1
|
Zhong S, Steffenson BJ. Genetic and molecular characterization of mating type genes inCochliobolus sativus. Mycologia 2019. [DOI: 10.1080/00275514.2001.12063220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 55108
| | - Brian J. Steffenson
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 55108
| |
Collapse
|
2
|
Robicheau BM, Bunbury-Blanchette AL, LaButti K, Grigoriev IV, Walker AK. The homothallic mating-type locus of the conifer needle endophyte Phialocephala scopiformis DAOMC 229536 (order Helotiales). Fungal Biol 2017; 121:1011-1024. [PMID: 29122173 DOI: 10.1016/j.funbio.2017.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
We describe the complete mating-type (MAT) locus for Phialocephala scopiformis Canadian Collection of Fungal Cultures (DAOMC) 229536 - a basal lineage within Vibrisseaceae. This strain is of interest due to its ability to produce the important antiinsectan rugulosin. We also provide some of the first insights into the genome structure and gene inventory of nonclavicipitalean endophytes. Sequence was obtained through shotgun sequencing of the entire P. scopiformis genome, and the MAT locus was then determined by comparing this genomic sequence to known MAT loci within the Phialocephala fortinii s.l.-Acephala applanata species complex. We also tested the relative levels of sequence conservation for MAT genes within Vibrisseaceae (n = 10), as well as within the Helotiales (n = 27). Our results: (1) show a homothallic gene arrangement for P. scopiformis [MAT1-1-1, MAT1-2-1, and MAT1-1-3 genes are present], (2) increase the genomic survey of homothallism within Vibrisseaceae, (3) confirm that P. scopiformis contains a unique S-adenosyl-l-methionine-dependent methyltransferase (SAM-Mtase) gene proximal to its MAT locus, while also lacking a cytoskeleton assembly control protein (sla2) gene, and (4) indicate that MAT1-1-1 is the more useful molecular marker amongst the MAT genes for phylogenetic reconstructions aimed at tracking evolutionary shifts in reproductive strategy and/or MAT loci gene composition within the Helotiales.
Collapse
Affiliation(s)
- Brent M Robicheau
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada.
| | | | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA; Department of Plant and Microbial Biology, UC Berkeley, 111 Koshland Hall, Berkeley, California 94720, USA
| | - Allison K Walker
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| |
Collapse
|
3
|
Yun SH, Kim HK, Lee T, Turgeon BG. Self-fertility in Chromocrea spinulosa is a consequence of direct repeat-mediated loss of MAT1-2, subsequent imbalance of nuclei differing in mating type, and recognition between unlike nuclei in a common cytoplasm. PLoS Genet 2017; 13:e1006981. [PMID: 28892488 PMCID: PMC5608430 DOI: 10.1371/journal.pgen.1006981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 09/21/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Chromocrea spinulosa (Trichoderma spinulosum) exhibits both self-fertile (homothallic) and self-sterile (heterothallic) sexual reproductive behavior. Self-fertile strains produce progeny cohorts that are 50% homothallic, 50% heterothallic. Heterothallic progeny can mate only with homothallic strains, and progeny also segregate 50% homothallic, 50% heterothallic. Sequencing of the mating type (MAT) region of homothallic and heterothallic strains revealed that both carry an intact MAT1-1 locus with three MAT1-1 genes (MAT1-1-1, MAT1-1-2, MAT1-1-3), as previously described for the Sordariomycete group of filamentous fungi. Homothallic strains, however, have a second version of MAT with the MAT1-2 locus genetically linked to MAT1-1. In this version, the MAT1-1-1 open reading frame is split into a large and small fragment and the truncated ends are bordered by 115bp direct repeats (DR). The MAT1-2-1 gene and additional sequences are inserted between the repeats. To understand the mechanism whereby C. spinulosa can exhibit both homothallic and heterothallic behavior, we utilized molecular manipulation to delete one of the DRs from a homothallic strain and insert MAT1-2 into a heterothallic strain. Mating assays indicated that: i) the DRs are key to homothallic behavior, ii) looping out of MAT1-2-1 via intra-molecular homologous recombination between the DRs in self-fertile strains results in two nuclear types in an individual (one carrying both MAT1-1 and MAT1-2 and one carrying MAT1-1 only), iii) self-fertility is achieved by inter-nuclear recognition between these two nuclear types before meiosis, iv) the two types of nuclei are in unequal proportion, v) having both an intact MAT1-1-1 and MAT1-2-1 gene in a single nucleus is not sufficient for self-fertility, and vi) the large truncated MAT1-1-1 fragment is expressed. Comparisons with MAT regions of Trichoderma reesei and Trichoderma virens suggest that several crossovers between misaligned parental MAT chromosomes may have led to the MAT architecture of homothallic C. spinulosa. Fungi employ one of two mating tactics for sexual reproduction: self-sterile/heterothallic species can mate only with a genetically distinct partner while self-fertile/homothallic species do not require a partner. In ascomycetes, sexual reproduction is controlled by master regulators encoded by the mating-type (MAT) locus. The architecture of MAT differs in heterothallic versus homothallic species; heterothallics carry one of two forms (MAT1-1 or MAT1-2) per nucleus, whereas most homothallics carry both MAT forms in a single nucleus. There are intriguing exceptions. For example, the yeast models, Saccharomyces cerevisiae, and Schizosaccharomyces pombe undergo reversible MAT switching, not demonstrated in filamentous fungi. Here, we describe the mating mechanism in Chromocrea spinulosa (Trichoderma spinulosum), a filamentous ascomycete that exhibits both homothallic and heterothallic behavior. Self-fertile strains produce progeny cohorts that are 50% homothallic, 50% heterothallic. Self-sterile strains can mate only with homothallic strains, and when this occurs, homothallic and heterothallic progeny are also produced in a 1:1 ratio. By MAT sequencing and manipulation, we discovered unique MAT architecture and determined that self-fertility is achieved by deletion of MAT1-2 from most homothallic nuclei and subsequent inter-nuclear recognition between the resulting two, unevenly present, nuclear types in a common cytoplasm.
Collapse
Affiliation(s)
- Sung-Hwan Yun
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- * E-mail: (SHY); (BGT)
| | - Hee-Kyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Theresa Lee
- Microbial Safety Team, National Institute of Agricultural Science, Rural Development Administration, Wanju, Jeonbuk, Republic of Korea
| | - B. Gillian Turgeon
- Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
- * E-mail: (SHY); (BGT)
| |
Collapse
|
4
|
Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Xie N, Ruprich-Robert G, Chapeland-Leclerc F, Coppin E, Lalucque H, Brun S, Debuchy R, Silar P. Inositol-phosphate signaling as mediator for growth and sexual reproduction in Podospora anserina. Dev Biol 2017. [PMID: 28629791 DOI: 10.1016/j.ydbio.2017.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The molecular pathways involved in the development of multicellular fruiting bodies in fungi are still not well known. Especially, the interplay between the mycelium, the female tissues and the zygotic tissues of the fruiting bodies is poorly documented. Here, we describe PM154, a new strain of the model ascomycetes Podospora anserina able to mate with itself and that enabled the easy recovery of new mutants affected in fruiting body development. By complete genome sequencing of spod1, one of the new mutants, we identified an inositol phosphate polykinase gene as essential, especially for fruiting body development. A factor present in the wild type and diffusible in mutant hyphae was able to induce the development of the maternal tissues of the fruiting body in spod1, but failed to promote complete development of the zygotic ones. Addition of myo-inositol in the growth medium was able to increase the number of developing fruiting bodies in the wild type, but not in spod1. Overall, the data indicated that inositol and inositol polyphosphates were involved in promoting fruiting body maturation, but also in regulating the number of fruiting bodies that developed after fertilization. The same effect of inositol was seen in two other fungi, Sordaria macrospora and Chaetomium globosum. Key role of the inositol polyphosphate pathway during fruiting body maturation appears thus conserved during the evolution of Sordariales fungi.
Collapse
Affiliation(s)
- Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cedex 13, France
| | - Gwenaël Ruprich-Robert
- Univ Paris Descartes, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cedex 13, France
| | - Florence Chapeland-Leclerc
- Univ Paris Descartes, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cedex 13, France
| | - Evelyne Coppin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Hervé Lalucque
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cedex 13, France
| | - Sylvain Brun
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cedex 13, France
| | - Robert Debuchy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Philippe Silar
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cedex 13, France.
| |
Collapse
|
6
|
Grognet P, Silar P. Maintaining heterokaryosis in pseudo-homothallic fungi. Commun Integr Biol 2015; 8:e994382. [PMID: 26479494 PMCID: PMC4594319 DOI: 10.4161/19420889.2014.994382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 01/09/2023] Open
Abstract
Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species.
Collapse
Affiliation(s)
- Pierre Grognet
- Univ Paris Diderot; Sorbonne Paris Cité; Institut des Energies de Demain ; Paris, France
| | - Philippe Silar
- Univ Paris Diderot; Sorbonne Paris Cité; Institut des Energies de Demain ; Paris, France
| |
Collapse
|
7
|
Fu C, Sun S, Billmyre RB, Roach KC, Heitman J. Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet Biol 2015; 78:65-75. [PMID: 25173822 PMCID: PMC4344436 DOI: 10.1016/j.fgb.2014.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/22/2022]
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen and can undergo both bisexual and unisexual mating. Despite the fact that one mating type is dispensable for unisexual mating, the two sexual cycles share surprisingly similar features. Both mating cycles are affected by similar environmental factors and regulated by the same pheromone response pathway. Recombination takes place during unisexual reproduction in a fashion similar to bisexual reproduction and can both admix pre-existing genetic diversity and also generate diversity de novo just like bisexual reproduction. These common features may allow the unisexual life cycle to provide phenotypic and genotypic plasticity for the natural Cryptococcus population, which is predominantly α mating type, and to avoid Muller's ratchet. The morphological transition from yeast to hyphal growth during both bisexual and unisexual mating may provide increased opportunities for outcrossing and the ability to forage for nutrients at a distance. The unisexual life cycle is a key evolutionary factor for Cryptococcus as a highly successful global fungal pathogen.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - R B Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin C Roach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Wilson AM, Godlonton T, van der Nest MA, Wilken PM, Wingfield MJ, Wingfield BD. Unisexual reproduction in Huntiella moniliformis. Fungal Genet Biol 2015; 80:1-9. [PMID: 25910452 DOI: 10.1016/j.fgb.2015.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 01/08/2023]
Abstract
Sexual reproduction in fungi is controlled by genes present at the mating type (MAT) locus, which typically harbors transcription factors that influence the expression of many sex-related genes. The MAT locus exists as two alternative idiomorphs in ascomycetous fungi and sexual reproduction is initiated when genes from both idiomorphs are expressed. Thus, the gene content of this locus determines whether a fungus is heterothallic (self-sterile) or homothallic (self-fertile). Recently, a unique sub-class of homothallism has been described in fungi, where individuals possessing a single MAT idiomorph can reproduce sexually in the absence of a partner. Using various mycological, molecular and bioinformatic techniques, we investigated the sexual strategies and characterized the MAT loci in two tree wound-infecting fungi, Huntiella moniliformis and Huntiella omanensis. H. omanensis was shown to exhibit a typically heterothallic sexual reproductive cycle, with isolates possessing either the MAT1-1 or MAT1-2 idiomorph. This was in contrast to the homothallism via unisexual reproduction that was shown in H. moniliformis, where only the MAT1-2-1 gene was present in sexually reproducing cultures. While the evolutionary benefit and mechanisms underpinning a unisexual mating strategy remain unknown, it could have evolved to minimize the costs, while retaining the benefits, of normal sexual reproduction.
Collapse
Affiliation(s)
- A M Wilson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - T Godlonton
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - M A van der Nest
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - P M Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - M J Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - B D Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| |
Collapse
|
9
|
Maintaining two mating types: structure of the mating type locus and its role in heterokaryosis in Podospora anserina. Genetics 2014; 197:421-32. [PMID: 24558260 DOI: 10.1534/genetics.113.159988] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudo-homothallism is a reproductive strategy elected by some fungi producing heterokaryotic sexual spores containing genetically different but sexually compatible nuclei. This lifestyle appears as a compromise between true homothallism (self-fertility with predominant inbreeding) and complete heterothallism (with exclusive outcrossing). However, pseudohomothallic species face the problem of maintaining heterokaryotic mycelia to fully benefit from this lifestyle, as homokaryons are self-sterile. Here, we report on the structure of chromosome 1 in mat+ and mat- isolates of strain S of the pseudohomothallic fungus Podospora anserina. Chromosome 1 contains either one of the mat+ and mat- mating types of P. anserina, which is mostly found in nature as a mat+/mat- heterokaryotic mycelium harboring sexually compatible nuclei. We identified a "mat" region ∼0.8 Mb long, devoid of meiotic recombination and containing the mating-type idiomorphs, which is a candidate to be involved in the maintenance of the heterokaryotic state, since the S mat+ and S mat- strains have different physiology that may enable hybrid-vigor-like phenomena in the heterokaryons. The mat region contains 229 coding sequences. A total of 687 polymorphisms were detected between the S mat+ and S mat- chromosomes. Importantly, the mat region is colinear between both chromosomes, which calls for an original mechanism of recombination inhibition. Microarray analyses revealed that 10% of the P. anserina genes have different transcriptional profiles in S mat+ and S mat-, in line with their different phenotypes. Finally, we show that the heterokaryotic state is faithfully maintained during mycelium growth of P. anserina, yet mat+/mat+ and mat-/mat- heterokaryons are as stable as mat+/mat- ones, evidencing a maintenance of heterokaryosis that does not rely on fitness-enhancing complementation between the S mat+ and S mat- strains.
Collapse
|
10
|
Abstract
Sexual reproduction enables genetic exchange in eukaryotic organisms as diverse as fungi, animals, plants, and ciliates. Given its ubiquity, sex is thought to have evolved once, possibly concomitant with or shortly after the origin of eukaryotic organisms themselves. The basic principles of sex are conserved, including ploidy changes, the formation of gametes via meiosis, mate recognition, and cell-cell fusion leading to the production of a zygote. Although the basic tenants are shared, sex determination and sexual reproduction occur in myriad forms throughout nature, including outbreeding systems with more than two mating types or sexes, unisexual selfing, and even examples in which organisms switch mating type. As robust and diverse genetic models, fungi provide insights into the molecular nature of sex, sexual specification, and evolution to advance our understanding of sexual reproduction and its impact throughout the eukaryotic tree of life.
Collapse
Affiliation(s)
- Min Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
11
|
Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 2008; 9:R77. [PMID: 18460219 PMCID: PMC2441463 DOI: 10.1186/gb-2008-9-5-r77] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/12/2008] [Accepted: 05/06/2008] [Indexed: 12/13/2022] Open
Abstract
A 10X draft sequence of Podospora anserina genome shows highly dynamic evolution since its divergence from Neurospora crassa. Background The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. Results We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. Conclusion The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.
Collapse
Affiliation(s)
- Eric Espagne
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR8621, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wik L, Karlsson M, Johannesson H. The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa. BMC Evol Biol 2008; 8:109. [PMID: 18405383 PMCID: PMC2335104 DOI: 10.1186/1471-2148-8-109] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Accepted: 04/11/2008] [Indexed: 12/23/2022] Open
Abstract
Background Comparative sequencing studies among a wide range of taxonomic groups, including fungi, have led to the discovery that reproductive genes evolve more rapidly than other genes. However, for fungal reproductive genes the question has remained whether the rapid evolution is a result of stochastic or deterministic processes. The mating-type (mat) genes constitute the master regulators of sexual reproduction in filamentous ascomycetes and here we present a study of the molecular evolution of the four mat-genes (mat a-1, mat A-1, mat A-2 and mat A-3) of 20 Neurospora taxa. Results We estimated nonsynonymous and synonymous substitution rates of genes to infer their evolutionary rate, and confirmed that the mat-genes evolve rapidly. Furthermore, the evolutionary trajectories are related to the reproductive modes of the taxa; likelihood methods revealed that positive selection acting on specific codons drives the diversity in heterothallic taxa, while among homothallic taxa the rapid evolution is due to a lack of selective constraint. The latter finding is supported by presence of stop codons and frame shift mutations disrupting the open reading frames of mat a-1, mat A-2 and mat A-3 in homothallic taxa. Lower selective constraints of mat-genes was found among homothallic than heterothallic taxa, and comparisons with non-reproductive genes argue that this disparity is not a nonspecific, genome-wide phenomenon. Conclusion Our data show that the mat-genes evolve rapidly in Neurospora. The rapid divergence is due to either adaptive evolution or lack of selective constraints, depending on the reproductive mode of the taxa. This is the first instance of positive selection acting on reproductive genes in the fungal kingdom, and illustrates how the evolutionary trajectory of reproductive genes can change after a switch in reproductive behaviour of an organism.
Collapse
Affiliation(s)
- Lotta Wik
- Uppsala University, Department of Evolutionary Biology, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
13
|
Chérif M, Chilvers MI, Akamatsu H, Peever TL, Kaiser WJ. Cloning of the mating type locus from Ascochyta lentis (teleomorph: Didymella lentis) and development of a multiplex PCR mating assay for Ascochyta species. Curr Genet 2006; 50:203-15. [PMID: 16847660 DOI: 10.1007/s00294-006-0085-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/13/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The mating type (MAT) locus of the lentil pathogen, Ascochyta lentis, was cloned and characterized using thermal asymmetric interlaced and inverse PCR with primers designed to the HMG-box of Ascochyta rabiei. A multiplex PCR assay for mating type was developed based on MAT idiomorph and flanking sequences. Primers were designed to specifically amplify MAT from several Ascochyta spp. including A. pisi, A. fabae and A. viciae-villosae in addition to A. lentis. Four hundred and fifty and 700 bp fragments were amplified from MAT1-1 and MAT1-2 isolates, respectively, and fragment size correlated perfectly with laboratory crosses using mating type tester strains. MAT-specific PCR allowed rapid scoring of mating type in crude DNA extracts from geographically diverse population samples of A. viciae-villosae from California and Washington State, USA. This co-dominant MAT-specific PCR assay will be a valuable tool for studying the population structure, biology and epidemiology of these fungi.
Collapse
Affiliation(s)
- Mohamed Chérif
- Laboratoire de Phytopathologie, Institut National Agronomique de Tunisie, Cité Mahrajéne, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
14
|
Coppin E, de Renty C, Debuchy R. The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. EUKARYOTIC CELL 2005; 4:407-20. [PMID: 15701803 PMCID: PMC549327 DOI: 10.1128/ec.4.2.407-420.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We cloned the pheromone precursor genes of Podospora anserina in order to elucidate their role in the biology of this fungus. The mfp gene encodes a 24-amino-acid polypeptide finished by the CAAX motif, characteristic of fungal lipopeptide pheromone precursors similar to the a-factor precursor of Saccharomyces cerevisiae. The mfm gene encodes a 221-amino-acid polypeptide, which is related to the S. cerevisiae alpha-factor precursor and contains two 13-residue repeats assumed to correspond to the mature pheromone. We deleted the mfp and mfm coding sequence by gene replacement. The mutations specifically affect male fertility, without impairing female fertility and vegetative growth. The male defect is mating type specific: the mat+ Deltamfp and mat- Deltamfm mutants produce male cells inactive in fertilization whereas the mat- Deltamfp and mat+ Deltamfm mutants show normal male fertility. Genetic data indicate that both mfp and mfm are transcribed at a low level in mat+ and mat- vegetative hyphae. Northern-blot analysis shows that their transcription is induced by the mating types in microconidia (mfp by mat+ and mfm by mat-). We managed to cross Deltamfp Deltamfm strains of opposite mating type, by complementation and transient expression of the pheromone precursor gene to trigger fertilization. These crosses were fertile, demonstrating that once fertilization occurs, the pheromone precursor genes are unnecessary for the completion of the sexual cycle. Finally, we show that the constitutively transcribed gpd::mfm and gpd::mfp constructs are repressed at a posttranscriptional level by the noncognate mating type.
Collapse
Affiliation(s)
- Evelyne Coppin
- Institut de Génétique et Microbiologie, UMR 8621 CNRS, Université Paris-Sud, Orsay, France.
| | | | | |
Collapse
|
15
|
Bouhouche K, Zickler D, Debuchy R, Arnaise S. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 2005; 167:151-9. [PMID: 15166143 PMCID: PMC1470861 DOI: 10.1534/genetics.167.1.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR.
Collapse
Affiliation(s)
- Khaled Bouhouche
- Institut de Génétique et Microbiologie, UMR CNRS Université 8621, Université Paris-Sud, F-91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
16
|
Tsong AE, Miller MG, Raisner RM, Johnson AD. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 2004; 115:389-99. [PMID: 14622594 DOI: 10.1016/s0092-8674(03)00885-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Developing new regulation of existing genes is likely a key mechanism by which organismal complexity arises in evolution. To examine plasticity of gene regulation over evolutionary timescales, we have determined the transcriptional circuit regulating mating type in the human fungal pathogen Candida albicans, and compared it to that of Saccharomyces cerevisiae. Since the two yeasts last shared an ancestor 100-800 million years ago, several major differences in circuitry have arisen. For example, a positive regulator of mating type was retained in C. albicans but lost in S. cerevisiae; this circuit branch was replaced by the modification of an existing negative regulator, thereby conserving the circuit output. We also characterize a tier of mating type transcriptional regulation that is present only in C. albicans, and likely results from the vastly different environmental selections imposed on the two yeasts--in this case, the pressure on C. albicans to survive in a mammalian host.
Collapse
Affiliation(s)
- Annie E Tsong
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
17
|
Linde CC, Zala M, Ceccarelli S, McDonald BA. Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet Biol 2004; 40:115-25. [PMID: 14516764 DOI: 10.1016/s1087-1845(03)00110-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhynchosporium secalis, the causal agent of scald on barley, is thought to be exclusively asexual because no teleomorph has been found. Partial sequences of the HMG-box and alpha-domain of Rhynchosporium secalis isolates were identified and used to develop a PCR assay for the mating-type locus. PCR amplification of only one of these two domains was possible in each strain, suggesting that R. secalis has a MAT organization that is similar to other known heterothallic fungi. A multiplex PCR with primers amplifying either a MAT1-1- or MAT1-2-specific amplicon was used to determine the distribution of mating types in several R. secalis populations. In total, 1101 isolates from Australia, Switzerland, Ethiopia, Scandinavia, California, and South Africa were included in the analysis. Mating types occurred in equal frequencies for most of these populations, suggesting frequency-dependent selection consistent with sexual reproduction. In addition, both mating types were frequently found occupying the same lesion or leaf, providing opportunities for isolates of opposite mating type to interact and reproduce sexually. We propose that R. secalis should be considered a sexual pathogen, although the sexual cycle may occur infrequently in some populations.
Collapse
Affiliation(s)
- Celeste C Linde
- Institute of Plant Sciences, Plant Pathology Group, Federal Institute of Technology, ETH-Zentrum, LFW, CH-8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
18
|
Lee J, Lee T, Lee YW, Yun SH, Turgeon BG. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol Microbiol 2003; 50:145-52. [PMID: 14507370 DOI: 10.1046/j.1365-2958.2003.03694.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi capable of sexual reproduction use heterothallic (self-sterile) or homothallic (self-fertile) mating strategies. In most ascomycetes, a single mating type locus, MAT, with two alternative forms (MAT1-1 and MAT1-2) called idiomorphs, controls mating ability. In heterothallic ascomycetes, these alternative idiomorphs reside in different nuclei. In contrast, most homothallic ascomycetes carry both MAT1-1 and MAT1-2 in a single nucleus, usually closely linked. An example of the latter is Gibberella zeae, a species that is capable of both selfing and outcrossing. G. zeae is a devastating cereal pathogen of ubiquitous geographical distribution, and also a producer of mycotoxins that threaten human and animal health. We asked whether G. zeae could be made strictly heterothallic by manipulation of MAT. Targeted gene replacement was used to differentially delete MAT1-1 or MAT1-2 from a wild-type haploid MAT1-1; MAT1-2 strain, resulting in MAT1-1; mat1-2, mat1-1; MAT1-2 strains that were self-sterile, yet able to cross to wild-type testers and, more importantly, to each other. These results indicated that differential deletion of MAT idiomorphs eliminates selfing ability of G. zeae, but the ability to outcross is retained. They also indicated that both MAT idiomorphs are required for self-fertility. To our knowledge, this is the first report of complete conversion of fungal reproductive strategy from homothallic to heterothallic by targeted manipulation of MAT. Practically, this approach opens the door to simple and efficient procedures for obtaining sexual recombinants of G. zeae that will be useful for genetic analyses of pathogenicity and other traits, such as the ability to produce mycotoxins.
Collapse
Affiliation(s)
- Jungkwan Lee
- School of Agricultural Biotechnology, Seoul National University, Suwon 441-744, Korea.
| | | | | | | | | |
Collapse
|
19
|
Barve MP, Arie T, Salimath SS, Muehlbauer FJ, Peever TL. Cloning and characterization of the mating type (MAT) locus from Ascochyta rabiei (teleomorph: Didymella rabiei) and a MAT phylogeny of legume-associated Ascochyta spp. Fungal Genet Biol 2003; 39:151-67. [PMID: 12781674 DOI: 10.1016/s1087-1845(03)00015-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Degenerate primers designed to correspond to conserved regions of the high mobility group (HMG) protein encoded by the MAT1-2 gene of Cochliobolus heterostrophus, Cochliobolus sativus, and Alternaria alternata were used to amplify the portion of the sequence corresponding to the HMG box motif from Ascochyta rabiei (teleomorph: Didymella rabiei). A combination of TAIL and inverse PCR extended the MAT1-2 sequence in both directions, then primers designed to MAT1-2 flanking DNA were used to amplify the entire MAT1-1 idiomorph. MAT1-1 and MAT1-2 idiomorphs were 2294 and 2693 bp in length, respectively, and each contained a single putative open reading frame (ORF) and intron similar to MAT loci of other loculoascomycete fungi. MAT genes were expressed at high levels in rich medium. MAT-specific PCR primers were designed for use in a multiplex PCR assay and MAT-specific PCR amplicons correlated perfectly to mating phenotype of 35 ascospore progeny from a cross of MAT1-1 by MAT1-2 isolates and to the mating phenotype of field-collected isolates from diverse geographic locations. MAT-specific PCR was used to rapidly determine the mating type of isolates of A. rabiei sampled from chickpea fields in the US Pacific Northwest. Mating type ratios were not significantly different from 1:1 among isolates sampled from two commercial chickpea fields consistent with the hypothesis that these A. rabiei populations were randomly mating. The mating type ratio among isolates sampled from an experimental chickpea field where asexual reproduction was enforced differed significantly from 1:1. A phylogeny estimated among legume-associated Ascochyta spp. and related loculoascocmycete fungi using sequence data from the nuclear ribosomal internal transcribed spacer (ITS) demonstrated the monophyly of Ascochyta/Didymella spp. associated with legumes but was insufficiently variable to differentiate isolates associated with different legume hosts. In contrast, sequences of the HMG region of MAT1-2 were substantially more variable, revealing seven well-supported clades that correlated to host of isolation. A. rabiei on chickpea is phylogenetically distant from other legume-associated Ascochyta spp. and the specific status of A. rabiei, A. lentis, A. pisi, and A. fabae was confirmed by the HMG phylogeny
Collapse
Affiliation(s)
- M P Barve
- Department of Plant Pathology and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-6430, USA
| | | | | | | | | |
Collapse
|
20
|
Hsiang T, Chen F, Goodwin PH. Detection and phylogenetic analysis of mating type genes ofOphiosphaerella korrae. ACTA ACUST UNITED AC 2003. [DOI: 10.1139/b03-022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Portions of the mating type genes from Ophiosphaerella korrae (J. Walker & A.M. Smith) R.A. Shoemaker (=Leptosphaeria korrae J. Walker & A.M. Smith), a pathogenic fungus of grasses, were examined by PCR (polymerase chain reaction). For nine isolates of O. korrae from North America, both mating type genes were amplified, demonstrating that both MAT idiomorphs are detectable in this homothallic ascomycete. Amplified fragments from three isolates were sequenced, and parsimony analyses of MAT1 nucleotide and protein sequences placed O. korrae in the basal position of a clade of Phaeosphaeriaceae and Pleosporaceae, whereas the MAT2 nucleotide and protein data placed O. korrae in a clade with Pleosporaceae. The internal transcribed spacer (ITS) and 18S ribosomal DNA of O. korrae were also sequenced. The 18S sequences had insufficient variability to resolve the placement of O. korrae, whereas the ITS data placed it in Phaeosphaeriaceae. A total evidence analysis of Dothideomycetes with 18S, ITS, and MAT data placed O. korrae alongside Phaeosphaeria species, with moderate bootstrap support. However, the KishinoHasegawa test did not demonstrate this topology to be significantly different from one where O. korrae was placed with Pleosporales. Although O. korrae does not belong in Leptosphaeria based on ITS data, MAT data do not strongly support its placement in Phaeosphaeriaceae.Key words: ascomycetes, mating type genes, ribosomal genes, taxonomy.
Collapse
|
21
|
Ruprich-Robert G, Zickler D, Berteaux-Lecellier V, Vélot C, Picard M. Lack of mitochondrial citrate synthase discloses a new meiotic checkpoint in a strict aerobe. EMBO J 2002; 21:6440-51. [PMID: 12456651 PMCID: PMC136936 DOI: 10.1093/emboj/cdf632] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial citrate synthase (mCS) is the initial enzyme of the tricarboxylic acid (TCA) cycle. Despite the key position of this protein in respiratory metabolism, very few studies have addressed the question of the effects of the absence of mCS in development. Here we report on the characterization of 15 point mutations and a complete deletion of the cit1 gene, which encodes mCS in the filamentous fungus Podospora anserina. This gene was identified genetically through a systematic search for suppressors of the metabolic defect of the peroxisomal pex2 mutants. The cit1 mutant strains exhibit no visible vegetative defects. However, they display an unexpected developmental phenotype: in homozygous crosses, cit1 mutations impair meiosis progression beyond the diffuse stage, a key stage of meiotic prophase. Enzyme assays, immunofluorescence and western blotting experiments show that the presence of the mCS protein is more important for completion of meiosis than its well-known enzyme activity. Combined with observations made in budding yeast, our data suggest that there is a general metabolic checkpoint at the diffuse stage in eukaryotes.
Collapse
Affiliation(s)
- Gwenaël Ruprich-Robert
- Institut de Génétique et Microbiologie, UMR-CNRS 8621, Bat. 400, Université Paris-Sud, 91405 Orsay cedex, France
Present address: Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bat. 144, 91191-Gif sur Yvette, France Corresponding author e-mail:
| | | | | | | | - Marguerite Picard
- Institut de Génétique et Microbiologie, UMR-CNRS 8621, Bat. 400, Université Paris-Sud, 91405 Orsay cedex, France
Present address: Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bat. 144, 91191-Gif sur Yvette, France Corresponding author e-mail:
| |
Collapse
|
22
|
Waalwijk C, Mendes O, Verstappen ECP, de Waard MA, Kema GHJ. Isolation and characterization of the mating-type idiomorphs from the wheat septoria leaf blotch fungus Mycosphaerella graminicola. Fungal Genet Biol 2002; 35:277-86. [PMID: 11929216 DOI: 10.1006/fgbi.2001.1322] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both mating-type loci from the wheat septoria leaf blotch pathogen Mycosphaerella graminicola have been cloned and sequenced. The MAT1-2 gene was identified by screening a genomic library from the MAT1-2 isolate IPO94269 with a heterologous probe from Tapesia yallundae. The MAT1-2 idiomorph is 2772 bp and contains a single gene encoding a putative high-mobility-group protein of 394 amino acids. The opposite idiomorph was obtained from isolate IPO323, which has the complementary mating type, by long-range PCR using primers derived from sequences flanking the MAT1-2 idiomorph. The MAT1-1 locus is 2839 bp in size and contains a single open reading frame encoding a putative alpha1-domain protein of 297 amino acids. Within the nonidiomorphic sequences, homology was found with palI, encoding a membrane receptor from Aspergillus nidulans, and a gene encoding a putative component of the anaphase-promoting complex from Schizosaccharomyces pombe and a DNA-(apurinic or apyrimidinic) lyase from S. pombe. For each of the MAT genes specific primers were designed and tested on an F1 mapping population that was generated from a cross between IPO323 and IPO94269. An absolute correlation was found between the amplified allele-specific fragments and the mating type as determined by backcrosses of each F1 progeny isolate to the parental isolates. The primers were also used to screen a collection of field isolates in a multiplex PCR. An equal distribution of MAT1-1 and MAT1-2 alleles was found for most geographic origins examined.
Collapse
Affiliation(s)
- Cees Waalwijk
- Plant Research International, Wageningen, 6700 AA, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Coppin E. The fle1 gene encoding a C2H2 zinc finger protein co-ordinates male and female sexual differentiation in Podospora anserina. Mol Microbiol 2002; 43:1255-68. [PMID: 11918811 DOI: 10.1046/j.1365-2958.2002.02819.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flexuosa (fle1-1) mutant, isolated in Podospora anserina, displays vegetative defects and two antagonistic sexual phenotypes: it produces several 1000-fold fewer microconidia (male gametes) than the wild-type strain and, conversely, more abundant protoperithecia (female organs). Cloning and sequencing of the fle1 gene and of cDNA identified an open reading frame encoding a 382-amino-acid polypeptide with two C2H2 zinc finger motifs. The predicted FLE1 protein shares 46% identity with the FlbC protein of Aspergillus nidulans and 68% identity with a putative protein identified by a search in the Neurospora crassa database. The nuclear localization of FLE1 was demonstrated by fusion with the green fluorescent protein. Sequencing of the fle1-1 mutant allele revealed a frameshift mutation upstream of the zinc finger domain. The fle1-1 mutant was a null mutant, as targeted disruption of fle1 sequence led to the same pleiotropic phenotype. When fle1 was overexpressed by introduction of a transgenic copy of the native fle1 gene or a fusion with a strong promoter, formation of protoperithecia was impaired, leading to partial or complete female sterility. We propose that fle1 acts as a repressor of female sexual differentiation in order to maintain the balance between male and female sexual pathways.
Collapse
Affiliation(s)
- Evelyne Coppin
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris Sud, Bâtiment 400, 91405 Orsay cedex, France.
| |
Collapse
|
24
|
Graïa F, Lespinet O, Rimbault B, Dequard-Chablat M, Coppin E, Picard M. Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol Microbiol 2001; 40:586-95. [PMID: 11359565 DOI: 10.1046/j.1365-2958.2001.02367.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RIP (repeat-induced point mutation) is a silencing process discovered in Neurospora crassa and so far clearly established only in this species as a currently occurring process. RIP acts premeiotically on duplicated sequences, resulting in C-G to T-A mutations, with a striking preference for CpA/TpG dinucleotides. In Podospora anserina, an RIP-like event was observed after several rounds of sexual reproduction in a strain with a 40 kb tandem duplication resulting from homologous integration of a cosmid in the mating-type region. The 9 kb sequenced show 106 C-G to T-A transitions, with 80% of the replaced cytosines located in CpA dinucleotides. This led to the alteration of at least six genes, two of which were unidentified. This RIP-like event extended to single-copy genes between the two members of the repeat. The overall data show that the silencing process is strikingly similar to a light form of RIP, unaccompanied by C-methylation. Interestingly, the N. crassa zeta-eta sequence, which acts as a potent de novo C-methylation RIP signal in this species, is weakly methylated when introduced into P. anserina. These results demonstrate that RIP, at least in light forms, can occur beyond N. crassa.
Collapse
Affiliation(s)
- F Graïa
- Institut de Génétique et Microbiologie, UMR-CNRS 8621, Batiment 400, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Turgeon BG, Yoder OC. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 2000; 31:1-5. [PMID: 11118130 DOI: 10.1006/fgbi.2000.1227] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B G Turgeon
- Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, New York 14853, USA.
| | | |
Collapse
|
26
|
Graïa F, Berteaux-Lecellier V, Zickler D, Picard M. ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration events throughout the life cycle of Podospora anserina. Genetics 2000; 155:633-46. [PMID: 10835387 PMCID: PMC1461094 DOI: 10.1093/genetics/155.2.633] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Podospora anserina ami1-1 mutant was identified as a male-sterile strain. Microconidia (which act as male gametes) form, but are anucleate. Paraphysae from the perithecium beaks are also anucleate when ami1-1 is used as the female partner in a cross. Furthermore, in crosses heterozygous for ami1-1, some crozier cells are uninucleate rather than binucleate. In addition to these nuclear migration defects, which occur at the transition between syncytial and cellular states, ami1-1 causes abnormal distribution of the nuclei in both mycelial filaments and asci. Finally, an ami1-1 strain bearing information for both mating types is unable to self-fertilize. The ami1 gene is an orthologue of the Aspergillus nidulans apsA gene, which controls nuclear positioning in filaments and during conidiogenesis (at the syncytial/cellular transition). The ApsA and AMI1 proteins display 42% identity and share structural features. The apsA gene complements some ami1-1 defects: it increases the percentage of nucleate microconidia and restores self-fertility in an ami1-1 mat+ (mat-) strain. The latter effect is puzzling, since in apsA null mutants sexual reproduction is quite normal. The functional differences between the two genes are discussed with respect to their possible history in these two fungi, which are very distant in terms of evolution.
Collapse
Affiliation(s)
- F Graïa
- Institut de Génétique et Microbiologie de l'Université Paris-Sud (Orsay), 91405 France
| | | | | | | |
Collapse
|
27
|
Coppin E, Debuchy R. Co-expression of the mating-type genes involved in internuclear recognition is lethal in Podospora anserina. Genetics 2000; 155:657-69. [PMID: 10835389 PMCID: PMC1461101 DOI: 10.1093/genetics/155.2.657] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the heterothallic filamentous fungus Podospora anserina, four mating-type genes encoding transcriptional factors have been characterized: FPR1 in the mat+ sequence and FMR1, SMR1, and SMR2 in the alternative mat- sequence. Fertilization is controlled by FPR1 and FMR1. After fertilization, male and female nuclei, which have divided in the same cell, form mat+/mat- pairs during migration into the ascogenous hyphae. Previous data indicate that the formation of mat+/mat- pairs is controlled by FPR1, FMR1, and SMR2. SMR1 was postulated to be necessary for initial development of ascogenous hyphae. In this study, we investigated the transcriptional control of the mat genes by seeking mat transcripts during the vegetative and sexual phase and fusing their promoter to a reporter gene. The data indicate that FMR1 and FPR1 are expressed in both mycelia and perithecia, whereas SMR1 and SMR2 are transcribed in perithecia. Increased or induced vegetative expression of the four mat genes has no effect when the recombined gene is solely in the wild-type strain. However, the combination of resident FPR1 with deregulated SMR2 and overexpressed FMR1 in the same nucleus is lethal. This lethality is suppressed by the expression of SMR1, confirming that SMR1 operates downstream of the other mat genes.
Collapse
Affiliation(s)
- E Coppin
- Institut de Génétique et Microbiologie, UMR 8621 CNRS-Université Paris Sud, F-91405 Orsay, France.
| | | |
Collapse
|
28
|
Hiscock SJ, Kües U. Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:165-295. [PMID: 10494623 DOI: 10.1016/s0074-7696(08)61781-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants and fungi show an astonishing diversity of mechanisms to promote outbreeding, the most widespread of which is sexual incompatibility. Sexual incompatibility involves molecular recognition between mating partners. In fungi and algae, highly polymorphic mating-type loci mediate mating through complementary interactions between molecules encoded or regulated by different mating-type haplotypes, whereas in flowering plants polymorphic self-incompatibility loci regulate mate recognition through oppositional interactions between molecules encoded by the same self-incompatibility haplotypes. This subtle mechanistic difference is a consequence of the different life cycles of fungi, algae, and flowering plants. Recent molecular and biochemical studies have provided fascinating insights into the mechanisms of mate recognition and are beginning to shed light on evolution and population genetics of these extraordinarily polymorphic genetic systems of incompatibility.
Collapse
Affiliation(s)
- S J Hiscock
- Department of Plant Sciences, University of Oxford, United Kingdom
| | | |
Collapse
|
29
|
Yun SH, Berbee ML, Yoder OC, Turgeon BG. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci U S A 1999; 96:5592-7. [PMID: 10318929 PMCID: PMC21905 DOI: 10.1073/pnas.96.10.5592] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most fungal ascomycetes, mating is controlled by a single locus (MAT). Fungi requiring a partner to mate are heterothallic (self-sterile); those not requiring a partner are homothallic (self-fertile). Structural analyses of MAT sequences from homothallic and heterothallic Cochliobolus species support the hypothesis that heterothallism is ancestral. Homothallic species carry both MAT genes in a single nucleus, usually closely linked or fused, in contrast to heterothallic species, which have alternate MAT genes in different nuclei. The structural organization of MAT from all heterothallic species examined is highly conserved; in contrast, the organization of MAT in each homothallic species is unique. The mechanism of conversion from heterothallism to homothallism is a recombination event between islands of identity in otherwise dissimilar MAT sequences. Expression of a fused MAT gene from a homothallic species confers self-fertility on a MAT-null strain of a heterothallic species, suggesting that MAT alone is sufficient to change reproductive life style.
Collapse
Affiliation(s)
- S H Yun
- Department of Plant Pathology, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
30
|
Singh G, Ashby AM. Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein. Mol Microbiol 1998; 30:799-806. [PMID: 10094628 DOI: 10.1046/j.1365-2958.1998.01112.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mating type loci were cloned from Pyrenopeziza brassicae by chromosome walking from a mating type-linked polymerase chain reaction (PCR) fragment and shown to be idiomorphic by sequence analysis. The MAT 1-1 locus is approximately 3.2 kb and contains a single gene encoding a putative high-mobility group (HMG) domain protein. The MAT 1-2 locus is approximately 3.9 kb with three open reading frames (ORFs) encoding a putative HMG domain, an alpha-1 domain and metallothionein-like proteins. The putative alpha-1 domain ORF on MAT 1-2 is transcribed in the opposite orientation to the other two transcripts and extends into non-idiomorphic sequence. This is the first report of sequence analysis of the mating type loci from a discomycete fungus, which has revealed an interesting mating type infrastructure within the MAT 1-2 locus. Although metallothionein-like proteins have been implicated in a number of processes in animals and plants, they have not to date been implicated in the mating process of filamentous fungi. Possible roles for metallothionein-like proteins in the mating process are discussed.
Collapse
Affiliation(s)
- G Singh
- Department of Plant Sciences, University of Cambridge, UK
| | | |
Collapse
|
31
|
The two Cochliobolus mating type genes are conserved among species but one of them is missing in C. victoriae. ACTA ACUST UNITED AC 1998. [DOI: 10.1017/s0953756297005674] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Berteaux-Lecellier V, Zickler D, Debuchy R, Panvier-Adoutte A, Thompson-Coffe C, Picard M. A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina. EMBO J 1998; 17:1248-58. [PMID: 9482722 PMCID: PMC1170473 DOI: 10.1093/emboj/17.5.1248] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Podospora anserina cro1 gene was identified as a gene required for sexual sporulation. Crosses homozygous for the cro1-1 mutation yield fruiting bodies which produce few asci due to the formation of giant plurinucleate cells instead of dikaryotic cells after fertilization. This defect does not impair karyogamy, but meioses of the resultant polyploid nuclei are most often abortive. Cytological studies suggest that the primary defect of the mutant is its inability to form septa between the daughter nuclei after each mitosis, a step specific for normal dikaryotic cell divisions. The cro1-1 mutant would thus be unable to leave the syncytial vegetative state while abiding by the meiotic programme. cro1-1 also shows defects in ascospore germination and growth rate. GFP-tagging of the CRO1 protein reveals that it is a cytosolic protein mainly expressed at the beginning of the dikaryotic stage and at the time of ascospore maturation. The CRO1 protein exhibits significant similarity to the SHE4 protein, which is required for asymmetric mating-type switching in budding yeast cells. Thus, a gene involved in asymmetric cell divisions in a unicellular organism plays a key role at the transition between the syncytial (vegetative) state and the cellular (sexual) state in a filamentous fungus.
Collapse
Affiliation(s)
- V Berteaux-Lecellier
- Institut de Génétique et Microbiologie de l' Université Paris-Sud, CNRS-URA 2225, Bâtiment 400, F-91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Mating type genes regulate sexual compatibility and sexual reproduction in fungi. This review focuses on recent molecular analyses of well-characterized mating systems from representative ascomycete (Neurospora crassa, Podospora anserina) and basidiomycete (Ustilago maydis, Coprinus cinereus, Schizophyllum commune) fungi. These mating systems include many conserved components, such as gene regulatory polypeptides and pheromone/receptor signal transduction cascades, as well as conserved processes, like self-nonself recognition and controlled nuclear migration. The components' structures and their genetic arrangements in the mating system vary greatly in different fungi. Although similar components and processes are also found in ascomycete yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe), the filamentous systems exhibit properties not encountered in yeast. Mating type genes act within, and control the development of, spatially differentiated fruiting bodies. The complex mating systems of basidiomycetes, unlike ascomycete systems, involve novel one-to-many specificity in both pheromone-receptor and homeodomain protein interactions.
Collapse
Affiliation(s)
- J W Kronstad
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
34
|
Turgeon BG. Application of mating type gene technology to problems in fungal biology. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:115-137. [PMID: 15012495 DOI: 10.1146/annurev.phyto.36.1.115] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In ascomycetes, the single mating type locus (MAT) controls sexual development. This locus is structurally unusual because the two alternate forms ("alleles") are completely dissimilar sequences, encoding different transcription factors, yet they occupy the same chromosomal position. Recently developed procedures allow efficient cloning of MAT genes from a wide array of filamentous ascomycetes, thereby providing MAT-based technology for application to several ongoing issues in fungal biology. This article first outlines the basic nature of MAT genes, then addresses the following topics: efficient cloning of MAT genes; the unusual molecular characteristics of these genes; phylogenetics using MAT; the issues of why some fungi are self-sterile, others self-fertile, and yet others asexual; the long-standing mystery of possible mating type switching in filamentous fungi; and finally the evolutionary origins of pathogenic capability.
Collapse
Affiliation(s)
- B G Turgeon
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
35
|
Turgeon BG, Berbee ML. Evolution of Pathogenic and Reproductive Strategies in Cochliobolus and Related Genera. MOLECULAR GENETICS OF HOST-SPECIFIC TOXINS IN PLANT DISEASE 1998. [DOI: 10.1007/978-94-011-5218-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Coppin E, Debuchy R, Arnaise S, Picard M. Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 1997; 61:411-28. [PMID: 9409146 PMCID: PMC232618 DOI: 10.1128/mmbr.61.4.411-428.1997] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The progress made in the molecular characterization of the mating types in several filamentous ascomycetes has allowed us to better understand their role in sexual development and has brought to light interesting biological problems. The mating types of Neurospora crassa, Podospora anserina, and Cochliobolus heterostrophus consist of unrelated and unique sequences containing one or several genes with multiple functions, related to sexuality or not, such as vegetative incompatibility in N. crassa. The presence of putative DNA binding domains in the proteins encoded by the mating-type (mat) genes suggests that they may be transcriptional factors. The mat genes play a role in cell-cell recognition at fertilization, probably by activating the genes responsible for the hormonal signal whose occurrence was previously demonstrated by physiological experiments. They also control recognition between nuclei at a later stage, when reproductive nuclei of each mating type which have divided in the common cytoplasm pair within the ascogenous hyphae. How self is distinguished from nonself at the nuclear level is not known. The finding that homothallic species, able to mate in the absence of a partner, contain both mating types in the same haploid genome has raised more issues than it has resolved. The instability of the mating type, in particular in Sclerotinia trifolorium and Botrytinia fuckeliana, is also unexplained. This diversity of mating systems, still more apparent if the yeasts and the basidiomycetes are taken into account, clearly shows that no single species can serve as a universal mating-type model.
Collapse
Affiliation(s)
- E Coppin
- Institut de Génétique et Microbiologie, CNRS-URA 2225, Université Paris-Sud, Orsay, France.
| | | | | | | |
Collapse
|
37
|
Pöggeler S, Risch S, Kück U, Osiewacz HD. Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 1997; 147:567-80. [PMID: 9335594 PMCID: PMC1208179 DOI: 10.1093/genetics/147.2.567] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Homokaryons from the homothallic ascomycte Sordaria macrospora are able to enter the sexual pathway and to form fertile fruiting bodies. To analyze the molecular basis of homothallism and to elucidate the role of mating-products during fruiting body development, we cloned and sequenced the entire S. macrospora mating-type locus. Comparison of the Sordaria mating-type locus with mating-type idiomorphs from the heterothallic ascomycetes Neurospora crassa and Podospora anserina revealed that sequences from both idiomorphs (A/a and mat-/mat+, respectively) are contiguous in S. macrospora. DNA sequencing of the S. macrospora mating-type region allowed the identification of four open reading frames (ORFs), which were termed Smt-a1, SmtA-1, SmtA-2 and SmtA-3. While Smt-a1, SmtA-1, and SmtA-2 show strong sequence similarities with the corresponding N. crassa mating-type ORFs, SmtA-3 has a chimeric character. It comprises sequences that are similar to the A and a mating-type idiomorph from N. crassa. To determine functionality of the S. macrospora mating-type genes, we show that all ORFs are transcriptionally expressed. Furthermore, we transformed the S. macrospora mating-type genes into mat- and mat+ strains of the closely related heterothallic fungus P. anserina. The transformation experiments show that mating-type genes from S. macrospora induce fruiting body formation in P. anserina.
Collapse
Affiliation(s)
- S Pöggeler
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität, Bochum, Germany
| | | | | | | |
Collapse
|
38
|
Arie T, Christiansen S, Yoder O, Turgeon B. Efficient Cloning of Ascomycete Mating Type Genes by PCR Amplification of the ConservedMATHMG Box. Fungal Genet Biol 1997. [DOI: 10.1006/fgbi.1997.0961] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
|
40
|
Contamine V, Lecellier G, Belcour L, Picard M. Premature death in Podospora anserina: sporadic accumulation of the deleted mitochondrial genome, translational parameters and innocuity of the mating types. Genetics 1996; 144:541-55. [PMID: 8889519 PMCID: PMC1207549 DOI: 10.1093/genetics/144.2.541] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Podospora anserina premature death syndrome was described as early growth arrest caused by a site-specific deletion of the mitochondrial genome (mtDNA) and occurring in strains displaying the genotype AS1-4 mat-. The AS1-4 mutation lies in a gene encoding a cytosolic ribosomal protein, while mat- is one of the two forms (mat- and mat+) of the mating-type locus. Here we show that, depending on culture conditions, death due to the accumulation of the deleted mtDNA molecule can occur in the AS1-4 mat+ context and can be delayed in the AS1-4 mat- background. Furthermore, we show that premature death and the classical senescence process are mutually exclusive. Several approaches permit the identification of the mat-linked gene involved in the appearance of premature death. This gene, rmp, exhibits two natural alleles, rmp- linked to mat- and rmp+ linked to mat+. The first is probably functional while the second probably carries a nonsense mutation and is sporadically expressed through natural suppression. A model is proposed that emphasizes the roles played by the AS1-4 mutation, the rmp gene, and environmental conditions in the accumulation of the deleted mitochondrial genome characteristic of this syndrome.
Collapse
Affiliation(s)
- V Contamine
- Institut de Génétique et Microbiologie, CNRS URA 1354, Université Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
41
|
Sharon A, Yamaguchi K, Christiansen S, Horwitz BA, Yoder OC, Turgeon BG. An asexual fungus has the potential for sexual development. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:60-8. [PMID: 8628248 DOI: 10.1007/bf02174345] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The availability of cloned genes that control sexual reproduction (mating type genes) in high fungi has allowed us to consider the causes of failure to mate in asexual fungi. We report here that the asexual fungus Bipolaris sacchari has a homolog of the MAT-2 gene of its sexual ascomycete relative Cochliobolus heterostrophus. The B. sacchari MAT-2 sequence is highly similar to that of C. heterostrophus MAT-2 and, in fact, functions in transgenic C. heterostrophus. Thus, the asexual nature of B. sacchari is not due to absence or mutation of MAT. When either of the C. heterostrophus MAT genes was transformed into B. sacchari, the recipient could neither self nor cross with other B. sacchari strains, in contrast to transgenic C. heterostrophus strains which can do both. Persistent asexuality of B. sacchari, in spite of the presence of complementary functional MAT genes, suggests that this fungus lacks genes other than MAT which are essential for mating. Notably, the transgenic B. sacchari strains were sometimes able to initiate, but not complete, sexual development in interspecific pairings with C. heterostrophus. Transcript analysis showed that the B. sacchari MAT-2 gene is expressed in transgenic C. heterostrophus and that the C. heterostrophus MAT genes are expressed in transgenic B. sacchari. No transcript of the native B. sacchari MAT-2 gene was detected under any growth condition tested.
Collapse
Affiliation(s)
- A Sharon
- Botany Department, Tel-Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
In order to achieve genetic rearrangement in a sexual cycle, eukaryotes go through the processes of meiosis and mating. Different mating types assure that mating is only possible between two genetically diverse individuals. Basidiomycetous fungi display thousands of different mating types that are determined by two genetically unlinked loci. One locus is multiallelic and contains genes for homeodomain transcription factors which are able to form heterodimers. The activation of target genes is dependent on heterodimers formed from the monomeric transcription factor proteins originating from different alleles of this genetic locus. The interactions between the two monomeric transcription factors and the activation of target genes by the heterodimeric proteins make this regulatory system both complex and interesting. The second locus contains a pheromone receptor system: the pheromone receptor is similar to the G protein-linked serpentine receptors in Saccharomyces cerevisiae that activate the pheromone response via a phosphorylation signal transduction cascade in S. cerevisiae. This pheromone perception is a trigger of sexual development and not, as with yeast, itself under control of mating type genes. Rather it directly senses diversity at the mating type loci. Whereas heterobasidiomycetes display a bi-allelic structure for this locus with recognition between one receptor and the opposite pheromone, homobasidiomycetes contain multiple specificities for pheromone receptors and pheromones.
Collapse
Affiliation(s)
- E Kothe
- Philipps-Universität, Biologie-Molekuargenetik, Marburg, Germany.
| |
Collapse
|
43
|
Deletion of theCochliobolus heterostrophus mating-type (MAT) locus promotes the function ofMAT transgenes. Curr Genet 1996. [DOI: 10.1007/bf02221554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Turgeon BG, Sharon A, Wirsel S, Yamaguchi K, Christiansen SK, Yoder OC. Structure and function of mating type genes inCochliobolusspp. and asexual fungi. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-322] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mating type (MAT) genes of Cochliobolus heterostrophus have homologs in other heterothallic Cochliobolus spp., in homothallic Cochliobolus spp., and in asexual fungi thought to be taxonomically related to Cochliobolus (e.g., Bipolaris spp.). To examine the cause of asexuality in B. sacchari, its homolog of C. heterostrophus MAT-2 was cloned. The B. sacchari sequence was 98% identical to that of C. heterostrophus MAT-2, the gene conferred homothallism when expressed in a C. heterostrophus MAT-1 strain, and transgenic strains mated with C. heterostrophus MAT-1. Thus the cause of asexuality in B. sacchari is not absence or lack of a functional MAT gene. When the C. heterostrophus MAT genes were expressed in B. sacchari, however, no sexual development occurred, suggesting that this asexual fungus lacks an attribute, other than the mating type gene, which is required for mating. Although cloned MAT genes function upon transformation into recipient strains, they do not confer full fertility. When an homologous or heterologous (e.g., from C. carbonum, C. victoriae, or B. sacchari) MAT gene is transferred into a C. heterostrophus strain of opposite mating type, the strain can self and cross to tester strains of either mating type. However, any transgenic strain carrying both a resident MAT gene and an homologous or heterologous MAT transgene develops normal perithecia but few ascospores in a cross that requires function of the transgene. To determine if the resident MAT gene interferes with function of the transgene, the MAT locus was deleted from the genome of C. heterostrophus and then replaced with the MAT gene of C. heterostrophus, C. carbonum, C. victoriae, or B. sacchari. Interference was eliminated and abundant ascospores were formed when the four transgenic strains were crossed to C. heterostrophus strains of opposite mating type. Key words: asexual fungi, DNA-binding proteins, heterologous expression, transformation.
Collapse
|
45
|
Metzenberg RL, Randall TA. Mating type inNeurosporaand closely related ascomycetes: some current problems. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurospora crassa and related ascomycetes such as Podospora anserina exist in two mating types, encoded in a unique region of one chromosome. Classical genetic analysis outlined the nature of the questions and provided important materials for further work. In the mating type region, there is little DNA sequence resemblance between the two mating types. They are, therefore, called idiomorphs rather than alleles. There are no silent copies of these sequences in the genome, so mating type switching is impossible. Cloning, sequence analysis, and complementation studies involving these idiomorphs has begun to shed light on their function. One of the idiomorphs contains three reading frames; one is essential for fertilization and fruiting body formation and the other two are involved in post-fertilization functions including ascus and ascospore formation. In various species of the genus Neurospora, the centromere-proximal flank of the idiomorphs is highly variable in DNA sequence among species, and in some cases, between mating types. The similarities and differences in these flanking sequences allow some conclusions to be drawn about the possible phylogenetic relationship of these species. Key words: Neurospora, ascomycetes, mating, evolution, compatibility, HMG proteins.
Collapse
|
46
|
Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet JM. A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 1995; 81:1043-51. [PMID: 7600573 DOI: 10.1016/s0092-8674(05)80009-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The car1 gene of the filamentous fungus Podospora anserina was cloned by complementation of a mutant defective for caryogamy (nuclear fusion), a process required for sexual sporulation. This gene encodes a protein that shows similarity to the mammalian PAF1 protein (Zellweger syndrome). Besides sequence similarity, the two proteins share a transmembrane domain and the same type of zinc finger motif. A combination of molecular, physiological, genetical, and ultrastructural approaches gave evidence that the P. anserina car1 protein is actually a peroxisomal protein. This study shows that peroxisomes are required at a specific stage of sexual development, at least in P. anserina, and that a functional homolog of the PAF1 gene is present in a lower eucaryote.
Collapse
|
47
|
Zickler D, Arnaise S, Coppin E, Debuchy R, Picard M. Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics 1995; 140:493-503. [PMID: 7498731 PMCID: PMC1206629 DOI: 10.1093/genetics/140.2.493] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strain, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strain carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant x wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation.
Collapse
Affiliation(s)
- D Zickler
- Institut de Génétique et Microbiologie, CNRS-URA 1354, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
48
|
Kang S, Chumley FG, Valent B. Isolation of the mating-type genes of the phytopathogenic fungus Magnaporthe grisea using genomic subtraction. Genetics 1994; 138:289-96. [PMID: 7828813 PMCID: PMC1206148 DOI: 10.1093/genetics/138.2.289] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Using genomic subtraction, we isolated the mating-type genes (Mat1-1 and Mat1-2) of the rice blast fungus, Magnaporthe grisea. Transformation of M. grisea strains of one mating type with a linearized cosmid clone carrying the opposite mating-type gene resulted in many "dual maters," strains that contain both mating-type genes and successfully mate with Mat1-1 and Mat1-2 testers. Dual maters differed in the frequency of production of perithecia in pure culture. Ascospores isolated from these homothallic crosses were either Mat1-1 or Mat1-2, but there were no dual maters. Most conidia from dual maters also had one or the other of the mating-type genes, but not both. Thus, dual maters appear to lose one of the mating-type genes during vegetative growth. The incidence of self-mating in dual maters appears to depend on the co-occurrence of strains with each mating type in vegetative cultures. In rare transformants, the incoming sequences had replaced the resident mating-type gene. Nearly isogenic pairs produced from three M. grisea laboratory strains were mated to investigate their fertility. One transformant with switched mating type appears to have a mutation that impairs the development of asci when its mating partner has a similar genetic background. The M. grisea Mat1-1 and Mat1-2 genes are idiomorphs approximately 2.5 and 3.5 kb in length, respectively.
Collapse
Affiliation(s)
- S Kang
- DuPont Company, Wilmington, Delaware 19880-0402
| | | | | |
Collapse
|
49
|
Chang S, Staben C. Directed replacement of mt A by mt a-1 effects a mating type switch in Neurospora crassa. Genetics 1994; 138:75-81. [PMID: 8001795 PMCID: PMC1206140 DOI: 10.1093/genetics/138.1.75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To test the functions of a mating type genes, we developed an efficient strategy to select transformants of Neurospora crassa in which resident A mating type DNA was replaced by cloned DNA from the mt a idiomorph. Cloned a idiomorphic DNA could specify all functions, including fertility, of a mating type, but only when it replaced A DNA at the mating type locus. Only the mt a-1 region of the a idiomorph was necessary in order to specify a mating type. Gene replacement events involved the homologous sequences flanking the unique mating type idiomorphic DNA, resulting in apparently isogenic a and A strains. These isogenic strains were fertile when crossed with one another, indicating that no determinants outside the transforming DNA are necessary for fertility as a and that no host sequences of A strains interfere with fertility as a. One a replacement strain bore a duplication of the transforming mt a-1 and hph DNA. The duplication strain had unexpected properties. Although mating type segregated 1:1 in crosses of this strain to A, the duplicated regions were efficiently altered during the sexual process to generate a single copy in the progeny. No progeny were recovered that had undergone RIP (repeat induced point mutation) sufficient to inactivate the mt a-1 gene. We infer that the mt a-1 gene is necessary and sufficient to specify a mating type identity in all vegetative and sexual activities. Mt a-1 may also play an essential role in ascosporogenesis after fertilization.
Collapse
Affiliation(s)
- S Chang
- T. H. Morgan School of Biological Sciences, University of Kentucky, Lexington 40506-0225
| | | |
Collapse
|
50
|
Cisar CR, TeBeest DO, Spiegel FW. Sequence similarity of mating type idiomorphs: A method which detects similarity among the Sordariaceae fails to detect similar sequences in other filamentous ascomycetes. Mycologia 1994. [DOI: 10.1080/00275514.1994.12026447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- C. R. Cisar
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas 72701
| | - D. O. TeBeest
- Department of Plant Pathology, University of Arkansas, Fayetteville, Arkansas 72701
| | - F. W. Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|