1
|
Humolli D, Piel D, Maffei E, Heyer Y, Agustoni E, Shaidullina A, Willi L, Imwinkelried P, Estermann F, Cuénod A, Buser DP, Alampi C, Chami M, Egli A, Hiller S, Dunne M, Harms A. Completing the BASEL phage collection to unlock hidden diversity for systematic exploration of phage-host interactions. PLoS Biol 2025; 23:e3003063. [PMID: 40193529 PMCID: PMC11990801 DOI: 10.1371/journal.pbio.3003063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/11/2025] [Accepted: 02/11/2025] [Indexed: 04/09/2025] Open
Abstract
Research on bacteriophages, the viruses infecting bacteria, has fueled the development of modern molecular biology and inspired their therapeutic application to combat bacterial multidrug resistance. However, most work has so far focused on a few model phages which impedes direct applications of these findings in clinics and suggests that a vast potential of powerful molecular biology has remained untapped. We have therefore recently composed the BASEL collection of Escherichia coli phages (BActeriophage SElection for your Laboratory), which made a relevant diversity of phages infecting the E. coli K-12 laboratory strain accessible to the community. These phages are widely used, but their assorted diversity has remained limited by the E. coli K-12 host. We have therefore now genetically overcome the two major limitations of E. coli K-12, its lack of O-antigen glycans and the presence of resident bacterial immunity. Restoring O-antigen expression resulted in the isolation of diverse additional viral groups like Kagunavirus, Nonanavirus, Gordonclarkvirinae, and Gamaleyavirus, while eliminating all known antiviral defenses of E. coli K-12 additionally enabled us to isolate phages of Wifcevirus genus. Even though some of these viral groups appear to be common in nature, no phages from any of them had previously been isolated using E. coli laboratory strains, and they had thus remained largely understudied. Overall, 37 new phage isolates have been added to complete the BASEL collection. These phages were deeply characterized genomically and phenotypically with regard to host receptors, sensitivity to antiviral defense systems, and host range. Our results highlighted dominant roles of the O-antigen barrier for viral host recognition and of restriction-modification systems in bacterial immunity. We anticipate that the completed BASEL collection will propel research on phage-host interactions and their molecular mechanisms, deepening our understanding of viral ecology and fostering innovations in biotechnology and antimicrobial therapy.
Collapse
Affiliation(s)
- Dorentina Humolli
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Damien Piel
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
| | - Enea Maffei
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Aisylu Shaidullina
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Aline Cuénod
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | - Carola Alampi
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | | | | | - Alexander Harms
- Institute of Food, Nutrition, and Health (IFNH), ETH Zürich, Zürich, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Zheng X, Wang X, Li P, Zhou Y, Zhu X, Hu Z, Wang H, Chen M, Huo X, Liu Y, Zhang W. The change of long tail fibers expanded the host range of a T5-like Salmonella phage and its application in milk. BMC Microbiol 2025; 25:169. [PMID: 40133802 PMCID: PMC11938639 DOI: 10.1186/s12866-025-03895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
We engineered novel T5-like bacteriophage (phage) with extended host ranges by editing the long-tail fibers (PB3 and PB4) to combat Salmonella Enteritidis. By replacing the long-tail fibers PB3 and PB4 regions of phage PH204 with those from phage SP76, we created phages RPA1 - 3 and RPB1 - 3, which exhibited expanded host ranges, lysing 54 strains compared to the original 30 strains. These phages retained the biological characteristics of PH204, including temperature, pH stability and adsorption rate. In milk, RPA1 - 3 and RPB1 - 3 inhibited Salmonella ZWSA605 growth, reducing bacterial counts to 1.51 log10 CFU/mL and 2.18 log10 CFU/mL after 8 h, respectively. Although the bacteriolytic activity of recombinant phages is lower than that of the parent phage, our findings suggest that these phages hold promise as candidates for future phage biocontrol applications in food.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Yu Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xihui Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Mianmian Chen
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Nanjing, 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, 210009, China
| | - Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
3
|
Bosma JS, Latyshev E, Ma OX, Hansen EG, Cortes-Ortega E, Reddy VS, Noireaux V, Bowden SD. Characterization of a novel broad-host-range polyvalent Tequatrovirus bacteriophage infecting Salmonella, Shigella, and Escherichia coli. Arch Virol 2025; 170:47. [PMID: 39909880 DOI: 10.1007/s00705-025-06236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]
Abstract
We isolated and characterized the novel polyvalent T-even type bacteriophage vB_SenS_Jbel from wastewater using an enrichment of three different Salmonella strains. The vB_SenS_Jbel virions have prolate icosahedral capsids approximately 100 nm long and 80 nm wide. The genome consists of linear, double-stranded DNA that is 165,566 bp long. Analysis of the genome and structure of vB_SenS_Jbel indicates that it belongs to the genus Tequatrovirus of the family Straboviridae. This novel polyvalent phage can infect Escherichia coli and multiple Salmonella and Shigella species through its unique tail fiber structure.
Collapse
Affiliation(s)
- Jaap S Bosma
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Eric Latyshev
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Olivia X Ma
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Eleanore G Hansen
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Estephany Cortes-Ortega
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Vijay S Reddy
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Steven D Bowden
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
4
|
Parker DR, Nugen SR. Bacteriophage-Based Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:393-410. [PMID: 39018352 DOI: 10.1146/annurev-anchem-071323-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Bacteriophages, which are viral predators of bacteria, have evolved to efficiently recognize, bind, infect, and lyse their host, resulting in the release of tens to hundreds of propagated viruses. These abilities have attracted biosensor developers who have developed new methods to detect bacteria. Recently, several comprehensive reviews have covered many of the advances made regarding the performance of phage-based biosensors. Therefore, in this review, we first describe the landscape of phage-based biosensors and then cover advances in other aspects of phage biology and engineering that can be used to make high-impact contributions to biosensor development. Many of these advances are in fields adjacent to analytical chemistry such as synthetic biology, machine learning, and genetic engineering and will allow those looking to develop phage-based biosensors to start taking alternative approaches, such as a bottom-up design and synthesis of custom phages with the singular task of detecting their host.
Collapse
Affiliation(s)
- David R Parker
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
5
|
Zhen J, Liu R, Man C, Xu S, Zhang W, Zou L, Liu W, Ni HB, Zou M, He T, Wang R, Zhang XX, Zhang C. Bacteriophage LHE83 targeting OmpA as a receptor exhibited synergism with spectinomycin against Escherichia coli. Poult Sci 2024; 103:103643. [PMID: 38537406 PMCID: PMC10987938 DOI: 10.1016/j.psj.2024.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Understanding the characteristics of bacteriophages is crucial for the optimization of phage therapy. In this study, the biological and genomic characteristics of coliphage LHE83 were determined and its synergistic effects with different types of antibiotics against E. coli E82 were investigated. Phage LHE83 displayed a contractile tail morphology and had a titer of 3.02 × 109 pfu/mL at an optimal MOI of 0.01. Meanwhile, phage LHE83 exhibited good physical and chemical factors tolerance. The 1-step growth analysis revealed a latent period of approx. 10 min with a burst size of 87 pfu/infected cell. Phage LHE83 belongs to the genus Dhakavirus. Its genome consists of 170,464 bp with a 40% GC content, and a total of 268 Open Reading Frames (ORF) were predicted with no detected virulent or resistant genes. ORF 213 was predicted to encode the receptor binding protein (RBP) and confirmed by the antibody-blocking assay. Furthermore, a phage-resistant strain E. coli E82R was generated by co-culturing phage LHE83 with E. coli E82. Genomic analysis revealed that OmpA served as the receptor for phage LHE83, which was further confirmed by phage adsorption assay using E. coli BL21ΔOmpA, E. coli BL21ΔOmpA: OmpA and E. coli BL21:OmpA strains. Additionally, a synergistic effect was observed between phage LHE83 and spectinomycin against the drug-resistant strain E. coli E82. These results provide a theoretical basis for understanding the interactions between phages, antibiotics, and host bacteria, which can assist in the clinical application of phages and antibiotics against drug-resistant bacteria.
Collapse
Affiliation(s)
- Jianyu Zhen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cheng Man
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shijie Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxiu Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tao He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
6
|
Vitt AR, Sørensen AN, Bojer MS, Bortolaia V, Sørensen MCH, Brøndsted L. Diverse bacteriophages for biocontrol of ESBL- and AmpC-β-lactamase-producing E. coli. iScience 2024; 27:108826. [PMID: 38322997 PMCID: PMC10844046 DOI: 10.1016/j.isci.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
Novel solutions are needed to reduce the risk of transmission of extended spectrum β-lactamase (ESBL) and AmpC β-lactamase producing Escherichia coli (ESBL/AmpC E. coli) from livestock to humans. Given that phages are promising biocontrol agents, a collection of 28 phages that infect ESBL/AmpC E. coli were established. Whole genome sequencing showed that all these phages were unique and could be assigned to 15 different genera. Host range analysis showed that 82% of 198 strains, representing the genetic diversity of ESBL/AmpC E. coli, were sensitive to at least one phage. Identifying receptors used for phage binding experimentally as well as in silico predictions, allowed us to combine phages into two different cocktails with broad host range targeting diverse receptors. These phage cocktails efficiently inhibit the growth of ESBL/AmpC E. coli in vitro, thus suggesting the potential of phages as promising biocontrol agents.
Collapse
Affiliation(s)
- Amira R. Vitt
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Martin S. Bojer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Valeria Bortolaia
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Martine C. Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
7
|
Sensevdi ER, Sourrouille ZA, Quax TE. Host range and cell recognition of archaeal viruses. Curr Opin Microbiol 2024; 77:102423. [PMID: 38232492 DOI: 10.1016/j.mib.2023.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Archaea are members of a separate domain of life that have unique properties, such as the composition of their cell walls and the structure of their lipid bilayers. Consequently, archaeal viruses face different challenges to infect host cells in comparison with viruses of bacteria and eukaryotes. Despite their significant impact on shaping microbial communities, our understanding of infection processes of archaeal viruses remains limited. Several receptors used by archaeal viruses to infect cells have recently been identified. The interactions between viruses and receptors are one of the determinants of the host range of viruses. Here, we review the current literature on host ranges of archaeal viruses and factors that might impact the width of these host ranges.
Collapse
Affiliation(s)
- Emine Rabia Sensevdi
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands
| | - Zaloa Aguirre Sourrouille
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands
| | - Tessa Ef Quax
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 Groningen AG, the Netherlands.
| |
Collapse
|
8
|
Kuiper BP, Schöntag AMC, Oksanen HM, Daum B, Quax TEF. Archaeal virus entry and egress. MICROLIFE 2024; 5:uqad048. [PMID: 38234448 PMCID: PMC10791045 DOI: 10.1093/femsml/uqad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Anna M C Schöntag
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Bertram Daum
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Tessa E F Quax
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| |
Collapse
|
9
|
Letarov AV. Bacterial Virus Forcing of Bacterial O-Antigen Shields: Lessons from Coliphages. Int J Mol Sci 2023; 24:17390. [PMID: 38139217 PMCID: PMC10743462 DOI: 10.3390/ijms242417390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Micrbiology, Research Center Fundamentals of Biotechnology RAS, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow 117312, Russia
| |
Collapse
|
10
|
Majewska J, Miernikiewicz P, Szymczak A, Kaźmierczak Z, Goszczyński TM, Owczarek B, Rybicka I, Ciekot J, Dąbrowska K. Evolution of the T4 phage virion is driven by selection pressure from non-bacterial factors. Microbiol Spectr 2023; 11:e0011523. [PMID: 37724862 PMCID: PMC10580926 DOI: 10.1128/spectrum.00115-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Bacteriophages colonize animal and human bodies, propagating on sensitive bacteria that are symbionts, commensals, or pathogens of animals and humans. T4-like phages are dependent on abundant symbionts such as Escherichia coli, commonly present in animal and human gastrointestinal (GI) tracts. Bacteriophage T4 is one of the most complex viruses, and its intricate structure, particularly the capsid head protecting the phage genome, likely contributes substantially to the overall phage fitness in diverse environments. We investigated how individual head proteins-gp24, Hoc, and Soc-affect T4 phage survival under pressure from non-bacterial factors. We constructed a panel of T4 phage variants defective in these structural proteins: T4∆Soc, T4∆24byp24, T4∆Hoc∆Soc, T4∆Hoc∆24byp24, T4∆Soc∆24byp24, and T4∆Hoc∆Soc∆24byp24 (byp = bypass). These variants were investigated for their sensitivity to selected environmental conditions relevant to the microenvironment of the GI tract, including pH, temperature, and digestive enzymes. The simple and "primitive" structure of the phage capsid (∆24byp24) was significantly less stable at low pH and more sensitive to inactivation by digestive enzymes, and the simultaneous lack of gp24 and Soc resulted in a notable decrease in phage activity at 37°C. Gp24 was also found to be highly resistant to thermal and chemical denaturation. Thus, gp24, which was acquired relatively late in evolution, seems to play a key role in T4 withstanding environmental conditions, including those related to the animal/human GI tract, and Soc is a molecular glue that enhances this protective effect. IMPORTANCE Bacteriophages are important components of animal and human microbiota, particularly in the gastrointestinal tract, where they dominate the viral community and contribute to shaping microbial balance. However, interactions with bacterial hosts are not the only element of the equation in phage survival-phages inhabiting the GI tract are constantly exposed to increased temperature, pH fluctuations, or digestive enzymes, which raises the question of whether and how the complex structure of phage capsids contributes to their persistence in the specific microenvironment of human/animal bodies. Here we address this phage-centric perspective, identifying the role of individual head proteins in T4 phage survival in GI tract conditions. The selection pressure driving the evolution of T4-like phages could have come from the external environment that affects phage virions with increased temperature and variable pH; it is possible that in the local microenvironment along the GI tract, the phage benefits from stability-protecting proteins.
Collapse
Affiliation(s)
- Joanna Majewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Tomasz M. Goszczyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Barbara Owczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Rybicka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| |
Collapse
|
11
|
Cambillau C, Goulet A. Exploring Host-Binding Machineries of Mycobacteriophages with AlphaFold2. J Virol 2023; 97:e0179322. [PMID: 36916948 PMCID: PMC10062164 DOI: 10.1128/jvi.01793-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Although more than 12,000 bacteriophages infecting mycobacteria (mycobacteriophages) have been isolated so far, there is a knowledge gap on their structure-function relationships. Here, we have explored the architecture of host-binding machineries from seven representative mycobacteriophages of the Siphoviridae family infecting Mycobacterium smegmatis, Mycobacterium abscessus, and Mycobacterium tuberculosis, using AlphaFold2 (AF2). AF2 enables confident structural analyses of large and flexible biological assemblies resistant to experimental methods, thereby opening new avenues to shed light on phage structure and function. Our results highlight the modularity and structural diversity of siphophage host-binding machineries that recognize host-specific receptors at the onset of viral infection. Interestingly, the studied mycobacteriophages' host-binding machineries present unique features compared with those of phages infecting other Gram-positive actinobacteria. Although they all assemble the classical Dit (distal tail), Tal (tail-associated lysin), and receptor-binding proteins, five of them contain two potential additional adhesion proteins. Moreover, we have identified brush-like domains formed of multiple polyglycine helices which expose hydrophobic residues as potential receptor-binding domains. These polyglycine-rich domains, which have been observed in only five native proteins, may be a hallmark of mycobacteriophages' host-binding machineries, and they may be more common in nature than expected. Altogether, the unique composition of mycobacteriophages' host-binding machineries indicate they might have evolved to bind to the peculiar mycobacterial cell envelope, which is rich in polysaccharides and mycolic acids. This work provides a rational framework to efficiently produce recombinant proteins or protein domains and test their host-binding function and, hence, to shed light on molecular mechanisms used by mycobacteriophages to infect their host. IMPORTANCE Mycobacteria include both saprophytes, such as the model system Mycobacterium smegmatis, and pathogens, such as Mycobacterium tuberculosis and Mycobacterium abscessus, that are poorly responsive to antibiotic treatments and pose a global public health problem. Mycobacteriophages have been collected at a very large scale over the last decade, and they have proven to be valuable tools for mycobacteria genetic manipulation, rapid diagnostics, and infection treatment. Yet, molecular mechanisms used by mycobacteriophages to infect their host remain poorly understood. Therefore, exploring the structural diversity of mycobacteriophages' host-binding machineries is important not only to better understand viral diversity and bacteriophage-host interactions, but also to rationally develop biotechnological tools. With the powerful protein structure prediction software AlphaFold2, which was publicly released a year ago, it is now possible to gain structural and functional insights on such challenging assemblies.
Collapse
Affiliation(s)
- Christian Cambillau
- School of Microbiology, University College Cork, Cork, Ireland
- AlphaGraphix, Formiguères, France
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, CNRS and Aix-Marseille Université, Marseille, France
| |
Collapse
|
12
|
Andrezal M, Oravcova L, Kadličekova V, Ozaee E, Elnwrani S, Bugala J, Markuskova B, Kajsik M, Drahovska H. Characterization and the host specificity of Pet-CM3-4, a new phage infecting Cronobacter and Enterobacter strains. Virus Res 2023; 324:199025. [PMID: 36528171 DOI: 10.1016/j.virusres.2022.199025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bacteria belonging to Cronobacter and Enterobacter genera are opportunistic pathogens responsible for infections in immunocompromised patients including neonates. Phage therapy offers a safe method for pathogen elimination, however, phages must be well characterized before application. In the present study we isolated four closely related bacteriophages from the subfamily Tevenvirinae infecting Cronobacter and Enterobacter strains. Bacteriophage Pet-CM3-4 which was isolated on C. malonaticus strain possessed broader host specificity than other three phages with primary Enterobacter hosts. Based on genome sequences all these phages have been assigned to the genus Karamvirus. We also studied factors influencing the host specificity of Pet-CM3-4 phage and its host range mutant Pet-CM3-1 and observed that a lysine to glutamine substitution in the long tail fiber adhesin was the reason of the Pet-CM3-1 reduced host specificity. By characterization of phage-resistant mutants from transposon library of C. malonaticus KMB-72 strain we identified that LPS is the receptor of both phages. C. malonaticus O:3 antigen is the receptor of Pet-CM3-1 phage and the Pet-CM3-4 phage binds to structures of the LPS core region. Obtained results will contribute to our understanding of biology and evolution of Tevenvirinae phages.
Collapse
Affiliation(s)
- Michal Andrezal
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Lucia Oravcova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Veronika Kadličekova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Elham Ozaee
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Sulafa Elnwrani
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia
| | - Juraj Bugala
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Barbora Markuskova
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Michal Kajsik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia; Medirex group academy n.o., Novozámocká 1/67, 949 05 Nitra, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia.
| |
Collapse
|
13
|
Phetruen T, Chanarat S, Janvilisri T, Phanchana M, Charoensutthivarakul S, Phothichaisri W, Chankhamhaengdecha S. Receptor binding protein of prophage reversibly recognizes the low-molecular weight subunit of the surface-layer protein SlpA in Clostridioides difficile. Front Microbiol 2022; 13:998215. [PMID: 36312948 PMCID: PMC9615553 DOI: 10.3389/fmicb.2022.998215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Receptor-binding proteins (RBPs) are located at the viral tail and mediate the initial recognition of phage to a specific bacterial host. Phage RBPs have co-evolved with numerous types of host receptors resulting in the formation of a diverse assortment of cognate pairs of RBP-receptors that function during the phage attachment step. Although several Clostridioides difficile bacteriophages have been discovered, their RBPs are poorly described. Using homology analysis, putative prophage-tail structure (pts) genes were identified from the prophage genome of the C. difficile HN10 strain. Competition and enzyme-linked immunosorbent assays, using recombinant PtsHN10M, demonstrated the interaction of this Pts to C. difficile cells, suggesting a role as a phage RBP. Gel filtration and cross-linking assay revealed the native form of this protein as a homotrimer. Moreover, truncated variants indicated that the C-terminal domain of PtsHN10M was important for binding to C. difficile cells. Interaction of PtsHN10M was also observed to the low-molecular weight subunit of surface-layer protein A (SlpA), located at the outermost surface of C. difficile cells. Altogether, our study highlights the function of PtsHN10M as an RBP and potentially paves the way toward phage engineering and phage therapy against C. difficile infection.
Collapse
Affiliation(s)
- Tanaporn Phetruen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sittinan Chanarat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Molecular Cell Biology, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sitthivut Charoensutthivarakul
- Faculty of Science, School of Bioinnovation and Bio-Based Product Intelligence, Mahidol University, Bangkok, Thailand
- Faculty of Science, Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Wichuda Phothichaisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Surang Chankhamhaengdecha
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Surang Chankhamhaengdecha,
| |
Collapse
|
14
|
Structural Insights into the Chaperone-Assisted Assembly of a Simplified Tail Fiber of the Myocyanophage Pam3. Viruses 2022; 14:v14102260. [PMID: 36298815 PMCID: PMC9608196 DOI: 10.3390/v14102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
At the first step of phage infection, the receptor-binding proteins (RBPs) such as tail fibers are responsible for recognizing specific host surface receptors. The proper folding and assembly of tail fibers usually requires a chaperone encoded by the phage genome. Despite extensive studies on phage structures, the molecular mechanism of phage tail fiber assembly remains largely unknown. Here, using a minimal myocyanophage, termed Pam3, isolated from Lake Chaohu, we demonstrate that the chaperone gp25 forms a stable complex with the tail fiber gp24 at a stoichiometry of 3:3. The 3.1-Å cryo-electron microscopy structure of this complex revealed an elongated structure with the gp25 trimer embracing the distal moieties of gp24 trimer at the center. Each gp24 subunit consists of three domains: the N-terminal α-helical domain required for docking to the baseplate, the tumor necrosis factor (TNF)-like and glycine-rich domains responsible for recognizing the host receptor. Each gp25 subunit consists of two domains: a non-conserved N-terminal β-sandwich domain that binds to the TNF-like and glycine-rich domains of the fiber, and a C-terminal α-helical domain that mediates trimerization/assembly of the fiber. Structural analysis enabled us to propose the assembly mechanism of phage tail fibers, in which the chaperone first protects the intertwined and repetitive distal moiety of each fiber subunit, further ensures the proper folding of these highly plastic structural elements, and eventually enables the formation of the trimeric fiber. These findings provide the structural basis for the design and engineering of phage fibers for biotechnological applications.
Collapse
|
15
|
Taslem Mourosi J, Awe A, Guo W, Batra H, Ganesh H, Wu X, Zhu J. Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key "Blueprint" for Reprogramming Phage Host Range. Int J Mol Sci 2022; 23:12146. [PMID: 36292999 PMCID: PMC9603124 DOI: 10.3390/ijms232012146] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages (phages), as natural antibacterial agents, are being rediscovered because of the growing threat of multi- and pan-drug-resistant bacterial pathogens globally. However, with an estimated 1031 phages on the planet, finding the right phage to recognize a specific bacterial host is like looking for a needle in a trillion haystacks. The host range of a phage is primarily determined by phage tail fibers (or spikes), which initially mediate reversible and specific recognition and adsorption by susceptible bacteria. Recent significant advances at single-molecule and atomic levels have begun to unravel the structural organization of tail fibers and underlying mechanisms of phage-host interactions. Here, we discuss the molecular mechanisms and models of the tail fibers of the well-characterized T4 phage's interaction with host surface receptors. Structure-function knowledge of tail fibers will pave the way for reprogramming phage host range and will bring future benefits through more-effective phage therapy in medicine. Furthermore, the design strategies of tail fiber engineering are briefly summarized, including machine-learning-assisted engineering inspired by the increasingly enormous amount of phage genetic information.
Collapse
Affiliation(s)
- Jarin Taslem Mourosi
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Ayobami Awe
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Wenzheng Guo
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harrish Ganesh
- VCU Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Xiaorong Wu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
16
|
Efimov AD, Golomidova AK, Kulikov EE, Belalov IS, Ivanov PA, Letarov AV. RB49-like Bacteriophages Recognize O Antigens as One of the Alternative Primary Receptors. Int J Mol Sci 2022; 23:ijms231911329. [PMID: 36232640 PMCID: PMC9569957 DOI: 10.3390/ijms231911329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The power of most of the enterobacterial O antigen types to provide robust protection against direct recognition of the cell surface by bacteriophage receptor-recognition proteins (RBP) has been recently recognized. The bacteriophages infecting O antigen producing strains of E. coli employ various strategies to tackle this nonspecific protection. T-even related phages, including RB49-like viruses, often have wide host ranges, being considered good candidates for use in phage therapy. However, the mechanisms by which these phages overcome the O antigen barrier remain unknown. We demonstrate here that RB49 and related phages Cognac49 and Whisky49 directly use certain types of O antigen as their primary receptors recognized by the virus long tail fibers (LTF) RBP gp38, so the O antigen becomes an attractant instead of an obstacle. Simultaneously to recognize multiple O antigen types, LTFs of each of these phages can bind to additional receptors, such as OmpA protein, enabling them to infect some rough strains of E. coli. We speculate that the mechanical force of the deployment of the short tail fibers (STF) triggered by the LTF binding to the O antigen or underneath of it, allows the receptor binding domains of STF to break through the O polysaccharide layer.
Collapse
Affiliation(s)
- Alexandr D Efimov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Alla K Golomidova
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Eugene E Kulikov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya S Belalov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Pavel A Ivanov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Andrey V Letarov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Farquharson EL, Nugen SR. Enterobacteria Phage Ac3's Genome Annotation and Host Range Analysis Against the ECOR Reference Library. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:165-170. [PMID: 36199530 PMCID: PMC9527048 DOI: 10.1089/phage.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Host range analyses and genome sequencing/annotation of bacteriophage isolates allow more effective development of tools for applications in medicine, agriculture, and the environment and expand our understanding of phage biology. Here we present the complete sequence of phage Ac3's assembled and annotated genome (accession OK040907). Originally referred to simply as "3," Ac3 has previously been described as a T4-like bacteriophage belonging to the Myoviridae family in the Caudovirales order of tailed bacteriophages. Using a combination of spot tests and full plate plaque assays, Ac3's permissive and adsorptive host range were evaluated against the ECOR Reference Library; a panel of 72 Escherichia coli isolates meant to represent the diversity of E. coli. Spot assays revealed that Ac3 could adsorb to 43 of the 72 strains (59.7%), whereas plaque assays demonstrated Ac3's ability to complete replication within 27 of the 72 strains (37.5%). By overlaying spot test and plaque assay results, 16 of the 45 nonpermissive ECOR strains (35.5%) were highlighted as being able to support Ac3's adsorption and tail contraction, but not its replication. Further characterization of Ac3 is still needed, however, the study presented here provides a solid starting point for future research.
Collapse
Affiliation(s)
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Babar TK, Glare TR, Hampton JG, Hurst MRH, Narciso JO. Isolation, Purification, and Characterisation of a Phage Tail-Like Bacteriocin from the Insect Pathogenic Bacterium Brevibacillus laterosporus. Biomolecules 2022; 12:1154. [PMID: 36009048 PMCID: PMC9406221 DOI: 10.3390/biom12081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Gram-positive and spore-forming bacterium Brevibacillus laterosporus (Bl) belongs to the Brevibacillus brevis phylogenetic cluster. Isolates of the species have demonstrated pesticidal potency against a wide range of invertebrate pests and plant diseases. Two New Zealand isolates, Bl 1821L and Bl 1951, are under development as biopesticides for control of diamondback moth and other pests. However, due to the often-restricted growth of these endemic isolates, production can be an issue. Based on the previous work, it was hypothesised that the putative phages might be involved. During investigations of the cause of the disrupted growth, electron micrographs of crude lysate of Bl 1821L showed the presence of phages’ tail-like structures. A soft agar overlay method with PEG 8000 precipitation was used to differentiate between the antagonistic activity of the putative phage and phage tail-like structures (bacteriocins). Assay tests authenticated the absence of putative phage activity. Using the same method, broad-spectrum antibacterial activity of Bl 1821L lysate against several Gram-positive bacteria was found. SDS-PAGE of sucrose density gradient purified and 10 kD MWCO concentrated lysate showed a prominent protein band of ~48 kD, and transmission electron microscopy revealed the presence of polysheath-like structures. N-terminal sequencing of the ~48 kD protein mapped to a gene with weak predicted amino acid homology to a Bacillus PBSX phage-like element xkdK, the translated product of which shared >90% amino acid similarity to the phage tail-sheath protein of another Bl published genome, LMG15441. Bioinformatic analysis also identified an xkdK homolog in the Bl 1951 genome. However, genome comparison of the region around the xkdK gene between Bl 1821L and Bl 1951 found differences including two glycine rich protein encoding genes which contain imperfect repeats (1700 bp) in Bl 1951, while a putative phage region resides in the analogous Bl 1821L region. Although comparative analysis of the genomic organisation of Bl 1821L and Bl 1951 PBSX-like region with the defective phages PBSX, PBSZ, and PBP 180 of Bacillus subtilis isolates 168 and W23, and Bacillus phage PBP180 revealed low amino acids similarity, the genes encode similar functional proteins in similar arrangements, including phage tail-sheath (XkdK), tail (XkdO), holin (XhlB), and N-acetylmuramoyl-l-alanine (XlyA). AMPA analysis identified a bactericidal stretch of 13 amino acids in the ~48 kD sequenced protein of Bl 1821L. Antagonistic activity of the purified ~48 kD phage tail-like protein in the assays differed remarkably from the crude lysate by causing a decrease of 34.2% in the number of viable cells of Bl 1951, 18 h after treatment as compared to the control. Overall, the identified inducible phage tail-like particle is likely to have implications for the in vitro growth of the insect pathogenic isolate Bl 1821L.
Collapse
Affiliation(s)
- Tauseef K. Babar
- Bio-Protection Research Centre, Lincoln University, Lincoln 7674, New Zealand
- Department of Entomology, Faculty of Agriculture Sciences & Technology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Travis R. Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln 7674, New Zealand
| | - John G. Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln 7674, New Zealand
| | - Mark R. H. Hurst
- Resilient Agriculture, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Josefina O. Narciso
- Bio-Protection Research Centre, Lincoln University, Lincoln 7674, New Zealand
| |
Collapse
|
19
|
Abstract
The first critical step in a virus’s infection cycle is attachment to its host. This interaction is precise enough to ensure the virus will be able to productively infect the cell, but some flexibility can be beneficial to enable coevolution and host range switching or expansion. Bacteriophage Sf6 utilizes a two-step process to recognize and attach to its host Shigella flexneri. Sf6 first recognizes the lipopolysaccharide (LPS) of S. flexneri and then binds outer membrane protein (Omp) A or OmpC. This phage infects serotype Y strains but can also form small, turbid plaques on serotype 2a2; turbid plaques appear translucent rather than transparent, indicating greater survival of bacteria. Reduced plating efficiency further suggested inefficient infection. To examine the interactions between Sf6 and this alternate host, phages were experimentally evolved using mixed populations of S. flexneri serotypes Y and 2a2. The recovered mutants could infect serotype 2a2 with greater efficiency than the ancestral Sf6, forming clear plaques on both serotypes. All mutations mapped to two distinct regions of the receptor-binding tailspike protein: (i) adjacent to the LPS binding site near the N terminus; and (ii) at the distal, C-terminal tip of the protein. Although we anticipated interactions between the Sf6 tailspike and 2a2 O-antigen to be weak, LPS of this serotype appears to inhibit infection through strong binding of particles, effectively removing them from the environment. The mutations of the evolved strains reduce the inhibitory effect by either reducing electrostatic interactions with the O-antigen or increasing reliance on the Omp secondary receptors. IMPORTANCE Viruses depend on host cells to propagate themselves. In mixed populations and communities of host cells, finding these susceptible host cells may have to be balanced with avoiding nonhost cells. Alternatively, being able to infect new cell types can increase the fitness of the virus. Many bacterial viruses use a two-step process to identify their hosts, binding first to an LPS receptor and then to a host protein. For Shigella virus Sf6, the tailspike protein was previously known to bind the LPS receptor. Genetic data from this work imply the tailspike also binds to the protein receptor. By experimentally evolving Sf6, we also show that point mutations in this protein can dramatically affect the binding of one or both receptors. This may provide Sf6 flexibility in identifying host cells and the ability to rapidly alter its host range under selective pressure.
Collapse
|
20
|
Tinney KR, Dover JA, Doore SM, Parent KN. Shigella viruses Sf22 and KRT47 require outer membrane protein C for infection. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183920. [PMID: 35358430 PMCID: PMC10037218 DOI: 10.1016/j.bbamem.2022.183920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 12/26/2022]
Abstract
Viruses rely on hosts for their replication: thus, a critical step in the infection process is identifying a suitable host cell. Bacterial viruses, known as bacteriophages or phages, often use receptor binding proteins to discriminate between susceptible and non-susceptible hosts. By being able to evade predation, bacteria with modified or deleted receptor-encoding genes often undergo positive selection during growth in the presence of phage. Depending on the specific receptor(s) a phage uses, this may subsequently affect the bacteria's ability to form biofilms, its resistance to antibiotics, pathogenicity, or its phenotype in various environments. In this study, we characterize the interactions between two T4-like phages, Sf22 and KRT47, and their host receptor S. flexneri outer membrane protein C (OmpC). Results indicate that these phages use a variety of surface features on the protein, and that complete resistance most frequently occurs when hosts delete the ompC gene in full, encode premature stop codons to prevent OmpC synthesis, or eliminate specific regions encoding exterior loops.
Collapse
Affiliation(s)
- Kendal R Tinney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - John A Dover
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sarah M Doore
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611.
| | - Kristin N Parent
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
21
|
The Viral Susceptibility of the Haloferax Species. Viruses 2022; 14:v14061344. [PMID: 35746816 PMCID: PMC9229481 DOI: 10.3390/v14061344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Viruses can infect members of all three domains of life. However, little is known about viruses infecting archaea and the mechanisms that determine their host interactions are poorly understood. Investigations of molecular mechanisms of viral infection rely on genetically accessible virus–host model systems. Euryarchaea belonging to the genus Haloferax are interesting models, as a reliable genetic system and versatile microscopy methods are available. However, only one virus infecting the Haloferax species is currently available. In this study, we tested ~100 haloarchaeal virus isolates for their infectivity on 14 Haloferax strains. From this, we identified 10 virus isolates in total capable of infecting Haloferax strains, which represented myovirus or siphovirus morphotypes. Surprisingly, the only susceptible strain of all 14 tested was Haloferax gibbonsii LR2-5, which serves as an auspicious host for all of these 10 viruses. By applying comparative genomics, we shed light on factors determining the host range of haloarchaeal viruses on Haloferax. We anticipate our study to be a starting point in the study of haloarchaeal virus–host interactions.
Collapse
|
22
|
Carmody CM, Farquharson EL, Nugen SR. Enterobacteria Phage SV76 Host Range and Genomic Characterization. PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:59-63. [PMID: 35495085 PMCID: PMC9041521 DOI: 10.1089/phage.2022.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background Increasing the quantity and detail of bacteriophage genomic data is critical to broadening our understanding of how bacteriophages operate to allow us to harness their unique properties for biotechnology advancements. Here we present the complete sequence of phage SV76's assembled and annotated genome (Accession OM339528). SV76 has previously been classified as a T4-like bacteriophage belonging to the Tequatrovirus genus within the Myoviridae family of contractile tailed bacteriophages. Materials and Methods Whole genome sequencing, assembly, and annotation was performed on SV76. Double-agar spot assays were utilized to determine SV76's host range against a panel of 72 Escherichia coli isolates meant to represent the diversity of E. coli, as well as a series of knockouts designed to identify required receptor binding proteins. The genome and host range were compared to the closely related phage, T2. Results Spot assays revealed that SV76 could plaque on 10 of the 72 strains (13.9 %) and nine of the nine E. coli K12 single gene knockout of known phage receptors (100%). SV76 did not plate on a ΔfadL E. coli indicating suggesting a requirement as a receptor binding protein. Conclusions SV76 is closely related to T2 with similar host ranges within ECOR. This study presents novel host range and genomic data on SV76 phage, providing a foundation for future studies to further characterize SV76 to understand more about SV76 and other T4-like phages that can be applied to create novel biotechnologies.
Collapse
Affiliation(s)
| | | | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA.,Address correspondence to: Sam R. Nugen, PhD, Department of Food Science, Cornell University, 411 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
23
|
Hammerl JA, Barac A, Bienert A, Demir A, Drüke N, Jäckel C, Matthies N, Jun JW, Skurnik M, Ulrich J, Hertwig S. Birds Kept in the German Zoo "Tierpark Berlin" Are a Common Source for Polyvalent Yersinia pseudotuberculosis Phages. Front Microbiol 2022; 12:634289. [PMID: 35046908 PMCID: PMC8762354 DOI: 10.3389/fmicb.2021.634289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 11/30/2021] [Indexed: 11/15/2022] Open
Abstract
Yersinia pseudotuberculosis is an important animal pathogen, particularly for birds, rodents, and monkeys, which is also able to infect humans. Indeed, an increasing number of reports have been published on zoo animals that were killed by this species. One option to treat diseased animals is the application of strictly lytic (virulent) phages. However, thus far relatively few phages infecting Y. pseudotuberculosis have been isolated and characterized. To determine the prevalence of Y. pseudotuberculosis phages in zoo animals, fecal samples of birds and some primates, maras, and peccaries kept in the Tierpark Berlin were analyzed. Seventeen out of 74 samples taken in 2013 and 2017 contained virulent phages. The isolated phages were analyzed in detail and could be allocated to three groups. The first group is composed of 10 T4-like phages (PYps2T taxon group: Myoviridae; Tevenvirinae; Tequatrovirus), the second group (PYps23T taxon group: Chaseviridae; Carltongylesvirus; Escherichia virus ST32) consists of five phages encoding a podovirus-like RNA polymerase that is related to an uncommon genus of myoviruses (e.g., Escherichia coli phage phiEcoM-GJ1), while the third group is comprised of two podoviruses (PYps50T taxon group: Autographiviridae; Studiervirinae; Berlinvirus) which are closely related to T7. The host range of the isolated phages differed significantly. Between 5.5 and 86.7% of 128 Y. pseudotuberculosis strains belonging to 20 serotypes were lysed by each phage. All phages were additionally able to lyse Y. enterocolitica B4/O:3 strains, when incubated at 37°C. Some phages also infected Y. pestis strains and even strains belonging to other genera of Enterobacteriaceae. A cocktail containing two of these phages would be able to lyse almost 93% of the tested Y. pseudotuberculosis strains. The study indicates that Y. pseudotuberculosis phages exhibiting a broad-host range can be isolated quite easily from zoo animals, particularly birds.
Collapse
Affiliation(s)
- Jens Andre Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Andrea Barac
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anja Bienert
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Aslihan Demir
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Niklas Drüke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Claudia Jäckel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Nina Matthies
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju, South Korea
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Juliane Ulrich
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Stefan Hertwig
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
24
|
Farquharson EL, Lightbown A, Pulkkinen E, Russell T, Werner B, Nugen SR. Evaluating Phage Tail Fiber Receptor-Binding Proteins Using a Luminescent Flow-Through 96-Well Plate Assay. Front Microbiol 2021; 12:741304. [PMID: 34975779 PMCID: PMC8719110 DOI: 10.3389/fmicb.2021.741304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage's ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage's "adsorptive host range." The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage's adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein's targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage's adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4's long tail fiber binding tip (gp37) to evaluate and quantify gp37's relative adsorptive strength against the Escherichia coli reference collection (ECOR) panel of 72 Escherichia coli isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay's ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Sam R. Nugen
- Nugen Research Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
25
|
Liu Y, Demina TA, Roux S, Aiewsakun P, Kazlauskas D, Simmonds P, Prangishvili D, Oksanen HM, Krupovic M. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol 2021; 19:e3001442. [PMID: 34752450 PMCID: PMC8651126 DOI: 10.1371/journal.pbio.3001442] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.
Collapse
Affiliation(s)
- Ying Liu
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
| | - Tatiana A. Demina
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Pakorn Aiewsakun
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David Prangishvili
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
| |
Collapse
|
26
|
Maffei E, Shaidullina A, Burkolter M, Heyer Y, Estermann F, Druelle V, Sauer P, Willi L, Michaelis S, Hilbi H, Thaler DS, Harms A. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol 2021; 19:e3001424. [PMID: 34784345 PMCID: PMC8594841 DOI: 10.1371/journal.pbio.3001424] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023] Open
Abstract
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage-host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other applications are often still selected empirically. We therefore sought to promote a systematic exploration of phage-host interactions by composing a well-assorted library of 68 newly isolated phages infecting the model organism Escherichia coli that we share with the community as the BASEL (BActeriophage SElection for your Laboratory) collection. This collection is largely representative of natural E. coli phage diversity and was intensively characterized phenotypically and genomically alongside 10 well-studied traditional model phages. We experimentally determined essential host receptors of all phages, quantified their sensitivity to 11 defense systems across different layers of bacterial immunity, and matched these results to the phages' host range across a panel of pathogenic enterobacterial strains. Clear patterns in the distribution of phage phenotypes and genomic features highlighted systematic differences in the potency of different immunity systems and suggested the molecular basis of receptor specificity in several phage groups. Our results also indicate strong trade-offs between fitness traits like broad host recognition and resistance to bacterial immunity that might drive the divergent adaptation of different phage groups to specific ecological niches. We envision that the BASEL collection will inspire future work exploring the biology of bacteriophages and their hosts by facilitating the discovery of underlying molecular mechanisms as the basis for an effective translation into biotechnology or therapeutic applications.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | - Luc Willi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - David S. Thaler
- Biozentrum, University of Basel, Basel, Switzerland
- Program for the Human Environment, Rockefeller University, New York City, New York, United States of America
| | | |
Collapse
|
27
|
Attrill EL, Claydon R, Łapińska U, Recker M, Meaden S, Brown AT, Westra ER, Harding SV, Pagliara S. Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biol 2021; 19:e3001406. [PMID: 34637438 PMCID: PMC8509860 DOI: 10.1371/journal.pbio.3001406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments. Bacteriophages represent a promising avenue to overcome the current antibiotic resistance crisis, but evolution of phage resistance remains a concern. This study shows that in the presence of spatial refuges, genetic resistance to phage is less of a problem than commonly assumed, but the persistence of genetically susceptible bacteria suggests that eradicating bacterial pathogens from structured environments may require combined phage-antibiotic therapies.
Collapse
Affiliation(s)
- Erin L. Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rory Claydon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Sean Meaden
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aidan T. Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Miroshnikov KA, Evseev PV, Lukianova AA, Ignatov AN. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms 2021; 9:1819. [PMID: 34576713 PMCID: PMC8472413 DOI: 10.3390/microorganisms9091819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.
Collapse
Affiliation(s)
- Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bldg. 12, 119234 Moscow, Russia
| | - Alexander N Ignatov
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| |
Collapse
|
29
|
Slobodníková L, Markusková B, Kajsík M, Andrezál M, Straka M, Liptáková A, Drahovská H. Characterization of Anti-Bacterial Effect of the Two New Phages against Uropathogenic Escherichia coli. Viruses 2021; 13:v13071348. [PMID: 34372554 PMCID: PMC8310266 DOI: 10.3390/v13071348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
Urinary tract infections (UTIs) are among the events that most frequently need medical intervention. Uropathogenic Escherichia coli are frequently their causative agents and the infections are sometimes complicated by the presence of polyresistant nosocomial strains. Phage therapy is a tool that has good prospects for the treatment of these infections. In the present study, we isolated and characterized two bacteriophages with broad host specificity against a panel of local uropathogenic E. coli strains and combined them into a phage cocktail. According to genome sequencing, these phages were closely related and belonged to the Tequatrovirus genus. The newly isolated phages showed very good activity on a panel of local clinical E. coli strains from urinary tract infections. In the form of a two-phage cocktail, they were active on E. coli strains belonging to phylogroups B2 and D, with relatively lower activity in B1 and no response in phylogroup A. Our study is a preliminary step toward the establishment of a national phage bank containing local, well-characterized phages with therapeutic potential for patients in Slovakia.
Collapse
Affiliation(s)
- Lívia Slobodníková
- Medical Faculty, Institute of Microbiolog, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (L.S.); (M.S.)
| | - Barbora Markusková
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
| | - Michal Kajsík
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| | - Michal Andrezál
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
| | - Marek Straka
- Medical Faculty, Institute of Microbiolog, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (L.S.); (M.S.)
| | - Adriána Liptáková
- Medical Faculty, Institute of Microbiolog, Comenius University in Bratislava, 81108 Bratislava, Slovakia; (L.S.); (M.S.)
- Correspondence:
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84104 Bratislava, Slovakia; (B.M.); (M.K.); (M.A.); (H.D.)
- Comenius University Science Park, Ilkovičova 8, 84104 Bratislava, Slovakia
| |
Collapse
|
30
|
Dudina LG, Novikova OD, Portnyagina OY, Khomenko VA, Konyshev IV, Byvalov AA. Role of Lipopolysaccharide and Nonspecific Porins of Yersinia pseudotuberculosis in the Reception of Pseudotuberculous Diagnostic Bacteriophage. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Manipulating Interactions between T4 Phage Long Tail Fibers and Escherichia coli Receptors. Appl Environ Microbiol 2021; 87:e0042321. [PMID: 33893116 DOI: 10.1128/aem.00423-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages are the most abundant and diverse biological entities on Earth. Phages exhibit strict host specificity that is largely conferred by adsorption. However, the mechanism underlying this phage host specificity remains poorly understood. In this study, we examined the interaction between outer membrane protein C (OmpC), one of the Escherichia coli receptors, and the long tail fibers of bacteriophage T4. T4 phage uses OmpC of the K-12 strain, but not of the O157 strain, for adsorption, even though OmpCs from the two E. coli strains share 94% homology. We identified amino acids P177 and F182 in loop 4 of the K-12 OmpC as essential for T4 phage adsorption in the copresence of loops 1 and 5. Analyses of phage mutants capable of adsorbing to OmpC mutants demonstrated that amino acids at positions 937 and 942 of the gp37 protein, which is present in the distal tip (DT) region of the T4 long tail fibers, play an important role in adsorption. Furthermore, we created a T4 phage mutant library with artificial modifications in the DT region and isolated and characterized multiple phage mutants capable of adsorbing to OmpC of the O157 strain or lipopolysaccharide of the K-12 strain. These results shed light on the mechanism underlying the phage host specificity mediated by gp37 and OmpC and may be useful in the development of phage therapy via artificial modifications of the DT region of T4 phage. IMPORTANCE Understanding the host specificity of phages will lead to the development of phage therapy. The interaction between outer membrane protein C (OmpC), one of the Escherichia coli receptors, and the gp37 protein present in the distal tip (DT) region of the long tail fibers of T4 bacteriophages largely determines their host specificity. Here, we elucidated the amino acid residues important for the interaction between gp37 and OmpC. This result suggests that the shapes of both proteins at the binding interface play important roles in their interactions, which are likely mediated by multiple residues of both binding partners. Additionally, we successfully isolated multiple phage mutants capable of adsorbing to a variety of E. coli receptors using a mutant T4 phage library with artificial modifications in the DT region, providing a foundation for the alteration of the host specificity.
Collapse
|
32
|
A Tail Fiber Protein and a Receptor-Binding Protein Mediate ICP2 Bacteriophage Interactions with Vibrio cholerae OmpU. J Bacteriol 2021; 203:e0014121. [PMID: 33875544 DOI: 10.1128/jb.00141-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
ICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host range mutants within infant rabbits infected with a mixture of wild-type and OmpU mutant strains. ICP2 host range mutants that can now infect OmpU mutant strains have missense mutations in the putative tail fiber gene gp25 and the putative adhesin gene gp23. Using site-specific mutagenesis, we show that single or double mutations in gp25 are sufficient to generate the host range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to produce a host range mutant phenotype. All ICP2 host range mutants retained the ability to form plaques on wild-type V. cholerae cells. The strength of binding of host range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host range mutants evolve by a two-step process. First, gp25 mutations are selected for their broad host range, albeit accompanied by low-level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near-wild-type efficiencies of adsorption and subsequent phage multiplication. IMPORTANCE Concern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to renewed interest in phage biology and the potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail that have been shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies an ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular coevolutionary arms race presents fitness costs to both ICP2 and V. cholerae.
Collapse
|
33
|
Ferreira R, Amado R, Padrão J, Ferreira V, Dias NM, Melo LDR, Santos SB, Nicolau A. The first sequenced Sphaerotilus natans bacteriophage- characterization and potential to control its filamentous bacterium host. FEMS Microbiol Ecol 2021; 97:6136272. [PMID: 33587121 DOI: 10.1093/femsec/fiab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteriophages (phages) are ubiquitous entities present in every conceivable habitat as a result of their bacterial parasitism. Their prevalence and impact in the ecology of bacterial communities and their ability to control pathogens make their characterization essential, particularly of new phages, improving knowledge and potential application. The isolation and characterization of a new lytic phage against Sphaerotilus natans strain DSM 6575, named vB_SnaP-R1 (SnaR1), is here described. Besides being the first sequenced genome of a Sphaerotilus natans infecting phage, 99% of its 41507 bp genome lacks homology with any other sequenced phage, revealing its uniqueness and previous lack of knowledge. Moreover, SnaR1 is the first Podoviridae phage described infecting this bacterium. Sphaerotilus natans is an important filamentous bacterium due to its deleterious effect on wastewater treatment plants (WWTP) and thus, phages may play a role as novel biotechnological tools against filamentous overgrowth in WWTP. The lytic spectrum of SnaR1 was restricted to its host strain, infecting only one out of three S. natans strains and infection assays revealed its ability to reduce bacterial loads. Results suggest SnaR1 as the prototype of a new phage genus and demonstrates its potential as a non-chemical alternative to reduce S. natans DSM 6575 cells.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui Amado
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge Padrão
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vânia Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nicolina M Dias
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sílvio B Santos
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Nicolau
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
34
|
Dunne M, Prokhorov NS, Loessner MJ, Leiman PG. Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins. Curr Opin Biotechnol 2021; 68:272-281. [PMID: 33744824 PMCID: PMC10163921 DOI: 10.1016/j.copbio.2021.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 01/09/2023]
Abstract
Bacteriophages (phages) use specialized tail machinery to deliver proteins and genetic material into a bacterial cell during infection. Attached at the distal ends of their tails are receptor binding proteins (RBPs) that recognize specific molecules exposed on host bacteria surfaces. Since the therapeutic capacity of naturally occurring phages is often limited by narrow host ranges, there is significant interest in expanding their host range via directed evolution or structure-guided engineering of their RBPs. Here, we describe the design principles of different RBP engineering platforms and draw attention to the mechanisms linking RBP binding and the correct spatial and temporal attachment of the phage to the bacterial surface. A deeper understanding of these mechanisms will directly benefit future engineering of more effective phage-based therapeutics.
Collapse
Affiliation(s)
- Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| |
Collapse
|
35
|
Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol 2021; 68:151-159. [PMID: 33310655 PMCID: PMC11996084 DOI: 10.1016/j.copbio.2020.11.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
The antimicrobial and therapeutic efficacy of bacteriophages is currently limited, mostly due to rapid emergence of phage-resistance and the inability of most phage isolates to bind and infect a broad range of clinical strains. Here, we discuss how phage therapy can be improved through recent advances in genetic engineering. First, we outline how receptor-binding proteins and their relevant structural domains are engineered to redirect phage specificity and to avoid resistance. Next, we summarize how phages are reprogrammed as prokaryotic gene therapy vectors that deliver antimicrobial 'payload' proteins, such as sequence-specific nucleases, to target defined cells within complex microbiomes. Finally, we delineate big data- and novel artificial intelligence-driven approaches that may guide the design of improved synthetic phage in the future.
Collapse
Affiliation(s)
- Bryan R Lenneman
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, Cambridge, MA 02139, USA
| | - Jonas Fernbach
- Institute of Food, Nutrition, and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition, and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland
| | - Timothy K Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Samuel Kilcher
- Institute of Food, Nutrition, and Health, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| |
Collapse
|
36
|
Salem M, Pajunen MI, Jun JW, Skurnik M. T4-like Bacteriophages Isolated from Pig Stools Infect Yersinia pseudotuberculosis and Yersinia pestis Using LPS and OmpF as Receptors. Viruses 2021; 13:v13020296. [PMID: 33668618 PMCID: PMC7917993 DOI: 10.3390/v13020296] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
The Yersinia bacteriophages fPS-2, fPS-65, and fPS-90, isolated from pig stools, have long contractile tails and elongated heads, and they belong to genus Tequatroviruses in the order Caudovirales. The phages exhibited relatively wide host ranges among Yersinia pseudotuberculosis and related species. One-step growth curve experiments revealed that the phages have latent periods of 50-80 min with burst sizes of 44-65 virions per infected cell. The phage genomes consist of circularly permuted dsDNA of 169,060, 167,058, and 167,132 bp in size, respectively, with a G + C content 35.3%. The number of predicted genes range from 267 to 271. The phage genomes are 84-92% identical to each other and ca 85% identical to phage T4. The phage receptors were identified by whole genome sequencing of spontaneous phage-resistant mutants. The phage-resistant strains had mutations in the ompF, galU, hldD, or hldE genes. OmpF is a porin, and the other genes encode lipopolysaccharide (LPS) biosynthetic enzymes. The ompF, galU, and hldE mutants were successfully complemented in trans with respective wild-type genes. The host recognition was assigned to long tail fiber tip protein Gp38, analogous to that of T-even phages such as Salmonella phage S16, specifically to the distal β-helices connecting loops.
Collapse
Affiliation(s)
- Mabruka Salem
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (M.S.); (M.I.P.)
- Department of Microbiology, Faculty of Medicine, University of Benghazi, Benghazi 16063, Libya
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (M.S.); (M.I.P.)
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Korea;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (M.S.); (M.I.P.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-336-0981
| |
Collapse
|
37
|
Korf IHE, Kittler S, Bierbrodt A, Mengden R, Rohde C, Rohde M, Kroj A, Lehnherr T, Fruth A, Flieger A, Lehnherr H, Wittmann J. In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli. Viruses 2020; 12:v12121470. [PMID: 33352791 PMCID: PMC7768485 DOI: 10.3390/v12121470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.
Collapse
Affiliation(s)
- Imke H. E. Korf
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
- Correspondence:
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | | | - Ruth Mengden
- Food Inspection, Animal Welfare and Veterinary Service of the Land of Bremen, Border Control Post Bremerhaven, Senator-Borttscheller-Straße 8, 27568 Bremerhaven, Germany;
| | - Christine Rohde
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Andrea Kroj
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Tatiana Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Angelika Fruth
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Antje Flieger
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| |
Collapse
|
38
|
Pellizza L, López JL, Vázquez S, Sycz G, Guimarães BG, Rinaldi J, Goldbaum FA, Aran M, Mac Cormack WP, Klinke S. Structure of the putative long tail fiber receptor-binding tip of a novel temperate bacteriophage from the Antarctic bacterium Bizionia argentinensis JUB59. J Struct Biol 2020; 212:107595. [PMID: 32736071 DOI: 10.1016/j.jsb.2020.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Tailed bacteriophages are one of the most widespread biological entities on Earth. Their singular structures, such as spikes or fibers are of special interest given their potential use in a wide range of biotechnological applications. In particular, the long fibers present at the termini of the T4 phage tail have been studied in detail and are important for host recognition and adsorption. Although significant progress has been made in elucidating structural mechanisms of model phages, the high-resolution structural description of the vast population of marine phages is still unexplored. In this context, we present here the crystal structure of C24, a putative receptor-binding tip-like protein from Bizionia argentinensis JUB59, a psychrotolerant bacterium isolated from the marine surface waters of Potter Cove, Antarctica. The structure resembles the receptor-binding tip from the bacteriophage T4 long tail fiber yet showing marked differences in its domain organization, size, sequence identity and metal binding nature. We confirmed the viral origin of C24 by induction experiments using mitomycin C. Our results reveal the presence of a novel uncharacterized prophage in the genome of B. argentinensis JUB59, whose morphology is compatible with the order Caudovirales and that carries the nucleotide sequence of C24 in its genome. This work provides valuable information to expand our current knowledge on the viral machinery prevalent in the oceans.
Collapse
Affiliation(s)
- Leonardo Pellizza
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - José L López
- Instituto de Bacteriología y Virología Molecular (IBAVIM), Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Susana Vázquez
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Beatriz G Guimarães
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48 (91192), Gif-sur-Yvette, France
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Martín Aran
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| | - Walter P Mac Cormack
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956 (C1113AAZ), Buenos Aires, Argentina; Instituto Antártico Argentino, 25 de Mayo 1143 (B1650HMK), San Martín, Provincia de Buenos Aires, Argentina.
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
39
|
Gonzalez-Serrano R, Dunne M, Rosselli R, Martin-Cuadrado AB, Grosboillot V, Zinsli LV, Roda-Garcia JJ, Loessner MJ, Rodriguez-Valera F. Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. mSystems 2020; 5:e00217-20. [PMID: 32518192 PMCID: PMC7289586 DOI: 10.1128/msystems.00217-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.
Collapse
Affiliation(s)
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Riccardo Rosselli
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
40
|
Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MDT, de la Fuente-Nunez C, Lu TK. Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell 2020; 179:459-469.e9. [PMID: 31585083 DOI: 10.1016/j.cell.2019.09.015] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 06/24/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
Abstract
The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.
Collapse
Affiliation(s)
- Kevin Yehl
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Sébastien Lemire
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Andrew C Yang
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Hiroki Ando
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Mark Mimee
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Marcelo Der Torossian Torres
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
41
|
Lee C, Choi IY, Park DH, Park MK. Isolation and characterization of a novel Escherichia coli O157:H7-specific phage as a biocontrol agent. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:189-199. [PMID: 32399231 PMCID: PMC7203308 DOI: 10.1007/s40201-020-00452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/20/2020] [Indexed: 05/05/2023]
Abstract
PURPOSE Escherichia coli O157:H7 is one of the major foodborne pathogens of global public concern. Bacteriophages (phages) have emerged as a promising alternative to antibiotics for controlling pathogenic bacteria. Here, a lytic E. coli O157:H7-specific phage (KFS-EC) was isolated, identified, and characterized to evaluate its potential as a biocontrol agent for E. coli O157:H7. METHODS KFS-EC was isolated from slaughterhouse in Korea. Morphological analysis, genomic analysis and several physiological tests were performed to identify and characterize the KFS-EC. RESULTS A specificity test indicated KFS-EC was strictly specific to E. coli O157:H7 strains among 60 bacterial strains tested. Morphological and phylogenetic analyses confirmed that KFS-EC belongs to the Rb49virus genus, Tevenvirinae subfamily, and the Myoviridae family of phages. KFS-EC genome consists of 164,725 bp and a total of 270 coding sequence features, of which 114 open reading frames (ORFs) were identified as phage functional genes. KFS-EC does not contain genes encoding lysogenic property and pathogenicity, which ensure its safe application. KFS-EC was relatively stable (~1 log decrease) under stressed conditions such as temperatures (20 °C-50 °C), pHs (3-11), organic solvents (ethanol and chloroform), and biocides (0.1% citric acid, 1% citric acid, and 0.1% peracetic acid). KFS-EC was able to inhibit E. coli O157:H7 efficiently at a multiplicity of infection (MOI) of 0.01 for 8 h with greater inhibitory effect and durability and was stable at 4 °C and 22 °C over a 12-week storage period. CONCLUSIONS Our results suggest that KFS-EC could be used as a biocontrol agent to E. coli O157:H7.
Collapse
Affiliation(s)
- Cheonghoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - In Young Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Do Hyeon Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Food and Bio-industry Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
42
|
LamB, OmpC, and the Core Lipopolysaccharide of Escherichia coli K-12 Function as Receptors of Bacteriophage Bp7. J Virol 2020; 94:JVI.00325-20. [PMID: 32238583 DOI: 10.1128/jvi.00325-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
Bp7 is a T-even phage with a broad host range specific to Escherichia coli, including E. coli K-12. The receptor binding protein (RBP) of bacteriophages plays an important role in the phage adsorption process and determines phage host range, but the molecular mechanism involved in host recognition of phage Bp7 remains unknown. In this study, the interaction between phage Bp7 and E. coli K-12 was investigated. Based on homology alignment, amino acid sequence analysis, and a competitive assay, gp38, located at the tip of the long tail fiber, was identified as the RBP of phage Bp7. Using a combination of in vivo and in vitro approaches, including affinity chromatography, gene knockout mutagenesis, a phage plaque assay, and phage adsorption kinetics analysis, we identified the LamB and OmpC proteins on the surface of E. coli K-12 as specific receptors involved in the first step of reversible phage adsorption. Genomic analysis of the phage-resistant mutant strain E. coli K-12-R and complementation tests indicated that HepI of the inner core of polysaccharide acts as the second receptor recognized by phage Bp7 and is essential for successful phage infection. This observation provides an explanation of the broad host range of phage Bp7 and provides insight into phage-host interactions.IMPORTANCE The RBPs of T4-like phages are gp37 and gp38. The interaction between phage T4 RBP gp37 and its receptors has been clarified by many reports. However, the interaction between gp38 and its receptors during phage adsorption is still not completely understood. Here, we identified phage Bp7, which uses gp38 as an RBP, and provided a good model to study the phage-host interaction mechanisms in an enterobacteriophage. Our study revealed that gp38 of phage Bp7 recognizes the outer membrane proteins (OMPs) LamB and OmpC of E. coli K-12 as specific receptors and binds with them reversibly. HepI of the inner-core oligosaccharide is the second receptor and binds with phage Bp7 irreversibly to begin the infection process. Determining the interaction between the phage and its receptors will help elucidate the mechanisms of phage with a broad host range and help increase understanding of the phage infection mechanism based on gp38.
Collapse
|
43
|
Comparative Genomics of Two New HF1-like Haloviruses. Genes (Basel) 2020; 11:genes11040405. [PMID: 32276506 PMCID: PMC7230728 DOI: 10.3390/genes11040405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Few genomes of the HF1-group of viruses are currently available, and further examples would enhance the understanding of their evolution, improve their gene annotation, and assist in understanding gene function and regulation. Two novel HF1-group haloviruses, Serpecor1 and Hardycor2, were recovered from widely separated hypersaline lakes in Australia. Both are myoviruses with linear dsDNA genomes and infect the haloarchaeon Halorubrum coriense. Both genomes possess long, terminal direct repeat (TDR) sequences (320 bp for Serpecor1 and 306 bp for Hardycor2). The Serpecor1 genome is 74,196 bp in length, 57.0% G+C, and has 126 annotated coding sequences (CDS). Hardycor2 has a genome of 77,342 bp, 55.6% G+C, and 125 annotated CDS. They show high nucleotide sequence similarity to each other (78%) and with HF1 (>75%), and carry similar intergenic repeat (IR) sequences to those originally described in HF1 and HF2. Hardycor2 carries a DNA methyltransferase gene in the same genomic neighborhood as the methyltransferase genes of HF1, HF2 and HRTV-5, but is in the opposite orientation, and the inferred proteins are only distantly related. Comparative genomics allowed us to identify the candidate genes mediating cell attachment. The genomes of Serpecor1 and Hardycor2 encode numerous small proteins carrying one or more CxxC motifs, a signature feature of zinc-finger domain proteins that are known to participate in diverse biomolecular interactions.
Collapse
|
44
|
Islam MZ, Fokine A, Mahalingam M, Zhang Z, Garcia-Doval C, van Raaij MJ, Rossmann MG, Rao VB. Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber. PLoS Pathog 2019; 15:e1008193. [PMID: 31856258 PMCID: PMC6957217 DOI: 10.1371/journal.ppat.1008193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/13/2020] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Tailed bacteriophages (phages) are one of the most abundant life forms on Earth. They encode highly efficient molecular machines to infect bacteria, but the initial interactions between a phage and a bacterium that then lead to irreversible virus attachment and infection are poorly understood. This information is critically needed to engineer machines with novel host specificities in order to combat antibiotic resistance, a major threat to global health today. The tailed phage T4 encodes a specialized device for this purpose, the long tail fiber (LTF), which allows the virus to move on the bacterial surface and find a suitable site for infection. Consequently, the infection efficiency of phage T4 is one of the highest, reaching the theoretical value of 1. Although the atomic structure of the tip of the LTF has been determined, its functional architecture and how interactions with two structurally very different Escherichia coli receptor molecules, lipopolysaccharide (LPS) and outer membrane protein C (OmpC), contribute to virus movement remained unknown. Here, by developing direct receptor binding assays, extensive mutational and biochemical analyses, and structural modeling, we discovered that the ball-shaped tip of the LTF, a trimer of gene product 37, consists of three sets of symmetrically alternating binding sites for LPS and/or OmpC. Our studies implicate reversible and dynamic interactions between these sites and the receptors. We speculate that the LTF might function as a “molecular pivot” allowing the virus to “walk” on the bacterium by adjusting the angle or position of interaction of the six LTFs attached to the six-fold symmetric baseplate. Bacteriophage (phage) T4 belongs to myoviridae, a widely distributed family of viruses on Earth. They contain a head (capsid), a contractile tail, and a baseplate to which six long tail fibers (LTFs) are attached. During infection, the genome packed inside the capsid is injected into its host, Escherichia coli bacterium, to initiate virus replication. The first step of infection is recognition of receptor molecules, lipopolysaccharide (LPS) and/or outer membrane protein C (OmpC), present on bacterial surface by the tips of LTFs. This allows phage to attach to bacterium, move on the surface, and find a suitable site for infection. However, the interactions that govern this critical process are poorly understood. Here, we provide the first molecular description of a tail fiber tip. Extensive mutational, structural, and biochemical analyses show that the ball-shaped tip contains patches of binding sites that allow dynamic interactions with LPS and/or OmpC. We speculate that each LTF might act as a molecular pivot, able to change its position and angle and allow phage to move on the bacterium. Our studies uncover the basic architecture of a phage molecular device used for gaining entry into bacteria and provide insights into engineering novel phages to curtail multidrug-resistance bacteria.
Collapse
Affiliation(s)
- Mohammad Z. Islam
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Zhihong Zhang
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Carmela Garcia-Doval
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Mark J. van Raaij
- Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Michael G. Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Venigalla B. Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
45
|
Dunne M, Rupf B, Tala M, Qabrati X, Ernst P, Shen Y, Sumrall E, Heeb L, Plückthun A, Loessner MJ, Kilcher S. Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. Cell Rep 2019; 29:1336-1350.e4. [DOI: 10.1016/j.celrep.2019.09.062] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
|
46
|
Lepore R, Kryshtafovych A, Alahuhta M, Veraszto HA, Bomble YJ, Bufton JC, Bullock AN, Caba C, Cao H, Davies OR, Desfosses A, Dunne M, Fidelis K, Goulding CW, Gurusaran M, Gutsche I, Harding CJ, Hartmann MD, Hayes CS, Joachimiak A, Leiman PG, Loppnau P, Lovering AL, Lunin VV, Michalska K, Mir-Sanchis I, Mitra AK, Moult J, Phillips GN, Pinkas DM, Rice PA, Tong Y, Topf M, Walton JD, Schwede T. Target highlights in CASP13: Experimental target structures through the eyes of their authors. Proteins 2019; 87:1037-1057. [PMID: 31442339 PMCID: PMC6851490 DOI: 10.1002/prot.25805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
Abstract
The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment.
Collapse
Affiliation(s)
- Rosalba Lepore
- BSC-CNS Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Harshul A Veraszto
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Joshua C Bufton
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Alex N Bullock
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Hongnan Cao
- Department of BioSciences, Rice University, Houston, Texas.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ambroise Desfosses
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, Zurich, Switzerland
| | | | - Celia W Goulding
- Department of Molecular Biology and Biochemistry; Pharmaceutical Sciences, University of California Irvine, Irvine, California
| | - Manickam Gurusaran
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | | | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, Biomolecular Science and Engineering Program, University of California, Santa Barbara, California
| | - Andrzej Joachimiak
- Structural Biology Center, Biosciences Division, Midwest Center for Structural Genomics, Argonne.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Karolina Michalska
- Structural Biology Center, Biosciences Division, Midwest Center for Structural Genomics, Argonne
| | - Ignacio Mir-Sanchis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - A K Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John Moult
- Institute for Bioscience and Biotechnology Research, Department of Cell Biology and Molecular genetics, University of Maryland, Rockville, Maryland, USA
| | - George N Phillips
- Department of BioSciences, Rice University, Houston, Texas.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin
| | - Daniel M Pinkas
- Nuffield Department of Medicine; Structural Genomics Consortium, University of Oxford, Oxford, UK
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University College London, London, UK
| | - Jonathan D Walton
- Great Lakes Bioenergy Research Center and Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - Torsten Schwede
- Biozentrum University of Basel, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum University of Basel, Basel, Switzerland
| |
Collapse
|
47
|
Abstract
In this issue of Structure, Dunne et al. (2018) unveil the architecture of Salmonella phage S16 adhesin. The structure unravels a beads-on-a-string topology consisting of three domains of which the C-terminal glycine-rich PGII domain, located at the distal tip of the long tail fiber, mediates cell surface attachment and host recognition.
Collapse
Affiliation(s)
- Nicholas A Swanson
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
48
|
Isolation, Characterisation and Complete Genome Sequence of a Tequatrovirus Phage, Escherichia phage KIT03, Which Simultaneously Infects Escherichia coli O157:H7 and Salmonella enterica. Curr Microbiol 2019; 76:1130-1137. [DOI: 10.1007/s00284-019-01738-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022]
|
49
|
Pagnout C, Sohm B, Razafitianamaharavo A, Caillet C, Offroy M, Leduc M, Gendre H, Jomini S, Beaussart A, Bauda P, Duval JFL. Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Sci Rep 2019; 9:9696. [PMID: 31273247 PMCID: PMC6609704 DOI: 10.1038/s41598-019-46100-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/17/2019] [Indexed: 01/18/2023] Open
Abstract
Mutations in the rfa operon leading to severely truncated lipopolysaccharide (LPS) structures are associated with pleiotropic effects on bacterial cells, which in turn generates a complex phenotype termed deep-rough. Literature reports distinct behavior of these mutants in terms of susceptibility to bacteriophages and to several antibacterial substances. There is so far a critical lack of understanding of such peculiar structure-reactivity relationships mainly due to a paucity of thorough biophysical and biochemical characterizations of the surfaces of these mutants. In the current study, the biophysicochemical features of the envelopes of Escherichia coli deep-rough mutants are identified from the molecular to the single cell and population levels using a suite of complementary techniques, namely microelectrophoresis, Atomic Force Microscopy (AFM) and Isobaric Tag for Relative and Absolute Quantitation (iTRAQ) for quantitative proteomics. Electrokinetic, nanomechanical and proteomic analyses evidence enhanced mutant membrane destabilization/permeability, and differentiated abundances of outer membrane proteins involved in the susceptibility phenotypes of LPS-truncated mutants towards bacteriophages, antimicrobial peptides and hydrophobic antibiotics. In particular, inner-core LPS altered mutants exhibit the most pronounced heterogeneity in the spatial distribution of their Young modulus and stiffness, which is symptomatic of deep damages on cell envelope likely to mediate phage infection process and antibiotic action.
Collapse
Affiliation(s)
- Christophe Pagnout
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France.
| | - Bénédicte Sohm
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France
| | | | - Céline Caillet
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Marc Offroy
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Marjorie Leduc
- Plateforme protéomique 3P5, Inserm U1016-Institut Cochin, Université Paris Descartes, MICUSPC, Paris, France
| | - Héloïse Gendre
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | | | - Audrey Beaussart
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| | - Pascale Bauda
- Université de Lorraine, LIEC, UMR7360, Campus Bridoux, Metz, F-57070, France
| | - Jérôme F L Duval
- Université de Lorraine, LIEC, UMR7360, Vandoeuvre-lès-Nancy, F-54000, France
| |
Collapse
|
50
|
Phothaworn P, Dunne M, Supokaivanich R, Ong C, Lim J, Taharnklaew R, Vesaratchavest M, Khumthong R, Pringsulaka O, Ajawatanawong P, Klumpp J, Brown N, Imam M, Clokie MRJ, Galyov EE, Korbsrisate S. Characterization of Flagellotropic, Chi-Like Salmonella Phages Isolated from Thai Poultry Farms. Viruses 2019; 11:v11060520. [PMID: 31195709 PMCID: PMC6631126 DOI: 10.3390/v11060520] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Despite a wealth of knowledge on Salmonella phages worldwide, little is known about poultry-associated Salmonella phages from Thailand. Here, we isolated 108 phages from Thai poultry farms that infect Salmonella enterica serovar Typhimurium. Phages STm101 and STm118 were identified as temperate Siphoviridae phages. Genome sequencing and analyses revealed these phages share approximately 96% nucleotide sequence similarity to phage SPN19, a member of the Chi-like virus genus. PCR amplification of the gene encoding capsid protein E of the Chi-like phage was positive for 50% of phage isolates, suggesting a predominance of this phage type among the sampled poultry farms. In addition to the flagella, two phages required the lipopolysaccharide to infect and lyse Salmonella. Furthermore, phylogenomic analysis demonstrated that phages STm101 and STm118 formed a monophyletic clade with phages isolated from Western countries, but not from closer isolated phages from Korea. However, further investigation and more phage isolates are required to investigate possible causes for this geographic distribution.
Collapse
Affiliation(s)
- Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Rattaya Supokaivanich
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Catherine Ong
- DSO National Laboratories, Singapore 117510, Singapore.
| | - Jiali Lim
- DSO National Laboratories, Singapore 117510, Singapore.
| | | | | | - Rabuesak Khumthong
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Onanong Pringsulaka
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Nathan Brown
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Mohammed Imam
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|