1
|
Elango R, Nilavar NM, Li AG, Nguyen D, Rass E, Duffey EE, Jiang Y, Abakir A, Willis NA, Houseley J, Scully R. Two-ended recombination at a Flp-nickase-broken replication fork. Mol Cell 2025; 85:78-90.e3. [PMID: 39631396 PMCID: PMC11733529 DOI: 10.1016/j.molcel.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Replication fork collision with a DNA nick can generate a one-ended break, fostering genomic instability. The opposing fork's collision with the nick could form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells. A Flp-nick induces two-ended, BRCA2/RAD51-dependent short tract gene conversion (STGC), BRCA2/RAD51-independent long tract gene conversion, and discoordinated two-ended invasions. HR pathways induced by a replication-independent break and the Flp-nickase differ in their dependence on BRCA1, MRE11, and CtIP. To determine the origin of the second DNA end during Flp-nickase-induced STGC, we blocked the opposing fork using a Tus/Ter replication fork barrier (RFB). Flp-nickase-induced STGC remained robust and two ended. Thus, a single replication fork's collision with a Flp-nick triggers two-ended HR, possibly reflecting replicative bypass of lagging strand nicks. This response may limit genomic instability during replication of nicked DNA.
Collapse
Affiliation(s)
- Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Namrata M Nilavar
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andrew G Li
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Nguyen
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Emilie Rass
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Erin E Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Yuning Jiang
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Abdulkadir Abakir
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan Houseley
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Scully R, Walter JC, Nussenzweig A. One-ended and two-ended breaks at nickase-broken replication forks. DNA Repair (Amst) 2024; 144:103783. [PMID: 39504607 DOI: 10.1016/j.dnarep.2024.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Replisome collision with a nicked parental DNA template can lead to the formation of a replication-associated double strand break (DSB). How this break is repaired has implications for cancer initiation, cancer therapy and therapeutic gene editing. Recent work shows that collision of a replisome with a nicked DNA template can give rise to either a single-ended (se) or a double-ended (de)DSB, with potentially divergent effects on repair pathway choice and genomic instability. Emerging evidence suggests that the biochemical environment of the broken mammalian replication fork may be specialized in such a way as to skew repair in favor of homologous recombination at the expense of non-homologous end joining.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Triplett MK, Johnson MJ, Symington LS. Induction of homologous recombination by site-specific replication stress. DNA Repair (Amst) 2024; 142:103753. [PMID: 39190984 PMCID: PMC11425181 DOI: 10.1016/j.dnarep.2024.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
DNA replication stress is one of the primary causes of genome instability. In response to replication stress, cells can employ replication restart mechanisms that rely on homologous recombination to resume replication fork progression and preserve genome integrity. In this review, we provide an overview of various methods that have been developed to induce site-specific replication fork stalling or collapse in eukaryotic cells. In particular, we highlight recent studies of mechanisms of replication-associated recombination resulting from site-specific protein-DNA barriers and single-strand breaks, and we discuss the contributions of these findings to our understanding of the consequences of these forms of stress on genome stability.
Collapse
Affiliation(s)
- Marina K Triplett
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Matthew J Johnson
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Program in Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, United States.
| |
Collapse
|
4
|
Elango R, Nilavar N, Li AG, Duffey EE, Jiang Y, Nguyen D, Abakir A, Willis NA, Houseley J, Scully R. Two-ended recombination at a Flp-nickase-broken replication fork. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588130. [PMID: 38645103 PMCID: PMC11030319 DOI: 10.1101/2024.04.10.588130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Collision of a replication fork with a DNA nick is thought to generate a one-ended break, fostering genomic instability. Collision of the opposing converging fork with the nick could, in principle, form a second DNA end, enabling conservative repair by homologous recombination (HR). To study mechanisms of nickase-induced HR, we developed the Flp recombinase "step arrest" nickase in mammalian cells. Flp-nickase-induced HR entails two-ended, BRCA2/RAD51-dependent short tract gene conversion (STGC), BRCA2/RAD51-independent long tract gene conversion, and discoordinated two-ended invasions. HR induced by a replication-independent break and by the Flp-nickase differ in their dependence on BRCA1 . To determine the origin of the second DNA end during Flp-nickase-induced STGC, we blocked the opposing fork using a site-specific Tus/ Ter replication fork barrier. Flp-nickase-induced STGC remained robust and two-ended. Thus, collision of a single replication fork with a Flp-nick can trigger two-ended HR, possibly reflecting replicative bypass of lagging strand nicks. This response may limit genomic instability during replication of a nicked DNA template.
Collapse
|
5
|
Sato G, Kuroda K. Overcoming the Limitations of CRISPR-Cas9 Systems in Saccharomyces cerevisiae: Off-Target Effects, Epigenome, and Mitochondrial Editing. Microorganisms 2023; 11:microorganisms11041040. [PMID: 37110464 PMCID: PMC10145089 DOI: 10.3390/microorganisms11041040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Modification of the genome of the yeast Saccharomyces cerevisiae has great potential for application in biological research and biotechnological advancements, and the CRISPR-Cas9 system has been increasingly employed for these purposes. The CRISPR-Cas9 system enables the precise and simultaneous modification of any genomic region of the yeast to a desired sequence by altering only a 20-nucleotide sequence within the guide RNA expression constructs. However, the conventional CRISPR-Cas9 system has several limitations. In this review, we describe the methods that were developed to overcome these limitations using yeast cells. We focus on three types of developments: reducing the frequency of unintended editing to both non-target and target sequences in the genome, inducing desired changes in the epigenetic state of the target region, and challenging the expansion of the CRISPR-Cas9 system to edit genomes within intracellular organelles such as mitochondria. These developments using yeast cells to overcome the limitations of the CRISPR-Cas9 system are a key factor driving the advancement of the field of genome editing.
Collapse
Affiliation(s)
- Genki Sato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Poggi L, Emmenegger L, Descorps-Declère S, Dumas B, Richard GF. Differential efficacies of Cas nucleases on microsatellites involved in human disorders and associated off-target mutations. Nucleic Acids Res 2021; 49:8120-8134. [PMID: 34233005 PMCID: PMC8373144 DOI: 10.1093/nar/gkab569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Microsatellite expansions are the cause of >20 neurological or developmental human disorders. Shortening expanded repeats using specific DNA endonucleases may be envisioned as a gene editing approach. Here, we measured the efficacy of several CRISPR-Cas nucleases to induce recombination within disease-related microsatellites, in Saccharomyces cerevisiae. Broad variations in nuclease performances were detected on all repeat tracts. Wild-type Streptococcus pyogenes Cas9 (SpCas9) was more efficient than Staphylococcus aureus Cas9 on all repeats tested, except (CAG)33. Cas12a (Cpf1) was the most efficient on GAA trinucleotide repeats, whereas GC-rich repeats were more efficiently cut by SpCas9. The main genetic factor underlying Cas efficacy was the propensity of the recognition part of the sgRNA to form a stable secondary structure, independently of its structural part. This suggests that such structures form in vivo and interfere with sgRNA metabolism. The yeast genome contains 221 natural CAG/CTG and GAA/CTT trinucleotide repeats. Deep sequencing after nuclease induction identified three of them as carrying statistically significant low frequency mutations, corresponding to SpCas9 off-target double-strand breaks.
Collapse
Affiliation(s)
- Lucie Poggi
- Institut Pasteur, CNRS, UMR3525, 25 rue du Dr Roux, F-75015 Paris, France.,Sorbonne Université, Collège Doctoral, 4 Place Jussieu, F-75005 Paris, France.,Biologics Research, Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | - Lisa Emmenegger
- Institut Pasteur, CNRS, UMR3525, 25 rue du Dr Roux, F-75015 Paris, France
| | - Stéphane Descorps-Declère
- Institut Pasteur, CNRS, UMR3525, 25 rue du Dr Roux, F-75015 Paris, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, Department of Computational Biology, USR3756 CNRS, F-75015 Paris, France
| | - Bruno Dumas
- Biologics Research, Sanofi R&D, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | - Guy-Franck Richard
- Institut Pasteur, CNRS, UMR3525, 25 rue du Dr Roux, F-75015 Paris, France.,Sorbonne Université, Collège Doctoral, 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|
7
|
Maizels N, Davis L. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res 2019; 46:6962-6973. [PMID: 29986051 PMCID: PMC6101574 DOI: 10.1093/nar/gky588] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Discontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3′-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair. Despite their apparent simplicity, nicks can have significant consequences for genome stability. The availability of enzymes that can introduce a nick almost anywhere in a large genome now makes it possible to systematically analyze repair of nicks. Recent experiments demonstrate that nicks can initiate recombination via pathways distinct from those active at double-strand breaks (DSBs). Recombination at targeted DNA nicks can be very efficient, and because nicks are intrinsically less mutagenic than DSBs, nick-initiated gene correction is useful for genome engineering and gene therapy. This review revisits some physiological examples of recombination at nicks, and outlines experiments that have demonstrated that nicks initiate homology-directed repair by distinctive pathways, emphasizing research that has contributed to our current mechanistic understanding of recombination at nicks in mammalian cells.
Collapse
Affiliation(s)
- Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Hum YF, Jinks-Robertson S. DNA strand-exchange patterns associated with double-strand break-induced and spontaneous mitotic crossovers in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007302. [PMID: 29579095 PMCID: PMC5886692 DOI: 10.1371/journal.pgen.1007302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022] Open
Abstract
Mitotic recombination can result in loss of heterozygosity and chromosomal rearrangements that shape genome structure and initiate human disease. Engineered double-strand breaks (DSBs) are a potent initiator of recombination, but whether spontaneous events initiate with the breakage of one or both DNA strands remains unclear. In the current study, a crossover (CO)-specific assay was used to compare heteroduplex DNA (hetDNA) profiles, which reflect strand exchange intermediates, associated with DSB-induced versus spontaneous events in yeast. Most DSB-induced CO products had the two-sided hetDNA predicted by the canonical DSB repair model, with a switch in hetDNA position from one product to the other at the position of the break. Approximately 40% of COs, however, had hetDNA on only one side of the initiating break. This anomaly can be explained by a modified model in which there is frequent processing of an early invasion (D-loop) intermediate prior to extension of the invading end. Finally, hetDNA tracts exhibited complexities consistent with frequent expansion of the DSB into a gap, migration of strand-exchange junctions, and template switching during gap-filling reactions. hetDNA patterns in spontaneous COs isolated in either a wild-type background or in a background with elevated levels of reactive oxygen species (tsa1Δ mutant) were similar to those associated with the DSB-induced events, suggesting that DSBs are the major instigator of spontaneous mitotic recombination in yeast.
Collapse
Affiliation(s)
- Yee Fang Hum
- Department of Molecular Genetics and Microbiology and the University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology and the University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
9
|
Abstract
Nicks are the most common form of DNA damage, but they have only recently been shown to initiate damage that requires repair. Analysis of the pathways of nick repair in human cells has benefited from the development of enzymes that target nicks to specific sites in the genome and of reporters that enable rapid analysis of homology-directed repair and mutagenic end joining. Nicks undergo efficient repair by single-stranded oligonucleotide donors complementary to either the nicked or intact DNA strand, via pathways that are normally suppressed by RAD51. Here we discuss the details of reporter assays that take advantage of the convenience and sensitivity of flow cytometry to analyze pathways of repair at targeted DNA nicks. These assays are readily carried out in 96-well format cell culture plates, enabling mechanistic questions to be addressed by determining the contributions of specific factors by depletion and/or ectopic expression.
Collapse
Affiliation(s)
- Luther Davis
- University of Washington, Seattle, WA, United States.
| | - Yinbo Zhang
- University of Washington, Seattle, WA, United States
| | - Nancy Maizels
- University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
McVey M, Khodaverdian VY, Meyer D, Cerqueira PG, Heyer WD. Eukaryotic DNA Polymerases in Homologous Recombination. Annu Rev Genet 2017; 50:393-421. [PMID: 27893960 DOI: 10.1146/annurev-genet-120215-035243] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Homologous recombination (HR) is a central process to ensure genomic stability in somatic cells and during meiosis. HR-associated DNA synthesis determines in large part the fidelity of the process. A number of recent studies have demonstrated that DNA synthesis during HR is conservative, less processive, and more mutagenic than replicative DNA synthesis. In this review, we describe mechanistic features of DNA synthesis during different types of HR-mediated DNA repair, including synthesis-dependent strand annealing, break-induced replication, and meiotic recombination. We highlight recent findings from diverse eukaryotic organisms, including humans, that suggest both replicative and translesion DNA polymerases are involved in HR-associated DNA synthesis. Our focus is to integrate the emerging literature about DNA polymerase involvement during HR with the unique aspects of these repair mechanisms, including mutagenesis and template switching.
Collapse
Affiliation(s)
- Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts 02155;
| | | | - Damon Meyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,College of Health Sciences, California Northstate University, Rancho Cordova, California 95670
| | - Paula Gonçalves Cerqueira
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616;
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616; .,Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| |
Collapse
|
11
|
Vriend LEM, Krawczyk PM. Nick-initiated homologous recombination: Protecting the genome, one strand at a time. DNA Repair (Amst) 2016; 50:1-13. [PMID: 28087249 DOI: 10.1016/j.dnarep.2016.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Homologous recombination (HR) is an essential, widely conserved mechanism that utilizes a template for accurate repair of DNA breaks. Some early HR models, developed over five decades ago, anticipated single-strand breaks (nicks) as initiating lesions. Subsequent studies favored a more double-strand break (DSB)-centered view of HR initiation and at present this pathway is primarily considered to be associated with DSB repair. However, mounting evidence suggests that nicks can indeed initiate HR directly, without first being converted to DSBs. Moreover, recent studies reported on novel branches of nick-initiated HR (nickHR) that rely on single-, rather than double-stranded repair templates and that are characterized by mechanistically and genetically unique properties. The physiological significance of nickHR is not well documented, but its high-fidelity nature and low mutagenic potential are relevant in recently developed, precise gene editing approaches. Here, we review the evidence for stimulation of HR by nicks, as well as the data on the interactions of nickHR with other DNA repair pathways and on its mechanistic properties. We conclude that nickHR is a bona-fide pathway for nick repair, sharing the molecular machinery with the canonical HR but nevertheless characterized by unique properties that secure its inclusion in DNA repair models and warrant future investigations.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
13
|
Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A 2014; 111:E924-32. [PMID: 24556991 DOI: 10.1073/pnas.1400236111] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA nicks are the most common form of DNA damage, and if unrepaired can give rise to genomic instability. In human cells, nicks are efficiently repaired via the single-strand break repair pathway, but relatively little is known about the fate of nicks not processed by that pathway. Here we show that homology-directed repair (HDR) at nicks occurs via a mechanism distinct from HDR at double-strand breaks (DSBs). HDR at nicks, but not DSBs, is associated with transcription and is eightfold more efficient at a nick on the transcribed strand than at a nick on the nontranscribed strand. HDR at nicks can proceed by a pathway dependent upon canonical HDR factors RAD51 and BRCA2; or by an efficient alternative pathway that uses either ssDNA or nicked dsDNA donors and that is strongly inhibited by RAD51 and BRCA2. Nicks generated by either I-AniI or the CRISPR/Cas9(D10A) nickase are repaired by the alternative HDR pathway with little accompanying mutagenic end-joining, so this pathway may be usefully applied to genome engineering. These results suggest that alternative HDR at nicks may be stimulated in physiological contexts in which canonical RAD51/BRCA2-dependent HDR is compromised or down-regulated, which occurs frequently in tumors.
Collapse
|
14
|
Katz SS, Gimble FS, Storici F. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells. PLoS One 2014; 9:e88840. [PMID: 24558436 PMCID: PMC3928301 DOI: 10.1371/journal.pone.0088840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
Genetic modification of a chromosomal locus to replace an existing dysfunctional allele with a corrected sequence can be accomplished through targeted gene correction using the cell's homologous recombination (HR) machinery. Gene targeting is stimulated by generation of a DNA double-strand break (DSB) at or near the site of correction, but repair of the break via non-homologous end-joining without using the homologous template can lead to deleterious genomic changes such as in/del mutations, or chromosomal rearrangements. By contrast, generation of a DNA single-strand break (SSB), or nick, can stimulate gene correction without the problems of DSB repair because the uncut DNA strand acts as a template to permit healing without alteration of genetic material. Here, we examine the ability of a nicking variant of the I-SceI endonuclease (K223I I-SceI) to stimulate gene targeting in yeast Saccharomyces cerevisiae and in human embryonic kidney (HEK-293) cells. K223I I-SceI is proficient in both yeast and human cells and promotes gene correction up to 12-fold. We show that K223I I-SceI-driven recombination follows a different mechanism than wild-type I-SceI-driven recombination, thus indicating that the initial DNA break that stimulates recombination is not a low-level DSB but a nick. We also demonstrate that K223I I-SceI efficiently elevates gene targeting at loci distant from the break site in yeast cells. These findings establish the capability of the I-SceI nickase to enhance recombination in yeast and human cells, strengthening the notion that nicking enzymes could be effective tools in gene correction strategies for applications in molecular biology, biotechnology, and gene therapy.
Collapse
Affiliation(s)
- Samantha S. Katz
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Frederick S. Gimble
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Abstract
Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways.
Collapse
Affiliation(s)
- Olivier Humbert
- Departments of Immunology and Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
16
|
Davis L, Maizels N. DNA nicks promote efficient and safe targeted gene correction. PLoS One 2011; 6:e23981. [PMID: 21912657 PMCID: PMC3164693 DOI: 10.1371/journal.pone.0023981] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/01/2011] [Indexed: 01/15/2023] Open
Abstract
Targeted gene correction employs a site-specific DNA lesion to promote homologous recombination that eliminates mutation in a disease gene of interest. The double-strand break typically used to initiate correction can also result in genomic instability if deleterious repair occurs rather than gene correction, possibly compromising the safety of targeted gene correction. Here we show that single-strand breaks (nicks) and double-strand breaks both promote efficient gene correction. However, breaks promote high levels of inadvertent but heritable genomic alterations both locally and elsewhere in the genome, while nicks are accompanied by essentially no collateral local mutagenesis, and thus provide a safer approach to gene correction. Defining efficacy as the ratio of gene correction to local deletion, nicks initiate gene correction with 70-fold greater efficacy than do double-strand breaks (29.0±6.0% and 0.42±0.03%, respectively). Thus nicks initiate efficient gene correction, with limited local mutagenesis. These results have clear therapeutic implications, and should inform future design of meganucleases for targeted gene correction.
Collapse
Affiliation(s)
- Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Northwest Genome Engineering Consortium, Seattle, Washington, United States of America
| | - Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, United States of America
- Northwest Genome Engineering Consortium, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
From the Cover: mitotic gene conversion events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events. Proc Natl Acad Sci U S A 2010; 107:7383-8. [PMID: 20231456 DOI: 10.1073/pnas.1001940107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a previous study, we mapped spontaneous mitotic reciprocal crossovers (RCOs) in a 120-kb interval of chromosome V of Saccharomyces cerevisiae. About three-quarters of the crossovers were associated with gene conversion tracts. About 40% of these conversion tracts had the pattern expected as a consequence of repair of a double-stranded DNA break (DSB) of an unreplicated chromosome. We test this hypothesis by examining the crossovers and gene conversion events induced by gamma irradiation in G1- and G2-arrested diploid yeast cells. The gene conversion patterns of G1-irradiated cells (but not G2-irradiated cells) mimic conversion events associated with spontaneous RCOs, confirming our previous conclusion that many spontaneous crossovers are initiated by a DSB on an unreplicated chromosome.
Collapse
|
18
|
van Nierop GP, de Vries AAF, Holkers M, Vrijsen KR, Gonçalves MAFV. Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease. Nucleic Acids Res 2009; 37:5725-36. [PMID: 19651880 PMCID: PMC2761290 DOI: 10.1093/nar/gkp643] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/17/2009] [Accepted: 07/19/2009] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination (HR) is a highly accurate mechanism of DNA repair that can be exploited for homology-directed gene targeting. Since in most cell types HR occurs very infrequently (approximately 10(-6) to 10(-8)), its practical application has been largely restricted to specific experimental systems that allow selection of the few cells that become genetically modified. HR-mediated gene targeting has nonetheless revolutionized genetics by greatly facilitating the analysis of mammalian gene function. Recent studies showed that generation of double-strand DNA breaks at specific loci by designed endonucleases greatly increases the rate of homology-directed gene repair. These findings opened new perspectives for HR-based genome editing in higher eukaryotes. Here, we demonstrate by using donor DNA templates together with the adeno-associated virus (AAV) Rep78 and Rep68 proteins that sequence- and strand-specific cleavage at a native, predefined, human locus can also greatly enhance homology-directed gene targeting. Our findings argue for the development of other strategies besides direct induction of double-strand chromosomal breaks to achieve efficient and heritable targeted genetic modification of cells and organisms. Finally, harnessing the cellular HR pathway through Rep-mediated nicking expands the range of strategies that make use of AAV elements to bring about stable genetic modification of human cells.
Collapse
Affiliation(s)
| | | | | | | | - Manuel A. F. V. Gonçalves
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
19
|
McConnell Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ, Stoddard BL. Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc Natl Acad Sci U S A 2009; 106:5099-104. [PMID: 19276110 PMCID: PMC2664052 DOI: 10.1073/pnas.0810588106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Indexed: 11/18/2022] Open
Abstract
Homing endonucleases stimulate gene conversion by generating site-specific DNA double-strand breaks that are repaired by homologous recombination. These enzymes are potentially valuable tools for targeted gene correction and genome engineering. We have engineered a variant of the I-AniI homing endonuclease that nicks its cognate target site. This variant contains a mutation of a basic residue essential for proton transfer and solvent activation in one active site. The cleavage mechanism, DNA-binding affinity, and substrate specificity profile of the nickase are similar to the wild-type enzyme. I-AniI nickase stimulates targeted gene correction in human cells, in cis and in trans, at approximately 1/4 the efficiency of the wild-type enzyme. The development of sequence-specific nicking enzymes like the I-AniI nickase will facilitate comparative analyses of DNA repair and mutagenesis induced by single- or double-strand breaks.
Collapse
Affiliation(s)
- Audrey McConnell Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Ryo Takeuchi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| | - Stefan Pellenz
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Luther Davis
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Nancy Maizels
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Immunology and Biochemisty, University of Washington Medical School, Seattle, WA 98195
| | - Raymond J. Monnat
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
- Departments of Pathology and Genome Sciences, and
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, North Seattle, WA 98109
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
- Northwest Genome Engineering Consortium, Seattle, WA 98101; and
| |
Collapse
|
20
|
Lee PS, Greenwell PW, Dominska M, Gawel M, Hamilton M, Petes TD. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet 2009; 5:e1000410. [PMID: 19282969 PMCID: PMC2646836 DOI: 10.1371/journal.pgen.1000410] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/06/2009] [Indexed: 12/04/2022] Open
Abstract
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle. Most higher organisms have two copies of several different types of chromosomes. For example, the human female has 23 pairs of chromosomes. Although the chromosome pairs have very similar sequences, they are not identical. Members of a chromosome pair can swap segments from one chromosome to the other; these exchanges are called “recombination.” Most previous studies of recombination have been done in cells undergoing meiosis, the process that leads to the formation of eggs and sperm (gametes). Recombination, however, can also occur in cells that are dividing mitotically. In our study, we examine the properties of mitotic recombination in yeast. We show that mitotic recombination differs from meiotic recombination in two important ways. First, the sizes of the chromosome segments that are non-reciprocally transferred during mitotic recombination are much larger than those transferred during meiotic exchange. Second, in meiosis, most recombination events involve the repair of a single chromosome break, whereas in mitosis, about half of the recombination events appear to involve the repair of two chromosome breaks.
Collapse
Affiliation(s)
- Phoebe S Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
Cortés-Ledesma F, Aguilera A. Double-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange. EMBO Rep 2006; 7:919-26. [PMID: 16888651 PMCID: PMC1559660 DOI: 10.1038/sj.embor.7400774] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 12/31/2022] Open
Abstract
Molecular studies on double-strand break (DSB) repair in mitosis are usually performed with enzymatically induced DSBs, but spontaneous DSBs might arise because of replication failures, for example when replication encounters nicks. To study repair of replication-born DSBs, we defined a system in Saccharomyces cerevisiae for the induction of a site-specific single-strand break. We show that a 21-base pair (bp) HO site is cleaved at only one strand by the HO endonuclease, with the resulting nick being converted into a DSB by replication during the S phase. Repair of such replication-born DSBs occurs by sister-chromatid exchange (SCE). We provide molecular evidence that cohesins are required for repair of replication-born DSBs by SCE, as determined in smc3, scc1 and scc2 mutants, but not for other recombinational repair events. This work opens new perspectives to understand the importance of single-strand breaks as a source of recombination and the relevance of cohesion in the repair of replication-born DSBs.
Collapse
Affiliation(s)
- Felipe Cortés-Ledesma
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
22
|
Farah JA, Cromie G, Davis L, Steiner WW, Smith GR. Activation of an alternative, rec12 (spo11)-independent pathway of fission yeast meiotic recombination in the absence of a DNA flap endonuclease. Genetics 2005; 171:1499-511. [PMID: 16118186 PMCID: PMC1456079 DOI: 10.1534/genetics.105.046821] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 08/04/2005] [Indexed: 11/18/2022] Open
Abstract
Spo11 or a homologous protein appears to be essential for meiotic DNA double-strand break (DSB) formation and recombination in all organisms tested. We report here the first example of an alternative, mutationally activated pathway for meiotic recombination in the absence of Rec12, the Spo11 homolog of Schizosaccharomyces pombe. Rad2, a FEN-1 flap endonuclease homolog, is involved in processing Okazaki fragments. In its absence, meiotic recombination and proper segregation of chromosomes were restored in rec12Delta mutants to nearly wild-type levels. Although readily detectable in wild-type strains, meiosis-specific DSBs were undetectable in recombination-proficient rad2Delta rec12Delta strains. On the basis of the biochemical properties of Rad2, we propose that meiotic recombination by this alternative (Rec*) pathway can be initiated by non-DSB lesions, such as nicks and gaps, which accumulate during premeiotic DNA replication in the absence of Okazaki fragment processing. We compare the Rec* pathway to alternative pathways of homologous recombination in other organisms.
Collapse
Affiliation(s)
- Joseph A Farah
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 11200 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
23
|
Knauert MP, Lloyd JA, Rogers FA, Datta HJ, Bennett ML, Weeks DL, Glazer PM. Distance and affinity dependence of triplex-induced recombination. Biochemistry 2005; 44:3856-64. [PMID: 15751961 DOI: 10.1021/bi0481040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) have the potential to serve as gene therapeutic agents on the basis of their ability to mediate site-specific genome modification via induced recombination. However, high-affinity triplex formation is limited to polypurine/polypyrimidine sites in duplex DNA. Because of this sequence restriction, careful analysis is needed to identify suitable TFO target sites within or near genes of interest. We report here an examination of two key parameters which influence the efficiency of TFO-induced recombination: (1) binding affinity of the TFO for the target site and (2) the distance between the target site and the mutation to be corrected. To test the influence of binding affinity, we compared induced recombination in human cell-free extracts by a series of G-rich oligonucleotides with an identical base composition and an increasing number of mismatches in the third strand binding code. As the number of mismatches increased and, therefore, binding affinity decreased, induced recombination frequency also dropped. There was an apparent threshold at an equilibrium dissociation constant (K(d)) of 1 x 10(-)(7) M. In addition, TFO chemical modification with N,N-diethylethylenediamine (DEED) internucleoside linkages to confer improved binding was found to yield increased levels of induced recombination. To test the ability of triplex formation to induce recombination at a distance, episomal targets with informative reporter genes were constructed to contain polypurine TFO target sites at varying distances from the mutations to be corrected. TFO-induced recombination in mammalian cells between a plasmid vector and a donor oligonucleotide was detected at distances ranging from 24 to 750 bp. Together, these results indicate that TFO-induced recombination requires high-affinity binding but can affect sites hundreds of base pairs away from the position of triplex formation.
Collapse
Affiliation(s)
- Melissa P Knauert
- Department of Therapeutic Radiology, Yale University School of Medicine, P.O. Box 208040, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Cromie GA, Rubio CA, Hyppa RW, Smith GR. A natural meiotic DNA break site in Schizosaccharomyces pombe is a hotspot of gene conversion, highly associated with crossing over. Genetics 2004; 169:595-605. [PMID: 15545638 PMCID: PMC1449127 DOI: 10.1534/genetics.104.037176] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Schizosaccharomyces pombe, meiosis-specific DNA breaks that initiate recombination are observed at prominent but widely separated sites. We investigated the relationship between breakage and recombination at one of these sites, the mbs1 locus on chromosome I. Breaks corresponding to 10% of chromatids were mapped to four clusters spread over a 2.1-kb region. Gene conversion of markers within the clusters occurred in 11% of tetrads (3% of meiotic chromatids), making mbs1 a conversion hotspot when compared to other fission yeast markers. Approximately 80% of these conversions were associated with crossing over of flanking markers, suggesting a strong bias in meiotic break repair toward the generation of crossovers. This bias was observed in conversion events at three other loci, ade6, ade7, and ura1. A total of 50-80% of all crossovers seen in a 90-kb region flanking mbs1 occurred in a 4.8-kb interval containing the break sites. Thus, mbs1 is also a hotspot of crossing over, with breakage at mbs1 generating most of the crossovers in the 90-kb interval. Neither Rec12 (Spo11 ortholog) nor I-SceI-induced breakage at mbs1 was significantly associated with crossing over in an apparently break-free interval >25 kb away. Possible mechanisms for generating crossovers in such break-free intervals are discussed.
Collapse
Affiliation(s)
- Gareth A Cromie
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
25
|
Haghnazari E, Heyer WD. The DNA damage checkpoint pathways exert multiple controls on the efficiency and outcome of the repair of a double-stranded DNA gap. Nucleic Acids Res 2004; 32:4257-68. [PMID: 15304563 PMCID: PMC514360 DOI: 10.1093/nar/gkh717] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A DNA gap repair assay was used to determine the effect of mutations in the DNA damage checkpoint system on the efficiency and outcome (crossover/non-crossover) of recombinational DNA repair. In Saccharomyces cerevisiae gap repair is largely achieved by homologous recombination. As a result the plasmid either integrates into the chromosome (indicative of a crossover outcome) or remains extrachromosomal (indicative of a non-crossover outcome). Deletion mutants of the MEC1 and RAD53 checkpoint kinase genes exhibited a 5-fold decrease in gap repair efficiency, showing that 80% of the gap repair events depended on functional DNA damage checkpoints. Epistasis analysis suggests that the DNA damage checkpoints affect gap repair by modulating Rad51 protein-mediated homologous recombination. While in wild-type cells only approximately 25% of the gap repair events were associated with a crossover outcome, Mec1-deficient cells exhibited a >80% crossover association. Also mutations in the effector kinases Rad53, Chk1 and Dun1 were found to affect crossover association of DNA gap repair to various degrees. The data suggest that the DNA damage checkpoints are important for the optimal functioning of recombinational DNA repair with multiple terminal targets to modulate the efficiency and outcome of homologous recombination.
Collapse
Affiliation(s)
- Edwin Haghnazari
- Division of Biological Sciences and Section of Microbiology, Section of Molecular and Cellular Biology and Center for Genetics and Development, University of California, Davis, CA 95616-8665, USA
| | | |
Collapse
|
26
|
Landthaler M, Lau NC, Shub DA. Group I intron homing in Bacillus phages SPO1 and SP82: a gene conversion event initiated by a nicking homing endonuclease. J Bacteriol 2004; 186:4307-14. [PMID: 15205433 PMCID: PMC421625 DOI: 10.1128/jb.186.13.4307-4314.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many group I introns encode endonucleases that promote intron homing by initiating a double-stranded break-mediated homologous recombination event. In this work we describe intron homing in Bacillus subtilis phages SPO1 and SP82. The introns encode the DNA endonucleases I-HmuI and I-HmuII, respectively, which belong to the H-N-H endonuclease family and possess nicking activity in vitro. Coinfections of B. subtilis with intron-minus and intron-plus phages indicate that I-HmuI and I-HmuII are required for homing of the SPO1 and SP82 introns, respectively. The homing process is a gene conversion event that does not require the major B. subtilis recombination pathways, suggesting that the necessary functions are provided by phage-encoded factors. Our results provide the first examples of H-N-H endonuclease-mediated intron homing and the first demonstration of intron homing initiated by a nicking endonuclease.
Collapse
Affiliation(s)
- Markus Landthaler
- Department of Biological Sciences and Center for Molecular Genetics, University at Albany, State University of New York, Albany, New York 12222, USA
| | | | | |
Collapse
|
27
|
Smith GR. How homologous recombination is initiated: unexpected evidence for single-strand nicks from v(d)j site-specific recombination. Cell 2004; 117:146-8. [PMID: 15084252 DOI: 10.1016/s0092-8674(04)00338-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Views of how homologous recombination is initiated have changed over the past several decades: in the 1960s and 1970s, single-strand DNA lesions (nicks) were the leading contenders, but in the last decade, double-strand DNA breaks (DSBs) have reigned. In this issue of Cell, evidence is presented that nicks can stimulate homologous recombination and, in uncontrolled situations, may lead to translocations and other potentially dangerous genome rearrangements.
Collapse
Affiliation(s)
- Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
28
|
Lee GS, Neiditch MB, Salus SS, Roth DB. RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 2004; 117:171-84. [PMID: 15084256 DOI: 10.1016/s0092-8674(04)00301-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 01/30/2004] [Accepted: 02/12/2004] [Indexed: 11/28/2022]
Abstract
The two major pathways for repairing double-strand breaks (DSBs), homologous recombination and nonhomologous end joining (NHEJ), have traditionally been thought to operate in different stages of the cell cycle. This division of labor is not absolute, however, and precisely what governs the choice of pathway to repair a given DSB has remained enigmatic. We pursued this question by studying the site-specific DSBs created during V(D)J recombination, which relies on classical NHEJ to repair the broken ends. We show that mutations that form unstable RAG postcleavage complexes allow DNA ends to participate in both homologous recombination and the error-prone alternative NHEJ pathway. By abrogating a key function of the complex, these mutations reveal it to be a molecular shepherd that guides DSBs to the proper pathway. We also find that RAG-mediated nicks efficiently stimulate homologous recombination and discuss the implications of these findings for oncogenic chromosomal rearrangements, evolution, and gene targeting.
Collapse
Affiliation(s)
- Gregory S Lee
- The Skirball Institute of Biomolecular Medicine, Lab 2-10 and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
29
|
Kouzminova EA, Kuzminov A. Chromosomal fragmentation in dUTPase-deficient mutants of Escherichia coli and its recombinational repair. Mol Microbiol 2004; 51:1279-95. [PMID: 14982624 DOI: 10.1111/j.1365-2958.2003.03924.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C & LSL, 601 South Goodwin Ave., Urbana, IL 61801-3709, USA
| | | |
Collapse
|
30
|
Rodriguez C, Tompkin J, Hazel J, Foster PL. Induction of a DNA nickase in the presence of its target site stimulates adaptive mutation in Escherichia coli. J Bacteriol 2002; 184:5599-608. [PMID: 12270817 PMCID: PMC139612 DOI: 10.1128/jb.184.20.5599-5608.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive mutation to Lac(+) in Escherichia coli strain FC40 depends on recombination functions and is enhanced by the expression of conjugal functions. To test the hypothesis that the conjugal function that is important for adaptive mutation is the production of a single-strand nick at the conjugal origin, we supplied an exogenous nicking enzyme, the gene II protein (gIIp) of bacteriophage f1, and placed its target sequence near the lac allele. When both gIIp and its target site were present, adaptive mutation was stimulated three- to fourfold. Like normal adaptive mutations, gIIp-induced mutations were recA(+) and ruvC(+) dependent and were mainly single-base deletions in runs of iterated bases. In addition, gIIp with its target site could substitute for conjugal functions in adaptive mutation. These results support the hypothesis that nicking at the conjugal origin initiates the recombination that produces adaptive mutations in this strain of E. coli, and they suggest that nicking may be the only conjugal function required for adaptive mutation.
Collapse
Affiliation(s)
- Cesar Rodriguez
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
31
|
Galli A, Schiestl RH. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells. Genetics 1998; 149:1235-50. [PMID: 9649517 PMCID: PMC1460227 DOI: 10.1093/genetics/149.3.1235] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both gamma-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas gamma-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBs but not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage.
Collapse
Affiliation(s)
- A Galli
- Department of Molecular and Cellular Toxicology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
32
|
Osman F, Subramani S. Double-strand break-induced recombination in eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 58:263-99. [PMID: 9308369 DOI: 10.1016/s0079-6603(08)60039-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic recombination is of fundamental importance for a wide variety of biological processes in eukaryotic cells. One of the major questions in recombination relates to the mechanism by which the exchange of genetic information is initiated. In recent years, DNA double strand breaks (DSBs) have emerged as an important lesion that can initiate and stimulate meiotic and mitotic homologous recombination. In this review, we examine the models by which DSBs induce recombination, describe the types of recombination events that DSBs stimulate, and compare the genetic control of DSB-induced mitotic recombination in budding and fission yeasts.
Collapse
Affiliation(s)
- F Osman
- Department of Biochemistry, University of Oxford, United Kingdom
| | | |
Collapse
|
33
|
Freyer GA, Davey S, Ferrer JV, Martin AM, Beach D, Doetsch PW. An alternative eukaryotic DNA excision repair pathway. Mol Cell Biol 1995; 15:4572-7. [PMID: 7623848 PMCID: PMC230697 DOI: 10.1128/mcb.15.8.4572] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.
Collapse
Affiliation(s)
- G A Freyer
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Repair of a site-specific double-strand DNA break (DSB) resulted in increased reversion frequency for a nearby allele. Site-specific DSBs were introduced into the genome of Saccharomyces cerevisiae by the endonuclease encoded by the HO gene. Expression of the HO gene from a galactose-inducible promoter allowed efficient DNA cleavage at a single site in large populations of cells. To determine whether the DNA synthesis associated with repair of DSBs has a higher error rate than that associated with genome duplication, HO-induced DSBs were generated 0.3 kb from revertible alleles of trp1. The reversion rate of the trp1 alleles was approximately 100-fold higher among cells that had experienced an HO cut than among uninduced cells. The reverted allele was found predominantly on the chromosome that experienced the DNA cleavage.
Collapse
Affiliation(s)
- J N Strathern
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research and Development Center, ABL-Basic Research Program, Maryland 21702-1201, USA
| | | | | |
Collapse
|
35
|
Shieh GJ, Lin CH, Kuo JL, Kuo TT. Characterization of an open reading frame involved in site-specific integration of filamentous phage Cf1t from Xanthomonas campestris pv. citri. Gene X 1995; 158:73-6. [PMID: 7789813 DOI: 10.1016/0378-1119(95)00170-b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cf1t is a single-stranded DNA filamentous phage; a 1.9-kb segment of DNA from Cf1t was found to be responsible for site-specific integration into Xanthomonas campestris pv. citri (XW47), in the absence of any Xanthomonas origin of replication. Deletion analysis and introduction of amber stop codons into this fragment from Cf1t revealed an open reading frame (ORF344) which was involved in the integration function. The predicted amino-acid sequence of ORF344 bears no homology with conserved sequences of the integrase family.
Collapse
Affiliation(s)
- G J Shieh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
36
|
Belmaaza A, Chartrand P. One-sided invasion events in homologous recombination at double-strand breaks. Mutat Res 1994; 314:199-208. [PMID: 7513053 DOI: 10.1016/0921-8777(94)90065-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Two classes of homologous recombination mechanism for repair of double-strand breaks (DSBs) have been described in eukaryotes so far. One is conservative and has been explained by the double-strand break repair model (Szostak et al., 1983), whereas the other one is non-conservative and has been explained by the single-strand annealing model (Lin et al., 1984). Here, we will review data supporting the existence of another homologous recombination mechanism for double-strand break repair. We will present the one-sided invasion model that we have proposed to explain this mechanism and discuss its potential implication in various homologous recombination events.
Collapse
Affiliation(s)
- A Belmaaza
- Blood Transfusion Services, Canadian Red Cross Society, Montreal, Que
| | | |
Collapse
|
37
|
Alani E, Reenan RA, Kolodner RD. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 1994; 137:19-39. [PMID: 8056309 PMCID: PMC1205935 DOI: 10.1093/genetics/137.1.19] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA.
Collapse
Affiliation(s)
- E Alani
- Division of Cellular and Molecular Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | |
Collapse
|
38
|
Schulz VP, Zakian VA. The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 1994; 76:145-55. [PMID: 8287473 DOI: 10.1016/0092-8674(94)90179-1] [Citation(s) in RCA: 301] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A screen to detect yeast mutants that frequently lost expression of subtelomeric genes identified two mutations in PIF1, a gene known to encode a 5' to 3' DNA helicase. The loss of expression of subtelomeric genes in pif1 cells was due to deletion of the subtelomeric regions of the chromosomes and the generation of new telomeres at proximal sites. In pif1 mutants, de novo telomere formation usually occurred at sites with very little homology to telomeric DNA. De novo telomere formation after HO-induced chromosome breakage also occurred at elevated frequencies in pif1 cells. Moreover, mutations in PIF1 caused all telomeres to lengthen. These results suggest that the PIF1 helicase is an inhibitor of both de novo telomere formation and telomere elongation.
Collapse
Affiliation(s)
- V P Schulz
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | |
Collapse
|
39
|
Esposito MS, Ramirez RM, Bruschi CV. Recombinators, recombinases and recombination genes of yeasts. Curr Genet 1994; 25:1-11. [PMID: 8082158 DOI: 10.1007/bf00712959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M S Esposito
- Life Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley 94720
| | | | | |
Collapse
|
40
|
Abstract
Integration of linearized plasmids into yeast chromosomes has been used as a model system for the study of recombination initiated by double-strand breaks. The linearized plasmid DNA recombines efficiently into sequences homologous to the ends of the DNA. This efficient recombination occurs both for the configuration in which the break is in a contiguous region of homology (herein called the ends-in configuration) and for "omega" insertions in which plasmid sequences interrupt a linear region of homology (herein called the ends-out configuration). The requirements for integration of these two configurations are expected to be different. We compared these two processes in a yeast strain containing an ends-in target and an ends-out target for the same cut plasmid. Recovery of ends-in events exceeds ends-out events by two- to threefold. Possible causes for the origin of this small bias are discussed. The lack of an extreme difference in frequency implies that cooperativity between the two ends does not contribute to the efficiency with which cut circular plasmids are integrated. This may also be true for the repair of chromosomal double-strand breaks.
Collapse
Affiliation(s)
- P J Hastings
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
41
|
Abstract
The HO endonuclease was used to introduce a site-specific double-strand break (DSB) in an interval designed to monitor mitotic recombination. The interval included the trp1 and his3 genes inserted into chromosome III of S. cerevisiae between the CRY1 and MAT loci. Mitotic recombination was monitored in a diploid carrying heteroalleles of trp1 and his3. The normal recognition sites for the HO endonuclease were mutated at the MAT alleles and a synthetic recognition site for HO endonuclease was placed between trp1 and his3 on one of the chromosomes. HO-induced cleavage resulted in efficient recombination in this interval. Most of the data can be explained by double-strand gap repair in which the cut chromosome acts as the recipient. However, analysis of some of the recombinants indicates that regions of heteroduplex were generated flanking the site of the cut, and that some recombinants were the result of the cut chromosome acting as the genetic donor.
Collapse
Affiliation(s)
- C B McGill
- Laboratory of Eukaryotic Gene Expression, NCI-Frederick Cancer Research, MD
| | | | | | | |
Collapse
|
42
|
Heitman J. On the origins, structures and functions of restriction-modification enzymes. GENETIC ENGINEERING 1993; 15:57-108. [PMID: 7764063 DOI: 10.1007/978-1-4899-1666-2_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Heitman
- Section of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
43
|
Abstract
In fungi, most mitotic recombination and at least some meiotic recombination appear to stem from a process of double-strand break repair. During this repair, recombination occurs by conversion caused by the process of double-strand gap filling, by conversion related to heteroduplex formation where homologous molecules interact by complementary base pairing, and by crossing-over which is probably an occasional byproduct of the repair process. From a review of the genetic and biochemical data and the published models of the process of recombination, the following view emerges: broken ends may be acted upon by nucleases and helicases to produce a recombinagenic end which may have both 3' and 5' single-stranded tails. These postulated split-ends may then act independently to find regions of homology with which to react. Invasion by both ends forms two splice-junctions which prime DNA synthesis towards each other to replace lost information, using the homologous sequences as templates. This process would lead to a structure which consists of a double Holliday junction which may be resolved endonucleolytically, sometimes giving a crossover, or by another means such as the action of topoisomerase, to dissolve the structure without a crossover having been formed.
Collapse
Affiliation(s)
- P J Hastings
- Department of Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
44
|
Abstract
The analysis of recombination mechanisms in Saccharomyces cerevisiae produces a lively literature spanning classical genetics, enzymology and the physical analysis of intermediates. Recent papers include excellent examples from each of these areas.
Collapse
Affiliation(s)
- J N Strathern
- NCI-Frederick Cancer Research and Development Center, Maryland
| |
Collapse
|
45
|
Abstract
There has been significant progress in elucidating the mechanisms by which meiotic and mitotic recombination occur. Double-strand breaks in particular have been the object of attention in studies on meiotic gene conversion, site-specific mitotic recombination, the repair of transposon excision and the transformation of cells with linearized DNA. A combination of genetic analysis and physical studies of molecular recombination intermediates have established that double-strand breaks can occur by two different mechanisms.
Collapse
Affiliation(s)
- J E Haber
- Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02254
| |
Collapse
|
46
|
|
47
|
Abstract
Saccharomyces cerevisiae cells treated by high voltage and made transformation-competent (electroporation) are also made hyper-recombinational as determined by an assay that measures interchromosomal mitotic recombination between chromosome III homologs, each containing mutant heteroallelic copies of the trp1 and his3 genes. There is a 10-fold stimulation of Trp+ and 21-fold stimulation of His+ prototrophs. Although this stimulation coincides with conditions for maximal transformation competence it is independent of the presence of transforming plasmid DNA. Electroporation does not increase the reversion frequency of these mutations, nor is there a stimulation in Ty transposition. Among the electroporation-stimulated Trp+ and His+ recombinants there is no dramatic difference in the pattern of events: that is to say that, while there is an increase in the number of recombinants, the distribution of gene conversion and cross-over events among the stimulated recombinants is not significantly altered compared to spontaneously arising Trp+ and His+ recombinants. This electroporation-stimulated recombination is abolished in an isogenic rad52 mutant strain consistent with the increase in Trp+ and His+ prototrophs being the result of a stimulation of a RAD52-dependent recombination pathway.
Collapse
Affiliation(s)
- D R Higgins
- Laboratory of Eukaryotic Gene Expression, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201
| | | |
Collapse
|