1
|
Nikonorova IA, desRanleau E, Jacobs KC, Saul J, Walsh JD, Wang J, Barr MM. Polycystins recruit cargo to distinct ciliary extracellular vesicle subtypes in C. elegans. Nat Commun 2025; 16:2899. [PMID: 40180912 PMCID: PMC11968823 DOI: 10.1038/s41467-025-57512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we use a modular proximity labeling approach to identify the cargo of ciliary EVs associated with the transient receptor potential channel polycystin-2 PKD-2 of C. elegans. Polycystins are conserved ciliary proteins and cargo of EVs; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. We discover that polycystins localize with specific cargo on ciliary EVs: polycystin-associated channel-like protein PACL-1, dorsal and ventral polycystin-associated membrane C-type lectins PAMLs, and conserved tumor necrosis factor receptor-associated factor (TRAF) TRF-1 and TRF-2. Loading of these components to EVs relies on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Elizabeth desRanleau
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Katherine C Jacobs
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
3
|
Nikonorova IA, desRanleau E, Jacobs KC, Saul J, Walsh JD, Wang J, Barr MM. Polycystins recruit cargo to distinct ciliary extracellular vesicle subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.588758. [PMID: 38659811 PMCID: PMC11042387 DOI: 10.1101/2024.04.17.588758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Therapeutic use of tiny extracellular vesicles (EVs) requires understanding cargo loading mechanisms. Here, we used a modular proximity label approach to identify EV cargo associated with the transient potential channel (TRP) polycystin PKD-2 of C. elegans. Polycystins are conserved receptor-TRP channel proteins affecting cilium function; dysfunction causes polycystic kidney disease in humans and mating deficits in C. elegans. Polycystin-2 EV localization is conserved from algae to humans, hinting at an ancient and unknown function. We discovered that polycystins associate with and direct specific cargo to EVs: channel-like PACL-1, dorsal and ventral membrane C-type lectins PAMLs, and conserved tumor necrosis-associated factor (TRAF) signaling adaptors TRF-1 and TRF-2. Loading of these components relied on polycystin-1 LOV-1. Our modular EV-TurboID approach can be applied in both cell- and tissue-specific manners to define the composition of distinct EV subtypes, addressing a major challenge of the EV field.
Collapse
Affiliation(s)
- Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Elizabeth desRanleau
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Katherine C. Jacobs
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Joshua Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Jonathon D. Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey; Piscataway, New Jersey 08854, USA
- Lead contact
| |
Collapse
|
4
|
Davies KG, Mohan S, Phani V, Srivastava A. Exploring the mechanisms of host-specificity of a hyperparasitic bacterium ( Pasteuria spp.) with potential to control tropical root-knot nematodes ( Meloidogyne spp.): insights from Caenorhabditis elegans. Front Cell Infect Microbiol 2023; 13:1296293. [PMID: 38173791 PMCID: PMC10761439 DOI: 10.3389/fcimb.2023.1296293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Plant-parasitic nematodes are important economic pests of a range of tropical crops. Strategies for managing these pests have relied on a range of approaches, including crop rotation, the utilization of genetic resistance, cultural techniques, and since the 1950's the use of nematicides. Although nematicides have been hugely successful in controlling nematodes, their toxicity to humans, domestic animals, beneficial organisms, and the environment has raised concerns regarding their use. Alternatives are therefore being sought. The Pasteuria group of bacteria that form endospores has generated much interest among companies wanting to develop microbial biocontrol products. A major challenge in developing these bacteria as biocontrol agents is their host-specificity; one population of the bacterium can attach to and infect one population of plant-parasitic nematode but not another of the same species. Here we will review the mechanism by which infection is initiated with the adhesion of endospores to the nematode cuticle. To understand the genetics of the molecular processes between Pasteuria endospores and the nematode cuticle, the review focuses on the nature of the bacterial adhesins and how they interact with the nematode cuticle receptors by exploiting new insights gained from studies of bacterial infections of Carnorhabditis elegans. A new Velcro-like multiple adhesin model is proposed in which the cuticle surface coat, which has an important role in endospore adhesion, is a complex extracellular matrix containing glycans originating in seam cells. The genes associated with these seam cells appear to have a dual role by retaining some characteristics of stem cells.
Collapse
Affiliation(s)
- Keith G. Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Arohi Srivastava
- Dr. D. Y Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
5
|
O’Rourke D, Gravato-Nobre MJ, Stroud D, Pritchett E, Barker E, Price RL, Robinson SA, Spiro S, Kuwabara P, Hodgkin J. Isolation and molecular identification of nematode surface mutants with resistance to bacterial pathogens. G3 (BETHESDA, MD.) 2023; 13:jkad056. [PMID: 36911920 PMCID: PMC10151413 DOI: 10.1093/g3journal/jkad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
Numerous mutants of the nematode Caenorhabditis elegans with surface abnormalities have been isolated by utilizing their resistance to a variety of bacterial pathogens (Microbacterium nematophilum, Yersinia pseudotuberculosis, and 2 Leucobacter strains), all of which are able to cause disease or death when worms are grown on bacterial lawns containing these pathogens. Previous work led to the identification of 9 srf or bus genes; here, we report molecular identification and characterization of a further 10 surface-affecting genes. Three of these were found to encode factors implicated in glycosylation (srf-2, bus-5, and bus-22), like several of those previously reported; srf-2 belongs to the GT92 family of putative galactosyltransferases, and bus-5 is homologous to human dTDP-D-glucose 4,6-dehydratase, which is implicated in Catel-Manzke syndrome. Other genes encoded proteins with sequence similarity to phosphatidylinositol phosphatases (bus-6), Patched-related receptors (ptr-15/bus-13), steroid dehydrogenases (dhs-5/bus-21), or glypiation factors (bus-24). Three genes appeared to be nematode-specific (srf-5, bus-10, and bus-28). Many mutants exhibited cuticle fragility as revealed by bleach and detergent sensitivity; this fragility was correlated with increased drug sensitivity, as well as with abnormal skiddy locomotion. Most of the genes examined were found to be expressed in epidermal seam cells, which appear to be important for synthesizing nematode surface coat. The results reveal the genetic and biochemical complexity of this critical surface layer, and provide new tools for its analysis.
Collapse
Affiliation(s)
- Delia O’Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Pritchett
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Emily Barker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Rebecca L Price
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sarah A Robinson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Simon Spiro
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
6
|
Sinnige T, Ciryam P, Casford S, Dobson CM, de Bono M, Vendruscolo M. Expression of the amyloid-β peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response. PLoS One 2019; 14:e0217746. [PMID: 31150491 PMCID: PMC6544271 DOI: 10.1371/journal.pone.0217746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/19/2019] [Indexed: 12/21/2022] Open
Abstract
Although the aggregation of the amyloid-β peptide (Aβ) into amyloid fibrils is a well-established hallmark of Alzheimer’s disease, the complex mechanisms linking this process to neurodegeneration are still incompletely understood. The nematode worm C. elegans is a valuable model organism through which to study these mechanisms because of its simple nervous system and its relatively short lifespan. Standard Aβ-based C. elegans models of Alzheimer’s disease are designed to study the toxic effects of the overexpression of Aβ in the muscle or nervous systems. However, the wide variety of effects associated with the tissue-level overexpression of Aβ makes it difficult to single out and study specific cellular mechanisms related to the onset of Alzheimer’s disease. Here, to better understand how to investigate the early events affecting neuronal signalling, we created a C. elegans model expressing Aβ42, the 42-residue form of Aβ, from a single-copy gene insertion in just one pair of glutamatergic sensory neurons, the BAG neurons. In behavioural assays, we found that the Aβ42-expressing animals displayed a subtle modulation of the response to CO2, compared to controls. Ca2+ imaging revealed that the BAG neurons in young Aβ42-expressing nematodes were activated more strongly than in control animals, and that neuronal activation remained intact until old age. Taken together, our results suggest that Aβ42-expression in this very subtle model of AD is sufficient to modulate the behavioural response but not strong enough to generate significant neurotoxicity, suggesting that slightly more aggressive perturbations will enable effectively studies of the links between the modulation of a physiological response and its associated neurotoxicity.
Collapse
Affiliation(s)
- Tessa Sinnige
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Prashanth Ciryam
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Casford
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher M. Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mario de Bono
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.278. [PMID: 28544390 PMCID: PMC5626018 DOI: 10.1002/wdev.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rebecca J Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kristen M Flatt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nathan E Schroeder
- Neuroscience Program and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
8
|
Blazie SM, Geissel HC, Wilky H, Joshi R, Newbern J, Mangone M. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues. Genetics 2017; 206:757-774. [PMID: 28348061 PMCID: PMC5499184 DOI: 10.1534/genetics.116.196774] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis.
Collapse
Affiliation(s)
- Stephen M Blazie
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
| | - Heather C Geissel
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
| | - Henry Wilky
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| | - Rajan Joshi
- College of Letters and Sciences, Interdisciplinary Studies, Biological Sciences and Informatics, Arizona State University, Tempe, Arizona 85281
| | - Jason Newbern
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona 85281
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85281
- Barrett Honors College, Arizona State University, Tempe, Arizona 85281
| |
Collapse
|
9
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
10
|
Parsons LM, Mizanur RM, Jankowska E, Hodgkin J, O′Rourke D, Stroud D, Ghosh S, Cipollo JF. Caenorhabditis elegans bacterial pathogen resistant bus-4 mutants produce altered mucins. PLoS One 2014; 9:e107250. [PMID: 25296196 PMCID: PMC4189790 DOI: 10.1371/journal.pone.0107250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022] Open
Abstract
Caenorabditis elegans bus-4 glycosyltransferase mutants are resistant to infection by Microbacterium nematophilum, Yersinia pestis and Yersinia pseudotuberculosis and have altered susceptibility to two Leucobacter species Verde1 and Verde2. Our objective in this study was to define the glycosylation changes leading to this phenotype to better understand how these changes lead to pathogen resistance. We performed MALDI-TOF MS, tandem MS and GC/MS experiments to reveal fine structural detail for the bus-4 N- and O-glycan pools. We observed dramatic changes in O-glycans and moderate ones in N-glycan pools compared to the parent strain. Ce core-I glycans, the nematode's mucin glycan equivalent, were doubled in abundance, halved in charge and bore shifts in terminal substitutions. The fucosyl O-glycans, Ce core-II and neutral fucosyl forms, were also increased in abundance as were fucosyl N-glycans. Quantitative expression analysis revealed that two mucins, let-653 and osm-8, were upregulated nearly 40 fold and also revealed was a dramatic increase in GDP-Man 4,6 dehydratease expression. We performed detailed lectin binding studies that showed changes in glycoconjugates in the surface coat, cuticle surface and intestine. The combined changes in cell surface glycoconjugate distribution, increased abundance and altered properties of mucin provide an environment where likely the above pathogens are not exposed to normal glycoconjugate dependent cues leading to barriers to these bacterial infections.
Collapse
Affiliation(s)
- Lisa M. Parsons
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Rahman M. Mizanur
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Ewa Jankowska
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - Jonathan Hodgkin
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Delia O′Rourke
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Dave Stroud
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Salil Ghosh
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
| | - John F. Cipollo
- Food and Drug Administration, Center for Biologics Evaluation and Research, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Schultz RD, Bennett EE, Ellis EA, Gumienny TL. Regulation of extracellular matrix organization by BMP signaling in Caenorhabditis elegans. PLoS One 2014; 9:e101929. [PMID: 25013968 PMCID: PMC4094471 DOI: 10.1371/journal.pone.0101929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
In mammals, Bone Morphogenetic Protein (BMP) pathway signaling is important for the growth and homeostasis of extracellular matrix, including basement membrane remodeling, scarring, and bone growth. A conserved BMP member in Caenorhabditis elegans, DBL-1, regulates body length in a dose-sensitive manner. Loss of DBL-1 pathway signaling also results in increased anesthetic sensitivity. However, the physiological basis of these pleiotropic phenotypes is largely unknown. We created a DBL-1 over-expressing strain and show that sensitivity to anesthetics is inversely related to the dose of DBL-1. Using pharmacological, genetic analyses, and a novel dye permeability assay for live, microwave-treated animals, we confirm that DBL-1 is required for the barrier function of the cuticle, a specialized extracellular matrix. We show that DBL-1 signaling is required to prevent animals from forming tail-entangled aggregates in liquid. Stripping lipids off the surface of wild-type animals recapitulates this phenotype. Finally, we find that DBL-1 signaling affects ultrastructure of the nematode cuticle in a dose-dependent manner, as surface lipid content and cuticular organization are disrupted in animals with genetically altered DBL-1 levels. We propose that the lipid layer coating the nematode cuticle normally prevents tail entanglement, and that reduction of this layer by loss of DBL-1 signaling promotes aggregation. This work provides a physiological mechanism that unites the DBL-1 signaling pathway roles of not only body size regulation and drug responsiveness, but also the novel Hoechst 33342 staining and aggregation phenotypes, through barrier function, content, and organization of the cuticle.
Collapse
Affiliation(s)
- Robbie D. Schultz
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Emily E. Bennett
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
| | - E. Ann Ellis
- Microscopy & Imaging Center, Texas A&M University, College Station, Texas, United States of America
| | - Tina L. Gumienny
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, Texas, United States of America
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
12
|
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:879-902. [PMID: 23539358 DOI: 10.1002/wdev.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans epidermis forms one of the principal barrier epithelia of the animal. Differentiation of the epidermis begins in mid embryogenesis and involves apical-basal polarization of the cytoskeletal and secretory systems as well as cellular junction formation. Secretion of the external cuticle layers is one of the major developmental and physiological specializations of the epidermal epithelium. The four post-embryonic larval stages are separated by periodic moults, in which the epidermis generates a new cuticle with stage-specific characteristics. The differentiated epidermis also plays key roles in endocrine signaling, fat storage, and ionic homeostasis. The epidermis is intimately associated with the development and function of the nervous system, and may have glial-like roles in modulating neuronal function. The epidermis provides passive and active defenses against skin-penetrating pathogens and can repair small wounds. Finally, age-dependent deterioration of the epidermis is a prominent feature of aging and may affect organismal aging and lifespan.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
13
|
Gravato-Nobre MJ, Stroud D, O'Rourke D, Darby C, Hodgkin J. Glycosylation genes expressed in seam cells determine complex surface properties and bacterial adhesion to the cuticle of Caenorhabditis elegans. Genetics 2011; 187:141-55. [PMID: 20980242 PMCID: PMC3018313 DOI: 10.1534/genetics.110.122002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property--contact recognition of hermaphrodites by males during mating--was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway.
Collapse
Affiliation(s)
- Maria J. Gravato-Nobre
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Dave Stroud
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Delia O'Rourke
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Creg Darby
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| | - Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom and Department of Cell and Tissue Biology, University of California, San Francisco, California 94143
| |
Collapse
|
14
|
Abstract
The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play.
Collapse
Affiliation(s)
- Keith G Davies
- Plant Pathology and Microbiology, Rothamsted Research, Hertfordshire AL5 2JQ, United Kingdom
| | | |
Collapse
|
15
|
Palaima E, Leymarie N, Stroud D, Mizanur RM, Hodgkin J, Gravato-Nobre MJ, Costello CE, Cipollo JF. The Caenorhabditis elegans bus-2 mutant reveals a new class of O-glycans affecting bacterial resistance. J Biol Chem 2010; 285:17662-72. [PMID: 20385555 PMCID: PMC2878530 DOI: 10.1074/jbc.m109.065433] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 04/02/2010] [Indexed: 11/06/2022] Open
Abstract
Microbacterium nematophilum causes a deleterious infection of the C. elegans hindgut initiated by adhesion to rectal and anal cuticle. C. elegans bus-2 mutants, which are resistant to M. nematophilum and also to the formation of surface biofilms by Yersinia sp., carry genetic lesions in a putative glycosyltransferase containing conserved domains of core-1 beta1,3-galactosyltransferases. bus-2 is predicted to act in the synthesis of core-1 type O-glycans. This observation implies that the infection requires the presence of host core-1 O-glycoconjugates and is therefore carbohydrate-dependent. Chemical analysis reported here reveals that bus-2 is indeed deficient in core-1 O-glycans. These mutants also exhibit a new subclass of O-glycans whose structures were determined by high performance tandem mass spectrometry; these are highly fucosylated and have a novel core that contains internally linked GlcA. Lectin studies showed that core-1 glycans and this novel class of O-glycans are both expressed in the tissue that is infected in the wild type worms. In worms having the bus-2 genetic background, core-1 glycans are decreased, whereas the novel fucosyl O-glycans are increased in abundance in this region. Expression analysis using a red fluorescent protein marker showed that bus-2 is expressed in the posterior gut, cuticle seam cells, and spermatheca, the first two of which are likely to be involved in secreting the carbohydrate-rich surface coat of the cuticle. Therefore, in the bus-2 background of reduced core-1 O-glycans, the novel fucosyl glycans likely replace or mask remaining core-1 ligands, leading to the resistance phenotype. There are more than 35 Microbacterium species, some of which are pathogenic in man. This study is the first to analyze the biochemistry of adhesion to a host tissue by a Microbacterium species.
Collapse
Affiliation(s)
- Elizabeth Palaima
- From the Departments of Biochemistry and Molecular Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Nancy Leymarie
- From the Departments of Biochemistry and Molecular Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Dave Stroud
- the Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom, and
| | - Rahman M. Mizanur
- the Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland 20892
| | - Jonathan Hodgkin
- the Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom, and
| | - Maria J. Gravato-Nobre
- the Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom, and
| | - Catherine E. Costello
- From the Departments of Biochemistry and Molecular Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - John F. Cipollo
- From the Departments of Biochemistry and Molecular Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
16
|
Abstract
![]()
The nematode Caenorhabditis elegans is an excellent model organism for studies of glycan dynamics, a goal that requires tools for imaging glycans in vivo. Here we applied the bioorthogonal chemical reporter technique for the molecular imaging of mucin-type O-glycans in live C. elegans. We treated worms with azidosugar variants of N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), and N-acetylmannosamine (ManNAc), resulting in the metabolic labeling of their cell-surface glycans with azides. Subsequently, the worms were reacted via copper-free click reaction with fluorophore-conjugated difluorinated cyclooctyne (DIFO) reagents. We identified prominent localization of mucins in the pharynx of all four larval stages, in the adult hermaphrodite pharynx, vulva and anus, and in the tail of the adult male. Using a multicolor, time-resolved imaging strategy, we found that the distribution and dynamics of the glycans varied anatomically and with respect to developmental stage.
Collapse
Affiliation(s)
| | - Carolyn R. Bertozzi
- Department of Molecular and Cell Biology
- Department of Chemistry
- Howard Hughes Medical Institute,
- The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
17
|
Struwe WB, Hughes BL, Osborn DW, Boudreau ED, Shaw KMD, Warren CE. Modeling a congenital disorder of glycosylation type I in C. elegans: a genome-wide RNAi screen for N-glycosylation-dependent loci. Glycobiology 2009; 19:1554-62. [PMID: 19729382 PMCID: PMC2782245 DOI: 10.1093/glycob/cwp136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/29/2009] [Accepted: 08/31/2009] [Indexed: 01/20/2023] Open
Abstract
Inefficient glycosylation caused by defective synthesis of lipid-linked oligosaccharide donor results in multi-systemic syndromes known as congenital disorders of glycosylation type I (CDG-I). Strong loss of function mutations are embryonic lethal, patients with partial losses of function are occasionally born but are very ill, presenting with defects in virtually every tissue. CDG-I clinical expression varies considerably and ranges from very mild to severe, and the underlying cause of the variable clinical features is not yet understood. We postulate that accompanying defects in an individual's genetic background enhance the severity of CDG-I clinical phenotypes. Since so many protein structures and functions are compromised in CDG-I illnesses, the gene products that are dependent on N-linked glycosylation which cause lethality or particular symptoms are difficult to resolve. The power of genetic silencing that is a characteristic of C. elegans has allowed us to systematically dissect the complex glycosylation phenotype observed in CDG-I patients into specific glycan-dependent gene products. To accomplish this, we inhibited glycosylation with a sub-phenotypic dose of tunicamycin, reduced single genes by RNA interference, and then sought loci where the combination caused a synthetic or dramatically enhanced phenotype. This screen has identified genes in C. elegans that require N-linked glycans to function properly as well as candidate gene homologues that may enhance the clinical severity of CDG-I disorders in humans.
Collapse
Affiliation(s)
- Weston B Struwe
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Novelli JF, Chaudhary K, Canovas J, Benner JS, Madinger CL, Kelly P, Hodgkin J, Carlow CKS. Characterization of the Caenorhabditis elegans UDP-galactopyranose mutase homolog glf-1 reveals an essential role for galactofuranose metabolism in nematode surface coat synthesis. Dev Biol 2009; 335:340-55. [PMID: 19751718 DOI: 10.1016/j.ydbio.2009.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/15/2009] [Accepted: 09/07/2009] [Indexed: 01/08/2023]
Abstract
Galactofuranose (Gal(f)), the furanoic form of d-galactose produced by UDP-galactopyranose mutases (UGMs), is present in surface glycans of some prokaryotes and lower eukaryotes. Absence of the Gal(f) biosynthetic pathway in vertebrates and its importance in several pathogens make UGMs attractive drug targets. Since the existence of Gal(f) in nematodes has not been established, we investigated the role of the Caenorhabditis elegans UGM homolog glf-1 in worm development. glf-1 mutants display significant late embryonic and larval lethality, and other phenotypes indicative of defective surface coat synthesis, the glycan-rich outermost layer of the nematode cuticle. The glf homolog from the protozoan Leishmania major partially complements C. elegans glf-1. glf-1 mutants rescued by L. major glf, which behave as glf-1 hypomorphs, display resistance to infection by Microbacterium nematophilum, a pathogen of rhabditid nematodes thought to bind to surface coat glycans. To confirm the presence of Gal(f) in C. elegans, we analyzed C. elegans nucleotide sugar pools using online electrospray ionization-mass spectrometry (ESI-MS). UDP-Gal(f) was detected in wild-type animals while absent in glf-1 deletion mutants. Our data indicate that Gal(f) likely has a pivotal role in maintenance of surface integrity in nematodes, supporting investigation of UGM as a drug target in parasitic species.
Collapse
|
19
|
Drace K, McLaughlin S, Darby C. Caenorhabditis elegans BAH-1 is a DUF23 protein expressed in seam cells and required for microbial biofilm binding to the cuticle. PLoS One 2009; 4:e6741. [PMID: 19707590 PMCID: PMC2727005 DOI: 10.1371/journal.pone.0006741] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/22/2009] [Indexed: 11/24/2022] Open
Abstract
The cuticle of Caenorhabditis elegans, a complex, multi-layered extracellular matrix, is a major interface between the animal and its environment. Biofilms produced by the bacterial genus Yersinia attach to the cuticle of the worm, providing an assay for surface characteristics. A C. elegans gene required for biofilm attachment, bah-1, encodes a protein containing the domain of unknown function DUF23. The DUF23 domain is found in 61 predicted proteins in C. elegans, which can be divided into three distinct phylogenetic clades. bah-1 is expressed in seam cells, which are among the hypodermal cells that synthesize the cuticle, and is regulated by a TGF-β signaling pathway.
Collapse
Affiliation(s)
- Kevin Drace
- Department of Cell and Tissue Biology, Program in Microbial Pathogenesis and Host Defense, University of California San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
20
|
Davies KG. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp. ADVANCES IN PARASITOLOGY 2009; 68:211-45. [PMID: 19289196 DOI: 10.1016/s0065-308x(08)00609-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pasteuria penetrans is an endospore-forming bacterium, which is a hyperparasite of root-knot nematodes Meloidogyne spp. that are economically important pests of a wide range of crops. The life cycle of the bacterium and nematode are described with emphasis on the bacterium's potential as a biocontrol agent. Two aspects that currently prohibit the commercial development of the bacterium as a biocontrol agent are the inability to culture it outside its host and its host specificity. Vegetative growth of the bacterium is possible in vitro; however, getting the vegetative stages of the bacterium to enter sporogenesis has been problematic. Insights from genomic survey sequences regarding the role of cation concentration and the phosphorylation of Spo0F have proved useful in inducing vegetative bacteria to sporulate. Similarly, genomic data have also proved useful in understanding the attachment of endospores to the cuticle of infective nematode juveniles, and a Velcro-like model of spore attachment is proposed that involves collagen-like fibres on the surface of the endospore interacting with mucins on the nematode cuticle. Ecological studies of the interactions between Daphnia and Pasteuria ramosa are examined and similarities are drawn between the co-evolution of virulence in the Daphnia system and that of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Keith G Davies
- Plant Pathology and Microbiology, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
21
|
Abstract
Molecular imaging enables visualization of specific molecules in vivo and without substantial perturbation to the target molecule's environment. Glycans are appealing targets for molecular imaging but are inaccessible with conventional approaches. Classic methods for monitoring glycans rely on molecular recognition with probe-bearing lectins or antibodies, but these techniques are not well suited to in vivo imaging. In an emerging strategy, glycans are imaged by metabolic labeling with chemical reporters and subsequent ligation to fluorescent probes. This technique has enabled visualization of glycans in living cells and in live organisms such as zebrafish. Molecular imaging with chemical reporters offers a new avenue for probing changes in the glycome that accompany development and disease.
Collapse
|
22
|
The hmsHFRS operon of Xenorhabdus nematophila is required for biofilm attachment to Caenorhabditis elegans. Appl Environ Microbiol 2008; 74:4509-15. [PMID: 18515487 DOI: 10.1128/aem.00336-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The bacterium Xenorhabdus nematophila is an insect pathogen and an obligate symbiont of the nematode Steinernema carpocapsae. X. nematophila makes a biofilm that adheres to the head of the model nematode Caenorhabditis elegans, a capability X. nematophila shares with the biofilms made by Yersinia pestis and Yersinia pseudotuberculosis. As in Yersinia spp., the X. nematophila biofilm requires a 4-gene operon, hmsHFRS. Also like its Yersinia counterparts, the X. nematophila biofilm is bound by the lectin wheat germ agglutinin, suggesting that beta-linked N-acetyl-D-glucosamine or N-acetylneuraminic acid is a component of the extracellular matrix. C. elegans mutants with aberrant surfaces that do not permit Yersinia biofilm attachment also are resistant to X. nematophila biofilms. An X. nematophila hmsH mutant that failed to make biofilms on C. elegans had no detectable defect in symbiotic association with S. carpocapsae, nor was virulence reduced against the insect Manduca sexta.
Collapse
|
23
|
Identification of cis-regulatory elements from the C. elegans T-box gene mab-9 reveals a novel role for mab-9 in hypodermal function. Dev Biol 2008; 317:695-704. [PMID: 18402933 DOI: 10.1016/j.ydbio.2008.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/14/2008] [Accepted: 02/23/2008] [Indexed: 11/21/2022]
Abstract
We have identified Conserved Non-coding Elements (CNEs) in the regulatory region of Caenorhabditis elegans and Caenorhabditis briggsae mab-9, a T-box gene known to be important for cell fate specification in the developing C. elegans hindgut. Two adjacent CNEs (a region 78 bp in length) are both necessary and sufficient to drive reporter gene expression in posterior hypodermal cells. The failure of a genomic mab-9::gfp construct lacking this region to express in posterior hypodermis correlates with the inability of this construct to completely rescue the mab-9 mutant phenotype. Transgenic males carrying this construct in a mab-9 mutant background exhibit tail abnormalities including morphogenetic defects, altered tail autofluorescence and abnormal lectin-binding properties. Hermaphrodites display reduced susceptibility to the C. elegans pathogen Microbacterium nematophilum. This comparative genomics approach has therefore revealed a previously unknown role for mab-9 in hypodermal function and we suggest that MAB-9 is required for the secretion and/or modification of posterior cuticle.
Collapse
|
24
|
Darby C, Chakraborti A, Politz SM, Daniels CC, Tan L, Drace K. Caenorhabditis elegans mutants resistant to attachment of Yersinia biofilms. Genetics 2007; 176:221-30. [PMID: 17339204 PMCID: PMC1893055 DOI: 10.1534/genetics.106.067496] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that biofilms produced by Yersinia pestis and Y. pseudotuberculosis, which bind the C. elegans surface predominantly on the head, can be used to identify additional surface-determining genes. A screen for C. elegans mutants with a biofilm absent on the head (Bah) phenotype identified three novel genes: bah-1, bah-2, and bah-3. The bah-1 and bah-2 mutants have slightly fragile cuticles but are neither Srf nor Bus, suggesting that they are specific for surface components involved in biofilm attachment. A bah-3 mutant has normal cuticle integrity, but shows a stage-specific Srf phenotype. The screen produced alleles of five known surface genes: srf-2, srf-3, bus-4, bus-12, and bus-17. For the X-linked bus-17, a paternal effect was observed in biofilm assays.
Collapse
Affiliation(s)
- Creg Darby
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0640, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Yook K, Hodgkin J. Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 2007; 175:681-97. [PMID: 17151260 PMCID: PMC1800622 DOI: 10.1534/genetics.106.060087] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 11/15/2006] [Indexed: 11/18/2022] Open
Abstract
A specific host-pathogen interaction exists between Caenorhabditis elegans and the gram-positive bacterium Microbacterium nematophilum. This bacterium is able to colonize the rectum of susceptible worms and induces a defensive tail-swelling response in the host. Previous mutant screens have identified multiple loci that affect this interaction. Some of these loci correspond to known genes, but many bus genes [those with a bacterially unswollen (Bus) mutant phenotype] have yet to be cloned. We employed Mos1 transposon mutagenesis as a means of more rapidly cloning bus genes and identifying new mutants with altered pathogen response. This approach revealed new infection-related roles for two well-characterized and much-studied genes, egl-8 and tax-4. It also allowed the cloning of a known bus gene, bus-17, which encodes a predicted galactosyltransferase, and of a new bus gene, bus-19, which encodes a novel, albeit ancient, protein. The results illustrate advantages and disadvantages of Mos1 transposon mutagenesis in this system.
Collapse
Affiliation(s)
- Karen Yook
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
26
|
Gallo M, Mah AK, Johnsen RC, Rose AM, Baillie DL. Caenorhabditis elegans dpy-14: an essential collagen gene with unique expression profile and physiological roles in early development. Mol Genet Genomics 2006; 275:527-39. [PMID: 16496175 DOI: 10.1007/s00438-006-0110-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 02/01/2006] [Indexed: 10/25/2022]
Abstract
We describe the molecular characterisation of Caenorhabditis elegans dpy-14, a gene encoding an essential cuticular collagen annotated as col-59. Expression of dpy-14 starts at the 16 E cell stage, making it the earliest-expressing collagen reported to date. SAGE data and dpy-14 promoter::GFP reporter constructs indicate that the gene is transcribed mainly during embryogenesis, specifically in ciliated neurons and hypoderm. Water permeability assays and lectin staining showed that a mutation in the DPY-14 collagen results in defects in the channels of the amphids, which are a class of ciliated neuron, while the amphids appear morphologically normal by dye filling methods. Behavioural assays showed that the ciliated neurons expressing the gene are functional in dpy-14 mutants. All together, our data suggest that ciliated neurons and their hypodermal support cells collaborate in the transcription and synthesis of DPY-14, which then becomes a component of the amphid channels but not of the amphids proper. Interestingly, seam cells of dpy-14 mutants do not properly fuse to form a syncytium. This novel phenotype due to collagen mutations further stresses that dpy-14 plays a fundamental role in C. elegans physiology, since it is required for the proper development of the hypoderm.
Collapse
Affiliation(s)
- Marco Gallo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, V5A 1S6, Burnaby, BC, Canada
| | | | | | | | | |
Collapse
|
27
|
Shi H, Tan J, Schachter H. N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. Methods Enzymol 2006; 417:359-89. [PMID: 17132514 DOI: 10.1016/s0076-6879(06)17022-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caenorhabditis elegans is becoming a popular tool for the study of glycan function particularly as it applies to development. More than 150 C. elegans genes have been identified as homologs of vertebrate genes involved in glycan metabolism. However, only a relatively small number of these genes have been expressed and studied in any detail. Oligomannose N-glycans (Man5-9GlcNAc2Asn), major components of the N-glycans of all eukaryotes including C. elegans, are essential, at least in part, for eukaryote survival, because they play an important role in protein quality control. In addition, vertebrates make hybrid (GlcNAcMan3-5GlcNAc2Asn) and complex (XGlcNAc2-6Man3GlcNAc2Asn) but little or no paucimannose (Man3-4GlcNAc2Asn)N-glycans, whereas plants, insects, and C. elegans make paucimannose but little or no hybrid nor complex N-glycans. UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by the gene Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans in all eukaryotes. C. elegans has three genes encoding beta1,2-N-acetylglucosaminyltransferase I (gly-12, gly-13, gly-14). To determine the functional requirement for this enzyme in worms, we generated seven worm strains with mutations in these three genes (gly-12, dpy-6 gly-13, gly-14, gly-12 gly-13, gly-14;gly-12, gly-14;dpy-6 gly-13 and gly-14;gly-12 gly-13). Whereas mice and Drosophila melanogaster with null mutations in Mgat1 suffer severe developmental abnormalities, all seven C. elegans strains with null mutations in the genes encoding beta1,2-N-acetylglucosaminyltransferase I develop normally and seem to have a wild-type phenotype. We now present evidence that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans (consisting mainly of paucimannose N-glycans) play a role in the interaction of C. elegans with pathogenic bacteria, suggesting that these N-glycans are components of the worm's innate immune system.
Collapse
Affiliation(s)
- Hui Shi
- Program in Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
28
|
Natsuka S, Kawaguchi M, Wada Y, Ichikawa A, Ikura K, Hase S. Characterization of wheat germ agglutinin ligand on soluble glycoproteins in Caenorhabditis elegans. J Biochem 2005; 138:209-13. [PMID: 16091596 DOI: 10.1093/jb/mvi117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Some mutants of Caenorhabditis elegans show altered patterns of ectopic binding with wheat germ agglutinin (WGA). Some of these mutants also have defects of morphogenesis and movement during development. To clarify the structures of WGA-ligands in C. elegans that may be involved in developmental events, we have analyzed glycan structures capable of binding WGA. We isolated glycoproteins from wild-type C. elegans by WGA-affinity chromatography, and analyzed their glycan structures by a combination of hydrazine degradation and fluorescent labeling. The glycoproteins had oligomannose-type and complex-type N-glycans that included agalacto-biantenna and agalacto-tetraantenna glycans. Although the complex-type glycans carried beta-GlcNAc residues at their non-reducing ends, they did not bind to the WGA-agarose-resin. Thus, it was suggested that these N-glycans were not responsible for WGA-binding of the isolated glycoproteins. Hydrazinolysis of the glycoproteins also released a considerable amount of GalNAc monosaccharide. It was surmised that N-acetylgalactosamine was derived from mucin-type O-glycans with the Tn-antigen structure (GalNAcalpha1-O-Ser/Thr). WGA-blotting assay of neoglycoproteins revealed that a cluster of Tn-antigens was a good ligand for WGA. These results suggested that the WGA-ligand in C. elegans is a cluster of alpha-GalNAc monosaccharides linked to mucin-like glycoprotein(s). The observations reported in this paper emphasize the possible significance of mucin-type O-glycans in the development of a multicellular organism.
Collapse
Affiliation(s)
- Shunji Natsuka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka
| | | | | | | | | | | |
Collapse
|
29
|
Gravato-Nobre MJ, Nicholas HR, Nijland R, O'Rourke D, Whittington DE, Yook KJ, Hodgkin J. Multiple genes affect sensitivity of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 2005; 171:1033-45. [PMID: 16079230 PMCID: PMC1456810 DOI: 10.1534/genetics.105.045716] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interactions with bacteria play a major role in immune responses, ecology, and evolution of all animals, but they have been neglected until recently in the case of C. elegans. We report a genetic investigation of the interaction of C. elegans with the nematode-specific pathogen Microbacterium nematophilum, which colonizes the rectum and causes distinctive tail swelling in its host. A total of 121 mutants with altered response to infection were isolated from selections or screens for a bacterially unswollen (Bus) phenotype, using both chemical and transposon mutagenesis. Some of these correspond to known genes, affecting either bacterial adhesion or colonization (srf-2, srf-3, srf-5) or host swelling response (sur-2, egl-5). Most mutants define 15 new genes (bus-1-bus-6, bus-8, bus-10, bus-12-bus-18). The majority of these mutants exhibit little or no rectal infection when challenged with the pathogen and are probably altered in surface properties such that the bacteria can no longer infect worms. A number have corresponding alterations in lectin staining and cuticle fragility. Most of the uninfectable mutants grow better than wild type in the presence of the pathogen, but the sur-2 mutant is hypersensitive, indicating that the tail-swelling response is associated with a specific defense mechanism against this pathogen.
Collapse
Affiliation(s)
- Maria J Gravato-Nobre
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Researchers have long predicted that complex carbohydrates on cell surfaces would play important roles in developmental processes because of the observation that specific carbohydrate structures appear in specific spatial and temporal patterns throughout development. The astounding number and complexity of carbohydrate structures on cell surfaces added support to the concept that glycoconjugates would function in cellular communication during development. Although the structural complexity inherent in glycoconjugates has slowed advances in our understanding of their functions, the complete sequencing of the genomes of organisms classically used in developmental studies (e.g., mice, Drosophila melanogaster, and Caenorhabditis elegans) has led to demonstration of essential functions for a number of glycoconjugates in developmental processes. Here we present a review of recent studies analyzing function of a variety of glycoconjugates (O-fucose, O-mannose, N-glycans, mucin-type O-glycans, proteoglycans, glycosphingolipids), focusing on lessons learned from human disease and genetic studies in mice, D. melanogaster, and C. elegans.
Collapse
Affiliation(s)
- Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, New York 11794-5215, USA.
| | | |
Collapse
|
31
|
Tan L, Darby C. A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J Bacteriol 2004; 186:5087-92. [PMID: 15262945 PMCID: PMC451665 DOI: 10.1128/jb.186.15.5087-5092.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bubonic plague is transmitted by fleas whose feeding is blocked by a mass of Yersinia pestis in the digestive tract. Y. pestis and the closely related Y. pseudotuberculosis also block the feeding of Caenorhabditis elegans by forming a biofilm on the nematode head. C. elegans mutants with severe motility defects acquire almost no biofilm, indicating that normal animals accumulate the biofilm matrix as they move through a Yersinia lawn. Using the lectin wheat germ agglutinin as a probe, we show that the matrix on C. elegans contains carbohydrate produced by Yersinia. The carbohydrate is present in bacterial lawns prior to addition of nematodes, indicating that biofilm formation does not involve signaling between the two organisms. Furthermore, biofilm accumulation depends on continuous C. elegans exposure to a lawn of Yersinia bacteria.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, University of Alabama at Birmingham, BBRB Box 19, 1530 3rd Ave. South, Birmingham, AL 35294-2170, USA
| | | |
Collapse
|
32
|
Höflich J, Berninsone P, Göbel C, Gravato-Nobre MJ, Libby BJ, Darby C, Politz SM, Hodgkin J, Hirschberg CB, Baumeister R. Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. J Biol Chem 2004; 279:30440-8. [PMID: 15123614 DOI: 10.1074/jbc.m402429200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During the establishment of a bacterial infection, the surface molecules of the host organism are of particular importance, since they mediate the first contact with the pathogen. In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis. We cloned srf-3 and found that it encodes a multitransmembrane hydrophobic protein resembling nucleotide sugar transporters of the Golgi apparatus membrane. srf-3 is exclusively expressed in secretory cells, consistent with its proposed function in cuticle/surface modification. We demonstrate that SRF-3 can function as a nucleotide sugar transporter in heterologous in vitro and in vivo systems. UDP-galactose and UDP-N-acetylglucosamine are substrates for SRF-3. We propose that the inability of Yersinia biofilms and M. nematophilum to adhere to the nematode cuticle is due to an altered glycoconjugate surface composition of the srf-3 mutant.
Collapse
Affiliation(s)
- Jörg Höflich
- ABI/Molecular Neurogenetics, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Joshua GWP, Karlyshev AV, Smith MP, Isherwood KE, Titball RW, Wren BW. A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. MICROBIOLOGY-SGM 2004; 149:3221-3229. [PMID: 14600234 DOI: 10.1099/mic.0.26475-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To investigate Yersinia pathogenicity and the evolutionary divergence of the genus, the effect of pathogenic yersiniae on the model organism Caenorhabditis elegans was studied. Three strains of Yersinia pestis, including a strain lacking pMT1, caused blockage and death of C. elegans; one strain, lacking the haemin storage (hms) locus, caused no effect. Similarly, 15 strains of Yersinia enterocolitica caused no effect. Strains of Yersinia pseudotuberculosis showed different levels of pathogenicity. The majority of strains (76 %) caused no discernible effect; 5 % caused a weak infection, 9.5 % an intermediate infection, and 9.5 % a severe infection. There was no consistent relationship between serotype and severity of infection; nor was there any relationship between strains causing infection of C. elegans and those able to form a biofilm on an abiotic surface. Electron microscope and cytochemical examination of infected worms indicated that the infection phenotype is a result of biofilm formation on the head of the worm. Seven transposon mutants of Y. pseudotuberculosis strain YPIII pIB1 were completely or partially attenuated; mutated genes included genes encoding proteins involved in haemin storage and lipopolysaccharide biosynthesis. A screen of 15 defined C. elegans mutants identified four where mutation caused (complete) resistance to infection by Y. pseudotuberculosis YPIII pIB1. These mutants, srf-2, srf-3, srf-5 and the dauer pathway gene daf-1, also exhibit altered binding of lectins to the nematode surface. This suggests that biofilm formation on a biotic surface is an interactive process involving both bacterial and invertebrate control mechanisms.
Collapse
Affiliation(s)
- G W P Joshua
- London School of Hygiene and Tropical Medicine, Dept Infectious and Tropical Diseases, Keppel St, London WC1E 7HT, UK
| | - A V Karlyshev
- London School of Hygiene and Tropical Medicine, Dept Infectious and Tropical Diseases, Keppel St, London WC1E 7HT, UK
| | - M P Smith
- DSTL, Porton Down, Salisbury SP4 0JQ, UK
| | | | - R W Titball
- DSTL, Porton Down, Salisbury SP4 0JQ, UK
- London School of Hygiene and Tropical Medicine, Dept Infectious and Tropical Diseases, Keppel St, London WC1E 7HT, UK
| | - B W Wren
- London School of Hygiene and Tropical Medicine, Dept Infectious and Tropical Diseases, Keppel St, London WC1E 7HT, UK
| |
Collapse
|
34
|
Warren CE, Krizus A, Dennis JW. Complementary expression patterns of six nonessential Caenorhabditis elegans core 2/I N-acetylglucosaminyltransferase homologues. Glycobiology 2001; 11:979-88. [PMID: 11744632 DOI: 10.1093/glycob/11.11.979] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Caenorhabditis elegans genome contains 18 sequences related to mammalian core 2/I N-acetylglucosaminyltransferases. The six most closely related genes (gly-1 and gly-15 to gly-19) likely encode active enzymes, because are all transcribed and do not appear to be pseudogenes. Polypeptide divergence and the gene structures are both concordant with a common ancestor at the time of radiation from mammals that underwent three rounds of duplication and, most recently, a tandem duplication. Polypeptide alignments with mammalian homologues do not indicate whether the enzyme specificities are core 2, 4, or I-like or novel, but do clearly demonstrate the secondary structure characteristics of glycosyltransferases. The six homologues have essentially nonoverlapping expression patterns, unrelated by tissue type or cell lineage. The extent varies widely; gly-15 is expressed only in two gland cells, whereas gly-18 is broadly expressed in diverse cell types. gly-1, -15, -18 and -19 are expressed during adulthood; gly-16 and gly-17 appear to be restricted to embryonic or early larval stages. The parsimonious interpretation of the expression pattern and sequence data is that the catalytic activities are similar but with diverged promoters. Null alleles of three of the genes were generated without causing gross abnormality in homozygous animals. RNA-mediated interference experiments also failed to induce defects in the four genes tested. Nevertheless, the nematode has evolved six diverged core 2 GlcNAc-T-like genes, and we postulate that these arose in response to selection pressures to which C. elegans is not ordinarily subjected in the laboratory.
Collapse
Affiliation(s)
- C E Warren
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | |
Collapse
|
35
|
Link CD, Johnson CJ, Fonte V, Paupard M, Hall DH, Styren S, Mathis CA, Klunk WE. Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 2001; 22:217-26. [PMID: 11182471 DOI: 10.1016/s0197-4580(00)00237-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transgenic Caenorhabditis elegans animals can be engineered to express high levels of the human beta amyloid peptide (Abeta). Histochemistry of fixed tissue from these animals reveals deposits reactive with the amyloid-specific dyes Congo Red and thioflavin S (Fay et al., J. Neurochem 71:1616, 1998). Here we show by immuno-electron microscopy that these animals contain intracellular immunoreactive deposits with classic amyloid fibrillar ultrastructure. These deposits can be visualized in living animals using the newly developed, intensively fluorescent, amyloid-specific dye X-34. This in vivo staining allows monitoring of amyloid deposition in individual animals over time. The specificity of this staining is demonstrated by examining transgenic animals expressing high levels of a non-fibrillar beta peptide variant, the beta single-chain dimer. These animals have deposits immunoreactive with anti-beta antibodies, but do not have X-34 deposits or deposits with a fibrillar ultrastructure. X-34 can also be used in vivo to visualize putative amyloid deposits resulting from accumulation of human transthyretin, another amyloidic protein. In vivo amyloid staining with X-34 may be a useful tool for monitoring anti-amyloidic treatments in real time or screening for genetic alterations that affect amyloid formation.
Collapse
Affiliation(s)
- C D Link
- Institute for Behavioral Genetics, University of Colorado, Campus Box 447, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hodgkin J, Kuwabara PE, Corneliussen B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 2000; 10:1615-8. [PMID: 11137017 DOI: 10.1016/s0960-9822(00)00867-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Dar (deformed anal region) phenotype, characterized by a distinctive swollen tail, was first detected in a variant strain of Caenorhabditis elegans which appeared spontaneously in 1986 during routine genetic crosses [1,2]. Dar isolates were initially analysed as morphological mutants, but we report here that two independent isolates carry an unusual bacterial infection different from those previously described [3], which is the cause of the Dar phenotype. The infectious agent is a new species of coryneform bacterium, named Microbacterium nematophilum n. sp., which fortuitously contaminated cultures of C. elegans. The bacteria adhere to the rectal and post-anal cuticle of susceptible nematodes, and induce substantial local swelling of the underlying hypodermal tissue. The swelling leads to constipation and slowed growth in the infected worms, but the infection is otherwise non-lethal. Certain mutants of C. elegans with altered surface antigenicity are resistant to infection. The induced deformation appears to be part of a survival strategy for the bacteria, as C. elegans are potentially their predators.
Collapse
Affiliation(s)
- J Hodgkin
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
37
|
Ko FC, Chow KL. Mutations with sensory ray defect unmask cuticular glycoprotein antigens in Caenorhabditis elegans male tail. Dev Growth Differ 2000; 42:69-77. [PMID: 10831045 DOI: 10.1046/j.1440-169x.2000.00487.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caenorhabditis elegans male tail has nine pairs of bilaterally symmetric ray processes extended into a cuticular fan. The formation of these structures involves both cell lineage differentiation and cellular morphogenesis. Nine mutations were examined, all of which presented an amorphous ray phenotype. Glycoconjugates carrying an N-acetylglucosamine (GlcNAc) epitope were detected at a high level in their male bursa. It was shown that these antigens are not responsible for the morphological defects. It was further demonstrated that these ram and mab gene products represent critical components for male tail cuticle organization. Mutations of them abolish the integrity of the male bursal cuticle and unmask the underlying GlcNAc epitope.
Collapse
Affiliation(s)
- F C Ko
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | | |
Collapse
|
38
|
Fujita M, Kawano T, Ohta A, Sakamoto H. Neuronal expression of a Caenorhabditis elegans elav-like gene and the effect of its ectopic expression. Biochem Biophys Res Commun 1999; 260:646-52. [PMID: 10403820 DOI: 10.1006/bbrc.1999.0957] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the expression of a Caenorhabditis elegans (C. elegans) elav-like gene, which we designated elr-1. The elr-1 gene encodes a predicted 456-amino-acid protein containing three putative RNA-binding domains and belongs to the ELAV family, which is functionally involved in neuronal differentiation. Northern blot analysis suggested that the levels of elr-1 mRNA are regulated developmentally. A elr-1::gfp reporter gene under the control of the elr-1 promoter was expressed specifically in the ring ganglia near the nerve ring, the ventral nerve cord (VNC), and the pre-anal and lumbar ganglia. In the VNC, GFP-positive cells were shown to be acetylcholine-producing motor neurons which increased in number as development proceeded, suggesting that elr-1 is expressed in mature neurons. Ectopic expression of ELR-1 protein at the L4 larval and adult stages, but not earlier stages, caused irreversible death, accompanied by uncoordinated movement (Unc), clear (Clr), and egg-laying defective (Egl) phenotypes, which are often observed in mutants with neuronal defects. These results suggest that ELR-1 may have important functions in specific mature neurons in C. elegans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Caenorhabditis elegans/cytology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins
- Cloning, Molecular
- ELAV Proteins
- Ganglia, Invertebrate/cytology
- Ganglia, Invertebrate/metabolism
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Genes, Lethal/genetics
- Genes, Lethal/physiology
- Genes, Reporter/genetics
- Humans
- Molecular Sequence Data
- Motor Activity
- Motor Neurons/metabolism
- Neurons/metabolism
- Phenotype
- Promoter Regions, Genetic/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M Fujita
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe, 657-8501, Japan
| | | | | | | |
Collapse
|
39
|
Chen S, Zhou S, Sarkar M, Spence AM, Schachter H. Expression of three Caenorhabditis elegans N-acetylglucosaminyltransferase I genes during development. J Biol Chem 1999; 274:288-97. [PMID: 9867843 DOI: 10.1074/jbc.274.1.288] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1, 2-N-acetylglucosaminyltransferase I (GnT I) is a key enzyme in the synthesis of Asn-linked complex and hybrid glycans. Studies on mice with a null mutation in the GnT I gene have indicated that N-glycans play critical roles in mammalian morphogenesis. This paper presents studies on N-glycans during the development of the nematode Caenorhabditis elegans. We have cloned cDNAs for three predicted C. elegans genes homologous to mammalian GnT I (designated gly-12, gly-13, and gly-14). All three cDNAs encode proteins (467, 449, and 437 amino acids, respectively) with the domain structure typical of previously cloned Golgi-type glycosyltransferases. Expression in both insect cells and transgenic worms showed that gly-12 and gly-14, but not gly-13, encode active GnT I. All three genes were expressed throughout worm development (embryo, larval stages L1-L4, and adult worms). The gly-12 and gly-13 promoters were expressed from embryogenesis to adulthood in many tissues. The gly-14 promoter was expressed only in gut cells from L1 to adult developmental stages. Transgenic worms that overexpress any one of the three genes show no obvious phenotypic defects. The data indicate that C. elegans is a suitable model for further study of the role of complex N-glycans in development.
Collapse
Affiliation(s)
- S Chen
- Department of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
40
|
Abstract
Caenorhabditis elegans has become a popular model system for genetic and molecular research, since it is easy to maintain and has a very fast life-cycle. Its genome is small and a virtually complete physical map in the form of cosmids and YAC clones exists. Thus it was chosen as a model system by the Genome Project for sequencing, and it is expected that by 1998 the complete sequence (100 million bp) will be available. The accumulated wealth of information about C. elegans should be a boon for nematode parasitologists, as many aspects of gene regulation and function can be studied in this simple model system. A large array of techniques is available to study many aspects of C. elegans biology. In combination with genome projects for parasitic nematodes, conserved genes can be identified rapidly. We expect many new areas of fertile research that will lead to new insights in helminth parasitology, which are based not only on the information gained from C. elegans per se, but also from its use as a heterologous system to study parasitic genes.
Collapse
Affiliation(s)
- T R Bürglin
- Department of Cell Biology, Biozentrum, University of Basel, Switzerland.
| | | | | |
Collapse
|
41
|
Ogura K, Shirakawa M, Barnes TM, Hekimi S, Ohshima Y. The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51. Genes Dev 1997; 11:1801-11. [PMID: 9242488 DOI: 10.1101/gad.11.14.1801] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Certain unc mutants in the nematode Caenorhabditis elegans, such as unc-14 and unc-51, show abnormal axonal elongation and axonal structures. We cloned the unc-51 gene previously and predicted that it encodes a novel serine/threonine protein kinase. In this study, we precisely localized the activity to rescue an unc-14 mutation. Also, we identified four cDNA clones encoded by the unc-14 rescuing region, in screens for proteins that bind to UNC-51 using a yeast two-hybrid system. A mutation site in the cDNA was identified for each of the six unc-14 mutants, establishing that the unc-14 gene was cloned. The unc-14 gene encodes a novel protein of 665 amino acids, and is coexpressed with the unc-51 gene in the cell bodies and axons of almost all neurons including DD/VD and hermaphrodite-specific neurons. Another clone recovered in the two-hybrid screen encodes a carboxy-terminal region of UNC-51. Analysis using the yeast two-hybrid system suggested that a central region of UNC-14 bound to a carboxy-terminal region of UNC-51, and that the UNC-51 carboxy-terminal region oligomerized. In in vitro binding studies using recombinant fusion proteins, UNC-14 interacted with UNC-51 directly. We propose that UNC-51 protein kinase acts as an oligomer, and that UNC-14 is a regulator of UNC-51, in axonal elongation and guidance.
Collapse
Affiliation(s)
- K Ogura
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
42
|
Terns RM, Kroll-Conner P, Zhu J, Chung S, Rothman JH. A deficiency screen for zygotic loci required for establishment and patterning of the epidermis in Caenorhabditis elegans. Genetics 1997; 146:185-206. [PMID: 9136010 PMCID: PMC1207935 DOI: 10.1093/genetics/146.1.185] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To identify genomic regions required for establishment and patterning of the epidermis, we screened 58 deficiencies that collectively delete at least approximately 67% of the Caenorhabditis elegans genome. The epidermal pattern of deficiency homozygous embryos was analyzed by examining expression of a marker specific for one of the three major epidermal cell types, the seam cells. The organization of the epidermis and internal organs was also analyzed using a monoclonal antibody specific for epithelial adherens junctions. While seven deficiencies had no apparent effect on seam cell production, 21 were found to result in subnormal, and five in excess numbers of these cells. An additional 23 deficiencies blocked expression of the seam cell marker, in some cases without preventing cell proliferation. Two deficiencies result in multinucleate seam cells. Deficiencies were also identified that result in subnormal numbers of epidermal cells, hyperfusion of epidermal cells into a large syncytium, or aberrant epidermal differentiation. Finally, analysis of internal epithelia revealed deficiencies that cause defects in formation of internal organs, including circularization of the intestine and bifurcation of the pharynx lumen. This study reveals that many regions of the C. elegans genome are required zygotically for patterning of the epidermis and other epithelia.
Collapse
Affiliation(s)
- R M Terns
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
43
|
Iwasaki K, McCarter J, Francis R, Schedl T. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation. J Cell Biol 1996; 134:699-714. [PMID: 8707849 PMCID: PMC2120936 DOI: 10.1083/jcb.134.3.699] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
emo-1(oz1) is a member of a class of hermaphrodite sterile mutations in Caenorhabditis elegans that produce endomitotic oocytes in the gonad arm. Oocytes in emo-1(oz1) mutants exhibit multiple defects during oogenesis. After meiotic maturation, ovulation fails, trapping oocytes in the gonad arm where they become endomitotic. emo-1 encodes a homologue of the Sec61p gamma subunit, a protein necessary for translocation of secretory and transmembrane proteins into the endoplasmic reticulum of yeast and mammalian cells. A putative emo-1 null mutation, oz151, displays embryonic lethality. The oz1 sterile mutation is a transposable element insertion into the emo-1 3' untranslated region that almost completely eliminates germline mRNA accumulation. Genetic mosaic analysis using the oz1 allele indicates that emo-1(+) expression in germ cells is required for fertility. The J67 monoclonal antibody, which recognizes an oocyte surface antigen (Strome, S. 1986. In Gametogenesis and the Early Embryo. J.G. Gall, editor. Alan R. Liss, Inc., New York. 77-95.), does not stain oz1 oocytes, a finding consistent with defective protein transport in the mutant. We propose that the emo-1 gene product acts in the transport of secreted and transmembrane proteins in C. elegans oocytes, and is necessary for both oogenesis and the coupling of ovulation with meiotic maturation.
Collapse
Affiliation(s)
- K Iwasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
44
|
Hirabayashi J, Ubukata T, Kasai K. Purification and molecular characterization of a novel 16-kDa galectin from the nematode Caenorhabditis elegans. J Biol Chem 1996; 271:2497-505. [PMID: 8576213 DOI: 10.1074/jbc.271.5.2497] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In our previous study (Hirabayashi, J., Satoh, M., Ohyama, Y., and Kasai, K. (1992) J. Biochem. (Tokyo) 111, 553-555), two beta-galactoside-binding lectins (apparent subunit molecular masses, 16 and 32 kDa, respectively) were identified in the nematode Caenorhabditis elegans. The subsequent study revealed that the 32-kDa lectin is a member of the galectin family. Since the 32-kDa galectin was found to consist of two homologous domains (approximately 16 kDa), 16-kDa lectin was thought to be a degradation product of the 32-kDa galectin. To clarify this, the 16-kDa lectin was purified by an improved procedure employing extraction with a calcium-supplemented buffer. The purified 16-kDa lectin was found to exist as a dimer (approximately 30 kDa) and showed hemagglutinating activity toward trypsinized rabbit erythrocytes, which was inhibited by lactose. Almost the whole sequence of the 16-kDa polypeptide (approximately 95%, 135 amino acids) was determined after digestion with various proteases. Based on the obtained information, a full-length cDNA was cloned with the aid of RNA-polymerase chain reaction. The clone encoded 146 amino acids including initiator methionine (calculated molecular mass, 15,928 Da). Based on these results, it was concluded that the 16-kDa lectin is a novel member of the galectin family, but not a degradation product of the 32-kDa galectin as had previously thought. However, the 16-kDa galectin showed relatively low sequence similarities to both the N-terminal and the C-terminal domains of the 32-kDa galectin (28% and 27% identities, respectively) and to various vertebrate galectins (14-27%). Nonetheless, all of the critical amino acids involved in carbohydrate binding were conserved. These observations suggest that, in spite of phylogenic distance between nematodes and vertebrates, both the 16-kDa and 32-kDa nematode isolectins have conserved essentially the same function(s) as those of vertebrate galectins, probably through recognition of a key disaccharide moiety, "N-acetyllactosamine."
Collapse
Affiliation(s)
- J Hirabayashi
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan
| | | | | |
Collapse
|
45
|
Starich TA, Herman RK, Kari CK, Yeh WH, Schackwitz WS, Schuyler MW, Collet J, Thomas JH, Riddle DL. Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 1995; 139:171-88. [PMID: 7705621 PMCID: PMC1206316 DOI: 10.1093/genetics/139.1.171] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filing defective mutants are important for the differentiation of amphid and phasmid chemosensilla.
Collapse
Affiliation(s)
- T A Starich
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Akerib CC, Meyer BJ. Identification of X chromosome regions in Caenorhabditis elegans that contain sex-determination signal elements. Genetics 1994; 138:1105-25. [PMID: 7896094 PMCID: PMC1206251 DOI: 10.1093/genetics/138.4.1105] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The primary sex-determination signal of Caenorhabditis elegans is the ratio of X chromosomes to sets of autosomes (X/A ratio). This signal coordinately controls both sex determination and X chromosome dosage compensation. To delineate regions of X that contain counted signal elements, we examined the effect on the X/A ratio of changing the dose of specific regions of X, using duplications in XO animals and deficiencies in XX animals. Based on the mutant phenotypes of genes that are controlled by the signal, we expected that increases (in males) or decreases (in hermaphrodites) in the dose of X chromosome elements could cause sex-specific lethality. We isolated duplications and deficiencies of specific X chromosome regions, using strategies that would permit their recovery regardless of whether they affect the signal. We identified a dose-sensitive region at the left end of X that contains X chromosome signal elements. XX hermaphrodites with only one dose of this region have sex determination and dosage compensation defects, and XO males with two doses are more severely affected and die. The hermaphrodite defects are suppressed by a downstream mutation that forces all animals into the XX mode of sex determination and dosage compensation. The male lethality is suppressed by mutations that force all animals into the XO mode of both processes. We were able to subdivide this region into three smaller regions, each of which contains at least one signal element. We propose that the X chromosome component of the sex-determination signal is the dose of a relatively small number of genes.
Collapse
Affiliation(s)
- C C Akerib
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
47
|
Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, Müller F, Ohshima Y. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev 1994; 8:2389-400. [PMID: 7958904 DOI: 10.1101/gad.8.20.2389] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mutations in the unc-51 gene of the nematode Caenorhabditis elegans result in various abnormalities in axonal elongation and axonal structures. We cloned the unc-51 gene by tagging with the transposon Tc1. The wild-type unc-51 gene, which rescued the mutant phenotypes, encodes a novel serine/threonine kinase of 856 amino acids. Mutation sites were identified in the unc-51 gene of six mutants. A Lys-->Met mutation created in vitro in the kinase domain led to the loss of rescuing activity and was dominant negative, indicating that the kinase domain of Unc-51 is essential for the function. Expression of an unc-51/lacZ fusion gene was observed in many neurons at all stages. We propose that protein phosphorylation by the unc-51 product is important for axonal elongation and possibly for axonal guidance.
Collapse
Affiliation(s)
- K Ogura
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Borgonie G, van Driessche E, Link CD, de Waele D, Coomans A. Tissue treatment for whole mount internal lectin staining in the nematodes Caenorhabditis elegans, Panagrolaimus superbus and Acrobeloides maximus. HISTOCHEMISTRY 1994; 101:379-84. [PMID: 7523338 DOI: 10.1007/bf00269000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Four different fixation schemes, using ten fluorescent-labelled lectins, were investigated for whole mount internal staining of three rhabditid nematodes: Caenorhabditis elegans, Panagrolaimus superbus and Acrobeloides maximus. Acetone-only fixation was found to give strong and reproducible staining, which could be prevented either by periodate treatment of the organisms or by specific inhibitory sugars of the lectins under investigation. Whereas the use of either phosphate or TRIS buffers had no effect on the staining pattern or the fluorescence intensity, the incubation time as well as the incubation temperature affected the staining reaction. The best results were obtained upon overnight incubation at 4 degrees C: the lectin staining could be inhibited in all cases, except for the intestinal brush border of C. elegans by the lectin of Lens culinaris.
Collapse
Affiliation(s)
- G Borgonie
- Instituut voor Dierkunde, Universiteit Gent, Belgium
| | | | | | | | | |
Collapse
|
49
|
Malone EA, Thomas JH. A screen for nonconditional dauer-constitutive mutations in Caenorhabditis elegans. Genetics 1994; 136:879-86. [PMID: 8005442 PMCID: PMC1205893 DOI: 10.1093/genetics/136.3.879] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In Caenorhabditis elegans, formation of the developmentally arrested dauer larva is induced by high levels of a constitutively secreted pheromone. Synergy between two groups of incompletely penetrant dauer-constitutive (Daf-c) mutations has recently led to a proposal that these two groups of genes are partially redundant and function in two parallel pathways that regulate dauer formation. A possible weakness in this reasoning is that the mutations used to identify the synergy were specifically obtained as incompletely penetrant mutations. Here we use screens to identify new Daf-c alleles without any requirement for partial penetrance. Nevertheless, 22 of the 25 new mutations are incompletely penetrant mutations in 6 previously identified genes. Among these are mutations in daf-8 and daf-19, genes for which only one mutation had been previously identified. Also included in this group are three daf-1 alleles that do not exhibit the maternal rescue characteristic of other daf-1 alleles. Two of the 25 new mutations are fully penetrant and are alleles of daf-2, the one gene in which a fully penetrant mutation had been found earlier. Finally, one of the 25 new mutations is semidominant, temperature-sensitive, and identifies a new gene, daf-28. The results demonstrate that an incompletely penetrant Daf-c phenotype is characteristic of mutations in most Daf-c genes other than daf-2. This finding strengthens the hypothesis that a branched genetic pathway controls dauer formation.
Collapse
Affiliation(s)
- E A Malone
- Department of Genetics, University of Washington, Seattle 98195
| | | |
Collapse
|
50
|
Sundaram M, Greenwald I. Suppressors of a lin-12 hypomorph define genes that interact with both lin-12 and glp-1 in Caenorhabditis elegans. Genetics 1993; 135:765-83. [PMID: 8293978 PMCID: PMC1205719 DOI: 10.1093/genetics/135.3.765] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The lin-12 gene of Caenorhabditis elegans is thought to encode a receptor which mediates cell-cell interactions required to specify certain cell fates. Reversion of the egg-laying defective phenotype caused by a hypomorphic lin-12 allele identified rare extragenic suppressor mutations in five genes, sel-1, sel-9, sel-10, sel-11 and sel(ar40) (sel = suppressor and/or enhancer of lin-12). Mutations in each of these sel genes suppress defects associated with reduced lin-12 activity, and enhance at least one defect associated with elevated lin-12 activity. None of the sel mutations cause any obvious phenotype in a wild-type background. Gene dosage experiments suggest that sel-1 and sel(ar40) mutations are reduction-of-function mutations, while sel-9 and sel-11 mutations are gain-of-function mutations. sel-1, sel-9, sel-11 and sel(ar40) mutations do not suppress amorphic lin-12 alleles, while sel-10 mutations are able to bypass partially the requirement for lin-12 activity in at least one cell fate decision. sel-1, sel-9, sel-10, sel-11 and sel(ar40) mutations are also able to suppress the maternal-effect lethality caused by a partial loss-of-function allele of glp-1, a gene that is both structurally and functionally related to lin-12. These sel genes may therefore function in both lin-12 and glp-1 mediated cell fate decisions.
Collapse
Affiliation(s)
- M Sundaram
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|