from a Poultry-Farm in Chile. Microorganisms 2021; 9:2370. [PMID: 34835497 PMCID: PMC8621671 DOI: 10.3390/microorganisms9112370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Salmonella comprises over 2500 serotypes and foodborne contamination associated with this pathogen remains an important health concern worldwide. During the last decade, a shift in serotype prevalence has occurred as traditionally less prevalent serotypes are increasing in frequency of infections, especially those related to poultry meat contamination. S. Infantis is one of the major emerging serotypes, and these strains commonly display antimicrobial resistance and can persist despite cleaning protocols. Thus, this work aimed to isolate S. Infantis strains from a poultry meat farm in Santiago, Chile and to characterize genetic variations present in them. We determined their genomic and phenotypic profiles at different points along the production line. The results indicate that the strains encompass 853 polymorphic sites (core-SNPs) with isolates differing from one another by 0-347 core SNPs, suggesting variation among them; however, we found discrete correlations with the source of the sample in the production line. Furthermore, the pan-genome was composed of 4854 total gene clusters of which 2618 (53.9%) corresponds to the core-genome and only 181 (3.7%) are unique genes (those present in one particular strain). This preliminary analysis will enrich the surveillance of Salmonella, yet further studies are required to assess their evolution and phylogeny.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Diego Lorca
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile; (J.C.-S.); (F.R.)
| | - Gabriel Krüger
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Luis Alvarez-Thon
- Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Santa Isabel 1186, Santiago 8330601, Chile;
| | - Phillippi Zepeda
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Yoelvis Sulbaran-Bracho
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| | - Alejandro Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370071, Chile;
| | - Mario Tello
- Laboratorio de Metagenomica Bacteriana, Centro de Biotecnología Acuicola, Universidad de Santiago, Alameda, Estación Central, Santiago 9170002, Chile;
| | - Franck Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, 34184 Montpellier, France; (F.M.); (L.M.)
| | - Laurence Molina
- Sys2Diag, UMR9005 CNRS ALCEDIAG, 34184 Montpellier, France; (F.M.); (L.M.)
| | - Francisco Remonsellez
- Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte, Antofagasta 1240000, Chile; (J.C.-S.); (F.R.)
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile;
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Claudia Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile; (C.P.-E.); (D.L.); (G.K.); (P.Z.); (Y.S.-B.)
| |
Collapse
|
19
|
Pietsch M, Simon S, Meinen A, Trost E, Banerji S, Pfeifer Y, Flieger A. Third generation cephalosporin resistance in clinical non-typhoidal Salmonella enterica in Germany and emergence of bla CTX-M-harbouring pESI plasmids. Microb Genom 2021; 7. [PMID: 34693903 PMCID: PMC8627203 DOI: 10.1099/mgen.0.000698] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Non-typhoidal Salmonella enterica is an important gastrointestinal pathogen causing a considerable burden of disease. Resistance to third generation cephalosporins poses a serious threat for treatment of severe infections. In this study occurrence, phylogenetic relationship, and mechanisms of third generation cephalosporin resistance were investigated for clinical non-typhoidal S. enterica isolates in Germany. From 2017 to 2019, we detected 168 unique clinical S. enterica isolates with phenotypic resistance to third generation cephalosporins in a nation-wide surveillance. Compared to previous years, we observed a significant (P=0.0002) and consistent increase in resistant isolates from 0.41 % in 2005 to 1.71 % in 2019. In total, 34 different serovars were identified, most often S. Infantis (n=41; 24.4 %), S. Typhimurium (n=27; 16.1 %), S. Kentucky (n=21; 12.5 %), and S. Derby (n=17; 10.1 %). Whole genome analyses revealed extended-spectrum β-lactamase (ESBL) genes as main cause for third generation cephalosporin resistance, and most prevalent were blaCTX-M-1 (n=55), blaCTX-M-14 (n=25), and blaCTX-M-65 (n=23). There was no strict correlation between serovar, phylogenetic lineage, and ESBL type but some serovar/ESBL gene combinations were detected frequently, such as blaCTX-M-1 and blaCTX-M-65 in S. Infantis or blaCTX-M-14b in S. Kentucky. The ESBL genes were mainly located on plasmids, including IncI, IncA/C variants, emerging pESI variants, and a novel blaCTX-M-1harbouring plasmid. We conclude that third generation cephalosporin resistance is on the rise among clinical S. enterica isolates in Germany, and occurrence in various S. enterica serovars is most probably due to multiple acquisition events of plasmids.
Collapse
Affiliation(s)
- Michael Pietsch
- Unit for Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, Wernigerode, Germany
| | - Sandra Simon
- Unit for Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, Wernigerode, Germany
| | - Anika Meinen
- Unit for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Eva Trost
- Unit for Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, Wernigerode, Germany
| | - Sangeeta Banerji
- Unit for Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, Wernigerode, Germany
| | - Yvonne Pfeifer
- Unit for Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Unit for Enteropathogenic Bacteria and Legionella and National Reference Centre for Salmonella and other Bacterial Enterics, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
20
|
M’ikanatha NM, Yin X, Boktor SW, Dettinger LA, Tewari D. Integrated Surveillance for Antimicrobial Resistance in Salmonella From Clinical and Retail Meat Sources Reveals Genetically Related Isolates Harboring Quinolone- and Ceftriaxone-Resistant Determinants. Open Forum Infect Dis 2021; 8:ofab213. [PMID: 34409121 PMCID: PMC8364758 DOI: 10.1093/ofid/ofab213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Antimicrobial resistance in foodborne pathogens, including nontyphoidal Salmonella (NTS), is a public health concern. Pennsylvania conducts integrated surveillance for antimicrobial resistance in NTS from human and animal sources. METHODS During 2015-2017, clinical laboratories submitted 4478 NTS isolates from humans and 96 isolates were found in 2520 retail meat samples. One hundred nine clinical isolates that shared pulsed-field gel electrophoresis patterns with meat isolates and all strains from meat samples were tested for susceptibility to antimicrobial agents. Six clinical and 96 NTS isolates from meat sources (total 102) were analyzed by whole-genome sequencing (WGS). RESULTS Twenty-eight (25.7%) of the 109 clinical NTS and 21 (21.9%) of strains from meat sources had resistance to ≥3 antimicrobial drug classes (multidrug resistance). Sixteen of the 102 (15.7%) isolates analyzed by WGS had resistance mechanisms that confer resistance to expanded-spectrum cephalosporins, such as ceftriaxone. We identified bla CTX-M-65 in 2 S. Infantis isolates from clinical and 3 S. Infantis isolates from meat sources. These 5 bla CTX-M-65-positive S. Infantis strains carried ≥5 additional resistance genes plus a D87Y mutation in gyrA that encodes fluoroquinolone resistance. WGS showed that isolates from patients and meat samples were within ≤10 and ≤5 alleles for S. Infantis and S. Reading, respectively. CONCLUSIONS A significant proportion of NTS isolates from human and animal sources were multidrug resistant and 16% had genetic mechanisms that confer resistant to ceftriaxone. These results emphasize need for integrated surveillance in healthcare and agricultural settings.
Collapse
Affiliation(s)
- Nkuchia M M’ikanatha
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xin Yin
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sameh W Boktor
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, USA
| | - Lisa A Dettinger
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, Pennsylvania, USA
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Harrisburg, Pennsylvania, USA
| |
Collapse
|
21
|
Mejía L, Medina JL, Bayas R, Salazar CS, Villavicencio F, Zapata S, Matheu J, Wagenaar JA, González-Candelas F, Vinueza-Burgos C. Genomic Epidemiology of Salmonella Infantis in Ecuador: From Poultry Farms to Human Infections. Front Vet Sci 2020; 7:547891. [PMID: 33134346 PMCID: PMC7550756 DOI: 10.3389/fvets.2020.547891] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is one of the most important foodborne pathogens around the world. In the last years, S. enterica serovar Infantis has become an important emerging pathogen in many countries, often as multidrug resistant clones. To understand the importance of S. enterica in the broiler industry in Ecuador, we performed a study based on phenotypic and WGS data of isolates from poultry farms, chicken carcasses and humans. We showed a high prevalence of S. enterica in poultry farms (41.4%) and chicken carcasses (55.5%), but a low prevalence (1.98%) in human samples. S. Infantis was shown to be the most prevalent serovar with a 98.2, 97.8, and 50% in farms, foods, and humans, respectively, presenting multidrug resistant patterns. All sequenced S. Infantis isolates belonged to ST32. For the first time, a pESI-related megaplasmid was identified in Ecuadorian samples. This plasmid contains genes of antimicrobial resistance, virulence factors, and environmental stress tolerance. Genomic analysis showed a low divergence of S. Infantis strains in the three analyzed components. The results from this study provide important information about genetic elements that may help understand the molecular epidemiology of S. Infantis in Ecuador.
Collapse
Affiliation(s)
- Lorena Mejía
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.,Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain
| | - José Luis Medina
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito, Ecuador
| | - Rosa Bayas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Carolina Satan Salazar
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - Fernando Villavicencio
- Centro de Referencia Nacional de Resistencia a los Antimicrobianos, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador
| | - Sonia Zapata
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jorge Matheu
- Department of Food Safety and Zoonoses, World Health Organization (WHO), Geneva, Switzerland
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Wageningen Bioveterinary Research (WBVR), Lelystad, Netherlands
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain.,Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain.,CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain
| | - Christian Vinueza-Burgos
- Unidad de Investigación de Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
22
|
García-Soto S, Abdel-Glil MY, Tomaso H, Linde J, Methner U. Emergence of Multidrug-Resistant Salmonella enterica Subspecies enterica Serovar Infantis of Multilocus Sequence Type 2283 in German Broiler Farms. Front Microbiol 2020; 11:1741. [PMID: 32765483 PMCID: PMC7380084 DOI: 10.3389/fmicb.2020.01741] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
During the last decade, Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) has become more prevalent across Europe with an increased capability to persist in broiler farms. In this study, we aimed to identify potential genetic causes for the increased emergence and longer persistence of S. Infantis in German poultry farms by high-throughput-sequencing. Broiler derived S. Infantis strains from two decades, the 1990s (n = 12) and the 2010s (n = 18), were examined phenotypically and genotypically to detect potential differences responsible for increased prevalence and persistence. S. Infantis organisms were characterized by serotyping and determining antimicrobial susceptibility using the microdilution method. Genotypic characteristics were analyzed by whole genome sequencing (WGS) to detect antimicrobial resistance and virulence genes as well as plasmids. To detect possible clonal relatedness within S. Infantis organisms, 17 accessible genomes from previous studies about emergent S. Infantis were downloaded and analyzed using complete genome sequence of SI119944 from Israel as reference. In contrast to the broiler derived antibiotic-sensitive S. Infantis strains from the 1990s, the majority of strains from the 2010s (15 out of 18) revealed a multidrug-resistance (MDR) phenotype that encodes for at least three antimicrobials families: aminoglycosides [ant(3“)-Ia], sulfonamides (sul1), and tetracyclines [tet(A)]. Moreover, these MDR strains carry a virulence gene pattern missing in strains from the 1990s. It includes genes encoding for fimbriae clusters, the yersiniabactin siderophore, mercury and disinfectants resistance and toxin/antitoxin complexes. In depth genomic analysis confirmed that the 15 MDR strains from the 2010s carry a pESI-like megaplasmid with resistance and virulence gene patterns detected in the emerged S. Infantis strain SI119944 from Israel and clones inside and outside Europe. Genotyping analysis revealed two sequence types (STs) among the resistant strains from the 2010s, ST2283 (n = 13) and ST32 (n = 2). The sensitive strains from the 1990s, belong to sequence type ST32 (n = 10) and ST1032 (n = 2). Therefore, this study confirms the emergence of a MDR S. Infantis pESI-like clone of ST2283 in German broiler farms with presumably high tendency of dissemination. Further studies on the epidemiology and control of S. Infantis in broilers are needed to prevent the transfer from poultry into the human food chain.
Collapse
Affiliation(s)
- Silvia García-Soto
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|