1
|
Fabbri D, Mirolo M, Tagliapietra V, Ludlow M, Osterhaus A, Beraldo P. Ecological determinants driving orthohantavirus prevalence in small mammals of Europe: a systematic review. ONE HEALTH OUTLOOK 2025; 7:15. [PMID: 40134030 PMCID: PMC11938672 DOI: 10.1186/s42522-025-00136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/30/2025] [Indexed: 03/27/2025]
Abstract
Orthohantaviruses are emerging zoonotic pathogens that cause severe human disease and are considered an emerging public health threat globally. Mammalian orthohantaviruses are naturally maintained in rodent species and occasionally in other mammals. The abundance and density of natural orthohantavirus reservoir species are affected by multi annual and seasonal population cycles, community composition, ecosystem variables and climate. Horizontal transmission between host species is mostly density-driven and occurs via contact with infected host excreta, thus, fluctuations in populations and environmental variables often determine the prevalence of hantavirus in natural hosts. Given the zoonotic potential of hantaviruses, ecological factors influencing their spread and persistence in their natural reservoir and population dynamics influencing horizontal transmission require critical evaluation for human infection risk assessment. The present review paper discusses the impacts of natural host population cycles and ecosystem diversity, environmental conditions, and abiotic factors on the epidemiology of rodent-borne hantavirus infections in Europe. While significant efforts have been made to understand the drivers of hantavirus prevalence in natural hosts, we highlight key challenges in evaluating viral prevalence and assessing the role of environmental and population variables in determining hantavirus prevalence in host species.
Collapse
Affiliation(s)
- Daniele Fabbri
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via Sondrio 2/A, Udine, Italy.
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy.
| | - Monica Mirolo
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Valentina Tagliapietra
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All' Adige, Via Edmund Mach 1, Trento, Italy
| | - Martin Ludlow
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Albert Osterhaus
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, Bünteweg 2, Hannover, Germany
| | - Paola Beraldo
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via Sondrio 2/A, Udine, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, Palermo, Italy
| |
Collapse
|
2
|
Ohlopkova OV, Stolbunova KA, Popov IV, Popov IV, Kabwe E, Davidyuk YN, Stepanyuk MA, Moshkin AD, Kononova YV, Lukbanova EA, Ermakov AM, Chikindas ML, Sobolev IA, Khaiboullina SF, Shestopalov AM. Detection of Brno loanvirus (Loanvirus brunaense) in common noctule bats (Nyctalus noctula) in Southern Russia. Braz J Microbiol 2025; 56:675-682. [PMID: 39666163 PMCID: PMC11885740 DOI: 10.1007/s42770-024-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Hantaviruses that infect humans are rodent-derived viruses with zoonotic potential. Several studies show that before emerging in rodents hantaviruses could emerge in bats, which makes it important to study bat-derived hantaviruses. In this study, we performed PCR screening of hantaviruses in samples from common noctules (Nyctalus noctula [182 fecal and 81 blood serum samples]), parti-coloured bats (Vespertilio murinus [41 fecal samples]), Kuhl's pipistrelles (Pipistrellus kuhlii [15 fecal samples]), and serotine bats (Eptesicus serotinus [8 fecal samples]) from Rostov Bat Rehabilitation Center (Rostov-on-Don, Russia) and phylogenetic analysis of detected viruses. As a result, hantaviruses were detected in samples from N. noctula bats with an overall prevalence of 4.94% (4/81, 95% CI 0.22-9.66%) in blood serum samples and 1.1% (2/182, 95% CI 0-2.61%) in fecal samples. Phylogenetic analysis revealed that detected hantaviruses are highly homologic to Brno loanviruses (Loanvirus brunaense) previously discovered in N. noctula bats from Central Europe, which brings some evidence that these are the same bat-derived viruses. This study shows that Loanvirus brunaense could be species-specific to the host and has a wide area of habitat: from Central Europe to Southern Russia. These are the first findings of this virus in Southern Russia and Ciscaucasus/Fore-Caucasus. Further studies with wider screening and genomic assays of Loanvirus brunaense in bats could reveal trends in the molecular evolution of hantaviruses and provide valuable data for the control of potential spillovers.
Collapse
Affiliation(s)
- Olesia V Ohlopkova
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", Novosibirsk, 630117, Russian Federation.
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, 630559, Russian Federation.
| | - Kristina A Stolbunova
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", Novosibirsk, 630117, Russian Federation
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, 630559, Russian Federation
| | - Ilia V Popov
- Faculty "Bioengineering and Veterinary Medicine" and Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, 344000, Russian Federation
| | - Igor V Popov
- Faculty "Bioengineering and Veterinary Medicine" and Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, 344000, Russian Federation.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russian Federation.
| | - Emmanuel Kabwe
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russian Federation
| | - Yuriy N Davidyuk
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russian Federation
| | - Marina A Stepanyuk
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", Novosibirsk, 630117, Russian Federation
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, 630559, Russian Federation
| | - Alexey D Moshkin
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", Novosibirsk, 630117, Russian Federation
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, 630559, Russian Federation
| | - Yulia V Kononova
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", Novosibirsk, 630117, Russian Federation
| | - Ekaterina A Lukbanova
- Faculty "Bioengineering and Veterinary Medicine" and Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, 344000, Russian Federation
| | - Alexey M Ermakov
- Faculty "Bioengineering and Veterinary Medicine" and Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, 344000, Russian Federation
| | - Michael L Chikindas
- Faculty "Bioengineering and Veterinary Medicine" and Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, 344000, Russian Federation
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ivan A Sobolev
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", Novosibirsk, 630117, Russian Federation
| | - Svetlana F Khaiboullina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russian Federation
| | - Aleksandr M Shestopalov
- Research Institute of Virology, Federal State Budgetary Scientific Institution "Federal Research Center for Fundamental and Translational Medicine", Novosibirsk, 630117, Russian Federation
| |
Collapse
|
3
|
Prayitno SP, Natasha A, Lee S, Kim CM, Lee YM, Park K, Kim J, Kim SG, Park J, Rajoriya S, Palacios G, Oh Y, Song JW, Kim DM, Kim WK. Etiological agent and clinical characteristics of haemorrhagic fever with renal syndrome in the southern Republic of Korea: a genomic surveillance study. Clin Microbiol Infect 2024; 30:795-802. [PMID: 38402954 DOI: 10.1016/j.cmi.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVES High incidences of haemorrhagic fever with renal syndrome (HFRS) have been reported in the southern Republic of Korea (ROK). A distinct southern genotype of Orthohantavirus hantanense (HTNV) was identified in Apodemus agrarius chejuensis on Jeju Island. However, its association with HFRS cases in southern ROK remains elusive. We investigated the potential of the southern HTNV genotype as an etiological agent of HFRS. METHODS Samples from 22 patients with HFRS and 193 small mammals were collected in the southern ROK. The clinical characteristics of patients infected with the southern HTNV genotype were analysed. Amplicon-based MinION sequencing was employed for southern HTNV from patients and rodents, facilitating subsequent analyses involving phylogenetics and genetic reassortment. RESULTS High-throughput sequencing of HTNV exhibited higher coverage with a cycle of threshold value below 32, acquiring nearly whole-genome sequences from six patients with HFRS and seven A. agrarius samples. The phylogenetic pattern of patient-derived HTNV demonstrated genetic clustering with HTNV from Apodemus species on Jeju Island and the southern Korean peninsula, revealing genetic reassortment in a single clinical sample between the M and S segments. DISCUSSION These findings imply that the southern HTNV genotype has the potential to induce HFRS in humans. The phylogenetic inference demonstrates the diverse and dynamic characteristics of the southern HTNV tripartite genomes. Therefore, this study highlights the significance of active surveillance and amplicon sequencing for detecting orthohantavirus infections. It also raises awareness and caution for physicians regarding the emergence of a southern HTNV genotype as a cause of HFRS in the ROK.
Collapse
Affiliation(s)
- Sara P Prayitno
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Seonghyeon Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Choon-Mee Kim
- Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - You Mi Lee
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jieun Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Shivani Rajoriya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yeonsu Oh
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea; BK21 Graduate Program, Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea; Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea.
| |
Collapse
|
4
|
Gu SH, Miñarro M, Feliu C, Hugot JP, Forrester NL, Weaver SC, Yanagihara R. Multiple Lineages of Hantaviruses Harbored by the Iberian Mole ( Talpa occidentalis) in Spain. Viruses 2023; 15:1313. [PMID: 37376613 DOI: 10.3390/v15061313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The recent detection of both Nova virus (NVAV) and Bruges virus (BRGV) in European moles (Talpa europaea) in Belgium and Germany prompted a search for related hantaviruses in the Iberian mole (Talpa occidentalis). RNAlater®-preserved lung tissue from 106 Iberian moles, collected during January 2011 to June 2014 in Asturias, Spain, were analyzed for hantavirus RNA by nested/hemi-nested RT-PCR. Pairwise alignment and comparison of partial L-segment sequences, detected in 11 Iberian moles from four parishes, indicated the circulation of genetically distinct hantaviruses. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, demonstrated three distinct hantaviruses in Iberian moles: NVAV, BRGV, and a new hantavirus, designated Asturias virus (ASTV). Of the cDNA from seven infected moles processed for next generation sequencing using Illumina HiSeq1500, one produced viable contigs, spanning the S, M and L segments of ASTV. The original view that each hantavirus species is harbored by a single small-mammal host species is now known to be invalid. Host-switching or cross-species transmission events, as well as reassortment, have shaped the complex evolutionary history and phylogeography of hantaviruses such that some hantavirus species are hosted by multiple reservoir species, and conversely, some host species harbor more than one hantavirus species.
Collapse
Affiliation(s)
- Se Hun Gu
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Marcos Miñarro
- Department of Horticultural and Forestry Crops, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Spain
| | - Carlos Feliu
- Department of Biology, Health and Environment, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Jean-Pierre Hugot
- Department of Systematics and Evolution, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Scott C Weaver
- Institute for Human Infections and Immunity and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Richard Yanagihara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Ulrich RG, Drewes S, Haring V, Panajotov J, Pfeffer M, Rubbenstroth D, Dreesman J, Beer M, Dobler G, Knauf S, Johne R, Böhmer MM. [Viral zoonoses in Germany: a One Health perspective]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:599-616. [PMID: 37261460 PMCID: PMC10233563 DOI: 10.1007/s00103-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
Collapse
Affiliation(s)
- Rainer G Ulrich
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland.
| | - Stephan Drewes
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Viola Haring
- Institut für neue und neuartige Tierseuchenerreger, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Südufer 10, 17493, Greifswald-Insel Riems, Deutschland
| | - Jessica Panajotov
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Martin Pfeffer
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Universität Leipzig, Leipzig, Deutschland
| | - Dennis Rubbenstroth
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | | | - Martin Beer
- Institut für Virusdiagnostik, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Gerhard Dobler
- Abteilung Virologie und Rickettsiologie, Institut für Mikrobiologie der Bundeswehr, München, Deutschland
| | - Sascha Knauf
- Institut für Internationale Tiergesundheit/One Health, Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Greifswald-Insel Riems, Deutschland
| | - Reimar Johne
- Fachgruppe Viren in Lebensmitteln, Bundesinstitut für Risikobewertung, Berlin, Deutschland
| | - Merle M Böhmer
- Landesinstitut Gesundheit II - Task Force Infektiologie, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), München, Deutschland
- Institut für Sozialmedizin und Gesundheitssystemforschung, Otto-von-Guericke Universität, Magdeburg, Deutschland
| |
Collapse
|
6
|
Dafalla M, Orłowska A, Keleş SJ, Straková P, Schlottau K, Jeske K, Hoffmann B, Wibbelt G, Smreczak M, Müller T, Freuling CM, Wang X, Rola J, Drewes S, Fereidouni S, Heckel G, Ulrich RG. Hantavirus Brno loanvirus is highly specific to the common noctule bat (Nyctalus noctula) and widespread in Central Europe. Virus Genes 2023; 59:323-332. [PMID: 36542315 PMCID: PMC10025241 DOI: 10.1007/s11262-022-01952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022]
Abstract
Bat-associated hantaviruses have been detected in Asia, Africa and Europe. Recently, a novel hantavirus (Brno loanvirus, BRNV) was identified in common noctule bats (Nyctalus noctula) in the Czech Republic, but nothing is known about its geographical range and prevalence. The objective of this study was to evaluate the distribution and host specificity of BRNV by testing bats from neighbouring countries Germany, Austria and Poland. One thousand forty-seven bats representing 21 species from Germany, 464 bats representing 18 species from Austria and 77 bats representing 12 species from Poland were screened by L segment broad-spectrum nested reverse transcription-polymerase chain reaction (RT-PCR) or by BRNV-specific real-time RT-PCR. Three common noctules from Germany, one common noctule from Austria and three common noctules from Poland were positive in the hantavirus RNA screening. Conventional RT-PCR and primer walking resulted in the amplification of partial L segment and (almost) complete S and M segment coding sequences for samples from Germany and partial L segment sequences for samples from Poland. Phylogenetic analysis of these nucleotide sequences showed highest similarity to BRNV from Czech Republic. The exclusive detection of BRNV in common noctules from different countries suggests high host specificity. The RNA detection rate in common noctules ranged between 1 of 207 (0.5%; Austria), 3 of 245 (1.2%; Germany) and 3 of 20 (15%; Poland). In conclusion, this study demonstrates a broader distribution of BRNV in common noctules in Central Europe, but at low to moderate prevalence. Additional studies are needed to prove the zoonotic potential of this hantavirus and evaluate its transmission within bat populations.
Collapse
Affiliation(s)
- Maysaa Dafalla
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
| | - Sinan Julian Keleş
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, 1160, Vienna, Austria
| | - Petra Straková
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kathrin Jeske
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Conrad Martin Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Xuejing Wang
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 57 Partyzantów Avenue, 24-100, Pulawy, Poland
| | - Stephan Drewes
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1a, 1160, Vienna, Austria
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
- Quartier Sorge - Batiment Amphipole, Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
7
|
Kikuchi F, Arai S, Hejduk J, Hayashi A, Markowski J, Markowski M, Rychlik L, Khodzinskyi V, Kamiya H, Mizutani T, Suzuki M, Sikorska B, Liberski PP, Yanagihara R. Phylogeny of Shrew- and Mole-Borne Hantaviruses in Poland and Ukraine. Viruses 2023; 15:881. [PMID: 37112861 PMCID: PMC10145205 DOI: 10.3390/v15040881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Earlier, we demonstrated the co-circulation of genetically distinct non-rodent-borne hantaviruses, including Boginia virus (BOGV) in the Eurasian water shrew (Neomys fodiens), Seewis virus (SWSV) in the Eurasian common shrew (Sorex araneus) and Nova virus (NVAV) in the European mole (Talpa europaea), in central Poland. To further investigate the phylogeny of hantaviruses harbored by soricid and talpid reservoir hosts, we analyzed RNAlater®-preserved lung tissues from 320 shrews and 26 moles, both captured during 1990-2017 across Poland, and 10 European moles from Ukraine for hantavirus RNA through RT-PCR and DNA sequencing. SWSV and Altai virus (ALTV) were detected in Sorex araneus and Sorex minutus in Boginia and the Białowieża Forest, respectively, and NVAV was detected in Talpa europaea in Huta Dłutowska, Poland, and in Lviv, Ukraine. Phylogenetic analyses using maximum-likelihood and Bayesian methods showed geography-specific lineages of SWSV in Poland and elsewhere in Eurasia and of NVAV in Poland and Ukraine. The ATLV strain in Sorex minutus from the Białowieża Forest on the Polish-Belarusian border was distantly related to the ATLV strain previously reported in Sorex minutus from Chmiel in southeastern Poland. Overall, the gene phylogenies found support long-standing host-specific adaptation.
Collapse
Affiliation(s)
- Fuka Kikuchi
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Center for Infectious Diseases Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Satoru Arai
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Janusz Hejduk
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Ai Hayashi
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Janusz Markowski
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Vasyl Khodzinskyi
- Institute of Forestry and Park Gardening, Ukrainian National Forestry University, 79057 Lviv, Ukraine
| | - Hajime Kamiya
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuya Mizutani
- Center for Infectious Diseases Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Motoi Suzuki
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Łódź, 92-216 Łódź, Poland
| | - Paweł P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Łódź, 92-216 Łódź, Poland
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Terrestrial and Subterranean Mammals as Reservoirs of Zoonotic Diseases in the Central Part of European Russia. DIVERSITY 2022. [DOI: 10.3390/d15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Russia has a number of historical foci of zoonotic anthropogenic diseases. In Central Russia, the Republic of Mordovia is one of such areas, a region being known to have foci of haemorrhagic fever with renal syndrome (HFRS) and tularemia. It therefore requires continuous monitoring. The role of small terrestrial mammals as reservoirs of zoonoses has been previously proven for the region. The aim of this work is to take an integrated approach to assess the role of terrestrial and subterranean small mammals. Subterranean mammals are often not considered important reservoirs of zoonotic pathogens that cause human morbidity. Among small mammals in the wild environment, the bank vole, the yellow-necked mouse and the house mouse play important roles as vectors of zoonoses. Among wild subterranean mammals, the greater mole rat is important as a vector of tularemia and HFRS. We analyzed homogenized internal organs of these animals (lungs, spleen, kidneys). Of all samples from the greater mole rat, 83% were positive for tularemia antigens and 17% were positive forHFRS. None of the analyzed European moles had antigens of tularemia and HFRS. No double infection with both tularemia and hantavirus was detected in the subterranean mammals. Double infection was found among terrestrial mammals in the bank vole and the forest dormouse.
Collapse
|
9
|
Cuperus T, de Vries A, Jaarsma RI, Sprong H, Maas M. Occurrence of Rickettsia spp., Hantaviridae, Bartonella spp. and Leptospira spp. in European Moles ( Talpa europaea) from the Netherlands. Microorganisms 2022; 11:microorganisms11010041. [PMID: 36677332 PMCID: PMC9861085 DOI: 10.3390/microorganisms11010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The European mole (Talpa europaea) has a widespread distribution throughout Europe. However, little is known about the presence of zoonotic pathogens in European moles. We therefore tested 180 moles from the middle and the south of the Netherlands by (q)PCR for the presence of multiple (tick-borne) zoonotic pathogens. Spotted fever Rickettsia was found in one (0.6%), Leptospira spp. in three (1.7%), Bartonella spp. in 69 (38.3%) and Hantaviridae in 89 (49.4%) of the 180 moles. Infections with Anaplasma phagocytophilum, Babesia spp., Neoehrlichia mikurensis, Borrelia spp., Spiroplasma spp. and Francisella tularensis were not found. In addition, in a subset of 35 moles no antibodies against Tick-borne encephalitis virus were found. The obtained sequences of Bartonella spp. were closely related to Bartonella spp. sequences from moles in Spain and Hungary. The Hantaviridae were identified as the mole-borne Nova virus, with high sequence similarity to sequences from other European countries, and Bruges virus. Though the zoonotic risk from moles appears limited, our results indicate that these animals do play a role in multiple host-pathogen cycles.
Collapse
|
10
|
Goodfellow SM, Nofchissey RA, Ye C, Dunnum JL, Cook JA, Bradfute SB. Use of a Novel Detection Tool to Survey Orthohantaviruses in Wild-Caught Rodent Populations. Viruses 2022; 14:682. [PMID: 35458412 PMCID: PMC9024935 DOI: 10.3390/v14040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Orthohantaviruses are negative-stranded RNA viruses with trisegmented genomes that can cause severe disease in humans and are carried by several host reservoirs throughout the world. Old World orthohantaviruses are primarily located throughout Europe and Asia, causing hemorrhagic fever with renal syndrome, and New World orthohantaviruses are found in North, Central, and South America, causing hantavirus cardiopulmonary syndrome (HCPS). In the United States, Sin Nombre orthohantavirus (SNV) is the primary cause of HCPS with a fatality rate of ~36%. The primary SNV host reservoir is thought to be the North American deer mouse, Peromyscus maniculatus. However, it has been shown that other species of Peromyscus can carry different orthohantaviruses. Few studies have systemically surveyed which orthohantaviruses may exist in wild-caught rodents or monitored spillover events into additional rodent reservoirs. A method for the rapid detection of orthohantaviruses is needed to screen large collections of rodent samples. Here, we report a pan-orthohantavirus, two-step reverse-transcription quantitative real-time PCR (RT-qPCR) tool designed to detect both Old and New World pathogenic orthohantavirus sequences of the S segment of the genome and validated them using plasmids and authentic viruses. We then performed a screening of wild-caught rodents and identified orthohantaviruses in lung tissue, and we confirmed the findings by Sanger sequencing. Furthermore, we identified new rodent reservoirs that have not been previously reported as orthohantavirus carriers. This novel tool can be used for the efficient and rapid detection of various orthohantaviruses, while uncovering potential new orthohantaviruses and host reservoirs that may otherwise go undetected.
Collapse
Affiliation(s)
- Samuel M. Goodfellow
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.M.G.); (R.A.N.); (C.Y.)
| | - Robert A. Nofchissey
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.M.G.); (R.A.N.); (C.Y.)
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.M.G.); (R.A.N.); (C.Y.)
| | - Jonathan L. Dunnum
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, NM 87131, USA; (J.L.D.); (J.A.C.)
| | - Joseph A. Cook
- Museum of Southwestern Biology, Biology Department, University of New Mexico, Albuquerque, NM 87131, USA; (J.L.D.); (J.A.C.)
| | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.M.G.); (R.A.N.); (C.Y.)
| |
Collapse
|
11
|
Yashina LN, Abramov SA, Zhigalin AV, Smetannikova NA, Dupal TA, Krivopalov AV, Kikuchi F, Senoo K, Arai S, Mizutani T, Suzuki M, Cook JA, Yanagihara R. Geographic Distribution and Phylogeny of Soricine Shrew-Borne Seewis Virus and Altai Virus in Russia. Viruses 2021; 13:1286. [PMID: 34372492 PMCID: PMC8310073 DOI: 10.3390/v13071286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The discovery of genetically distinct hantaviruses (family Hantaviridae) in multiple species of shrews, moles and bats has revealed a complex evolutionary history involving cross-species transmission. Seewis virus (SWSV) is widely distributed throughout the geographic ranges of its soricid hosts, including the Eurasian common shrew (Sorex araneus), tundra shrew (Sorex tundrensis) and Siberian large-toothed shrew (Sorex daphaenodon), suggesting host sharing. In addition, genetic variants of SWSV, previously named Artybash virus (ARTV) and Amga virus, have been detected in the Laxmann's shrew (Sorex caecutiens). Here, we describe the geographic distribution and phylogeny of SWSV and Altai virus (ALTV) in Asian Russia. The complete genomic sequence analysis showed that ALTV, also harbored by the Eurasian common shrew, is a new hantavirus species, distantly related to SWSV. Moreover, Lena River virus (LENV) appears to be a distinct hantavirus species, harbored by Laxmann's shrews and flat-skulled shrews (Sorex roboratus) in Eastern Siberia and far-eastern Russia. Another ALTV-related virus, which is more closely related to Camp Ripley virus from the United States, has been identified in the Eurasian least shrew (Sorex minutissimus) from far-eastern Russia. Two highly divergent viruses, ALTV and SWSV co-circulate among common shrews in Western Siberia, while LENV and the ARTV variant of SWSV co-circulate among Laxmann's shrews in Eastern Siberia and far-eastern Russia. ALTV and ALTV-related viruses appear to belong to the Mobatvirus genus, while SWSV is a member of the Orthohantavirus genus. These findings suggest that ALTV and ALTV-related hantaviruses might have emerged from ancient cross-species transmission with subsequent diversification within Sorex shrews in Eurasia.
Collapse
Affiliation(s)
- Liudmila N. Yashina
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Russia;
| | - Sergey A. Abramov
- Institute of Systematics and Ecology of Animals, 630091 Novosibirsk, Russia; (S.A.A.); (T.A.D.); (A.V.K.)
| | - Alexander V. Zhigalin
- Department of Vertebrate Zoology and Ecology, Tomsk State University, 634050 Tomsk, Russia;
| | | | - Tamara A. Dupal
- Institute of Systematics and Ecology of Animals, 630091 Novosibirsk, Russia; (S.A.A.); (T.A.D.); (A.V.K.)
| | - Anton V. Krivopalov
- Institute of Systematics and Ecology of Animals, 630091 Novosibirsk, Russia; (S.A.A.); (T.A.D.); (A.V.K.)
| | - Fuka Kikuchi
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (F.K.); (T.M.)
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (S.A.); (M.S.)
| | - Kae Senoo
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (S.A.); (M.S.)
- Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Satoru Arai
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (S.A.); (M.S.)
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan; (F.K.); (T.M.)
| | - Motoi Suzuki
- Center for Surveillance, Immunization and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (S.A.); (M.S.)
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Richard Yanagihara
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
12
|
Liphardt SW, Kang HJ, Arai S, Gu SH, Cook JA, Yanagihara R. Reassortment Between Divergent Strains of Camp Ripley Virus ( Hantaviridae) in the Northern Short-Tailed Shrew ( Blarina brevicauda). Front Cell Infect Microbiol 2020; 10:460. [PMID: 33014888 PMCID: PMC7509084 DOI: 10.3389/fcimb.2020.00460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Genomic reassortment of segmented RNA virus strains is an important evolutionary mechanism that can generate novel viruses with profound effects on human and animal health, such as the H1N1 influenza pandemic in 2009 arising from reassortment of two swine influenza viruses. Reassortment is not restricted to influenza virus and has been shown to occur in members of the order Bunyavirales. The majority of reassortment events occurs between closely related lineages purportedly due to molecular constraints during viral packaging. In the original report of Camp Ripley virus (RPLV), a newfound hantavirus in the northern short-tailed shrew (Blarina brevicauda), phylogenetic incongruence between different genomic segments suggested reassortment. We have expanded sampling to include RPLV sequences amplified from archival tissues of 36 northern short-tailed shrews collected in 12 states (Arkansas, Iowa, Kansas, Maryland, Massachusetts, Michigan, Minnesota, New Hampshire, Ohio, Pennsylvania, Virginia, Wisconsin), and one southern short-tailed shrew (Blarina carolinensis) from Florida, within the United States. Using Bayesian phylogenetic analysis and Graph-incompatibility-based Reassortment Finder, we identified multiple instances of reassortment that spanned the Hantaviridae phylogenetic tree, including three highly divergent, co-circulating lineages of the M segment that have reassorted with a conserved L segment in multiple populations of B. brevicauda. In addition to identifying the first known mobatvirus-like M-segment sequences from a soricid host and only the second from a eulipotyphlan mammal, our results suggest that reassortment may be common between divergent virus strains and provide strong justification for expanded spatial, temporal, and taxonomic analyses of segmented viruses.
Collapse
Affiliation(s)
- Schuyler W. Liphardt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Hae Ji Kang
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Satoru Arai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Se Hun Gu
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Joseph A. Cook
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Richard Yanagihara
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
13
|
Chappell JG, Tsoleridis T, Onianwa O, Drake G, Ashpole I, Dobbs P, Edema W, Kumi-Ansah F, Bennett M, Tarlinton RE, Ball JK, McClure CP. Retrieval of the Complete Coding Sequence of the UK-Endemic Tatenale Orthohantavirus Reveals Extensive Strain Variation and Supports Its Classification as a Novel Species. Viruses 2020; 12:E454. [PMID: 32316655 PMCID: PMC7232349 DOI: 10.3390/v12040454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Orthohantaviruses are globally distributed viruses, associated with rodents and other small mammals. However, data on the circulation of orthohantaviruses within the UK, particularly the UK-endemic Tatenale virus, is sparse. In this study, 531 animals from five rodent species were collected from two locations in northern and central England and screened using a degenerate, pan- orthohantavirus RT-PCR assay. Tatenale virus was detected in a single field vole (Microtus agrestis) from central England and twelve field voles from northern England. Unbiased high-throughput sequencing of the central English strain resulted in the recovery of the complete coding sequence of a novel strain of Tatenale virus, whilst PCR-primer walking of the northern English strain recovered almost complete coding sequence of a previously identified strain. These findings represented the detection of a third lineage of Tatenale virus in the United Kingdom and extended the known geographic distribution of these viruses from northern to central England. Furthermore, the recovery of the complete coding sequence revealed that Tatenale virus was sufficiently related to the recently identified Traemersee virus, to meet the accepted criteria for classification as a single species of orthohantavirus.
Collapse
Affiliation(s)
- Joseph G. Chappell
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
| | - Theocharis Tsoleridis
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
| | - Okechukwu Onianwa
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
| | | | | | | | - William Edema
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
| | - Frederick Kumi-Ansah
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
| | - Malcolm Bennett
- School of Veterinary Science, University of Nottingham, Sutton Bonnington, Loughborough LE12 5RD, UK
| | - Rachael E. Tarlinton
- School of Veterinary Science, University of Nottingham, Sutton Bonnington, Loughborough LE12 5RD, UK
| | - Jonathan K. Ball
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
| | - C. Patrick McClure
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (J.G.C.); (C.P.M.)
| |
Collapse
|
14
|
Kang HJ, Gu SH, Yashina LN, Cook JA, Yanagihara R. Highly Divergent Genetic Variants of Soricid-Borne Altai Virus ( Hantaviridae) in Eurasia Suggest Ancient Host-Switching Events. Viruses 2019; 11:E857. [PMID: 31540127 PMCID: PMC6783933 DOI: 10.3390/v11090857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
With the recent discovery of genetically distinct hantaviruses (family Hantaviridae) in shrews (order Eulipotyphla, family Soricidae), the once-conventional view that rodents (order Rodentia) served as the primordial reservoir hosts now appears improbable. The newly identified soricid-borne hantaviruses generally demonstrate well-resolved lineages organized according to host taxa and geographic origin. However, beginning in 2007, we detected sequences that did not conform to the prototypic hantaviruses associated with their soricid host species and/or geographic locations. That is, Eurasian common shrews (Sorexaraneus), captured in Hungary and Russia, were found to harbor hantaviruses belonging to two separate and highly divergent lineages. We have since accumulated additional examples of these highly distinctive hantavirus sequences in the Laxmann's shrew (Sorexcaecutiens), flat-skulled shrew (Sorexroboratus) and Eurasian least shrew (Sorexminutissimus), captured at the same time and in the same location in the Sakha Republic in Far Eastern Russia. Pair-wise alignment and phylogenetic analysis of partial and full-length S-, M- and/or L-segment sequences indicate that a distinct hantavirus species related to Altai virus (ALTV), first reported in a Eurasian common shrew from Western Siberia, was being maintained in these closely related syntopic soricine shrew species. These findings suggest that genetic variants of ALTV might have resulted from ancient host-switching events with subsequent diversification within the Soricini tribe in Eurasia.
Collapse
Affiliation(s)
- Hae Ji Kang
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Se Hun Gu
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| | - Liudmila N Yashina
- State Research Center of Virology and Biotechnology, "Vector", Koltsovo 630559, Russia.
| | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Richard Yanagihara
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
15
|
Laenen L, Vergote V, Calisher CH, Klempa B, Klingström J, Kuhn JH, Maes P. Hantaviridae: Current Classification and Future Perspectives. Viruses 2019; 11:v11090788. [PMID: 31461937 PMCID: PMC6784073 DOI: 10.3390/v11090788] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 01/19/2023] Open
Abstract
In recent years, negative-sense RNA virus classification and taxon nomenclature have undergone considerable transformation. In 2016, the new order Bunyavirales was established, elevating the previous genus Hantavirus to family rank, thereby creating Hantaviridae. Here we summarize affirmed taxonomic modifications of this family from 2016 to 2019. Changes involve the admission of >30 new hantavirid species and the establishment of subfamilies and novel genera based on DivErsity pArtitioning by hieRarchical Clustering (DEmARC) analysis of genomic sequencing data. We outline an objective framework that can be used in future classification schemes when more hantavirids sequences will be available. Finally, we summarize current taxonomic proposals and problems in hantavirid taxonomy that will have to be addressed shortly.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium
| | | | - Boris Klempa
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, B-8200 Research Plaza, Frederick, MD 21702, USA
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Zoonotic Infectious Diseases Unit, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Yashina LN, Kartashov MY, Wang W, Li K, Zdanovskaya NI, Ivanov LI, Zhang YZ. Co-circulation of distinct shrew-borne hantaviruses in the far east of Russia. Virus Res 2019; 272:197717. [PMID: 31422116 DOI: 10.1016/j.virusres.2019.197717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
Abstract
Insectivores are the new emerging reservoir of hantaviruses. Here, we describe Lena virus (LENV), a novel hantavirus harbored by the Laxmann`s shrew (Sorex caecutiens), which is also the host of Artybash virus (ARTV). Genetic analysis of the complete genomic sequence shows that LENV is in distant relation to ARTV and other Sorex-borne hantaviruses, suggesting that LENV has emerged from cross-species transmission. Additionally, new genetic variant of ARTV, designated as ARTV-St, was identified in tundra shrews (Sorex tundrensis). Finally, distinct insectivore-borne hantaviruses are co-circulating in the same localities of far eastern Russia: LENV, ARTV and Yakeshi in the forest site, while ARTV, ARTV-St, and Kenkeme virus in the meadow field site.
Collapse
Affiliation(s)
| | | | - Wen Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Kun Li
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | | | | | - Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Zoonoses, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.
| |
Collapse
|
17
|
Liphardt SW, Kang HJ, Dizney LJ, Ruedas LA, Cook JA, Yanagihara R. Complex History of Codiversification and Host Switching of a Newfound Soricid-Borne Orthohantavirus in North America. Viruses 2019; 11:v11070637. [PMID: 31373319 PMCID: PMC6669566 DOI: 10.3390/v11070637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Orthohantaviruses are tightly linked to the ecology and evolutionary history of their mammalian hosts. We hypothesized that in regions with dramatic climate shifts throughout the Quaternary, orthohantavirus diversity and evolution are shaped by dynamic host responses to environmental change through processes such as host isolation, host switching, and reassortment. Jemez Springs virus (JMSV), an orthohantavirus harbored by the dusky shrew (Sorex monticola) and five close relatives distributed widely in western North America, was used to test this hypothesis. Total RNAs, extracted from liver or lung tissue from 164 shrews collected from western North America during 1983–2007, were analyzed for orthohantavirus RNA by reverse transcription polymerase chain reaction (RT-PCR). Phylogenies inferred from the L-, M-, and S-segment sequences of 30 JMSV strains were compared with host mitochondrial cytochrome b. Viral clades largely corresponded to host clades, which were primarily structured by geography and were consistent with hypothesized post-glacial expansion. Despite an overall congruence between host and viral gene phylogenies at deeper scales, phylogenetic signals were recovered that also suggested a complex pattern of host switching and at least one reassortment event in the evolutionary history of JMSV. A fundamental understanding of how orthohantaviruses respond to periods of host population expansion, contraction, and secondary host contact is the key to establishing a framework for both more comprehensive understanding of orthohantavirus evolutionary dynamics and broader insights into host–pathogen systems.
Collapse
Affiliation(s)
- Schuyler W Liphardt
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Hae Ji Kang
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Laurie J Dizney
- Department of Biology, University of Portland, Portland, OR 97203, USA
| | - Luis A Ruedas
- Department of Biology and Museum of Vertebrate Biology, Portland State University, Portland, OR 97207-0751, USA
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Richard Yanagihara
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
18
|
Risteska-Nejashmikj V, Ristikj-Stomnaroska D, Bosevska G, Papa A, Stojkovska S. Facing of Family Doctor with Hantavirus Infection. Open Access Maced J Med Sci 2019; 7:1660-1664. [PMID: 31210818 PMCID: PMC6560302 DOI: 10.3889/oamjms.2019.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hantavirus infection is manifested as an urgent, severe and life-threatening disease caused by Hantavirus. The virus affects human endothelial cells. The natural reservoir of the Hantaviruses is chronically infected rodents. Human infection is accidental. Occurs by intake of contaminated food or inhalation of contaminated secretion from infected rodents' excretions have an increased risk of contamination. The most affected persons are people who work in nature. The virus causes haemorrhages, fever and acute renal failure. The disease appears more frequently in endemic regions with the lethality of 6-15%. The disease can surprise doctors with severity, urgency and undefined clinical picture. Fast clinical evaluation, proper and urgent diagnosis and treatment can improve the safe life of these patients. CASE REPORT We report a case of 45 -year-old male patient worked as a shepherd on mountain Babuna near the city of Veles in the Republic of Macedonia at the end of the summer in the year 2017, presented with prolonged hemorrhagic fever with renal syndrome. The clinical presentation and lab findings support the diagnosis of Hantavirus infection with acute renal failure. CONCLUSION It is necessary to raise the awareness of the family doctors for the hantavirus disease, especially in countries with sporadic cases, as in our country. It needs for prompt and timely diagnosis, timely hospitalisation and initiation of therapy.
Collapse
Affiliation(s)
- Valentina Risteska-Nejashmikj
- Center for Family Medicine, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | | | - Golubinka Bosevska
- Institute of Public Health, Laboratory for Virology and Molecular Diagnostics, Skopje, Republic of Macedonia
| | - Anna Papa
- Medical School Aristotle, University of Thessaloniki, Thessaloniki, Greece
| | - Snezhana Stojkovska
- University Clinic for Infectious Diseases and Febrile States, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| |
Collapse
|
19
|
Müller A, Baumann A, Essbauer S, Radosa L, Krüger DH, Witkowski PT, Zeier M, Krautkrämer E. Analysis of the integrin β 3 receptor for pathogenic orthohantaviruses in rodent host species. Virus Res 2019; 267:36-40. [PMID: 31054291 DOI: 10.1016/j.virusres.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
Host reservoir specificity of pathogens is complex and may depend on receptor variability. For pathogenic orthohantaviruses, integrin β3 had been previously identified as entry receptor and the presence of aspartic acid residue at position 39 (D39) in human integrin β3 was described to be a prerequisite for infection of primate cells with Hantaan virus (HTNV). However, the role of integrin β3 in orthohantavirus infection of host animals is not completely understood. Therefore, we analyzed the nucleotide sequence of the integrin β3 gene of Myodes glareolus and Apodemus agrarius, the hosts of Puumala virus (PUUV) and HTNV, respectively. Sequence analysis in tissue samples demonstrated that the amino acid residue D39 is not present in integrin β3 of these natural orthohantavirus hosts. Furthermore, we analyzed the transcription and protein expression levels of integrin β3 in the renal cell line BVK168 generated from the PUUV host, bank vole. Transcription level of integrin β3 was 100-fold lower in BVK168 cells than in Vero E6 cells and integrin β3 expression was not detectable in BVK168 cells. However, despite the absence of amino acid residue D39 and no detectable integrin β3 expression, BVK168 cells are susceptible to infection with both PUUV and HTNV. These results indicate that the mechanism of orthohantaviral entry in rodent species does not correspond to the requirements that were described for the entry in primate cells in vitro.
Collapse
Affiliation(s)
- Alexander Müller
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Alexandra Baumann
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, Department of Virology & Rickettsiology, Munich, Germany
| | - Lukáš Radosa
- Institute of Medical Virology, Charité Medical School, Berlin, Germany
| | - Detlev H Krüger
- Institute of Medical Virology, Charité Medical School, Berlin, Germany
| | - Peter T Witkowski
- Institute of Medical Virology, Charité Medical School, Berlin, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
20
|
Laenen L, Vergote V, Vanmechelen B, Tersago K, Baele G, Lemey P, Leirs H, Dellicour S, Vrancken B, Maes P. Identifying the patterns and drivers of Puumala hantavirus enzootic dynamics using reservoir sampling. Virus Evol 2019; 5:vez009. [PMID: 31024739 PMCID: PMC6476162 DOI: 10.1093/ve/vez009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hantaviruses are zoonotic hemorrhagic fever viruses for which prevention of human spillover remains the first priority in disease management. Tailored intervention measures require an understanding of the drivers of enzootic dynamics, commonly inferred from distorted human incidence data. Here, we use longitudinal sampling of approximately three decades of Puumala orthohantavirus (PUUV) evolution in isolated reservoir populations to estimate PUUV evolutionary rates, and apply these to study the impact of environmental factors on viral spread. We find that PUUV accumulates genetic changes at a rate of ∼10−4 substitutions per site per year and that land cover type defines the dispersal dynamics of PUUV, with forests facilitating and croplands impeding virus spread. By providing reliable short-term PUUV evolutionary rate estimates, this work facilitates the evaluation of spatial risk heterogeneity starting from timed phylogeographic reconstructions based on virus sampling in its animal reservoir, thereby side-stepping the need for difficult-to-collect human disease incidence data.
Collapse
Affiliation(s)
- Lies Laenen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Valentijn Vergote
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Bert Vanmechelen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Katrien Tersago
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium.,Epidemiology of Infectious Diseases, Belgian Institute of Health, Sciensano, Brussels, Belgium
| | - Guy Baele
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Philippe Lemey
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Simon Dellicour
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium.,Spatial Epidemiology Lab (spELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Division of Clinical and Epidemiological Virology, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Arai S, Kikuchi F, Bawm S, Sơn NT, Lin KS, Tú VT, Aoki K, Tsuchiya K, Tanaka-Taya K, Morikawa S, Oishi K, Yanagihara R. Molecular Phylogeny of Mobatviruses ( Hantaviridae) in Myanmar and Vietnam. Viruses 2019; 11:E228. [PMID: 30866403 PMCID: PMC6466252 DOI: 10.3390/v11030228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
The discovery of highly divergent lineages of hantaviruses (family Hantaviridae) in shrews, moles, and bats of multiple species raises the possibility that non-rodent hosts may have played a significant role in their evolutionary history. To further investigate this prospect, total RNA was extracted from RNAlater®-preserved lung tissues of 277 bats (representing five families, 14 genera and 40 species), captured in Myanmar and Vietnam during 2013⁻2016. Hantavirus RNA was detected in two of 15 black-bearded tomb bats (Taphozous melanopogon) and two of 26 Pomona roundleaf bats (Hipposideros pomona) in Myanmar, and in three of six ashy leaf-nosed bats (Hipposideros cineraceus) in Vietnam. Pair-wise alignment and comparison of coding regions of the S, M, and L segments of hantaviruses from Taphozous and Hipposideros bats revealed high nucleotide and amino acid sequence similarities to prototype Láibīn virus (LAIV) and Xuân Sơn virus (XSV), respectively. Phylogenetic analyses, generated by maximum-likelihood and Bayesian methods, showed a geographic clustering of LAIV strains from China and Myanmar, but not of XSV strains from China and Vietnam. These findings confirm that the black-bearded tomb bat is the natural reservoir of LAIV, and that more than one species of Hipposideros bats can host XSV.
Collapse
Affiliation(s)
- Satoru Arai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Fuka Kikuchi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar.
| | - Nguyễn Trường Sơn
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Kyaw San Lin
- Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Yezin, Nay Pyi Taw 15013, Myanmar.
| | - Vương Tân Tú
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Keita Aoki
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
- Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Kimiyuki Tsuchiya
- Laboratory of Bioresources, Applied Biology Co., Ltd., Tokyo 107-0062, Japan.
| | - Keiko Tanaka-Taya
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Richard Yanagihara
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
22
|
Klempa B. Reassortment events in the evolution of hantaviruses. Virus Genes 2018; 54:638-646. [PMID: 30047031 PMCID: PMC6153690 DOI: 10.1007/s11262-018-1590-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Hantaviruses (order Bunyavirales, family Hantaviridae), known as important zoonotic human pathogens, possess the capacity to exchange genome segments via genetic reassortment due to their tri-segmented genome. Although not as frequent as in the arthropod-borne bunyaviruses, reports indicating reassortment events in the evolution of hantaviruses have been recently accumulating. The intra- and inter-lineage reassortment between closely related variants has been repeatedly reported for several hantaviruses including the rodent-borne human pathogens such as Sin Nombre virus, Puumala virus, Dobrava-Belgrade virus, or Hantaan virus as well as for the more recently recognized shrew-borne hantaviruses, Imjin and Seewis. Reassortment between more distantly related viruses was rarely found but seems to play a beneficial role in the process of crossing the host species barriers. Besides the findings based on phylogenetic studies of naturally occurring strains, hantavirus reassortants were generated also in in vitro studies. Interestingly, only reassortants with exchanged M segments could be generated suggesting that a high degree of genetic compatibility is required for the S and L segments while the exchange of M segment is better tolerated or is particularly beneficial. Altogether, the numerous reports on hantavirus reassortment, summarized in this review, clearly demonstrate that reassortment events play a significant role in hantavirus evolution and contributed to the currently recognized hantavirus diversity.
Collapse
Affiliation(s)
- Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia. .,Institute of Virology, Charité University Hospital, Helmut-Ruska-Haus, Berlin, Germany.
| |
Collapse
|