1
|
Compton A, Sharma A, Hempel M, Aryan A, Biedler JK, Potters MB, Chandrasegaran K, Vinauger C, Tu Z. Differential elimination of marked sex chromosomes enables production of nontransgenic male mosquitoes in a single strain. Proc Natl Acad Sci U S A 2025; 122:e2412149122. [PMID: 40339129 PMCID: PMC12087967 DOI: 10.1073/pnas.2412149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
Diverse genetic strategies are being pursued to control mosquito-borne infectious diseases. These strategies often rely on the release of nonbiting males to either reduce the target mosquito population or render them resistant to pathogens. Male-only releases are important as any contaminating females can bite and potentially transmit pathogens. Despite significant efforts, it remains a major bottleneck to reliably and efficiently separate males from females, especially when nontransgenic males are preferred. In the yellow fever mosquito Aedes aegypti, sex is determined by a pair of homomorphic sex chromosomes, with the dominant male-determining locus (the M locus) and its counterpart (the m locus) embedded in an M-bearing and an m-bearing chromosome 1, respectively. We utilized both naturally occurring and engineered sex-linked recessive lethal alleles (RLAs) to create sex separation strains for Ae. aegypti on the basis of differential elimination of marked sex chromosomes (DeMark). DeMark strains are self-sustaining and produce nontransgenic males that are readily separated from individuals carrying RLA- and transgene-marked m chromosomes. For example, the marked m chromosome in the heterozygous mother in some strains was only inherited by her female progeny due to RLA-mediated incompatibility with the M-bearing chromosome in the father, producing nontransgenic males and transgenic females, generation after generation. We further explore strategies to conditionally eliminate females that contain marked sex chromosomes. We also discuss DeMark designs that are applicable for efficient sex separation in organisms with well-differentiated X and Y chromosomes, such as the Anopheles mosquitoes.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Melanie Hempel
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - James K. Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Mark B. Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | | | - Clément Vinauger
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
- The Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
2
|
Pacheco S, Gallegos AS, Peláez-Aguilar ÁE, Sánchez J, Gómez I, Soberón M, Bravo A. CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti. PLoS Negl Trop Dis 2024; 18:e0012256. [PMID: 38870209 PMCID: PMC11207138 DOI: 10.1371/journal.pntd.0012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
The Aedes aegypti cadherin-like protein (Aae-Cad) and the membrane-bound alkaline phosphatase (Aae-mALP) are membrane proteins identified as putative receptors for the larvicidal Cry toxins produced by Bacillus thuringiensis subsp. israelensis bacteria. Cry toxins are the most used toxins in the control of different agricultural pest and mosquitos. Despite the relevance of Aae-Cad and Aae-mALP as possible toxin-receptors in mosquitoes, previous efforts to establish a clear functional connection among them and Cry toxins activity have been relatively limited. In this study, we used CRISPR-Cas9 to generate knockout (KO) mutations of Aae-Cad and Aae-mALP. The Aae-mALP KO was successfully generated, in contrast to the Aae-Cad KO which was obtained only in females. The female-linked genotype was due to the proximity of aae-cad gene to the sex-determining loci (M:m). Both A. aegypti KO mutant populations were viable and their insect-development was not affected, although a tendency on lower egg hatching rate was observed. Bioassays were performed to assess the effects of these KO mutations on the susceptibility of A. aegypti to Cry toxins, showing that the Aae-Cad female KO or Aae-mALP KO mutations did not significantly alter the susceptibility of A. aegypti larvae to the mosquitocidal Cry toxins, including Cry11Aa, Cry11Ba, Cry4Ba, and Cry4Aa. These findings suggest that besides the potential participation of Aae-Cad and Aae-mALP as Cry toxin receptors in A. aegypti, additional midgut membrane proteins are involved in the mode of action of these insecticidal toxins.
Collapse
Affiliation(s)
- Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Adrián S. Gallegos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Ángel E. Peláez-Aguilar
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Jorge Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Isabel Gómez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, Mexico
| |
Collapse
|
3
|
Filipović I, Marshall JM, Rašić G. Finding divergent sequences of homomorphic sex chromosomes via diploidized nanopore-based assembly from a single male. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582759. [PMID: 38464271 PMCID: PMC10925256 DOI: 10.1101/2024.02.29.582759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although homomorphic sex chromosomes can have non-recombining regions with elevated sequence divergence between its complements, such divergence signals can be difficult to detect bioinformatically. If found in genomes of e.g. insect pests, these sequences could be targeted by the engineered genetic sexing and control systems. Here, we report an approach that can leverage long-read nanopore sequencing of a single XY male to identify divergent regions of homomorphic sex chromosomes. Long-read data are used for de novo genome assembly that is diploidized in a way that maximizes sex-specific differences between its haploid complements. We show that the correct assembly phasing is supported by the mapping of nanopore reads from the male's haploid Y-bearing sperm cells. The approach revealed a highly divergent region (HDR) near the centromere of the homomorphic sex chromosome of Aedes aegypti, the most important arboviral vector, for which there is a great interest in creating new genetic control tools. HDR is located ~5Mb downstream of the known male-determining locus on chromosome 1 and is significantly enriched for ovary-biased genes. While recombination in HDR ceased relatively recently (~1.4 MYA), HDR gametologs have divergent exons and introns of protein coding genes, and most lncRNA genes became X-specific. Megabases of previously invisible sex-linked sequences provide new putative targets for engineering the genetic systems to control this deadly mosquito. Broadly, our approach expands the toolbox for studying cryptic structure of sex chromosomes.
Collapse
Affiliation(s)
- Igor Filipović
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
- The University of Queensland, School of Biological Sciences, St Lucia, QLD, Australia
| | - John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD 4006, Australia
| |
Collapse
|
4
|
Rovatsos M, Mazzoleni S, Augstenová B, Altmanová M, Velenský P, Glaw F, Sanchez A, Kratochvíl L. Heteromorphic ZZ/ZW sex chromosomes sharing gene content with mammalian XX/XY are conserved in Madagascan chameleons of the genus Furcifer. Sci Rep 2024; 14:4898. [PMID: 38418601 PMCID: PMC10901801 DOI: 10.1038/s41598-024-55431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.
Collapse
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | | | - Frank Glaw
- Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany
| | - Antonio Sanchez
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Biedler JK, Aryan A, Qi Y, Wang A, Martinson EO, Hartman DA, Yang F, Sharma A, Morton KS, Potters M, Chen C, Dobson SL, Ebel GD, Kading RC, Paulson S, Xue RD, Strand MR, Tu Z. On the Origin and Evolution of the Mosquito Male-determining Factor Nix. Mol Biol Evol 2024; 41:msad276. [PMID: 38128148 PMCID: PMC10798136 DOI: 10.1093/molbev/msad276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The mosquito family Culicidae is divided into 2 subfamilies named the Culicinae and Anophelinae. Nix, the dominant male-determining factor, has only been found in the culicines Aedes aegypti and Aedes albopictus, 2 important arboviral vectors that belong to the subgenus Stegomyia. Here we performed sex-specific whole-genome sequencing and RNAseq of divergent mosquito species and explored additional male-inclusive datasets to investigate the distribution of Nix. Except for the Culex genus, Nix homologs were found in all species surveyed from the Culicinae subfamily, including 12 additional species from 3 highly divergent tribes comprising 4 genera, suggesting Nix originated at least 133 to 165 million years ago (MYA). Heterologous expression of 1 of 3 divergent Nix open reading frames (ORFs) in Ae. aegypti resulted in partial masculinization of genetic females as evidenced by morphology and doublesex splicing. Phylogenetic analysis suggests Nix is related to femaleless (fle), a recently described intermediate sex-determining factor found exclusively in anopheline mosquitoes. Nix from all species has a conserved structure, including 3 RNA-recognition motifs (RRMs), as does fle. However, Nix has evolved at a much faster rate than fle. The RRM3 of both Nix and fle are distantly related to the single RRM of a widely distributed and conserved splicing factor transformer-2 (tra2). The RRM3-based phylogenetic analysis suggests this domain in Nix and fle may have evolved from tra2 or a tra2-related gene in a common ancestor of mosquitoes. Our results provide insights into the evolution of sex determination in mosquitoes and will inform broad applications of mosquito-control strategies based on manipulating sex ratios toward nonbiting males.
Collapse
Affiliation(s)
- James K Biedler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Azadeh Aryan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Aihua Wang
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ellen O Martinson
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Daniel A Hartman
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Fan Yang
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katherine S Morton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Potters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chujia Chen
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Stephen L Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Rebekah C Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sally Paulson
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rui-De Xue
- Anastasia Mosquito Control District, St. Augustine, FL 32092, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics Bioinformatics and Computational Biology PhD program, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Lutrat C, Burckbuchler M, Olmo RP, Beugnon R, Fontaine A, Akbari OS, Argilés-Herrero R, Baldet T, Bouyer J, Marois E. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun Biol 2023; 6:646. [PMID: 37328568 PMCID: PMC10275924 DOI: 10.1038/s42003-023-05030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Chemical control of disease vectoring mosquitoes Aedes albopictus and Aedes aegypti is costly, unsustainable, and increasingly ineffective due to the spread of insecticide resistance. The Sterile Insect Technique is a valuable alternative but is limited by slow, error-prone, and wasteful sex-separation methods. Here, we present four Genetic Sexing Strains (two for each Aedes species) based on fluorescence markers linked to the m and M sex loci, allowing for the isolation of transgenic males. Furthermore, we demonstrate how combining these sexing strains enables the production of non-transgenic males. In a mass-rearing facility, 100,000 first instar male larvae could be sorted in under 1.5 h with an estimated 0.01-0.1% female contamination on a single machine. Cost-efficiency analyses revealed that using these strains could result in important savings while setting up and running a mass-rearing facility. Altogether, these Genetic Sexing Strains should enable a major upscaling in control programmes against these important vectors.
Collapse
Affiliation(s)
- Célia Lutrat
- CIRAD, UMR ASTRE, F-34398, Montpellier, France.
- ASTRE, CIRAD, INRA, Univ. Montpellier, Montpellier, France.
- Université de Montpellier, Montpellier, France.
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| | | | | | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, CA, 92093, USA
| | | | - Thierry Baldet
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, F-97490, Reunion, France
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Saint-Pierre, F-97410, Reunion, France
- Insect Pest Control Sub-Programme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
7
|
Love RR, Sikder JR, Vivero RJ, Matute DR, Schrider DR. Strong Positive Selection in Aedes aegypti and the Rapid Evolution of Insecticide Resistance. Mol Biol Evol 2023; 40:msad072. [PMID: 36971242 PMCID: PMC10118305 DOI: 10.1093/molbev/msad072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Aedes aegypti vectors the pathogens that cause dengue, yellow fever, Zika virus, and chikungunya and is a serious threat to public health in tropical regions. Decades of work has illuminated many aspects of Ae. aegypti's biology and global population structure and has identified insecticide resistance genes; however, the size and repetitive nature of the Ae. aegypti genome have limited our ability to detect positive selection in this mosquito. Combining new whole genome sequences from Colombia with publicly available data from Africa and the Americas, we identify multiple strong candidate selective sweeps in Ae. aegypti, many of which overlap genes linked to or implicated in insecticide resistance. We examine the voltage-gated sodium channel gene in three American cohorts and find evidence for successive selective sweeps in Colombia. The most recent sweep encompasses an intermediate-frequency haplotype containing four candidate insecticide resistance mutations that are in near-perfect linkage disequilibrium with one another in the Colombian sample. We hypothesize that this haplotype may continue to rapidly increase in frequency and perhaps spread geographically in the coming years. These results extend our knowledge of how insecticide resistance has evolved in this species and add to a growing body of evidence suggesting that Ae. aegypti has an extensive genomic capacity to rapidly adapt to insecticide-based vector control.
Collapse
Affiliation(s)
- R Rebecca Love
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NCUSA
| | - Josh R Sikder
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NCUSA
| | - Rafael J Vivero
- Programa de Estudio y Control de Enfermedades Tropicales, PECET, Universidad de Antioquia, Chapel Hill, NCColombia
| | - Daniel R Matute
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R Schrider
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NCUSA
| |
Collapse
|
8
|
Singh P, Taborsky M, Peichel CL, Sturmbauer C. Genomic basis of Y-linked dwarfism in cichlids pursuing alternative reproductive tactics. Mol Ecol 2023; 32:1592-1607. [PMID: 36588349 DOI: 10.1111/mec.16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
Sexually antagonistic selection, which favours different optima in males and females, is predicted to play an important role in the evolution of sex chromosomes. Body size is a sexually antagonistic trait in the shell-brooding cichlid fish Lamprologous callipterus, as "bourgeois" males must be large enough to carry empty snail shells to build nests whereas females must be small enough to fit into shells for breeding. In this species, there is also a second male morph: smaller "dwarf" males employ an alternative reproductive strategy by wriggling past spawning females into shells to fertilize eggs. L. callipterus male morphology is passed strictly from father to son, suggesting Y-linkage. However, sex chromosomes had not been previously identified in this species, and the genomic basis of size dimorphism was unknown. Here we used whole-genome sequencing to identify a 2.4-Mb sex-linked region on scaffold_23 with reduced coverage and single nucleotide polymorphism density in both male morphs compared to females. Within this sex region, distinct Y-haplotypes delineate the two male morphs, and candidate genes for body size (GHRHR, a known dwarfism gene) and sex determination (ADCYAP1R1) are in high linkage disequilibrium. Because differences in body size between females and males are under strong selection in L. callipterus, we hypothesize that sexual antagonism over body size initiated early events in sex chromosome evolution, followed by Y divergence to give rise to bourgeois and dwarf male reproductive strategies. Our results are consistent with the hypothesis that sexually antagonistic traits should be linked to young sex chromosomes.
Collapse
Affiliation(s)
- Pooja Singh
- Institute of Biology, University of Graz, Graz, Austria
- Aquatic Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Michael Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Switzerland
- Max Planck Institute of Animal Behavior, Constance, Germany
- Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| | - Catherine L Peichel
- Evolutionary Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | |
Collapse
|
9
|
Chen C, Compton A, Nikolouli K, Wang A, Aryan A, Sharma A, Qi Y, Dellinger C, Hempel M, Potters M, Augustinos A, Severson DW, Bourtzis K, Tu Z. Marker-assisted mapping enables forward genetic analysis in Aedes aegypti, an arboviral vector with vast recombination deserts. Genetics 2022; 222:iyac140. [PMID: 36083009 PMCID: PMC9630976 DOI: 10.1093/genetics/iyac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Aedes aegypti is a major vector of arboviruses that cause dengue, chikungunya, yellow fever, and Zika. Although recent success in reverse genetics has facilitated rapid progress in basic and applied research, integration of forward genetics with modern technologies remains challenging in this important species, as up to 47% of its chromosome is refractory to genetic mapping due to extremely low rate of recombination. Here, we report the development of a marker-assisted mapping strategy to readily screen for and genotype only the rare but informative recombinants, drastically increasing both the resolution and signal-to-noise ratio. Using marker-assisted mapping, we mapped a transgene that was inserted in a >100-Mb recombination desert and a sex-linked spontaneous red-eye (re) mutation just outside the region. We subsequently determined, by CRISPR/Cas9-mediated knockout, that cardinal is the causal gene of re, which is the first forward genetic identification of a causal gene in Ae. aegypti. The identification of the causal gene of the sex-linked re mutation provides the molecular foundation for using gene editing to develop versatile and stable genetic sexing methods. To facilitate genome-wide forward genetics in Ae. aegypti, we generated and compiled a number of lines with markers throughout the genome. Thus, by overcoming the challenges presented by the vast recombination deserts and the scarcity of markers, we have shown that effective forward genetic analysis is increasingly feasible in this important arboviral vector species.
Collapse
Affiliation(s)
- Chujia Chen
- Genetics Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Austin Compton
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katerina Nikolouli
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - Aihua Wang
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Azadeh Aryan
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yumin Qi
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Camden Dellinger
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Melanie Hempel
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mark Potters
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - David W Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, IAEA Laboratories, 2444 Seibersdorf, Austria
| | - Zhijian Tu
- Genetics Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
10
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Miller D, Chen J, Liang J, Betrán E, Long M, Sharakhov IV. Retrogene Duplication and Expression Patterns Shaped by the Evolution of Sex Chromosomes in Malaria Mosquitoes. Genes (Basel) 2022; 13:genes13060968. [PMID: 35741730 PMCID: PMC9222922 DOI: 10.3390/genes13060968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Genes that originate during evolution are an important source of novel biological functions. Retrogenes are functional copies of genes produced by retroduplication and as such are located in different genomic positions. To investigate retroposition patterns and retrogene expression, we computationally identified interchromosomal retroduplication events in nine portions of the phylogenetic history of malaria mosquitoes, making use of species that do or do not have classical sex chromosomes to test the roles of sex-linkage. We found 40 interchromosomal events and a significant excess of retroduplications from the X chromosome to autosomes among a set of young retrogenes. These young retroposition events occurred within the last 100 million years in lineages where all species possessed differentiated sex chromosomes. An analysis of available microarray and RNA-seq expression data for Anopheles gambiae showed that many of the young retrogenes evolved male-biased expression in the reproductive organs. Young autosomal retrogenes with increased meiotic or postmeiotic expression in the testes tend to be male biased. In contrast, older retrogenes, i.e., in lineages with undifferentiated sex chromosomes, do not show this particular chromosomal bias and are enriched for female-biased expression in reproductive organs. Our reverse-transcription PCR data indicates that most of the youngest retrogenes, which originated within the last 47.6 million years in the subgenus Cellia, evolved non-uniform expression patterns across body parts in the males and females of An. coluzzii. Finally, gene annotation revealed that mitochondrial function is a prominent feature of the young autosomal retrogenes. We conclude that mRNA-mediated gene duplication has produced a set of genes that contribute to mosquito reproductive functions and that different biases are revealed after the sex chromosomes evolve. Overall, these results suggest potential roles for the evolution of meiotic sex chromosome inactivation in males and of sexually antagonistic conflict related to mitochondrial energy function as the main selective pressures for X-to-autosome gene reduplication and testis-biased expression in these mosquito lineages.
Collapse
Affiliation(s)
- Duncan Miller
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA;
- Correspondence: (M.L.); (I.V.S.)
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.M.); (J.L.)
- Department of Genetics and Cell Biology, Tomsk State University, 634050 Tomsk, Russia
- Correspondence: (M.L.); (I.V.S.)
| |
Collapse
|
12
|
Yang Q, Chung J, Robinson KL, Schmidt TL, Ross PA, Liang J, Hoffmann AA. Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific. PLoS Negl Trop Dis 2022; 16:e0010139. [PMID: 35417447 PMCID: PMC9037918 DOI: 10.1371/journal.pntd.0010139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
The arbovirus vector Aedes albopictus (Asian tiger mosquito) is common throughout the Indo-Pacific region, where most global dengue transmission occurs. We analysed population genomic data and tested for cryptic species in 160 Ae. albopictus sampled from 16 locations across this region. We found no evidence of cryptic Ae. albopictus but found multiple intraspecific COI haplotypes partitioned into groups representing three Asian lineages: East Asia, Southeast Asia and Indonesia. Papua New Guinea (PNG), Vanuatu and Christmas Island shared recent coancestry, and Indonesia and Timor-Leste were likely invaded from East Asia. We used a machine learning trained on morphologically sexed samples to classify sexes using multiple genetic features and then characterized the wAlbA and wAlbB Wolbachia infections in 664 other samples. The wAlbA and wAlbB infections as detected by qPCR showed markedly different patterns in the sexes. For females, most populations had a very high double infection incidence, with 67% being the lowest value (from Timor-Leste). For males, the incidence of double infections ranged from 100% (PNG) to 0% (Vanuatu). Only 6 females were infected solely by the wAlbA infection, while rare uninfected mosquitoes were found in both sexes. The wAlbA and wAlbB densities varied significantly among populations. For mosquitoes from Torres Strait and Vietnam, the wAlbB density was similar in single-infected and superinfected (wAlbA and wAlbB) mosquitoes. There was a positive association between wAlbA and wAlbB infection densities in superinfected Ae. albopictus. Our findings provide no evidence of cryptic species of Ae. albopictus in the region and suggest site-specific factors influencing the incidence of Wolbachia infections and their densities. We also demonstrate the usefulness of ddRAD tag depths as sex-specific mosquito markers. The results provide baseline data for the exploitation of Wolbachia-induced cytoplasmic incompatibility (CI) in dengue control. The mosquito Aedes albopictus transmits dengue and other arboviruses. This study investigates the genetics of these mosquitoes and their endosymbiont Wolbachia in the Indo-Pacific region, where 70% of global dengue transmission occurs. The analysis of mitochondrial DNA sequences showed no evidence of cryptic Ae. albopictus but suggested three Asian lineages: East Asia, Southeast Asia and Indonesia. Papua New Guinea, Vanuatu and Christmas Island shared recent coancestry, and Indonesia and Timor-Leste were likely invaded from East Asia. We used bioinformatics to classify sexes and then characterized the wAlbA and wAlbB Wolbachia infections via both bioinformatics and quantitative PCR. We found markedly different patterns of wAlbA and wAlbB infections in the sexes. The wAlbA and wAlbB densities varied significantly among populations, suggesting site-specific factors influencing the incidence of Wolbachia infections and their densities. We also demonstrate the usefulness of next generation sequencing data in developing molecular markers that can be repeatedly reanalysed to investigate new issues as these arise. These results provide baseline data for the exploitation of Wolbachia-induced cytoplasmic incompatibility in dengue control.
Collapse
Affiliation(s)
- Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
- * E-mail: (QY); (AAH)
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Australia
| | - Katie L. Robinson
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Thomas L. Schmidt
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Jiaxin Liang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
- * E-mail: (QY); (AAH)
| |
Collapse
|
13
|
Transgenic expression of Nix converts genetic females into males and allows automated sex sorting in Aedes albopictus. Commun Biol 2022; 5:210. [PMID: 35256751 PMCID: PMC8901906 DOI: 10.1038/s42003-022-03165-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/13/2022] [Indexed: 12/16/2022] Open
Abstract
Aedes albopictus is a major vector of arboviruses. Better understanding of its sex determination is crucial for developing mosquito control tools, especially genetic sexing strains. In Aedes aegypti, Nix is the primary gene responsible for masculinization and Nix-expressing genetic females develop into fertile, albeit flightless, males. In Ae. albopictus, Nix has also been implicated in masculinization but its role remains to be further characterized. In this work, we establish Ae. albopictus transgenic lines ectopically expressing Nix. Several are composed exclusively of genetic females, with transgenic individuals being phenotypic and functional males due to the expression of the Nix transgene. Their reproductive fitness is marginally impaired, while their flight performance is similar to controls. Overall, our results show that Nix is sufficient for full masculinization in Ae. albopictus. Moreover, the transgene construct contains a fluorescence marker allowing efficient automated sex sorting. Consequently, such strains constitute valuable sexing strains for genetic control. Nix expression with a fluorescent marker in genetically female Ae. albopictus causes masculinization with minimal effects to reproductive fitness and flight performance.
Collapse
|
14
|
Mysore K, Sun L, Li P, Roethele JB, Misenti JK, Kosmach J, Igiede J, Duman-Scheel M. A Conserved Female-Specific Requirement for the GGT Gene in Mosquito Larvae Facilitates RNAi-Mediated Sex Separation in Multiple Species of Disease Vector Mosquitoes. Pathogens 2022; 11:169. [PMID: 35215113 PMCID: PMC8879970 DOI: 10.3390/pathogens11020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
Although several emerging mosquito control technologies are dependent on mass releases of adult males, methods of sex-sorting that can be implemented globally have not yet been established. RNAi screens led to the discovery of siRNA, which targets gamma-glutamyl transpeptidase (GGT), a gene which is well conserved in multiple species of mosquitoes and located at the sex-determining M locus region in Aedes aegypti. Silencing the A. aegypti, Aedes albopictus, Anopheles gambiae, Culex pipiens, and Culex quinquefasciatus GGT genes resulted in female larval death, with no significant impact on male survival. Generation of yeast strains that permitted affordable expression and oral delivery of shRNA corresponding to mosquito GGT genes facilitated larval target gene silencing and generated significantly increased 5 males:1 female adult ratios in each species. Yeast targeting a conserved sequence in Culex GGT genes was incorporated into a larval mass-rearing diet, permitting the generation of fit adult male C. pipiens and C. quinquefasciatus, two species for which labor-intensive manual sex separation had previously been utilized. The results of this study indicate that female-specific yeast-based RNAi larvicides may facilitate global implementation of population-based control strategies that require releases of sterile or genetically modified adult males, and that yeast RNAi strategies can be utilized in various species of mosquitoes that have progressed to different stages of sex chromosome evolution.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph B. Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joi K. Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Kosmach
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
15
|
Nürnberger B, Baird SJE, Čížková D, Bryjová A, Mudd AB, Blaxter ML, Szymura JM. A dense linkage map for a large repetitive genome: discovery of the sex-determining region in hybridizing fire-bellied toads (Bombina bombina and Bombina variegata). G3 (BETHESDA, MD.) 2021; 11:6353606. [PMID: 34849761 PMCID: PMC8664441 DOI: 10.1093/g3journal/jkab286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Genomic analysis of hybrid zones offers unique insights into emerging reproductive isolation and the dynamics of introgression. Because hybrid genomes consist of blocks inherited from one or the other parental taxon, linkage information is essential. In most cases, the spectrum of local ancestry tracts can be efficiently uncovered from dense linkage maps. Here, we report the development of such a map for the hybridizing toads, Bombina bombina and Bombina variegata (Anura: Bombinatoridae). Faced with the challenge of a large (7–10 Gb), repetitive genome, we set out to identify a large number of Mendelian markers in the nonrepetitive portion of the genome that report B. bombina vs B. variegata ancestry with appropriately quantified statistical support. Bait sequences for targeted enrichment were selected from a draft genome assembly, after filtering highly repetitive sequences. We developed a novel approach to infer the most likely diplotype per sample and locus from the raw read mapping data, which is robust to over-merging and obviates arbitrary filtering thresholds. Validation of the resulting map with 4755 markers underscored the large-scale synteny between Bombina and Xenopus tropicalis. By assessing the sex of late-stage F2 tadpoles from histological sections, we identified the sex-determining region in the Bombina genome to 7 cM on LG5, which is homologous to X. tropicalis chromosome 5, and inferred male heterogamety. Interestingly, chromosome 5 has been repeatedly recruited as a sex chromosome in anurans with XY sex determination.
Collapse
Affiliation(s)
- Beate Nürnberger
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Stuart J E Baird
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Dagmar Čížková
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Anna Bryjová
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, 94720 CA, USA
| | - Mark L Blaxter
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jacek M Szymura
- Department of Comparative Anatomy, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
16
|
Schmidt TL, Jasper M, Weeks AR, Hoffmann AA. Unbiased population heterozygosity estimates from genome‐wide sequence data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Thomas L. Schmidt
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Moshe‐Elijah Jasper
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| | - Andrew R Weeks
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
- cesar Pty Ltd Parkville VIC Australia
| | - Ary A Hoffmann
- School of BioSciences Bio21 InstituteUniversity of Melbourne Parkville VIC Australia
| |
Collapse
|
17
|
Mysore K, Sun L, Roethele JB, Li P, Igiede J, Misenti JK, Duman-Scheel M. A conserved female-specific larval requirement for MtnB function facilitates sex separation in multiple species of disease vector mosquitoes. Parasit Vectors 2021; 14:338. [PMID: 34174948 PMCID: PMC8234664 DOI: 10.1186/s13071-021-04844-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022] Open
Abstract
Background Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. Results Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. Conclusions The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04844-w.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joseph B Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joi K Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA. .,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
| |
Collapse
|
18
|
A functional requirement for sex-determination M/m locus region lncRNA genes in Aedes aegypti female larvae. Sci Rep 2021; 11:10657. [PMID: 34017069 PMCID: PMC8137943 DOI: 10.1038/s41598-021-90194-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/25/2023] Open
Abstract
Although many putative long non-coding RNA (lncRNA) genes have been identified in insect genomes, few of these genes have been functionally validated. A screen for female-specific larvicides that facilitate Aedes aegypti male sex separation uncovered multiple interfering RNAs with target sites in lncRNA genes located in the M/m locus region, including loci within or tightly linked to the sex determination locus. Larval consumption of a Saccharomyces cerevisiae (yeast) strain engineered to express interfering RNA corresponding to lncRNA transcripts resulted in significant female death, yet had no impact on male survival or fitness. Incorporation of the yeast larvicides into mass culturing protocols facilitated scaled production and separation of fit adult males, indicating that yeast larvicides could benefit mosquito population control strategies that rely on mass releases of male mosquitoes. These studies functionally verified a female-specific developmental requirement for M/m locus region lncRNA genes, suggesting that sexually antagonistic lncRNA genes found within this highly repetitive pericentromeric DNA sequence may be contributing to the evolution of A. aegypti sex chromosomes.
Collapse
|
19
|
Gammerdinger WJ, Toups MA, Vicoso B. Disagreement in F ST estimators: A case study from sex chromosomes. Mol Ecol Resour 2020; 20:1517-1525. [PMID: 32543001 PMCID: PMC7689734 DOI: 10.1111/1755-0998.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Sewall Wright developed FST for describing population differentiation and it has since been extended to many novel applications, including the detection of homomorphic sex chromosomes. However, there has been confusion regarding the expected estimate of FST for a fixed difference between the X- and Y-chromosome when comparing males and females. Here, we attempt to resolve this confusion by contrasting two common FST estimators and explain why they yield different estimates when applied to the case of sex chromosomes. We show that this difference is true for many allele frequencies, but the situation characterized by fixed differences between the X- and Y-chromosome is among the most extreme. To avoid additional confusion, we recommend that all authors using FST clearly state which estimator of FST their work uses.
Collapse
Affiliation(s)
| | - Melissa A. Toups
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Beatriz Vicoso
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
20
|
Keating SE, Griffing AH, Nielsen SV, Scantlebury DP, Gamble T. Conserved ZZ/ZW sex chromosomes in Caribbean croaking geckos (
Aristelliger
: Sphaerodactylidae). J Evol Biol 2020; 33:1316-1326. [DOI: 10.1111/jeb.13682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Affiliation(s)
| | - Aaron H. Griffing
- Department of Biological Sciences Marquette University Milwaukee WI USA
| | - Stuart V. Nielsen
- Department of Biological Sciences Marquette University Milwaukee WI USA
- Florida Museum of Natural HistoryUniversity of Florida Gainesville FL USA
| | | | - Tony Gamble
- Department of Biological Sciences Marquette University Milwaukee WI USA
- Milwaukee Public Museum Milwaukee WI USA
- Bell Museum of Natural HistoryUniversity of Minnesota Saint Paul MN USA
| |
Collapse
|
21
|
Dickson LB, Merkling SH, Gautier M, Ghozlane A, Jiolle D, Paupy C, Ayala D, Moltini-Conclois I, Fontaine A, Lambrechts L. Exome-wide association study reveals largely distinct gene sets underlying specific resistance to dengue virus types 1 and 3 in Aedes aegypti. PLoS Genet 2020; 16:e1008794. [PMID: 32463828 PMCID: PMC7282673 DOI: 10.1371/journal.pgen.1008794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/09/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022] Open
Abstract
Although specific interactions between host and pathogen genotypes have been well documented in invertebrates, the identification of host genes involved in discriminating pathogen genotypes remains a challenge. In the mosquito Aedes aegypti, the main dengue virus (DENV) vector worldwide, statistical associations between host genetic markers and DENV types or strains were previously detected, but the host genes underlying this genetic specificity have not been identified. In particular, it is unknown whether DENV type- or strain-specific resistance relies on allelic variants of the same genes or on distinct gene sets. Here, we investigated the genetic architecture of DENV resistance in a population of Ae. aegypti from Bakoumba, Gabon, which displays a stronger resistance phenotype to DENV type 1 (DENV-1) than to DENV type 3 (DENV-3) infection. Following experimental exposure to either DENV-1 or DENV-3, we sequenced the exomes of large phenotypic pools of mosquitoes that are either resistant or susceptible to each DENV type. Using variation in single-nucleotide polymorphism (SNP) frequencies among the pools, we computed empirical p values based on average gene scores adjusted for the differences in SNP counts, to identify genes associated with infection in a DENV type-specific manner. Among the top 5% most significant genes, 263 genes were significantly associated with resistance to both DENV-1 and DENV-3, 287 genes were only associated with DENV-1 resistance and 290 were only associated with DENV-3 resistance. The shared significant genes were enriched in genes with ATP binding activity and sulfur compound transmembrane transporter activity, whereas the genes uniquely associated with DENV-3 resistance were enriched in genes with zinc ion binding activity. Together, these results indicate that specific resistance to different DENV types relies on largely non-overlapping sets of genes in this Ae. aegypti population and pave the way for further mechanistic studies. Compatibility between hosts and pathogens is often genetically specific in invertebrates but host genes underlying this genetic specificity have not been elucidated. We investigated the genetic architecture of dengue virus type-specific resistance in the mosquito vector Aedes aegypti. We used a natural population of Ae. aegypti from Bakoumba, Gabon, which is differentially resistant to dengue virus type 1 and dengue virus type 3. We surveyed genetic variation in protein-coding regions of the mosquito genome and compared the frequency of genetic polymorphisms between groups of mosquitoes that are either resistant or susceptible to each dengue virus type. We found that the Ae. aegypti genes associated with resistance to dengue virus type 1 or dengue virus type 3 were largely non-overlapping. This finding indicates that different sets of host genes, rather than different variants of the same genes, confer pathogen-specific resistance in this population. This study is an important step towards identification of mechanisms underlying the genetic specificity of invertebrate host-pathogen interactions.
Collapse
Affiliation(s)
- Laura B. Dickson
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sarah H. Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique–Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Davy Jiolle
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Albin Fontaine
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, Bennett J, Sánchez C HM, Lanzaro GC, Schmidt H, Lee Y, Marshall JM, Akbari OS. Development of a confinable gene drive system in the human disease vector Aedes aegypti. eLife 2020; 9:e51701. [PMID: 31960794 PMCID: PMC6974361 DOI: 10.7554/elife.51701] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Aedes aegypti is the principal mosquito vector for many arboviruses that increasingly infect millions of people every year. With an escalating burden of infections and the relative failure of traditional control methods, the development of innovative control measures has become of paramount importance. The use of gene drives has sparked significant enthusiasm for genetic control of mosquitoes; however, no such system has been developed in Ae. aegypti. To fill this void, here we develop several CRISPR-based split gene drives for use in this vector. With cleavage rates up to 100% and transmission rates as high as 94%, mathematical models predict that these systems could spread anti-pathogen effector genes into wild populations in a safe, confinable and reversible manner appropriate for field trials and effective for controlling disease. These findings could expedite the development of effector-linked gene drives that could safely control wild populations of Ae. aegypti to combat local pathogen transmission.
Collapse
Affiliation(s)
- Ming Li
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Ting Yang
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Nikolay P Kandul
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Michelle Bui
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Stephanie Gamez
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Robyn Raban
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Jared Bennett
- Department of BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Héctor M Sánchez C
- Division of Epidemiology and Biostatistics, School of Public HealthUniversity of California, BerkeleyBerkeleyUnited States
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public HealthUniversity of California, BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Omar S Akbari
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
- Tata Institute for Genetics and SocietyUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
23
|
Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat Ecol Evol 2019; 3:1632-1641. [DOI: 10.1038/s41559-019-1050-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/24/2019] [Indexed: 11/08/2022]
|
24
|
Degner EC, Ahmed-Braimah YH, Borziak K, Wolfner MF, Harrington LC, Dorus S. Proteins, Transcripts, and Genetic Architecture of Seminal Fluid and Sperm in the Mosquito Aedes aegypti. Mol Cell Proteomics 2019; 18:S6-S22. [PMID: 30552291 PMCID: PMC6427228 DOI: 10.1074/mcp.ra118.001067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Indexed: 11/06/2022] Open
Abstract
The yellow fever mosquito, Aedes aegypti,, transmits several viruses causative of serious diseases, including dengue, Zika, and chikungunya. Some proposed efforts to control this vector involve manipulating reproduction to suppress wild populations or to replace them with disease-resistant mosquitoes. The design of such strategies requires an intimate knowledge of reproductive processes, yet our basic understanding of reproductive genetics in this vector remains largely incomplete. To accelerate future investigations, we have comprehensively catalogued sperm and seminal fluid proteins (SFPs) transferred to females in the ejaculate using tandem mass spectrometry. By excluding female-derived proteins using an isotopic labeling approach, we identified 870 sperm proteins and 280 SFPs. Functional composition analysis revealed parallels with known aspects of sperm biology and SFP function in other insects. To corroborate our proteome characterization, we also generated transcriptomes for testes and the male accessory glands-the primary contributors to Ae. aegypti, sperm and seminal fluid, respectively. Differential gene expression of accessory glands from virgin and mated males suggests that transcripts encoding proteins involved in protein translation are upregulated post-mating. Several SFP transcripts were also modulated after mating, but >90% remained unchanged. Finally, a significant enrichment of SFPs was observed on chromosome 1, which harbors the male sex determining locus in this species. Our study provides a comprehensive proteomic and transcriptomic characterization of ejaculate production and composition and thus provides a foundation for future investigations of Ae. aegypti, reproductive biology, from functional analysis of individual proteins to broader examination of reproductive processes.
Collapse
Affiliation(s)
- Ethan C Degner
- From the ‡Department of Entomology, Cornell University, Ithaca, New York
| | | | - Kirill Borziak
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York;.
| | - Laura C Harrington
- From the ‡Department of Entomology, Cornell University, Ithaca, New York;.
| | - Steve Dorus
- Center for Reproductive Evolution, Syracuse University, Syracuse, New York.
| |
Collapse
|
25
|
Böhne A, Weber AAT, Rajkov J, Rechsteiner M, Riss A, Egger B, Salzburger W. Repeated Evolution Versus Common Ancestry: Sex Chromosome Evolution in the Haplochromine Cichlid Pseudocrenilabrus philander. Genome Biol Evol 2019; 11:439-458. [PMID: 30649313 PMCID: PMC6375353 DOI: 10.1093/gbe/evz003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Why sex chromosomes turn over and remain undifferentiated in some taxa, whereas they degenerate in others, is still an area of ongoing research. The recurrent occurrence of homologous and homomorphic sex chromosomes in distantly related taxa suggests their independent evolution or continued recombination since their first emergence. Fishes display a great diversity of sex-determining systems. Here, we focus on sex chromosome evolution in haplochromines, the most species-rich lineage of cichlid fishes. We investigate sex-specific signatures in the Pseudocrenilabrus philander species complex, which belongs to a haplochromine genus found in many river systems and ichthyogeographic regions in northern, eastern, central, and southern Africa. Using whole-genome sequencing and population genetic, phylogenetic, and read-coverage analyses, we show that one population of P. philander has an XX-XY sex-determining system on LG7 with a large region of suppressed recombination. However, in a second bottlenecked population, we did not find any sign of a sex chromosome. Interestingly, LG7 also carries an XX-XY system in the phylogenetically more derived Lake Malawi haplochromine cichlids. Although the genomic regions determining sex are the same in Lake Malawi cichlids and P. philander, we did not find evidence for shared ancestry, suggesting that LG7 evolved as sex chromosome at least twice in haplochromine cichlids. Hence, our work provides further evidence for the labile nature of sex determination in fishes and supports the hypothesis that the same genomic regions can repeatedly and rapidly be recruited as sex chromosomes in more distantly related lineages.
Collapse
Affiliation(s)
- Astrid Böhne
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Alexandra Anh-Thu Weber
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Museums Victoria, Melbourne, Victoria, Australia
| | - Jelena Rajkov
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Michael Rechsteiner
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Andrin Riss
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
- Program Man Society Environment, University of Basel, Switzerland
| | - Walter Salzburger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
26
|
Campbell CL, Saavedra-Rodriguez K, Kubik TD, Lenhart A, Lozano-Fuentes S, Black WC. Vgsc-interacting proteins are genetically associated with pyrethroid resistance in Aedes aegypti. PLoS One 2019; 14:e0211497. [PMID: 30695054 PMCID: PMC6350986 DOI: 10.1371/journal.pone.0211497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Association mapping of factors that condition pyrethroid resistance in Aedes aegypti has consistently identified genes in multiple functional groups. Toward better understanding of the mechanisms involved, we examined high throughput sequencing data (HTS) from two Aedes aegypti aegypti collections from Merida, Yucatan, Mexico treated with either permethrin or deltamethrin. Exome capture enrichment for coding regions and the AaegL5 annotation were used to identify genes statistically associated with resistance. The frequencies of single nucleotide polymorphisms (SNPs) were compared between resistant and susceptible mosquito pools using a contingency χ2 analysis. The -log10(χ2p value) was calculated at each SNP site, with a weighted average determined from all sites in each gene. Genes with -log10(χ2p value) ≥ 4.0 and present among all 3 treatment groups were subjected to gene set enrichment analysis (GSEA). We found that several functional groups were enriched compared to all coding genes. These categories were transport, signal transduction and metabolism, in order from highest to lowest statistical significance. Strikingly, 21 genes with demonstrated association to synaptic function were identified. In the high association group (n = 1,053 genes), several genes were identified that also genetically or physically interact with the voltage-gated sodium channel (VGSC). These genes were eg., CHARLATAN (CHL), a transcriptional regulator, several ankyrin-domain proteins, PUMILIO (PUM), a translational repressor, and NEDD4 (E3 ubiquitin-protein ligase). There were 13 genes that ranked among the top 10%: these included VGSC; CINGULIN, a predicted neuronal gap junction protein, and the aedine ortholog of NERVY (NVY), a transcriptional regulator. Silencing of CHL and NVY followed by standard permethrin bottle bioassays validated their association with permethrin resistance. Importantly, VGSC levels were also reduced about 50% in chl- or nvy-dsRNA treated mosquitoes. These results are consistent with the contribution of a variety of neuronal pathways to pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tristan D Kubik
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
27
|
Ruzzante L, Reijnders MJ, Waterhouse RM. Of Genes and Genomes: Mosquito Evolution and Diversity. Trends Parasitol 2019; 35:32-51. [DOI: 10.1016/j.pt.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
|
28
|
Gomulski LM, Mariconti M, Di Cosimo A, Scolari F, Manni M, Savini G, Malacrida AR, Gasperi G. The Nix locus on the male-specific homologue of chromosome 1 in Aedes albopictus is a strong candidate for a male-determining factor. Parasit Vectors 2018; 11:647. [PMID: 30583734 PMCID: PMC6304787 DOI: 10.1186/s13071-018-3215-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Global concern over the rapid expansion of the Asian tiger mosquito, Aedes albopictus, and its vector competence has highlighted an urgent need to improve currently available population control methods, like the Sterile Insect Technique. Knowledge of the sex determination cascade is a prerequisite for the development of early-stage sexing systems. To this end, we have characterised the putative sex determination gene, Nix, in this species. In Aedes species the chromosome complement consists of three pairs of chromosomes. The sex determination alleles are linked to the smallest homomorphic chromosome. Results We identified the male-specific chromosome 1 of Ae. albopictus that carries the putative male-determining gene Nix. We have also characterised the complete genomic sequence of the Nix gene which is composed of two exons and a short intron. The gene displays different levels of intron retention during development. Comparison of DNA sequences covering most of the Nix gene from individuals across the species range revealed no polymorphism. Conclusions Our characterisation of the Nix gene in Ae. albopictus represents an initial step in the analysis of the sex determination cascade in this species. We found evidence of intron retention (IR) in Nix. IR might play a role in regulating the expression of Nix during development. Our results provide the basis for the development of new genetic control strategies. Electronic supplementary material The online version of this article (10.1186/s13071-018-3215-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludvik M Gomulski
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Marina Mariconti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Di Cosimo
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Department of Genetic Medicine and Development, University of Geneva Medical School, and Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Grazia Savini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anna R Malacrida
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Giuliano Gasperi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
29
|
Matthews BJ, Dudchenko O, Kingan SB, Koren S, Antoshechkin I, Crawford JE, Glassford WJ, Herre M, Redmond SN, Rose NH, Weedall GD, Wu Y, Batra SS, Brito-Sierra CA, Buckingham SD, Campbell CL, Chan S, Cox E, Evans BR, Fansiri T, Filipović I, Fontaine A, Gloria-Soria A, Hall R, Joardar VS, Jones AK, Kay RGG, Kodali VK, Lee J, Lycett GJ, Mitchell SN, Muehling J, Murphy MR, Omer AD, Partridge FA, Peluso P, Aiden AP, Ramasamy V, Rašić G, Roy S, Saavedra-Rodriguez K, Sharan S, Sharma A, Smith ML, Turner J, Weakley AM, Zhao Z, Akbari OS, Black WC, Cao H, Darby AC, Hill CA, Johnston JS, Murphy TD, Raikhel AS, Sattelle DB, Sharakhov IV, White BJ, Zhao L, Aiden EL, Mann RS, Lambrechts L, Powell JR, Sharakhova MV, Tu Z, Robertson HM, McBride CS, Hastie AR, Korlach J, Neafsey DE, Phillippy AM, Vosshall LB. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 2018; 563:501-507. [PMID: 30429615 PMCID: PMC6421076 DOI: 10.1038/s41586-018-0692-z] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 10/05/2018] [Indexed: 11/10/2022]
Abstract
Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Kavli Neural Systems Institute, New York, NY, USA.
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX, USA
| | | | - Sergey Koren
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - William J Glassford
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Kavli Neural Systems Institute, New York, NY, USA
| | - Seth N Redmond
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Noah H Rose
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool John Moores University, Liverpool, UK
| | - Yang Wu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Sanjit S Batra
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Carlos A Brito-Sierra
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Steven D Buckingham
- Centre for Respiratory Biology, UCL Respiratory, University College London, London, UK
| | - Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Saki Chan
- Bionano Genomics, San Diego, CA, USA
| | - Eric Cox
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin R Evans
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Thanyalak Fansiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Igor Filipović
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Albin Fontaine
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection, Marseille, France
| | - Andrea Gloria-Soria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | | | - Vinita S Joardar
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Raissa G G Kay
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Lee
- Bionano Genomics, San Diego, CA, USA
| | - Gareth J Lycett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Michael R Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Arina D Omer
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, University College London, London, UK
| | | | - Aviva Presser Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Vidya Ramasamy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sourav Roy
- Department of Entomology, Center for Disease Vector Research and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Shruti Sharan
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Atashi Sharma
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | | | - Joe Turner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | - Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Omar S Akbari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Han Cao
- Bionano Genomics, San Diego, CA, USA
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexander S Raikhel
- Department of Entomology, Center for Disease Vector Research and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, University College London, London, UK
| | - Igor V Sharakhov
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | | | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
| | - Jeffrey R Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Maria V Sharakhova
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, Tomsk, Russia
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Daniel E Neafsey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Kavli Neural Systems Institute, New York, NY, USA
| |
Collapse
|
30
|
Turner J, Krishna R, Van't Hof AE, Sutton ER, Matzen K, Darby AC. The sequence of a male-specific genome region containing the sex determination switch in Aedes aegypti. Parasit Vectors 2018; 11:549. [PMID: 30342535 PMCID: PMC6195999 DOI: 10.1186/s13071-018-3090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 11/26/2022] Open
Abstract
Background Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch. Results With the use of a whole-genome bacterial artificial chromosome (BAC) library, we amplified and sequenced a ~200 kb region containing the male-determining gene Nix. In this study, we show that Nix is comprised of two exons separated by a 99 kb intron primarily composed of repetitive DNA, especially transposable elements. Conclusions Nix, an unusually large and highly repetitive gene, exhibits features in common with Y chromosome genes in other organisms. We speculate that the lack of recombination at the M locus has allowed the expansion of repeats in a manner characteristic of a sex-limited chromosome, in accordance with proposed models of sex chromosome evolution in insects. Electronic supplementary material The online version of this article (10.1186/s13071-018-3090-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joe Turner
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Ritesh Krishna
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,IBM Research UK, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK
| | - Arjen E Van't Hof
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Elizabeth R Sutton
- Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK.,Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.,Sistemic, West of Scotland Science Park, Glasgow, G20 0SP, UK
| | - Kelly Matzen
- Oxitec Ltd., 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Alistair C Darby
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| |
Collapse
|
31
|
Morris J, Darolti I, Bloch NI, Wright AE, Mank JE. Shared and Species-Specific Patterns of Nascent Y Chromosome Evolution in Two Guppy Species. Genes (Basel) 2018; 9:E238. [PMID: 29751570 PMCID: PMC5977178 DOI: 10.3390/genes9050238] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/20/2018] [Accepted: 04/26/2018] [Indexed: 11/22/2022] Open
Abstract
Sex chromosomes form once recombination is halted around the sex-determining locus between a homologous pair of chromosomes, resulting in a male-limited Y chromosome. We recently characterized the nascent sex chromosome system in the Trinidadian guppy (Poeciliareticulata). The guppy Y is one of the youngest animal sex chromosomes yet identified, and therefore offers a unique window into the early evolutionary forces shaping sex chromosome formation, particularly the rate of accumulation of repetitive elements and Y-specific sequence. We used comparisons between male and female genomes in P. reticulata and its sister species, Endler’s guppy (P. wingei), which share an ancestral sex chromosome, to identify male-specific sequences and to characterize the degree of differentiation between the X and Y chromosomes. We identified male-specific sequence shared between P. reticulata and P. wingei consistent with a small ancestral non-recombining region. Our assembly of this Y-specific sequence shows substantial homology to the X chromosome, and appears to be significantly enriched for genes implicated in pigmentation. We also found two plausible candidates that may be involved in sex determination. Furthermore, we found that the P. wingei Y chromosome exhibits a greater signature of repetitive element accumulation than the P. reticulata Y chromosome. This suggests that Y chromosome divergence does not necessarily correlate with the time since recombination suppression. Overall, our results reveal the early stages of Y chromosome divergence in the guppy.
Collapse
Affiliation(s)
- Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Natasha I Bloch
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
- Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden.
| |
Collapse
|
32
|
Campbell CL, Dickson LB, Lozano-Fuentes S, Juneja P, Jiggins FM, Black WC. Alternative patterns of sex chromosome differentiation in Aedes aegypti (L). BMC Genomics 2017; 18:943. [PMID: 29202694 PMCID: PMC5716240 DOI: 10.1186/s12864-017-4348-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Background Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. Results Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (Hexp, one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased Hexp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. Conclusions The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4348-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA.
| | - Laura B Dickson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Punita Juneja
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| |
Collapse
|