1
|
Lutz M, Schmierer J, Takimoto T. Host adaptive mutations in the 2009 H1N1 pandemic influenza A virus PA gene regulate translation efficiency of viral mRNAs via GRSF1. Commun Biol 2022; 5:1102. [PMID: 36253464 PMCID: PMC9576711 DOI: 10.1038/s42003-022-04082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
Avian species are the major natural reservoir from which pandemic influenza A viruses can be introduced to humans. Avian influenza A virus genes, including the three viral polymerase genes, PA, PB1 and PB2, require host-adaptive mutations to allow for viral replication and transmission in humans. Previously, PA from the 2009 pH1N1 viral polymerase was found to harbor host-adaptive mutations leading to enhanced viral polymerase activity. By quantifying translation and mRNA transcription, we found that the 2009 pH1N1 PA, and the associated host-adaptive mutations, led to greater translation efficiency. This was due to enhanced cytosolic accumulation of viral mRNA, which was dependent on the host RNA binding protein GRSF1. Mutations to the GRSF1 binding site in viral mRNA, as well as GRSF1 knockdown, reduced cytosolic accumulation and translation efficiency of viral mRNAs. This study identifies a previously unrecognized mechanism by which host-adaptive mutations in PA regulate viral replication and host adaptation. Importantly, these results provide greater insight into the host adaptation process of IAVs and reveal the importance of GRSF1 in the lifecycle of IAV.
Collapse
Affiliation(s)
- Michael Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jordana Schmierer
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
2
|
Zhang Y, Eskridge KM, Zhang S, Lu G. Identifying host-specific amino acid signatures for influenza A viruses using an adjusted entropy measure. BMC Bioinformatics 2022; 23:333. [PMID: 35962315 PMCID: PMC9372975 DOI: 10.1186/s12859-022-04885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Influenza A viruses (IAV) exhibit vast genetic mutability and have great zoonotic potential to infect avian and mammalian hosts and are known to be responsible for a number of pandemics. A key computational issue in influenza prevention and control is the identification of molecular signatures with cross-species transmission potential. We propose an adjusted entropy-based host-specific signature identification method that uses a similarity coefficient to incorporate the amino acid substitution information and improve the identification performance. Mutations in the polymerase genes (e.g., PB2) are known to play a major role in avian influenza virus adaptation to mammalian hosts. We thus focus on the analysis of PB2 protein sequences and identify host specific PB2 amino acid signatures. Results Validation with a set of H5N1 PB2 sequences from 1996 to 2006 results in adjusted entropy having a 40% false negative discovery rate compared to a 60% false negative rate using unadjusted entropy. Simulations across different levels of sequence divergence show a false negative rate of no higher than 10% while unadjusted entropy ranged from 9 to 100%. In addition, under all levels of divergence adjusted entropy never had a false positive rate higher than 9%. Adjusted entropy also identifies important mutations in H1N1pdm PB2 previously identified in the literature that explain changes in divergence between 2008 and 2009 which unadjusted entropy could not identify. Conclusions Based on these results, adjusted entropy provides a reliable and widely applicable host signature identification approach useful for IAV monitoring and vaccine development.
Collapse
Affiliation(s)
- Yixiang Zhang
- Department of Statistics, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Kent M Eskridge
- Department of Statistics, University of Nebraska - Lincoln, Lincoln, NE, USA.
| | - Shunpu Zhang
- Department of Statistics, University of Central Florida, Orlando, USA
| | - Guoqing Lu
- Department of Biology, University of Nebraska - Omaha, Omaha, NE, USA
| |
Collapse
|
3
|
Antiviral Activity and Mechanisms of Seaweeds Bioactive Compounds on Enveloped Viruses-A Review. Mar Drugs 2022; 20:md20060385. [PMID: 35736188 PMCID: PMC9228758 DOI: 10.3390/md20060385] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed’s currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed’s extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host’s defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed’s bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed’s bioactive compounds are analyzed, suggesting seaweed’s potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.
Collapse
|
4
|
Rattanaburi S, Sawaswong V, Nimsamer P, Mayuramart O, Sivapornnukul P, Khamwut A, Chanchaem P, Kongnomnan K, Suntronwong N, Poovorawan Y, Payungporn S. Genome characterization and mutation analysis of human influenza A virus in Thailand. Genomics Inform 2022; 20:e21. [PMID: 35794701 PMCID: PMC9299564 DOI: 10.5808/gi.21077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
The influenza A viruses have high mutation rates and cause a serious health problem worldwide. Therefore, this study focused on genome characterization of the viruses isolated from Thai patients based on the next-generation sequencing technology. The nasal swabs were collected from patients with influenza-like illness in Thailand during 2017-2018. Then, the influenza A viruses were detected by reverse transcription-quantitative polymerase chain reaction and isolated by MDCK cells. The viral genomes were amplified and sequenced by Illumina MiSeq platform. Whole genome sequences were used for characterization, phylogenetic construction, mutation analysis and nucleotide diversity of the viruses. The result revealed that 90 samples were positive for the viruses including 44 of A/ H1N1 and 46 of A/H3N2. Among these, 43 samples were successfully isolated and then the viral genomes of 25 samples were completely amplified. Finally, 17 whole genomes of the viruses (A/H1N1, n=12 and A/H3N2, n=5) were successfully sequenced with an average of 232,578 mapped reads and 1,720 genome coverage per sample. Phylogenetic analysis demonstrated that the A/H1N1 viruses were distinguishable from the recommended vaccine strains. However, the A/H3N2 viruses from this study were closely related to the recommended vaccine strains. The nonsynonymous mutations were found in all genes of both viruses, especially in hemagglutinin (HA) and neuraminidase (NA) genes. The nucleotide diversity analysis revealed negative selection in the PB1, PA, HA, and NA genes of the A/H1N1 viruses. High-throughput data in this study allow for genetic characterization of circulating influenza viruses which would be crucial for preparation against pandemic and epidemic outbreaks in the future.
Collapse
Affiliation(s)
- Somruthai Rattanaburi
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oraphan Mayuramart
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ariya Khamwut
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritsada Kongnomnan
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Zolotarova O, Fesenko A, Holubka O, Radchenko L, Bortz E, Budzanivska I, Mironenko A. Genotypic Variants of Pandemic H1N1 Influenza A Viruses Isolated from Severe Acute Respiratory Infections in Ukraine during the 2015/16 Influenza Season. Viruses 2021; 13:2125. [PMID: 34834932 PMCID: PMC8619959 DOI: 10.3390/v13112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Human type A influenza viruses A(H1N1)pdm09 have caused seasonal epidemics of influenza since the 2009-2010 pandemic. A(H1N1)pdm09 viruses had a leading role in the severe epidemic season of 2015/16 in the Northern Hemisphere and caused a high incidence of acute respiratory infection (ARI) in Ukraine. Serious complications of influenza-associated severe ARI (SARI) were observed in the very young and individuals at increased risk, and 391 fatal cases occurred in the 2015/16 epidemic season. We analyzed the genetic changes in the genomes of A(H1N1)pdm09 influenza viruses isolated from SARI cases in Ukraine during the 2015/16 season. The viral hemagglutinin (HA) fell in H1 group 6B.1 for all but four isolates, with known mutations affecting glycosylation, the Sa antigenic site (S162N in all 6B.1 isolates), or virulence (D222G/N in two isolates). Other mutations occurred in antigenic site Ca (A141P and S236P), and a subgroup of four strains were in group 6B.2, with potential alterations to antigenicity in A(H1N1)pdm09 viruses circulating in 2015/16 in Ukraine. A cluster of Ukrainian isolates exhibited novel D2E and N48S mutations in the RNA binding domain, and E125D in the effector domain, of immune evasion nonstructural protein 1 (NS1). The diverse spectrum of amino-acid substitutions in HA, NS1, and other viral proteins including nucleoprotein (NP) and the polymerase complex suggested the concurrent circulation of multiple lineages of A(H1N1)pdm09 influenza viruses in the human population in Ukraine, a country with low vaccination coverage, complicating public health measures against influenza.
Collapse
Affiliation(s)
- Oksana Zolotarova
- Educational Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
| | - Anna Fesenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Olga Holubka
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Larysa Radchenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska, 3211 Providence Dr., Anchorage, AK 99508, USA;
| | - Iryna Budzanivska
- Educational Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine;
| | - Alla Mironenko
- Gromashevsky L.V. Institute of Epidemiology and Infectious Diseases, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine; (A.F.); (O.H.); (L.R.); (A.M.)
| |
Collapse
|
6
|
Wang MH, Lou J, Cao L, Zhao S, Chan RW, Chan PK, Chan MCW, Chong MK, Wu WK, Wei Y, Zhang H, Zee BC, Yeoh EK. Characterization of key amino acid substitutions and dynamics of the influenza virus H3N2 hemagglutinin. J Infect 2021; 83:671-677. [PMID: 34627840 DOI: 10.1016/j.jinf.2021.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/10/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
The annual epidemics of seasonal influenza is partly attributed to the continued virus evolution. It is challenging to evaluate the effect of influenza virus mutations on evading population immunity. In this study, we introduce a novel statistical and computational approach to measure the dynamic molecular determinants underlying epidemics using effective mutations (EMs), and account for the time of waning mutation advantage against herd immunity by measuring the effective mutation periods (EMPs). Extensive analysis is performed on the sequencing and epidemiology data of H3N2 epidemics in ten regions from season to season. We systematically identified 46 EMs in the hemagglutinin (HA) gene, in which the majority were antigenic sites. Eight EMs were located in immunosubdominant stalk domain, an important target for developing broadly reactive antibodies. The EMs might provide timely information on key substitutions for influenza vaccines antigen design. The EMP suggested that major genetic variants of H3N2 circulated in Southeast Asia for an average duration of 4.5 years (SD 2.4) compared to a significantly shorter 2.0 years (SD 1.0) in temperate regions. The proposed method bridges population epidemics and molecular characteristics of infectious diseases, and would find broad applications in various pathogens mutation estimations.
Collapse
Affiliation(s)
- Maggie Haitian Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China.
| | - Jingzhi Lou
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Lirong Cao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Shi Zhao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Renee Wy Chan
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus & Immunobiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Department of Paediatrics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Paul Ks Chan
- Department of Microbiology, Stanley Ho Center for Emerging Infectious Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Martin Chi-Wai Chan
- Department of Microbiology, Stanley Ho Center for Emerging Infectious Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Marc Kc Chong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China
| | - William Kk Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yuchen Wei
- Department of Microbiology, Stanley Ho Center for Emerging Infectious Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Haoyang Zhang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Benny Cy Zee
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; CUHK Shenzhen Research Institute, Shenzhen, China
| | - Eng-Kiong Yeoh
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
7
|
Van Poelvoorde LAE, Bogaerts B, Fu Q, De Keersmaecker SCJ, Thomas I, Van Goethem N, Van Gucht S, Winand R, Saelens X, Roosens N, Vanneste K. Whole-genome-based phylogenomic analysis of the Belgian 2016-2017 influenza A(H3N2) outbreak season allows improved surveillance. Microb Genom 2021; 7. [PMID: 34477544 PMCID: PMC8715427 DOI: 10.1099/mgen.0.000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seasonal influenza epidemics are associated with high mortality and morbidity in the human population. Influenza surveillance is critical for providing information to national influenza programmes and for making vaccine composition predictions. Vaccination prevents viral infections, but rapid influenza evolution results in emerging mutants that differ antigenically from vaccine strains. Current influenza surveillance relies on Sanger sequencing of the haemagglutinin (HA) gene. Its classification according to World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC) guidelines is based on combining certain genotypic amino acid mutations and phylogenetic analysis. Next-generation sequencing technologies enable a shift to whole-genome sequencing (WGS) for influenza surveillance, but this requires laboratory workflow adaptations and advanced bioinformatics workflows. In this study, 253 influenza A(H3N2) positive clinical specimens from the 2016–2017 Belgian season underwent WGS using the Illumina MiSeq system. HA-based classification according to WHO/ECDC guidelines did not allow classification of all samples. A new approach, considering the whole genome, was investigated based on using powerful phylogenomic tools including beast and Nextstrain, which substantially improved phylogenetic classification. Moreover, Bayesian inference via beast facilitated reassortment detection by both manual inspection and computational methods, detecting intra-subtype reassortants at an estimated rate of 15 %. Real-time analysis (i.e. as an outbreak is ongoing) via Nextstrain allowed positioning of the Belgian isolates into the globally circulating context. Finally, integration of patient data with phylogenetic groups and reassortment status allowed detection of several associations that would have been missed when solely considering HA, such as hospitalized patients being more likely to be infected with A(H3N2) reassortants, and the possibility to link several phylogenetic groups to disease severity indicators could be relevant for epidemiological monitoring. Our study demonstrates that WGS offers multiple advantages for influenza monitoring in (inter)national influenza surveillance, and proposes an improved methodology. This allows leveraging all information contained in influenza genomes, and allows for more accurate genetic characterization and reassortment detection.
Collapse
Affiliation(s)
- Laura A E Van Poelvoorde
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Ghent, Belgium
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | - Isabelle Thomas
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | - Steven Van Gucht
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Nancy Roosens
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| |
Collapse
|
8
|
The impact of candidate influenza virus and egg-based manufacture on vaccine effectiveness: Literature review and expert consensus. Vaccine 2020; 38:6047-6056. [PMID: 32600916 DOI: 10.1016/j.vaccine.2020.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Influenza is associated with significant morbidity and mortality worldwide. Whilst vaccination is key for the prevention of influenza infection, there are many factors which may contribute to reduced vaccine effectiveness, including antigenic evolution via both antigenic drift and egg-adaptations. Due to the currently dissociated and indirect evidence supporting both the occurrence of these two phenomena in the egg-based manufacturing process and their effects on vaccine effectiveness, this topic remains a subject of debate. OBJECTIVE To review the evidence and level of agreement in expert opinion supporting a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing, using an expert consensus-based methodology and literature reviews. METHODS Ten European influenza specialists were recruited to the expert panel. The overall research question was deconstructed into four component principles, which were examined in series using a novel, online, two-stage assessment of proportional group awareness and consensus. The first stage independently generated a list of supporting references for each component principle via literature searches and expert assessments. In the second stage, a summary of each reference was circulated amongst the experts, who rated their agreement that each reference supported the component principle on a 5-point Likert scale. Finally, the panel were asked if they agreed that, as a whole, the evidence supported a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing. RESULTS All component principles were reported to have a majority of strong or very strong supporting evidence (70-90%). CONCLUSIONS On reviewing the evidence for all component principles, experts unanimously agreed that there is a mechanistic basis for reduced vaccine effectiveness resulting from candidate influenza virus variation due to egg-based manufacturing, particularly in the influenza A/H3N2 strain. Experts pointed to surveillance, candidate vaccine virus selection and manufacturing stages involving eggs as the most likely to impact vaccine effectiveness.
Collapse
|
9
|
Identification of a novel antiviral micro-RNA targeting the NS1 protein of the H1N1 pandemic human influenza virus and a corresponding viral escape mutation. Antiviral Res 2019; 171:104593. [PMID: 31470040 DOI: 10.1016/j.antiviral.2019.104593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022]
Abstract
The influenza A virus (IAV) NS1 protein is one of the major regulators of pathogenicity, being able to suppress innate immune response and host protein synthesis. In this study we identified the human micro RNA hsa-miR-1307-3p as a novel potent suppressor of NS1 expression and influenza virus replication. Transcriptomic analysis indicates that hsa-miR-1307-3p also negatively regulates apoptosis and promotes cell proliferation. In addition, we identified a novel mutation in the NS1 gene of A(H1N1)pdm09 strains circulating in Italy in the 2010-11 season, which enabled the virus to escape the hsa-miR-1307-3p inhibition, conferring replicative advantage to the virus in human cells. To the best of our knowledge, this is the first validation of suppression of IAV H1N1 NS1 by a human micro RNA and the first example of an escape mutation from micro RNA-mediated antiviral response for the A(H1N1)pdm09 virus.
Collapse
|
10
|
DuPai CD, McWhite CD, Smith CB, Garten R, Maurer-Stroh S, Wilke CO. Influenza passaging annotations: what they tell us and why we should listen. Virus Evol 2019; 5:vez016. [PMID: 31275610 PMCID: PMC6599686 DOI: 10.1093/ve/vez016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza databases now contain over 100,000 worldwide sequence records for strains influenza A(H3N2) and A(H1N1). Although these data facilitate global research efforts and vaccine development practices, they also represent a stumbling block for researchers because of their confusing and heterogeneous annotation. Unclear passaging annotations are particularly concerning given the recent work highlighting the presence and risk of false adaptation signals introduced by cell passaging of viral isolates. With this in mind, we aim to provide a concise outline of why viruses are passaged, a clear overview of passaging annotation nomenclature currently in use, and suggestions for a standardized nomenclature going forward. Our hope is that this summary will empower researchers and clinicians alike to more easily understand a virus sample's passage history when analyzing influenza sequences.
Collapse
Affiliation(s)
- Cory D DuPai
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Claire D McWhite
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Catherine B Smith
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sebastian Maurer-Stroh
- Biomolecular Function Discovery Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore
| | - Claus O Wilke
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Zusinaite E, Ianevski A, Niukkanen D, Poranen MM, Bjørås M, Afset JE, Tenson T, Velagapudi V, Merits A, Kainov DE. A Systems Approach to Study Immuno- and Neuro-Modulatory Properties of Antiviral Agents. Viruses 2018; 10:v10080423. [PMID: 30103549 PMCID: PMC6116047 DOI: 10.3390/v10080423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/12/2022] Open
Abstract
There are dozens of approved, investigational and experimental antiviral agents. Many of these agents cause serious side effects, which can only be revealed after drug administration. Identification of the side effects prior to drug administration is challenging. Here we describe an ex vivo approach for studying immuno- and neuro-modulatory properties of antiviral agents, which may be associated with potential side effects of these therapeutics. The current approach combines drug toxicity/efficacy tests and transcriptomics, which is followed by mRNA, cytokine and metabolite profiling. We demonstrated the utility of this approach with several examples of antiviral agents. We also showed that the approach can utilize different immune stimuli and cell types. It can also include other omics techniques, such as genomics and epigenomics, to allow identification of individual markers associated with adverse reactions to antivirals with immuno- and neuro-modulatory properties.
Collapse
Affiliation(s)
- Eva Zusinaite
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia.
| | - Aleksandr Ianevski
- Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway.
| | - Diana Niukkanen
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia.
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland.
| | - Magnar Bjørås
- Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway.
- Department of Microbiology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway.
| | - Jan Egil Afset
- Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia.
| | - Vidya Velagapudi
- Institute Molecular Medicine Finland (FIMM), University of Helsinki, 00014 Helsinki, Finland.
| | - Andres Merits
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia.
| | - Denis E Kainov
- Institute of Technology, University of Tartu, 50090 Tartu, Estonia.
- Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway.
| |
Collapse
|
12
|
Shim JM, Kim J, Tenson T, Min JY, Kainov DE. Influenza Virus Infection, Interferon Response, Viral Counter-Response, and Apoptosis. Viruses 2017; 9:E223. [PMID: 28805681 PMCID: PMC5580480 DOI: 10.3390/v9080223] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral outbreaks, new treatments are urgently needed. Developing new virus control modalities requires better understanding of virus-host interactions. Here, we describe how IAV infection triggers cellular apoptosis and how this process can be exploited towards the development of new therapeutics, which might be more effective than the currently available anti-influenza drugs.
Collapse
Affiliation(s)
| | - Jinhee Kim
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| | - Ji-Young Min
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
| | - Denis E Kainov
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway.
| |
Collapse
|
13
|
Whole-Genome Sequences of Influenza A(H1N1)pdm09 Virus Isolates from Kerala, India. GENOME ANNOUNCEMENTS 2017; 5:5/28/e00598-17. [PMID: 28705972 PMCID: PMC5511911 DOI: 10.1128/genomea.00598-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the whole-genome sequence of six clinical isolates of influenza A(H1N1)pdm09, isolated from Kerala, India. Amino acid analysis of all gene segments from the A(H1N1)pdm09 isolates obtained in 2014 and 2015 identified several new mutations compared to the 2009 A(H1N1) pandemic strain.
Collapse
|
14
|
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE. Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction. Viruses 2016; 8:v8100269. [PMID: 27690086 PMCID: PMC5086605 DOI: 10.3390/v8100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Sergey Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Laxman Yetukuri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Mikhail Berlinkov
- Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg 620083, Russia.
| | - Anton V Cheltsov
- Q-Mol L.L.C. in Silico Pharmaceuticals, San Diego, CA 92037, USA.
| | - Simon Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | | | - Sampsa Matikainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
- Department of Rheumatology, Helsinki University Hospital, University of Helsinki, Helsinki 00015, Finland.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
15
|
JNJ872 inhibits influenza A virus replication without altering cellular antiviral responses. Antiviral Res 2016; 133:23-31. [PMID: 27451344 DOI: 10.1016/j.antiviral.2016.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 02/04/2023]
Abstract
JNJ-63623872 (formally known as VX-787; referred to here as JNJ872) is an orally bioavailable compound, which is in phase II clinical trials for the treatment of influenza A virus (IAV) infections. Here we show that JNJ872 inhibits at nanomolar concentrations the transcription of viral RNA in IAV-infected human macrophages by targeting a highly conserved site on the cap-snatching domain of influenza polymerase basic 2 protein (PB2). Furthermore, even lower concentrations of JNJ872 protected macrophages from IAV-mediated death when given in combination with 100 nM gemcitabine, which also attenuated transcription and replication of viral RNA. Importantly, treating human macrophages with JNJ872 allowed expression of many immune-related and other genes, involved in antiviral responses, such as indoleamine 2,3-dioxygenase 1 (IDO), and cytosolic 5'-nucleotidase 3A (NT5C3A). Moreover, our targeted metabolomics analysis indicate that treatment with JNJ782 did not interfere with metabolic responses to infection, which further supported our transcriptomics results. Thus, VX-737 alone or in combination with other drugs could be beneficial for treating IAV infected patients, because it would allow the development of antiviral responses and, thereby, protect individuals from current and future infections with closely related IAV strains.
Collapse
|
16
|
Byarugaba DK, Erima B, Millard M, Kibuuka H, Lkwago L, Bwogi J, Mimbe D, Kiconco JB, Tugume T, Mworozi EA, Turner J, Mckenzie PP, Webby RRJ, Webster RG, Foret C, Ducatez MF, Coldren R, Wabwire-Mangen F, Krauss S. Whole-genome analysis of influenza A(H1N1)pdm09 viruses isolated in Uganda from 2009 to 2011. Influenza Other Respir Viruses 2016; 10:486-492. [PMID: 27339410 PMCID: PMC5059949 DOI: 10.1111/irv.12401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2016] [Indexed: 11/30/2022] Open
Abstract
We report a whole-genome analysis of 19 influenza A(H1N1)pdm09 isolates from four Ugandan hospitals between 2009 and 2011. The isolates differed from the vaccine strain A/California/07/2009 by three amino acid substitutions P100S, S220T, and I338V in the hemagglutinin and by two amino acid substitutions V106I and N248D in the neuraminidase proteins with consistent mutations in all gene segments distinguishing isolates from the 2009/2010 to 2010/2011 seasons. Phylogenetic analysis showed low genetic evolution, with genetic distances of 0%-1.3% and 0.1%-1.6% for HA and NA genes, respectively. The amino acid substitutions did not lead to antigenic differences from the reference strains.
Collapse
Affiliation(s)
- Denis K Byarugaba
- College of Veterinary Medicine, Makerere University, Kampala, Uganda. .,Makerere University Walter Reed Project, Kampala, Uganda.
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Monica Millard
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | | | | | - Derrick Mimbe
- Makerere University Walter Reed Project, Kampala, Uganda
| | | | - Titus Tugume
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Edison A Mworozi
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jasmine Turner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela P Mckenzie
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard R J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert G Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Mariette F Ducatez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.,IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Rodney Coldren
- U.S. Army Medical Research Directorate-Kenya, U.S. Embassy, Nairobi, Kenya
| | | | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
17
|
McWhite CD, Meyer AG, Wilke CO. Sequence amplification via cell passaging creates spurious signals of positive adaptation in influenza virus H3N2 hemagglutinin. Virus Evol 2016; 2:vew026. [PMID: 27713835 PMCID: PMC5049878 DOI: 10.1093/ve/vew026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical influenza A virus isolates are frequently not sequenced directly. Instead, a majority of these isolates (~70% in 2015) are first subjected to passaging for amplification, most commonly in non-human cell culture. Here, we find that this passaging leaves distinct signals of adaptation, which can confound evolutionary analyses of the viral sequences. We find distinct patterns of adaptation to Madin-Darby (MDCK) and monkey cell culture absent from unpassaged hemagglutinin sequences. These patterns also dominate pooled datasets not separated by passaging type, and they increase in proportion to the number of passages performed. By contrast, MDCK-SIAT1 passaged sequences seem mostly (but not entirely) free of passaging adaptations. Contrary to previous studies, we find that using only internal branches of influenza virus phylogenetic trees is insufficient to correct for passaging artifacts. These artifacts can only be safely avoided by excluding passaged sequences entirely from subsequent analysis. We conclude that future influenza virus evolutionary analyses should appropriately control for potentially confounding effects of passaging adaptations.
Collapse
Affiliation(s)
- Claire D. McWhite
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin,
Austin, TX 78712, USA
| | - Austin G. Meyer
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Center for Computational Biology and Bioinformatics, The University of Texas
at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin,
Austin, TX 78712, USA
| | - Claus O. Wilke
- Center for Systems and Synthetic Biology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Center for Computational Biology and Bioinformatics, The University of Texas
at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin,
Austin, TX 78712, USA
| |
Collapse
|
18
|
Abd El Ghany M, Sharaf H, Hill-Cawthorne GA. Hajj vaccinations-facts, challenges, and hope. Int J Infect Dis 2016; 47:29-37. [PMID: 27260241 DOI: 10.1016/j.ijid.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Vaccination is an effective preventive measure that has been used in the unique Hajj pilgrimage setting to control the transmission of infectious diseases. The current vaccination policy applied during Hajj is reviewed herein, highlighting the effectiveness of the approaches applied and identifying research gaps that need to be filled in order to improve the development and dissemination of Hajj vaccination strategies.
Collapse
Affiliation(s)
- Moataz Abd El Ghany
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia; The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia.
| | | | - Grant A Hill-Cawthorne
- The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia; School of Public Health, The University of Sydney, Australia.
| |
Collapse
|
19
|
Bhoye D, Behera AK, Cherian SS. A molecular modelling approach to understand the effect of co-evolutionary mutations (V344M, I354L) identified in the PB2 subunit of influenza A 2009 pandemic H1N1 virus on m7GTP ligand binding. J Gen Virol 2016; 97:1785-1796. [PMID: 27154164 DOI: 10.1099/jgv.0.000500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cap binding domain of the polymerase basic 2 (PB2) subunit of influenza polymerases plays a critical role in mediating the 'cap-snatching' mechanism by binding the 5' cap of host pre-mRNAs during viral mRNA transcription. Monitoring variations in the PB2 protein is thus vital for evaluating the pathogenic potential of the virus. Based on selection pressure analysis of PB2 gene sequences of the pandemic H1N1 (pH1N1) viruses of the period 2009-2014, we identified a site, 344V/M, in the vicinity of the cap binding pocket showing evidence of adaptive evolution and another co-evolving residue, 354I/L, in close vicinity. Modelling of the three-dimensional structure of the pH1N1 PB2 cap binding domain, docking of the pre-mRNA cap analogue m7GTP and molecular dynamics simulation studies of the docked complexes performed for four PB2 variants observed showed that the complex possessing V344M with I354L possessed better ligand binding affinity due to additional hydrogen bond contacts between m7GTP and the key residues His432 and Arg355 that was attributed to a displacement of the 424 loop and a flip of the side chain of Arg355, respectively. The co-evolutionary mutations identified (V344M, I354L) were found to be established in the PB2 gene of the pH1N1 viral population over the period 2010-2014. The study demonstrates the molecular basis for the enhanced m7GTP ligand binding affinity with the 344M-354L synergistic combination in PB2. Furthermore, the insight gained into understanding the molecular mechanism of cap binding in pH1N1 viruses may be useful for designing novel drugs targeting the PB2 cap binding domain.
Collapse
Affiliation(s)
- Dipali Bhoye
- Bioinformatics and Data Management Group, National Institute of Virology, Pune 411001, Maharashtra, India
| | - Abhisek Kumar Behera
- Bioinformatics and Data Management Group, National Institute of Virology, Pune 411001, Maharashtra, India
| | - Sarah S Cherian
- Bioinformatics and Data Management Group, National Institute of Virology, Pune 411001, Maharashtra, India
| |
Collapse
|
20
|
Zaraket H, Kondo H, Hibino A, Yagami R, Odagiri T, Takemae N, Tsunekuni R, Saito T, Myint YY, Kyaw Y, Oo KY, Tin HH, Lin N, Anh NP, Hang NLK, Mai LQ, Hassan MR, Shobugawa Y, Tang J, Dbaibo G, Saito R. Full Genome Characterization of Human Influenza A/H3N2 Isolates from Asian Countries Reveals a Rare Amantadine Resistance-Conferring Mutation and Novel PB1-F2 Polymorphisms. Front Microbiol 2016; 7:262. [PMID: 27014195 PMCID: PMC4779883 DOI: 10.3389/fmicb.2016.00262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2022] Open
Abstract
Influenza A viruses evolve at a high rate requiring continuous monitoring to maintain the efficacy of vaccines and antiviral drugs. We performed next generation sequencing analysis of 100 influenza A/H3N2 isolates collected in four Asian countries (Japan, Lebanon, Myanmar, and Vietnam) during 2012-2015. Phylogenetic analysis revealed several reassortment events leading to the circulation of multiple clades within the same season. This was particularly evident during the 2013 and 2013/2014 seasons. Importantly, our data showed that certain lineages appeared to be fitter and were able to persist into the following season. The majority of A/H3N2 viruses continued to harbor the M2-S31N mutation conferring amantadine-resistance. In addition, an S31D mutation in the M2-protein, conferring a similar level of resistance as the S31N mutation, was detected in three isolates obtained in Japan during the 2014/2015 season. None of the isolates possessed the NA-H274Y mutation conferring oseltamivir-resistance, though a few isolates were found to contain mutations at the catalytic residue 151 (D151A/G/N or V) of the NA protein. These variations did not alter the susceptibility to neuraminidase inhibitors and were not detected in the original clinical specimens, suggesting that they had been acquired during their passage in MDCK cells. Novel polymorphisms were detected in the PB1-F2 open-reading frame resulting in truncations in the protein of 24-34 aminoacids in length. Thus, this study has demonstrated the utility of monitoring the full genome of influenza viruses to allow the detection of the potentially fittest lineages. This enhances our ability to predict the strain(s) most likely to persist into the following seasons and predict the potential degree of vaccine match or mismatch with the seasonal influenza season for that year. This will enable the public health and clinical teams to prepare for any related healthcare burden, depending on whether the vaccine match is predicted to be good or poor for that season.
Collapse
Affiliation(s)
- Hassan Zaraket
- Department of Pathology, Immunology, and Microbiology, Faculty of Medicine American University of BeirutBeirut, Lebanon
- Center for Infectious Disease Research, Faculty of Medicine American University of BeirutBeirut, Lebanon
| | - Hiroki Kondo
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Akinobu Hibino
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Ren Yagami
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Takashi Odagiri
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Nobuhiro Takemae
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research OrganizationIbaraki, Japan
| | - Ryota Tsunekuni
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research OrganizationIbaraki, Japan
| | - Takehiko Saito
- Influenza and Prion Disease Research Center, National Institute of Animal Health, National Agriculture and Food Research OrganizationIbaraki, Japan
| | | | - Yi Yi Myint
- Department of Traditional MedicineNay Pyi Taw, Myanmar
| | | | - Khin Yi Oo
- National Health LaboratoryYangon, Myanmar
| | | | - Nay Lin
- Pyinmana Township HospitalNay Pyi Taw, Myanmar
| | | | | | - Le Quynh Mai
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| | - Mohd R. Hassan
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
- Department of Community Health, Faculty of Medicine, UKM Medical CentreKuala Lumpur, Malaysia
| | - Yugo Shobugawa
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| | - Julian Tang
- Clinical Microbiology, University Hospitals LeicesterLeicester, UK
- Department of Infection, Immunity and Inflammation, University of LeicesterLeceister, UK
| | - Ghassan Dbaibo
- Center for Infectious Disease Research, Faculty of Medicine American University of BeirutBeirut, Lebanon
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine and the Center for Infectious Diseases Research, American University of Beirut Medical CenterBeirut, Lebanon
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata UniversityNiigata, Japan
| |
Collapse
|