1
|
Agwamba K, Smith L, Gabriel SI, Searle JB, Nachman MW. Genetic structure and demographic history of house mice in western Europe inferred using whole-genome sequences. Proc Biol Sci 2025; 292:20242709. [PMID: 40237079 PMCID: PMC12001078 DOI: 10.1098/rspb.2024.2709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
The western house mouse, Mus musculus domesticus, is a human commensal and an outstanding model organism for studying a wide variety of traits and diseases. However, we have few genomic resources for wild mice and only a rudimentary understanding of the demographic history of house mice in Europe. Here, we sequenced 59 whole genomes of mice collected from England, Scotland, Wales, Guernsey, northern France, Italy, Portugal and Spain. We combined this dataset with 24 previously published sequences from southern France, Germany and Iran and compared patterns of population structure and inferred demographic parameters for house mice in western Europe to patterns seen in humans. Principal component and phylogenetic analyses identified three genetic clusters in western European mice. Admixture and f-branch statistics identified historical gene flow between these genetic clusters. Demographic analyses suggest a shared history of population bottlenecks prior to 20 000 years ago. Estimated divergence times between populations of house mice from western Europe ranged from 1500 to 5500 years ago, in general agreement with the zooarchaeological record. These results correspond well with key aspects of contemporary human population structure and the history of migration in western Europe, highlighting the commensal relationship of this important genetic model.
Collapse
Affiliation(s)
- Kennedy Agwamba
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| | - Lydia Smith
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Sofia I. Gabriel
- Department of Animal Biology, Faculty of Sciences, University of Lisbon, Centre for Ecology Evolution and Environmental Changes, Lisbon, Portugal
| | - Jeremy B. Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Michael W. Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
- Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Höhna S, Lower SE, Duchen P, Catalán A. Robustness of divergence time estimation despite gene tree estimation error: a case study of fireflies (Coleoptera: Lampyridae). Syst Biol 2025; 74:335-348. [PMID: 39534920 DOI: 10.1093/sysbio/syae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Genomic data have become ubiquitous in phylogenomic studies, including divergence time estimation, but provide new challenges. These challenges include, among others, biological gene tree discordance, methodological gene tree estimation error, and computational limitations on performing full Bayesian inference under complex models. In this study, we use a recently published firefly (Coleoptera: Lampyridae) anchored hybrid enrichment data set (AHE; 436 loci for 88 Lampyridae species and 10 outgroup species) as a case study to explore gene tree estimation error and the robustness of divergence time estimation. First, we explored the amount of model violation using posterior predictive simulations because model violations are likely to bias phylogenetic inferences and produce gene tree estimation error. We specifically focused on missing data (either uniformly distributed or systematically) and the distribution of highly variable and conserved sites (either uniformly distributed or clustered). Our assessment of model adequacy showed that standard phylogenetic substitution models are not adequate for any of the 436 AHE loci. We tested if the model violations and alignment errors resulted indeed in gene tree estimation error by comparing the observed gene tree discordance to simulated gene tree discordance under the multispecies coalescent model. Thus, we show that the inferred gene tree discordance is not only due to biological mechanism but primarily due to inference errors. Lastly, we explored if divergence time estimation is robust despite the observed gene tree estimation error. We selected four subsets of the full AHE data set, concatenated each subset and performed a Bayesian relaxed clock divergence estimation in RevBayes. The estimated divergence times overlapped for all nodes that are shared between the topologies. Thus, divergence time estimation is robust using any well selected data subset as long as the topology inference is robust.
Collapse
Affiliation(s)
- Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Sarah E Lower
- Department of Biology, Bucknell University, Lewisburg, PA 17837, United States
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
| | - Ana Catalán
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Division of Evolutionary Biology, Ludeig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Nan M, Wang JB, Siokis M, St. Leger RJ. Latitudinal Clines in Climate and Sleep Patterns Shape Disease Outcomes in Drosophila melanogaster Infected by Metarhizium anisopliae. Ecol Evol 2025; 15:e71047. [PMID: 40027417 PMCID: PMC11868735 DOI: 10.1002/ece3.71047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Major latitudinal clines have been observed in Drosophila melanogaster, a human commensal that originated in tropical Africa and has subsequently dispersed globally to colonize temperate habitats. However, despite the crucial role pathogens play in species distribution, our understanding of how geographical factors influence disease susceptibility remains limited. This investigation explored the effects of latitudinal clines and biomes on disease resistance using the common fly pathogen Metarhizium anisopliae and 43 global Drosophila melanogaster populations. The findings revealed correlations between disease resistance and latitudinal gradients of sleep duration, temperature, and humidity. Although enhanced defenses may be driven by fungal diversity at tropical latitudes, the most disease-resistant tropical males also showed the highest susceptibility to desiccation. This suggests potential trade-offs between abiotic stress resistance, necessary for survival in temperate habitats, and disease resistance. Furthermore, the study uncovered interactions between sex, mating status, sleep, and abiotic stresses, affecting disease resistance. Notably, longer-sleeping males and virgin flies survived infections longer, with additional daytime sleep post-infection being protective, particularly in the most resistant fly lines. These observations support the hypothesis that sleep and disease defense are intertwined traits linked to organismal fitness and subject to joint clinal evolution.
Collapse
Affiliation(s)
- Mintong Nan
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Jonathan B. Wang
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | - Michail Siokis
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
4
|
Fawthrop R, Cerca J, Pacheco G, Sætre GP, Scordato ESC, Ravinet M, Rowe M. Understanding human-commensalism through an ecological and evolutionary framework. Trends Ecol Evol 2025; 40:159-169. [PMID: 39542789 DOI: 10.1016/j.tree.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Human-commensalism has been intuitively characterised as an interspecific interaction whereby non-human individuals benefit from tight associations with anthropogenic environments. However, a clear definition of human-commensalism, rooted within an ecological and evolutionary framework, has yet to be proposed. Here, we define human-commensalism as a population-level dependence on anthropogenic resources, associated with genetic differentiation from the ancestral, non-commensal form. Such a definition helps us to understand the origins of human-commensalism and the pace and form of adaptation to anthropogenic niches, and may enable the prediction of future evolution in an increasingly human-modified world. Our discussion encourages greater consideration of the spatial and temporal complexity in anthropogenic niches, promoting a nuanced consideration of human-commensal populations when formulating research questions.
Collapse
Affiliation(s)
- Ruth Fawthrop
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands; Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.
| | - José Cerca
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - George Pacheco
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
5
|
Scarpa A, Pianezza R, Gellert HR, Haider A, Kim BY, Lai EC, Kofler R, Signor S. Double trouble: two retrotransposons triggered a cascade of invasions in Drosophila species within the last 50 years. Nat Commun 2025; 16:516. [PMID: 39788974 PMCID: PMC11718211 DOI: 10.1038/s41467-024-55779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Horizontal transfer of genetic material in eukaryotes has rarely been documented over short evolutionary timescales. Here, we show that two retrotransposons, Shellder and Spoink, invaded the genomes of multiple species of the melanogaster subgroup within the last 50 years. Through horizontal transfer, Spoink spread in D. melanogaster during the 1980s, while both Shellder and Spoink invaded D. simulans in the 1990s. Possibly following hybridization, D. simulans infected the island endemic species D. mauritiana (Mauritius) and D. sechellia (Seychelles) with both TEs after 1995. In the same approximate time-frame, Shellder also invaded D. teissieri, a species confined to sub-Saharan Africa. We find that the donors of Shellder and Spoink are likely American Drosophila species from the willistoni, cardini, and repleta groups. Thus, the described cascade of TE invasions could only become feasible after D. melanogaster and D. simulans extended their distributions into the Americas 200 years ago, likely aided by human activity. Our work reveals that cascades of TE invasions, likely initiated by human-mediated range expansions, could have an impact on the genomic and phenotypic evolution of geographically dispersed species. Within a few decades, TEs could invade many species, including island endemics, with distributions very distant from the donor of the TE.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Hannah R Gellert
- Department of Biology, Stanford University, Stanford, California, USA
| | - Anna Haider
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, California, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, USA.
| |
Collapse
|
6
|
Novak TE, Billings K, Ellis SG, Smith MF, Wills BD, Stevison LS. Response of fruit fly ( Drosophila pseudoobscura) to diet manipulation of nutrient density. PHYSIOLOGICAL ENTOMOLOGY 2024; 49:412-421. [PMID: 39583217 PMCID: PMC11584062 DOI: 10.1111/phen.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 11/26/2024]
Abstract
Caloric intake can greatly affect many aspects of an organism's life. A deficiency of calories can lead to stress resulting in decreased fecundity, insufficient calories to maintain tissues and increased lifespan. Conversely, increasing caloric density increases fecundity and decreases lifespan. Despite decades of work exploring food quality and quantity on physiology in the model species Drosophila melanogaster Meigan 1830 (Diptera: Drosophilidae) and the melanogaster group in general, relatively little work explores the physiological responses to diet manipulation in other Drosophila species, like the obscura species group. Here, we looked at the effects of five different caloric densities (0.5×, 0.75×, 1.0×, 1.5× and 3.0×) on food intake, body weight, body fat, fecundity and longevity in D. pseudoobscura Frolova & Astaurov, 1929 (Diptera: Drosophilidae). Comparing longevity and fecundity across diets, we found that heavy caloric concentration (3.0×) decreases lifespan and that calorie restriction (0.5× and 0.75×) led to significant decreases in fecundity and body weight. However, calorie concentration did not significantly increase D. pseudoobscura body fat. By expanding our understanding of the physiological responses to diet stress to D. pseudoobscura, we establish the framework for comparative work across Drosophila species. With this information, we can then identify which physiological responses to diet manipulation might be most conserved and comparable across species.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Kristin Billings
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Sara Grace Ellis
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Makenly F Smith
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Bill D Wills
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
7
|
Kwadha CA, Rehermann G, Tasso D, Fellous S, Bengtsson M, Wallin EA, Flöhr A, Witzgall P, Becher PG. Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii. Evol Appl 2024; 17:e70042. [PMID: 39534538 PMCID: PMC11555161 DOI: 10.1111/eva.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The spotted-wing drosophila, Drosophila suzukii and the cosmopolitan vinegar fly D. melanogaster feed on soft fruit and berries and widely overlap in geographic range. The presence of D. melanogaster reduces egg-laying in D. suzukii, possibly because D. melanogaster outcompetes D. suzukii larvae feeding in the same fruit substrate. Flies use pheromones to communicate for mating, but pheromones also serve a role in reproductive isolation between related species. We asked whether a D. melanogaster pheromone also modulates oviposition behaviour in D. suzukii. A dual-choice oviposition assay confirms that D. suzukii lays fewer eggs on blueberries exposed to D. melanogaster flies and further shows that female flies have a stronger effect than male flies. This was corroborated by treating berries with synthetic pheromones. Avoidance of D. suzukii oviposition is mediated by the female D. melanogaster pheromone (Z)-4-undecenal (Z4-11Al). Significantly fewer eggs were laid on berries treated with synthetic Z4-11Al. In comparison, the male pheromone (Z)-11-octadecenyl acetate (cVA) had no effect on D. suzukii oviposition. Z4-11Al is a highly volatile compound that is perceived via olfaction and it is accordingly behaviourally active at a distance from the source. D. suzukii is known to engage in mutual niche construction with the yeast Hanseniaspora uvarum, which strongly attracts flies. Adding Z4-11Al to fermenting H. uvarum significantly decreased D. suzukii flight attraction in a laboratory wind tunnel and a field trapping assay. That a D. melanogaster pheromone regulates oviposition in D. suzukii demonstrates that heterospecific pheromone communication contributes to reproductive isolation and resource partitioning in cognate species. Stimulo-deterrent diversion or push-pull methods, building on combined use of attractant and deterrent compounds, have shown promise for control of D. suzukii. A pheromone that specifically reduces D. suzukii attraction and oviposition adds to the toolbox for D. suzukii integrated management.
Collapse
Affiliation(s)
- Charles A. Kwadha
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Guillermo Rehermann
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Deni Tasso
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Simon Fellous
- CBGP, INRAE, CIRADInstitute Agro, IRD, University MontpellierMontpellierFrance
| | - Marie Bengtsson
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Erika A. Wallin
- Department Natural Science, Design and Sustainable DevelopmentMid Sweden UniversitySundsvallSweden
| | - Adam Flöhr
- Department Biosystems and TechnologySwedish University of Agricultural SciencesLommaSweden
| | - Peter Witzgall
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| | - Paul G. Becher
- Department Plant Protection Biology, Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
8
|
Shahandeh MP, Abuin L, Lescuyer De Decker L, Cergneux J, Koch R, Nagoshi E, Benton R. Circadian plasticity evolves through regulatory changes in a neuropeptide gene. Nature 2024; 635:951-959. [PMID: 39415010 PMCID: PMC11602725 DOI: 10.1038/s41586-024-08056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/16/2024] [Indexed: 10/18/2024]
Abstract
Many organisms, including cosmopolitan drosophilids, show circadian plasticity, varying their activity with changing dawn-dusk intervals1. How this behaviour evolves is unclear. Here we compare Drosophila melanogaster with Drosophila sechellia, an equatorial, ecological specialist that experiences minimal photoperiod variation, to investigate the mechanistic basis of circadian plasticity evolution2. D. sechellia has lost the ability to delay its evening activity peak time under long photoperiods. Screening of circadian mutants in D. melanogaster/D. sechellia hybrids identifies a contribution of the neuropeptide pigment-dispersing factor (Pdf) to this loss. Pdf exhibits species-specific temporal expression, due in part to cis-regulatory divergence. RNA interference and rescue experiments in D. melanogaster using species-specific Pdf regulatory sequences demonstrate that modulation of this neuropeptide's expression affects the degree of behavioural plasticity. The Pdf regulatory region exhibits signals of selection in D. sechellia and across populations of D. melanogaster from different latitudes. We provide evidence that plasticity confers a selective advantage for D. melanogaster at elevated latitude, whereas D. sechellia probably suffers fitness costs through reduced copulation success outside its range. Our findings highlight this neuropeptide gene as a hotspot locus for circadian plasticity evolution that might have contributed to both D. melanogaster's global distribution and D. sechellia's specialization.
Collapse
Affiliation(s)
- Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, Hofstra University, Hempstead, NY, USA.
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lou Lescuyer De Decker
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Cergneux
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rafael Koch
- Department of Genetics and Evolution & Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution & Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Audet T, Krol J, Pelletier K, Stewart AD, Dworkin I. Sexually discordant selection is associated with trait-specific morphological changes and a complex genomic response. Evolution 2024; 78:1426-1440. [PMID: 38720526 DOI: 10.1093/evolut/qpae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 07/30/2024]
Abstract
Sexes often have differing fitness optima, potentially generating intra-locus sexual conflict, as each sex bears a genetic "load" of alleles beneficial to the other sex. One strategy to evaluate conflict in the genome is to artificially select populations discordantly against established sexual dimorphism (SD), reintroducing attenuated conflict. We investigate a long-term artificial selection experiment reversing sexual size dimorphism in Drosophila melanogaster during ~350 generations of sexually discordant selection. We explore morphological and genomic changes to identify loci under selection between the sexes in discordantly and concordantly size-selected treatments. Despite substantial changes to overall size, concordant selection maintained ancestral SD. However, discordant selection altered size dimorphism in a trait-specific manner. We observe multiple possible soft selective sweeps in the genome, with size-related genes showing signs of selection. Patterns of genomic differentiation between the sexes within lineages identified potential sites maintained by sexual conflict. One discordant selected lineage shows a pattern of elevated genomic differentiation between males and females on chromosome 3L, consistent with the maintenance of sexual conflict. Our results suggest visible signs of conflict and differentially segregating alleles between the sexes due to discordant selection.
Collapse
Affiliation(s)
- Tyler Audet
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Joelle Krol
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Katie Pelletier
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Andrew D Stewart
- Department of Biology, Canisius University, Buffalo, NY, United States
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Miranda VH, Amaral RV, Cogni R. Clinal variation in natural populations of Drosophila melanogaster: An old debate about natural selection and neutral processes. Genet Mol Biol 2024; 47Suppl 1:e20230348. [PMID: 39037374 PMCID: PMC11262002 DOI: 10.1590/1678-4685-gmb-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 07/23/2024] Open
Abstract
Distinguishing between environmental adaptations and neutral processes poses a challenge in population genetics and evolutionary studies, particularly when phenomena can be explained by both processes. Clines are genotypic or phenotypic characters correlated with environmental variables, because of that correlation, they are used as examples of spatially varying selection. At the same time, many genotypic clines can be explained by demographic history, like isolation by distance or secondary contact zones. Clines have been extensively studied in Drosophila melanogaster, especially in North America and Australia, where they are attributed to both differential selection and various demographic processes. This review explores existing literature supporting this conclusion and suggests new approaches to better understand the influence of these processes on clines. These innovative approaches aim to shed light on the longstanding debate regarding the importance of natural selection versus neutral processes in maintaining variation in natural populations.
Collapse
Affiliation(s)
- Vitória H. Miranda
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rafael Viana Amaral
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| | - Rodrigo Cogni
- Universidade de São Paulo, Instituto de Biociências,
Departamento de Ecologia, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Chen P, Zhang J. The loci of environmental adaptation in a model eukaryote. Nat Commun 2024; 15:5672. [PMID: 38971805 PMCID: PMC11227561 DOI: 10.1038/s41467-024-50002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
While the underlying genetic changes have been uncovered in some cases of adaptive evolution, the lack of a systematic study prevents a general understanding of the genomic basis of adaptation. For example, it is unclear whether protein-coding or noncoding mutations are more important to adaptive evolution and whether adaptations to different environments are brought by genetic changes distributed in diverse genes and biological processes or concentrated in a core set. We here perform laboratory evolution of 3360 Saccharomyces cerevisiae populations in 252 environments of varying levels of stress. We find the yeast adaptations to be primarily fueled by large-effect coding mutations overrepresented in a relatively small gene set, despite prevalent antagonistic pleiotropy across environments. Populations generally adapt faster in more stressful environments, partly because of greater benefits of the same mutations in more stressful environments. These and other findings from this model eukaryote help unravel the genomic principles of environmental adaptation.
Collapse
Affiliation(s)
- Piaopiao Chen
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
12
|
Marsh JI, Johri P. Biases in ARG-Based Inference of Historical Population Size in Populations Experiencing Selection. Mol Biol Evol 2024; 41:msae118. [PMID: 38874402 PMCID: PMC11245712 DOI: 10.1093/molbev/msae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Inferring the demographic history of populations provides fundamental insights into species dynamics and is essential for developing a null model to accurately study selective processes. However, background selection and selective sweeps can produce genomic signatures at linked sites that mimic or mask signals associated with historical population size change. While the theoretical biases introduced by the linked effects of selection have been well established, it is unclear whether ancestral recombination graph (ARG)-based approaches to demographic inference in typical empirical analyses are susceptible to misinference due to these effects. To address this, we developed highly realistic forward simulations of human and Drosophila melanogaster populations, including empirically estimated variability of gene density, mutation rates, recombination rates, purifying, and positive selection, across different historical demographic scenarios, to broadly assess the impact of selection on demographic inference using a genealogy-based approach. Our results indicate that the linked effects of selection minimally impact demographic inference for human populations, although it could cause misinference in populations with similar genome architecture and population parameters experiencing more frequent recurrent sweeps. We found that accurate demographic inference of D. melanogaster populations by ARG-based methods is compromised by the presence of pervasive background selection alone, leading to spurious inferences of recent population expansion, which may be further worsened by recurrent sweeps, depending on the proportion and strength of beneficial mutations. Caution and additional testing with species-specific simulations are needed when inferring population history with non-human populations using ARG-based approaches to avoid misinference due to the linked effects of selection.
Collapse
Affiliation(s)
- Jacob I Marsh
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Chen J, Liu C, Li W, Zhang W, Wang Y, Clark AG, Lu J. From sub-Saharan Africa to China: Evolutionary history and adaptation of Drosophila melanogaster revealed by population genomics. SCIENCE ADVANCES 2024; 10:eadh3425. [PMID: 38630810 PMCID: PMC11023512 DOI: 10.1126/sciadv.adh3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Drosophila melanogaster is a widely used model organism for studying environmental adaptation. However, the genetic diversity of populations in Asia is poorly understood, leaving a notable gap in our knowledge of the global evolution and adaptation of this species. We sequenced genomes of 292 D. melanogaster strains from various ecological settings in China and analyzed them along with previously published genome sequences. We have identified six global genetic ancestry groups, despite the presence of widespread genetic admixture. The strains from China represent a unique ancestry group, although detectable differentiation exists among populations within China. We deciphered the global migration and demography of D. melanogaster, and identified widespread signals of adaptation, including genetic changes in response to insecticides. We validated the effects of insecticide resistance variants using population cage trials and deep sequencing. This work highlights the importance of population genomics in understanding the genetic underpinnings of adaptation, an effort that is particularly relevant given the deterioration of ecosystems.
Collapse
Affiliation(s)
- Junhao Chen
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chenlu Liu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weixuan Li
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenxia Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- College of Biology, Hunan University, Changsha 410082, China
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
15
|
Koury SA. Female meiotic drive shapes the distribution of rare inversion polymorphisms in Drosophila melanogaster. Genetics 2023; 225:iyad158. [PMID: 37616566 DOI: 10.1093/genetics/iyad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
In all species, new chromosomal inversions are constantly being formed by spontaneous rearrangement and then stochastically eliminated from natural populations. In Drosophila, when new chromosomal inversions overlap with a preexisting inversion in the population, their rate of elimination becomes a function of the relative size, position, and linkage phase of the gene rearrangements. These altered dynamics result from complex meiotic behavior wherein overlapping inversions generate asymmetric dyads that cause both meiotic drive/drag and segmental aneuploidy. In this context, patterns in rare inversion polymorphisms of a natural population can be modeled from the fundamental genetic processes of forming asymmetric dyads via crossing-over in meiosis I and preferential segregation from asymmetric dyads in meiosis II. Here, a mathematical model of crossover-dependent female meiotic drive is developed and parameterized with published experimental data from Drosophila melanogaster laboratory constructs. This mechanism is demonstrated to favor smaller, distal inversions and accelerate the elimination of larger, proximal inversions. Simulated sampling experiments indicate that the paracentric inversions directly observed in natural population surveys of D. melanogaster are a biased subset that both maximizes meiotic drive and minimizes the frequency of lethal zygotes caused by this cytogenetic mechanism. Incorporating this form of selection into a population genetic model accurately predicts the shift in relative size, position, and linkage phase for rare inversions found in this species. The model and analysis presented here suggest that this weak form of female meiotic drive is an important process influencing the genomic distribution of rare inversion polymorphisms.
Collapse
Affiliation(s)
- Spencer A Koury
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
| |
Collapse
|
16
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Agwamba KD, Nachman MW. The demographic history of house mice (Mus musculus domesticus) in eastern North America. G3 (BETHESDA, MD.) 2023; 13:jkac332. [PMID: 36546306 PMCID: PMC9911051 DOI: 10.1093/g3journal/jkac332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
The Western European house mouse (Mus musculus domesticus) is a widespread human commensal that has recently been introduced to North America. Its introduction to the Americas is thought to have resulted from the transatlantic movements of Europeans that began in the early 16th century. To study the details of this colonization history, we examine population structure, explore relevant demographic models, and infer the timing of divergence among house mouse populations in the eastern United States using published exome sequences from five North American populations and two European populations. For North American populations of house mice, levels of nucleotide variation were lower, and low-frequency alleles were less common than for European populations. These patterns provide evidence of a mild bottleneck associated with the movement of house mice into North America. Several analyses revealed that one North American population is genetically admixed, which indicates at least two source populations from Europe were independently introduced to eastern North America. Estimated divergence times between North American and German populations ranged between ∼1,000 and 7,000 years ago and overlapped with the estimated divergence time between populations from Germany and France. Demographic models comparing different North American populations revealed that these populations diverged from each other mostly within the last 500 years, consistent with the timing of the arrival of Western European settlers to North America. Together, these results support a recent introduction of Western European house mice to eastern North America, highlighting the effects of human migration and colonization on the spread of an invasive human commensal.
Collapse
Affiliation(s)
- Kennedy D Agwamba
- Center for Computational Biology, Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Center for Computational Biology, Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Harris M, Garud NR. Enrichment of Hard Sweeps on the X Chromosome in Drosophila melanogaster. Mol Biol Evol 2022; 40:6955808. [PMID: 36546413 PMCID: PMC9825254 DOI: 10.1093/molbev/msac268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The characteristic properties of the X chromosome, such as male hemizygosity and its unique inheritance pattern, expose it to natural selection in a way that can be different from the autosomes. Here, we investigate the differences in the tempo and mode of adaptation on the X chromosome and autosomes in a population of Drosophila melanogaster. Specifically, we test the hypothesis that due to hemizygosity and a lower effective population size on the X, the relative proportion of hard sweeps, which are expected when adaptation is gradual, compared with soft sweeps, which are expected when adaptation is rapid, is greater on the X than on the autosomes. We quantify the incidence of hard versus soft sweeps in North American D. melanogaster population genomic data with haplotype homozygosity statistics and find an enrichment of the proportion of hard versus soft sweeps on the X chromosome compared with the autosomes, confirming predictions we make from simulations. Understanding these differences may enable a deeper understanding of how important phenotypes arise as well as the impact of fundamental evolutionary parameters on adaptation, such as dominance, sex-specific selection, and sex-biased demography.
Collapse
Affiliation(s)
- Mariana Harris
- Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA
| | | |
Collapse
|
19
|
Coughlan JM, Dagilis AJ, Serrato-Capuchina A, Elias H, Peede D, Isbell K, Castillo DM, Cooper BS, Matute DR. Patterns of Population Structure and Introgression Among Recently Differentiated Drosophila melanogaster Populations. Mol Biol Evol 2022; 39:msac223. [PMID: 36251862 PMCID: PMC9641974 DOI: 10.1093/molbev/msac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite a century of genetic analysis, the evolutionary processes that have generated the patterns of exceptional genetic and phenotypic variation in the model organism Drosophila melanogaster remains poorly understood. In particular, how genetic variation is partitioned within its putative ancestral range in Southern Africa remains unresolved. Here, we study patterns of population genetic structure, admixture, and the spatial structuring of candidate incompatibility alleles across a global sample, including 223 new accessions, predominantly from remote regions in Southern Africa. We identify nine major ancestries, six that primarily occur in Africa and one that has not been previously described. We find evidence for both contemporary and historical admixture between ancestries, with admixture rates varying both within and between continents. For example, while previous work has highlighted an admixture zone between broadly defined African and European ancestries in the Caribbean and southeastern USA, we identify West African ancestry as the most likely African contributor. Moreover, loci showing the strongest signal of introgression between West Africa and the Caribbean/southeastern USA include several genes relating to neurological development and male courtship behavior, in line with previous work showing shared mating behaviors between these regions. Finally, while we hypothesized that potential incompatibility loci may contribute to population genetic structure across the range of D. melanogaster; these loci are, on average, not highly differentiated between ancestries. This work contributes to our understanding of the evolutionary history of a key model system, and provides insight into the partitioning of diversity across its range.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | - Hope Elias
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - David Peede
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Dean M Castillo
- Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Frey T, Kwadha CA, Haag F, Pelletier J, Wallin EA, Holgersson E, Hedenström E, Bohman B, Bengtsson M, Becher PG, Krautwurst D, Witzgall P. The human odorant receptor OR10A6 is tuned to the pheromone of the commensal fruit fly Drosophila melanogaster. iScience 2022; 25:105269. [PMID: 36300000 PMCID: PMC9589189 DOI: 10.1016/j.isci.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/10/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
All living things speak chemistry. The challenge is to reveal the vocabulary, the odorants that enable communication across phylogenies and to translate them to physiological, behavioral, and ecological function. Olfactory receptors (ORs) interface animals with airborne odorants. Expression in heterologous cells makes it possible to interrogate single ORs and to identify cognate ligands. The cosmopolitan, anthropophilic strain of the vinegar fly Drosophila melanogaster depends on human resources and housing for survival. Curiously, humans sense the pheromone (Z)-4-undecenal (Z4-11Al) released by single fly females. A screening of all human ORs shows that the most highly expressed OR10A6 is tuned to Z4-11Al. Females of an ancestral African fly strain release a blend of Z4-11Al and Z4-9Al that produces a different aroma, which is how we distinguish these fly strains by nose. That flies and humans sense Z4-11Al via dedicated ORs shows how convergent evolution shapes communication channels between vertebrate and invertebrate animals. Humans sense the sex pheromone Z411-Al released by single Drosophila melanogaster females The most highly expressed human olfactory receptor OR10A6 is tuned to Z411-Al An African fly strain emits two aldehydes, which we distinguish from Z411-Al by nose Convergent evolution shapes chemical communication between phylogenies
Collapse
Affiliation(s)
- Tim Frey
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Charles A. Kwadha
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Franziska Haag
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Julien Pelletier
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Erika A. Wallin
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | | | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Marie Bengtsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Dietmar Krautwurst
- Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München, Lise-Meitner Strasse 34, 85354 Freising, Germany
| | - Peter Witzgall
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden,Corresponding author
| |
Collapse
|
21
|
Catalan A, Höhna S, Lower SE, Duchen P. Inferring the demographic history of the North American firefly Photinus pyralis. J Evol Biol 2022; 35:1488-1499. [PMID: 36168726 DOI: 10.1111/jeb.14094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
The firefly Photinus pyralis inhabits a wide range of latitudinal and ecological niches, with populations living from temperate to tropical habitats. Despite its broad distribution, its demographic history is unknown. In this study, we modelled and inferred different demographic scenarios for North American populations of P. pyralis, which were collected from Texas to New Jersey. We used a combination of ABC techniques (for multi-population/colonization analyses) and likelihood inference (dadi, StairwayPlot2, PoMo) for single-population demographic inference, which proved useful with our RAD data. We uncovered that the most ancestral North American population lays in Texas, which further colonized the Central region of the US and more recently the North Eastern coast. Our study confidently rejects a demographic scenario where the North Eastern populations colonized more southern populations until reaching Texas. To estimate the age of divergence between of P. pyralis, which provides deeper insights into the history of the entire species, we assembled a multi-locus phylogenetic data covering the genus Photinus. We uncovered that the phylogenetic node leading to P. pyralis lies at the end of the Miocene. Importantly, modelling the demographic history of North American P. pyralis serves as a null model of nucleotide diversity patterns in a widespread native insect species, which will serve in future studies for the detection of adaptation events in this firefly species, as well as a comparison for future studies of other North American insect taxa.
Collapse
Affiliation(s)
- Ana Catalan
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Sebastian Höhna
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah E Lower
- Department of Biology, Bucknell University, Lewisburg, PA, USA
| | - Pablo Duchen
- Institute for Organismal and Molecular Evolutionary Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
22
|
Abstract
We discuss the genetic, demographic, and selective forces that are likely to be at play in restricting observed levels of DNA sequence variation in natural populations to a much smaller range of values than would be expected from the distribution of census population sizes alone-Lewontin's Paradox. While several processes that have previously been strongly emphasized must be involved, including the effects of direct selection and genetic hitchhiking, it seems unlikely that they are sufficient to explain this observation without contributions from other factors. We highlight a potentially important role for the less-appreciated contribution of population size change; specifically, the likelihood that many species and populations may be quite far from reaching the relatively high equilibrium diversity values that would be expected given their current census sizes.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
23
|
Abstract
Drosophila melanogaster has been a model organism for experimental research for more than a century, and the knowledge and associated genetic technologies accumulated around this species make it extremely important to contemporary biomedical research. A large international community of highly collaborative scientists investigate a remarkable diversity of biological problems using genetically characterised strains of Drosophila, and frequently exchange these strains across borders. Despite its importance to the study of fundamental biological processes and human disease-related cellular mechanisms, and the fact that it presents minimal health, agricultural or environmental risks, Drosophila can be difficult to import. The authors argue that streamlined regulations and practices would benefit biomedical research by lowering costs and increasing efficiencies.
Collapse
Affiliation(s)
- K.R. Cook
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, Indiana, 47405-7005, United States of America
| | - A.L. Parks
- Bloomington Drosophila Stock Center, Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, Indiana, 47405-7005, United States of America
| |
Collapse
|
24
|
Johri P, Stephan W, Jensen JD. Soft selective sweeps: Addressing new definitions, evaluating competing models, and interpreting empirical outliers. PLoS Genet 2022; 18:e1010022. [PMID: 35202407 PMCID: PMC8870509 DOI: 10.1371/journal.pgen.1010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to accurately identify and quantify genetic signatures associated with soft selective sweeps based on patterns of nucleotide variation has remained controversial. We here provide counter viewpoints to recent publications in PLOS Genetics that have argued not only for the statistical identifiability of soft selective sweeps, but also for their pervasive evolutionary role in both Drosophila and HIV populations. We present evidence that these claims owe to a lack of consideration of competing evolutionary models, unjustified interpretations of empirical outliers, as well as to new definitions of the processes themselves. Our results highlight the dangers of fitting evolutionary models based on hypothesized and episodic processes without properly first considering common processes and, more generally, of the tendency in certain research areas to view pervasive positive selection as a foregone conclusion.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Jeffrey D. Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
25
|
Boitard S, Arredondo A, Chikhi L, Mazet O. Heterogeneity in effective size across the genome: effects on the inverse instantaneous coalescence rate (IICR) and implications for demographic inference under linked selection. Genetics 2022; 220:6512058. [PMID: 35100421 PMCID: PMC8893248 DOI: 10.1093/genetics/iyac008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/01/2022] [Indexed: 01/22/2023] Open
Abstract
The relative contribution of selection and neutrality in shaping species genetic diversity is one of the most central and controversial questions in evolutionary theory. Genomic data provide growing evidence that linked selection, i.e. the modification of genetic diversity at neutral sites through linkage with selected sites, might be pervasive over the genome. Several studies proposed that linked selection could be modeled as first approximation by a local reduction (e.g. purifying selection, selective sweeps) or increase (e.g. balancing selection) of effective population size (Ne). At the genome-wide scale, this leads to variations of Ne from one region to another, reflecting the heterogeneity of selective constraints and recombination rates between regions. We investigate here the consequences of such genomic variations of Ne on the genome-wide distribution of coalescence times. The underlying motivation concerns the impact of linked selection on demographic inference, because the distribution of coalescence times is at the heart of several important demographic inference approaches. Using the concept of inverse instantaneous coalescence rate, we demonstrate that in a panmictic population, linked selection always results in a spurious apparent decrease of Ne along time. Balancing selection has a particularly large effect, even when it concerns a very small part of the genome. We also study more general models including genuine population size changes, population structure or transient selection and find that the effect of linked selection can be significantly reduced by that of population structure. The models and conclusions presented here are also relevant to the study of other biological processes generating apparent variations of Ne along the genome.
Collapse
Affiliation(s)
- Simon Boitard
- CBGP, Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montferrier-sur-Lez 34988, France
- Corresponding author: Université de Montpellier, CIRAD, INRAE, Institut Agro, IRD, 755 Avenue du Campus Agropolis, CS 30016, Montferrier-sur-Lez 34988, France.
| | - Armando Arredondo
- Institut National des Sciences Appliquées, Institut de Mathématiques de Toulouse, Université de Toulouse,Toulouse 31062, France
| | - Lounès Chikhi
- Instituto Gulbenkian de Ciência, Oeiras P-2780-156, Portugal
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, UPS, Université de Toulouse Midi-Pyrénées, Toulouse 31062, France
| | - Olivier Mazet
- Institut National des Sciences Appliquées, Institut de Mathématiques de Toulouse, Université de Toulouse,Toulouse 31062, France
| |
Collapse
|
26
|
Kapun M, Nunez JCB, Bogaerts-Márquez M, Murga-Moreno J, Paris M, Outten J, Coronado-Zamora M, Tern C, Rota-Stabelli O, Guerreiro MPG, Casillas S, Orengo DJ, Puerma E, Kankare M, Ometto L, Loeschcke V, Onder BS, Abbott JK, Schaeffer SW, Rajpurohit S, Behrman EL, Schou MF, Merritt TJS, Lazzaro BP, Glaser-Schmitt A, Argyridou E, Staubach F, Wang Y, Tauber E, Serga SV, Fabian DK, Dyer KA, Wheat CW, Parsch J, Grath S, Veselinovic MS, Stamenkovic-Radak M, Jelic M, Buendía-Ruíz AJ, Gómez-Julián MJ, Espinosa-Jimenez ML, Gallardo-Jiménez FD, Patenkovic A, Eric K, Tanaskovic M, Ullastres A, Guio L, Merenciano M, Guirao-Rico S, Horváth V, Obbard DJ, Pasyukova E, Alatortsev VE, Vieira CP, Vieira J, Torres JR, Kozeretska I, Maistrenko OM, Montchamp-Moreau C, Mukha DV, Machado HE, Lamb K, Paulo T, Yusuf L, Barbadilla A, Petrov D, Schmidt P, Gonzalez J, Flatt T, Bergland AO. Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource. Mol Biol Evol 2021; 38:5782-5805. [PMID: 34469576 PMCID: PMC8662648 DOI: 10.1093/molbev/msab259] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Evolutionary Biology and Environmental Studies, University of
Zürich, Switzerland
- Department of Cell & Developmental Biology, Center of Anatomy and Cell
Biology, Medical University of Vienna, Vienna, Austria
| | - Joaquin C B Nunez
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | | | - Jesús Murga-Moreno
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Margot Paris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joseph Outten
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | | | - Courtney Tern
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment, University of Trento, San Michele all'
Adige, Italy
| | | | - Sònia Casillas
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia,
Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de
Barcelona, Barcelona, Spain
| | - Eva Puerma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia,
Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de
Barcelona, Barcelona, Spain
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of
Jyväskylä, Jyväskylä, Finland
| | - Lino Ometto
- Department of Biology and Biotechnology, University of Pavia,
Pavia, Italy
| | | | - Banu S Onder
- Department of Biology, Hacettepe University, Ankara, Turkey
| | | | - Stephen W Schaeffer
- Department of Biology, The Pennsylvania State University,
University Park, PA, USA
| | - Subhash Rajpurohit
- Department of Biology, University of Pennsylvania, Philadelphia,
PA, USA
- Division of Biological and Life Sciences, School of Arts and Sciences,
Ahmedabad University, Ahmedabad, India
| | - Emily L Behrman
- Department of Biology, University of Pennsylvania, Philadelphia,
PA, USA
- Janelia Research Campus, Ashburn, VA, USA
| | - Mads F Schou
- Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Biology, Lund University, Lund, Sweden
| | - Thomas J S Merritt
- Department of Chemistry & Biochemistry, Laurentian
University, Sudbury, ON, Canada
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY,
USA
| | - Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Eliza Argyridou
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Fabian Staubach
- Department of Evolution and Ecology, University of Freiburg,
Freiburg, Germany
| | - Yun Wang
- Department of Evolution and Ecology, University of Freiburg,
Freiburg, Germany
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution,
University of Haifa, Haifa, Israel
| | - Svitlana V Serga
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education
and Science of Ukraine, Kyiv, Ukraine
| | - Daniel K Fabian
- Department of Genetics, University of Cambridge, Cambridge,
United Kingdom
| | - Kelly A Dyer
- Department of Genetics, University of Georgia, Athens, GA,
USA
| | | | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology,
Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Mihailo Jelic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | - Aleksandra Patenkovic
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Eric
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Tanaskovic
- Institute for Biological Research “Siniša Stanković”, National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Anna Ullastres
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Sara Guirao-Rico
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Vivien Horváth
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh,
Edinburgh, United Kingdom
| | - Elena Pasyukova
- Institute of Molecular Genetics of the National Research Centre “Kurchatov
Institute”, Moscow, Russia
| | - Vladimir E Alatortsev
- Institute of Molecular Genetics of the National Research Centre “Kurchatov
Institute”, Moscow, Russia
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do
Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do
Porto, Porto, Portugal
| | | | - Iryna Kozeretska
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center, Ministry of Education
and Science of Ukraine, Kyiv, Ukraine
| | - Oleksandr M Maistrenko
- Department of General and Medical Genetics, Taras Shevchenko National
University of Kyiv, Kyiv, Ukraine
- Structural and Computational Biology Unit, European Molecular Biology
Laboratory, Heidelberg, Germany
| | | | - Dmitry V Mukha
- Vavilov Institute of General Genetics, Russian Academy of
Sciences, Moscow, Russia
| | - Heather E Machado
- Department of Biology, Stanford University, Stanford, CA,
USA
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Keric Lamb
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| | - Tânia Paulo
- Departamento de Biologia Animal, Instituto Gulbenkian de Ciência,
Oeiras, Portugal
| | - Leeban Yusuf
- Center for Biological Diversity, University of St. Andrews, St
Andrews, United Kingdom
| | - Antonio Barbadilla
- Department of Genetics and Microbiology, Universitat Autònoma de
Barcelona, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de
Barcelona, Barcelona, Spain
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA,
USA
| | - Paul Schmidt
- Department of Biology, The Pennsylvania State University,
University Park, PA, USA
| | - Josefa Gonzalez
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra,
Barcelona, Spain
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville,
VA, USA
| |
Collapse
|
27
|
Johri P, Charlesworth B, Howell EK, Lynch M, Jensen JD. Revisiting the notion of deleterious sweeps. Genetics 2021; 219:iyab094. [PMID: 34125884 PMCID: PMC9101445 DOI: 10.1093/genetics/iyab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites-both in the presence and absence of interference amongst deleterious mutations-and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Emma K Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Michael Lynch
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
28
|
Voigt S, Kost L. Differences in temperature-sensitive expression of PcG-regulated genes among natural populations of Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab237. [PMID: 34544136 PMCID: PMC8496320 DOI: 10.1093/g3journal/jkab237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Environmental temperature can affect chromatin-based gene regulation, in particular in ectotherms such as insects. Genes regulated by the Polycomb group (PcG) vary in their transcriptional output in response to changes in temperature. Expression of PcG-regulated genes typically increases with decreasing temperatures. Here, we examined variations in temperature-sensitive expression of PcG target genes in natural populations from different climates of Drosophila melanogaster, and differences thereof across different fly stages and tissues. Temperature-induced expression plasticity was found to be stage- and sex-specific with differences in the specificity between the examined PcG target genes. Some tissues and stages, however, showed a higher number of PcG target genes with temperature-sensitive expression than others. Overall, we found higher levels of temperature-induced expression plasticity in African tropical flies from the ancestral species range than in flies from temperate Europe. We also observed differences between temperate flies, however, with more reduction of expression plasticity in warm-temperate than in cold-temperate populations. Although in general, temperature-sensitive expression appeared to be detrimental in temperate climates, there were also cases in which plasticity was increased in temperate flies, as well as no changes in expression plasticity between flies from different climates.
Collapse
Affiliation(s)
- Susanne Voigt
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01217, Germany
| | - Luise Kost
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01217, Germany
| |
Collapse
|
29
|
Yue L, Cao LJ, Chen JC, Gong YJ, Lin YH, Hoffmann AA, Wei SJ. Low levels of genetic differentiation with isolation by geography and environment in populations of Drosophila melanogaster from across China. Heredity (Edinb) 2021; 126:942-954. [PMID: 33686193 PMCID: PMC8178374 DOI: 10.1038/s41437-021-00419-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
The fruit fly, Drosophila melanogaster, is a model species in evolutionary studies. However, population processes of this species in East Asia are poorly studied. Here we examined the population genetic structure of D. melanogaster across China. There were 14 mitochondrial haplotypes with 10 unique ones out of 23 known from around the globe. Pairwise FST values estimated from 15 novel microsatellites ranged from 0 to 0.11, with geographically isolated populations showing the highest level of genetic uniqueness. STRUCTURE analysis identified high levels of admixture at both the individual and population levels. Mantel tests indicated a strong association between genetic distance and geographical distance as well as environmental distance. Full redundancy analysis (RDA) showed that independent effects of environmental conditions and geography accounted for 62.10% and 31.58% of the total explained genetic variance, respectively. When geographic variables were constrained in a partial RDA analysis, the environmental variables bio2 (mean diurnal air temperature range), bio13 (precipitation of the wettest month), and bio15 (precipitation seasonality) were correlated with genetic distance. Our study suggests that demographic history, geographical isolation, and environmental factors have together shaped the population genetic structure of D. melanogaster after its introduction into China.
Collapse
Affiliation(s)
- Lei Yue
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ya-Jun Gong
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yan-Hao Lin
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China ,International Department of Beijing No. 80 High School, Beijing, China
| | - Ary Anthony Hoffmann
- grid.1008.90000 0001 2179 088XBio21 Institute, School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Shu-Jun Wei
- grid.418260.90000 0004 0646 9053Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
30
|
Huang X, Fortier AL, Coffman AJ, Struck TJ, Irby MN, James JE, León-Burguete JE, Ragsdale AP, Gutenkunst RN. Inferring genome-wide correlations of mutation fitness effects between populations. Mol Biol Evol 2021; 38:4588-4602. [PMID: 34043790 PMCID: PMC8476148 DOI: 10.1093/molbev/msab162] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The effect of a mutation on fitness may differ between populations depending on environmental and genetic context, but little is known about the factors that underlie such differences. To quantify genome-wide correlations in mutation fitness effects, we developed a novel concept called a joint distribution of fitness effects (DFE) between populations. We then proposed a new statistic w to measure the DFE correlation between populations. Using simulation, we showed that inferring the DFE correlation from the joint allele frequency spectrum is statistically precise and robust. Using population genomic data, we inferred DFE correlations of populations in humans, Drosophila melanogaster, and wild tomatoes. In these species, we found that the overall correlation of the joint DFE was inversely related to genetic differentiation. In humans and D. melanogaster, deleterious mutations had a lower DFE correlation than tolerated mutations, indicating a complex joint DFE. Altogether, the DFE correlation can be reliably inferred, and it offers extensive insight into the genetics of population divergence.
Collapse
|
31
|
Schwarz F, Wierzbicki F, Senti KA, Kofler R. Tirant Stealthily Invaded Natural Drosophila melanogaster Populations during the Last Century. Mol Biol Evol 2021; 38:1482-1497. [PMID: 33247725 PMCID: PMC8042734 DOI: 10.1093/molbev/msaa308] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was long thought that solely three different transposable elements (TEs)-the I-element, the P-element, and hobo-invaded natural Drosophila melanogaster populations within the last century. By sequencing the "living fossils" of Drosophila research, that is, D. melanogaster strains sampled from natural populations at different time points, we show that a fourth TE, Tirant, invaded D. melanogaster populations during the past century. Tirant likely spread in D. melanogaster populations around 1938, followed by the I-element, hobo, and, lastly, the P-element. In addition to the recent insertions of the canonical Tirant, D. melanogaster strains harbor degraded Tirant sequences in the heterochromatin which are likely due to an ancient invasion, likely predating the split of D. melanogaster and D. simulans. These degraded insertions produce distinct piRNAs that were unable to prevent the novel Tirant invasion. In contrast to the I-element, P-element, and hobo, we did not find that Tirant induces any hybrid dysgenesis symptoms. This absence of apparent phenotypic effects may explain the late discovery of the Tirant invasion. Recent Tirant insertions were found in all investigated natural populations. Populations from Tasmania carry distinct Tirant sequences, likely due to a founder effect. By investigating the TE composition of natural populations and strains sampled at different time points, insertion site polymorphisms, piRNAs, and phenotypic effects, we provide a comprehensive study of a natural TE invasion.
Collapse
Affiliation(s)
- Florian Schwarz
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
32
|
Garud NR, Messer PW, Petrov DA. Detection of hard and soft selective sweeps from Drosophila melanogaster population genomic data. PLoS Genet 2021; 17:e1009373. [PMID: 33635910 PMCID: PMC7946363 DOI: 10.1371/journal.pgen.1009373] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/10/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022] Open
Abstract
Whether hard sweeps or soft sweeps dominate adaptation has been a matter of much debate. Recently, we developed haplotype homozygosity statistics that (i) can detect both hard and soft sweeps with similar power and (ii) can classify the detected sweeps as hard or soft. The application of our method to population genomic data from a natural population of Drosophila melanogaster (DGRP) allowed us to rediscover three known cases of adaptation at the loci Ace, Cyp6g1, and CHKov1 known to be driven by soft sweeps, and detected additional candidate loci for recent and strong sweeps. Surprisingly, all of the top 50 candidates showed patterns much more consistent with soft rather than hard sweeps. Recently, Harris et al. 2018 criticized this work, suggesting that all the candidate loci detected by our haplotype statistics, including the positive controls, are unlikely to be sweeps at all and that instead these haplotype patterns can be more easily explained by complex neutral demographic models. They also claim that these neutral non-sweeps are likely to be hard instead of soft sweeps. Here, we reanalyze the DGRP data using a range of complex admixture demographic models and reconfirm our original published results suggesting that the majority of recent and strong sweeps in D. melanogaster are first likely to be true sweeps, and second, that they do appear to be soft. Furthermore, we discuss ways to take this work forward given that most demographic models employed in such analyses are necessarily too simple to capture the full demographic complexity, while more realistic models are unlikely to be inferred correctly because they require a large number of free parameters.
Collapse
Affiliation(s)
- Nandita R. Garud
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, United States of America
- Department of Human Genetics, University of California, Los Angeles, California, United States of America
| | - Philipp W. Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
33
|
Bogaerts‐Márquez M, Guirao‐Rico S, Gautier M, González J. Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster. Mol Ecol 2021; 30:938-954. [PMID: 33350518 PMCID: PMC7986194 DOI: 10.1111/mec.15783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
While several studies in a diverse set of species have shed light on the genes underlying adaptation, our knowledge on the selective pressures that explain the observed patterns lags behind. Drosophila melanogaster is a valuable organism to study environmental adaptation because this species originated in Southern Africa and has recently expanded worldwide, and also because it has a functionally well-annotated genome. In this study, we aimed to decipher which environmental variables are relevant for adaptation of D. melanogaster natural populations in Europe and North America. We analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations collected in 20 European and 11 North American locations. We used the BayPass software to identify single nucleotide polymorphisms (SNPs) and transposable elements (TEs) showing signature of adaptive differentiation across populations, as well as significant associations with 59 environmental variables related to temperature, rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found that in addition to temperature and rainfall, wind related variables are also relevant for D. melanogaster environmental adaptation. Interestingly, 23%-51% of the genes that showed significant associations with environmental variables were not found overly differentiated across populations. In addition to SNPs, we also identified 10 reference transposable element insertions associated with environmental variables. Our results showed that genome-environment association analysis can identify adaptive genetic variants that are undetected by population differentiation analysis while also allowing the identification of candidate environmental drivers of adaptation.
Collapse
Affiliation(s)
- María Bogaerts‐Márquez
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Sara Guirao‐Rico
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| | - Mathieu Gautier
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniversité de MontpellierMontpellierFrance
| | - Josefa González
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- The European Drosophila Population Genomics Consortium (DrosEU)Université de MontpellierMontpellierFrance
| |
Collapse
|
34
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
35
|
Kapopoulou A, Kapun M, Pieper B, Pavlidis P, Wilches R, Duchen P, Stephan W, Laurent S. Demographic analyses of a new sample of haploid genomes from a Swedish population of Drosophila melanogaster. Sci Rep 2020; 10:22415. [PMID: 33376238 PMCID: PMC7772335 DOI: 10.1038/s41598-020-79720-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 01/27/2023] Open
Abstract
European and African natural populations of Drosophila melanogaster have been the focus of several studies aiming at inferring demographic and adaptive processes based on genetic variation data. However, in these analyses little attention has been given to gene flow between African and European samples. Here we present a dataset consisting of 14 fully sequenced haploid genomes sampled from a natural population from the northern species range (Umeå, Sweden). We co-analyzed this new data with an African population to compare the likelihood of several competing demographic scenarios for European and African populations and show that gene flow improves the fit of demographic models to data.
Collapse
Affiliation(s)
- Adamandia Kapopoulou
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Martin Kapun
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, 8057, Zurich, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, 1090, Vienna, Austria
- Département de Biologie, Université de Fribourg, 1700, Fribourg, Switzerland
| | - Bjorn Pieper
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Ricardo Wilches
- Section of Evolutionary Biology, Department of Biology II, University of Munich, 82152, Planegg, Germany
| | - Pablo Duchen
- Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
| | - Wolfgang Stephan
- Leibniz Institute for Evolution and Biodiversity Science, Natural History Museum, 10115, Berlin, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany.
| |
Collapse
|
36
|
Kapun M, Barrón MG, Staubach F, Obbard DJ, Wiberg RAW, Vieira J, Goubert C, Rota-Stabelli O, Kankare M, Bogaerts-Márquez M, Haudry A, Waidele L, Kozeretska I, Pasyukova EG, Loeschcke V, Pascual M, Vieira CP, Serga S, Montchamp-Moreau C, Abbott J, Gibert P, Porcelli D, Posnien N, Sánchez-Gracia A, Grath S, Sucena É, Bergland AO, Guerreiro MPG, Onder BS, Argyridou E, Guio L, Schou MF, Deplancke B, Vieira C, Ritchie MG, Zwaan BJ, Tauber E, Orengo DJ, Puerma E, Aguadé M, Schmidt P, Parsch J, Betancourt AJ, Flatt T, González J. Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA Viruses. Mol Biol Evol 2020; 37:2661-2678. [PMID: 32413142 PMCID: PMC7475034 DOI: 10.1093/molbev/msaa120] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.
Collapse
Affiliation(s)
- Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Evolutionary Biology and Environmental Sciences, University of Zürich, Zürich, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Maite G Barrón
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - R Axel W Wiberg
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Clément Goubert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’ Adige, Italy
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - María Bogaerts-Márquez
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Annabelle Haudry
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Lena Waidele
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Ecology, University of Freiburg, Freiburg, Germany
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- State Institution National Antarctic Scientific Center of Ministry of Education and Science of Ukraine, Kyiv, Ukraine
| | - Elena G Pasyukova
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genome Variation, Institute of Molecular Genetics of RAS, Moscow, Russia
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal
| | - Svitlana Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- General and Medical Genetics Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Patricia Gibert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Damiano Porcelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Animal and Plant Sciences, Sheffield, United Kingdom
| | - Nico Posnien
- The European Drosophila Population Genomics Consortium (DrosEU)
- Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Universität Göttingen, Göttingen, Germany
| | - Alejandro Sánchez-Gracia
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Élio Sucena
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alan O Bergland
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Virginia, Charlottesville, VA
| | - Maria Pilar Garcia Guerreiro
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Lain Guio
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Bioscience—Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Bart Deplancke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Bio-engineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Cristina Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, School of Biology, University of St. Andrews, St Andrews, Scotland
| | - Bas J Zwaan
- The European Drosophila Population Genomics Consortium (DrosEU)
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Eran Tauber
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Montserrat Aguadé
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Paul Schmidt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution, Ecology, and Behaviour, University of Liverpool, Liverpool, United Kingdom
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
37
|
Shahandeh MP, Brock C, Turner TL. Light dependent courtship behavior in Drosophila simulans and D. melanogaster. PeerJ 2020; 8:e9499. [PMID: 32742789 PMCID: PMC7369021 DOI: 10.7717/peerj.9499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/17/2020] [Indexed: 11/20/2022] Open
Abstract
Differences in courtship signals and perception are well-known among Drosophila species. One such described difference is the dependency on light, and thus presumably vision, for copulation success. Many studies have described a difference in light-dependent copulation success between D. melanogaster and D. simulans, identifying D. simulans as a light-dependent species, and D. melanogaster as a light-independent one. However, many of these studies use assays of varying design and few strains to represent the entire species. Here, we attempt to better characterize this purported difference using 11 strains of each species, paired by collection location, in behavioral assays conducted at two different exposure times. We show that, while there is a species-wide difference in magnitude of light-dependent copulation success, D. melanogaster copulation success is, on average, still impaired in the dark at both exposure times we measured. Additionally, there is significant variation in strain-specific ability to copulate in the dark in both species across two different exposure times. We find that this variation correlates strongly with longitude in D. melanogaster, but not in D. simulans. We hypothesize that differences in species history and demography may explain behavioral variation. Finally, we use courtship assays to show that light-dependent copulation success in one D. simulans strain is driven in part by both males and females. We discuss potential differences in courtship signals and/or signal importance between these species and potential for further comparative studies for functional characterization.
Collapse
Affiliation(s)
- Michael P. Shahandeh
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Cameryn Brock
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Thomas L. Turner
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
38
|
Zarubin M, Yakhnenko A, Kravchenko E. Transcriptome analysis of Drosophila melanogaster laboratory strains of different geographical origin after long-term laboratory maintenance. Ecol Evol 2020; 10:7082-7093. [PMID: 32760513 PMCID: PMC7391317 DOI: 10.1002/ece3.6410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 01/18/2023] Open
Abstract
Positive selection may be the main factor of the between-population divergence in gene expression. Expression profiles of two Drosophila melanogaster laboratory strains of different geographical origin and long-term laboratory maintenance were analyzed using microchip arrays encompassing probes for 18,500 transcripts. The Russian strain D18 and the North American strain Canton-S were compared. A set of 223 known or putative genes demonstrated significant changes in expression levels between these strains. Differentially expressed genes (DEG) were enriched in response to DDT (p = .0014), proteolysis (p = 2.285E-5), transmembrane transport (p = 1.03E-4), carbohydrate metabolic process (p = .0317), protein homotetramerization (p = .0444), and antibacterial humoral response (p = 425E-4). The expression in subset of genes from different categories was verified by qRT-PCR. Analysis of transcript abundance between Canton-S and D18 strains allowed to select several genes to estimate their participation in latitude adaptation. Expression of selected genes was analyzed in five D. melanogaster lines of different geographic origins by qRT-PCR, and we found two candidate genes that may be associated with latitude adaptation in adult flies-smp-30 and Cda9. Quite possible that several alleles of these genes may be important for insect survival in the environments of global warming. It is interesting that the number of genes involved in local adaptation demonstrates expression level appropriate to their geographical origin even after decades of laboratory maintenance.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| | - Alena Yakhnenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
- Laboratory of Analytical and Bioorganic ChemistryLimnological InstituteSiberian Branch of the Russian Academy of ScienceIrkutskRussia
| | - Elena Kravchenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| |
Collapse
|
39
|
Johri P, Charlesworth B, Jensen JD. Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection. Genetics 2020; 215:173-192. [PMID: 32152045 PMCID: PMC7198275 DOI: 10.1534/genetics.119.303002] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/05/2020] [Indexed: 01/27/2023] Open
Abstract
The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models, and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes and the strength of purifying selection affect patterns of variation at "neutral" sites near functional genomic components. We propose a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation, and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive selection can be assessed.
Collapse
Affiliation(s)
- Parul Johri
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
40
|
Sprengelmeyer QD, Mansourian S, Lange JD, Matute DR, Cooper BS, Jirle EV, Stensmyr MC, Pool JE. Recurrent Collection of Drosophila melanogaster from Wild African Environments and Genomic Insights into Species History. Mol Biol Evol 2020; 37:627-638. [PMID: 31730190 PMCID: PMC7038662 DOI: 10.1093/molbev/msz271] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A long-standing enigma concerns the geographic and ecological origins of the intensively studied vinegar fly, Drosophila melanogaster. This globally distributed human commensal is thought to originate from sub-Saharan Africa, yet until recently, it had never been reported from undisturbed wilderness environments that could reflect its precommensal niche. Here, we document the collection of 288 D. melanogaster individuals from multiple African wilderness areas in Zambia, Zimbabwe, and Namibia. The presence of D. melanogaster in these remote woodland environments is consistent with an ancestral range in southern-central Africa, as opposed to equatorial regions. After sequencing the genomes of 17 wilderness-collected flies collected from Kafue National Park in Zambia, we found reduced genetic diversity relative to town populations, elevated chromosomal inversion frequencies, and strong differences at specific genes including known insecticide targets. Combining these genomes with existing data, we probed the history of this species' geographic expansion. Demographic estimates indicated that expansion from southern-central Africa began ∼10,000 years ago, with a Saharan crossing soon after, but expansion from the Middle East into Europe did not begin until roughly 1,400 years ago. This improved model of demographic history will provide an important resource for future evolutionary and genomic studies of this key model organism. Our findings add context to the history of D. melanogaster, while opening the door for future studies on the biological basis of adaptation to human environments.
Collapse
Affiliation(s)
| | | | - Jeremy D Lange
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT
| | | | | | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
41
|
Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J. Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190341. [PMID: 32075557 PMCID: PMC7061994 DOI: 10.1098/rstb.2019.0341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most of the genotype–phenotype analyses to date have largely centred attention on single nucleotide polymorphisms. However, transposable element (TE) insertions have arisen as a plausible addition to the study of the genotypic–phenotypic link because of to their role in genome function and evolution. In this work, we investigate the contribution of TE insertions to the regulation of gene expression in response to insecticides. We exposed four Drosophila melanogaster strains to malathion, a commonly used organophosphate insecticide. By combining information from different approaches, including RNA-seq and ATAC-seq, we found that TEs can contribute to the regulation of gene expression under insecticide exposure by rewiring cis-regulatory networks. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.
Collapse
Affiliation(s)
- Judit Salces-Ortiz
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Carlos Vargas-Chavez
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Lain Guio
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriel E Rech
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|