1
|
Zhou L, Chen S, Cai M, Cui S, Ren Y, Zhang X, Liu T, Zhou C, Jin X, Zhang L, Wu M, Zhang S, Cheng Z, Zhang X, Lei C, Lin Q, Guo X, Wang J, Zhao Z, Jiang L, Zhu S, Wan J. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36702785 DOI: 10.1111/jipb.13460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Saihua Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Maohong Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianzhen Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minxi Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuyi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Albehaijani SHI, Macreadie I, Morrissey CO, Boyce KJ. OUP accepted manuscript. JAC Antimicrob Resist 2022; 4:dlac033. [PMID: 35402912 PMCID: PMC8986524 DOI: 10.1093/jacamr/dlac033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Fungal infections are common life-threatening diseases amongst immunodeficient individuals. Invasive fungal disease is commonly treated with an azole antifungal agent, resulting in selection pressure and the emergence of drug resistance. Antifungal resistance is associated with higher mortality rates and treatment failure, making the current clinical management of fungal disease very challenging. Clinical isolates from a variety of fungi have been shown to contain mutations in the MSH2 gene, encoding a component of the DNA mismatch repair pathway. Mutation of MSH2 results in an elevated mutation rate that can increase the opportunity for selectively advantageous mutations to occur, accelerating the development of antifungal resistance. Objectives To characterize the molecular mechanisms causing the microevolutionary emergence of antifungal resistance in msh2 mismatch repair mutants of Cryptococcus neoformans. Methods The mechanisms resulting in the emergence of antifungal resistance were investigated using WGS, characterization of deletion mutants and measuring ploidy changes. Results The genomes of resistant strains did not possess mutations in ERG11 or other genes of the ergosterol biosynthesis pathway. Antifungal resistance was due to small contributions from mutations in many genes. MSH2 does not directly affect ploidy changes. Conclusions This study provides evidence that resistance to fluconazole can evolve independently of ERG11 mutations. A common microevolutionary route to the emergence of antifungal resistance involves the accumulation of mutations that alter stress signalling, cellular efflux, membrane trafficking, epigenetic modification and aneuploidy. This complex pattern of microevolution highlights the significant challenges posed both to diagnosis and treatment of drug-resistant fungal pathogens.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - C. Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, VIC, Australia
| | - Kylie J. Boyce
- School of Science, RMIT University, Melbourne, VIC, Australia
- Corresponding author. E-mail:
| |
Collapse
|
3
|
The vacuolar-sorting protein Snf7 is required for export of virulence determinants in members of the Cryptococcus neoformans complex. Sci Rep 2014; 4:6198. [PMID: 25178636 PMCID: PMC4151102 DOI: 10.1038/srep06198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/04/2014] [Indexed: 02/06/2023] Open
Abstract
Fungal pathogenesis requires a number of extracellularly released virulence factors. Recent studies demonstrating that most fungal extracellular molecules lack secretory tags suggest that unconventional secretion mechanisms and fungal virulence are strictly connected. Proteins of the endosomal sorting complex required for transport (ESCRT) have been recently associated with polysaccharide export in the yeast-like human pathogen Cryptococcus neoformans. Snf7 is a key ESCRT operator required for unconventional secretion in Eukaryotes. In this study we generated snf7Δ mutant strains of C. neoformans and its sibling species C. gattii. Lack of Snf7 resulted in important alterations in polysaccharide secretion, capsular formation and pigmentation. This phenotype culminated with loss of virulence in an intranasal model of murine infection in both species. Our data support the notion that Snf7 expression regulates virulence in C. neoformans and C. gattii by ablating polysaccharide and melanin traffic. These results are in agreement with the observation that unconventional secretion is essential for cryptococcal pathogenesis and strongly suggest the occurrence of still obscure mechanisms of exportation of non-protein molecules in Eukaryotes.
Collapse
|
4
|
Bachman PM, Bolognesi R, Moar WJ, Mueller GM, Paradise MS, Ramaseshadri P, Tan J, Uffman JP, Warren J, Wiggins BE, Levine SL. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res 2013. [PMID: 23748931 DOI: 10.1007/s11248-013-9716-9715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The sequence specificity of the endogenous RNA interference pathway allows targeted suppression of genes essential for insect survival and enables the development of durable and efficacious insecticidal products having a low likelihood to adversely impact non-target organisms. The spectrum of insecticidal activity of a 240 nucleotide (nt) dsRNA targeting the Snf7 ortholog in Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) was characterized by selecting and testing insects based upon their phylogenetic relatedness to WCR. Insect species, representing 10 families and 4 Orders, were evaluated in subchronic or chronic diet bioassays that measured potential lethal and sublethal effects. When a specific species could not be tested in diet bioassays, the ortholog to the WCR Snf7 gene (DvSnf7) was cloned and corresponding dsRNAs were tested against WCR and Colorado potato beetle (Leptinotarsa decemlineata); model systems known to be sensitive to ingested dsRNA. Bioassay results demonstrate that the spectrum of activity for DvSnf7 is narrow and activity is only evident in a subset of beetles within the Galerucinae subfamily of Chrysomelidae (>90% identity with WCR Snf7 240 nt). This approach allowed for evaluating the relationship between minimum shared nt sequence length and activity. A shared sequence length of ≥ 21 nt was required for efficacy against WCR (containing 221 potential 21-nt matches) and all active orthologs contained at least three 21 nt matches. These results also suggest that WCR resistance to DvSnf7 dsRNA due to single nucleotide polymorphisms in the target sequence of 240 nt is highly unlikely.
Collapse
Affiliation(s)
- Pamela M Bachman
- Monsanto Company, 800 N Lindbergh Blvd., St. Louis, MO, 63167, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bachman PM, Bolognesi R, Moar WJ, Mueller GM, Paradise MS, Ramaseshadri P, Tan J, Uffman JP, Warren J, Wiggins BE, Levine SL. Characterization of the spectrum of insecticidal activity of a double-stranded RNA with targeted activity against Western Corn Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res 2013; 22:1207-22. [PMID: 23748931 PMCID: PMC3835954 DOI: 10.1007/s11248-013-9716-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/26/2013] [Indexed: 12/27/2022]
Abstract
The sequence specificity of the endogenous RNA interference pathway allows targeted suppression of genes essential for insect survival and enables the development of durable and efficacious insecticidal products having a low likelihood to adversely impact non-target organisms. The spectrum of insecticidal activity of a 240 nucleotide (nt) dsRNA targeting the Snf7 ortholog in Western Corn Rootworm (WCR; Diabrotica virgifera virgifera) was characterized by selecting and testing insects based upon their phylogenetic relatedness to WCR. Insect species, representing 10 families and 4 Orders, were evaluated in subchronic or chronic diet bioassays that measured potential lethal and sublethal effects. When a specific species could not be tested in diet bioassays, the ortholog to the WCR Snf7 gene (DvSnf7) was cloned and corresponding dsRNAs were tested against WCR and Colorado potato beetle (Leptinotarsa decemlineata); model systems known to be sensitive to ingested dsRNA. Bioassay results demonstrate that the spectrum of activity for DvSnf7 is narrow and activity is only evident in a subset of beetles within the Galerucinae subfamily of Chrysomelidae (>90% identity with WCR Snf7 240 nt). This approach allowed for evaluating the relationship between minimum shared nt sequence length and activity. A shared sequence length of ≥ 21 nt was required for efficacy against WCR (containing 221 potential 21-nt matches) and all active orthologs contained at least three 21 nt matches. These results also suggest that WCR resistance to DvSnf7 dsRNA due to single nucleotide polymorphisms in the target sequence of 240 nt is highly unlikely.
Collapse
Affiliation(s)
- Pamela M Bachman
- Monsanto Company, 800 N Lindbergh Blvd., St. Louis, MO, 63167, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
There is increasing evidence that certain Vacuolar protein sorting (Vps) proteins, factors that mediate vesicular protein trafficking, have additional roles in regulating transcription factors at the endosome. We found that yeast mutants lacking the phosphatidylinositol 3-phosphate [PI(3)P] kinase Vps34 or its associated protein kinase Vps15 display multiple phenotypes indicating impaired transcription elongation. These phenotypes include reduced mRNA production from long or G+C-rich coding sequences (CDS) without affecting the associated GAL1 promoter activity, and a reduced rate of RNA polymerase II (Pol II) progression through lacZ CDS in vivo. Consistent with reported genetic interactions with mutations affecting the histone acetyltransferase complex NuA4, vps15Δ and vps34Δ mutations reduce NuA4 occupancy in certain transcribed CDS. vps15Δ and vps34Δ mutants also exhibit impaired localization of the induced GAL1 gene to the nuclear periphery. We found unexpectedly that, similar to known transcription elongation factors, these and several other Vps factors can be cross-linked to the CDS of genes induced by Gcn4 or Gal4 in a manner dependent on transcriptional induction and stimulated by Cdk7/Kin28-dependent phosphorylation of the Pol II C-terminal domain (CTD). We also observed colocalization of a fraction of Vps15-GFP and Vps34-GFP with nuclear pores at nucleus-vacuole (NV) junctions in live cells. These findings suggest that Vps factors enhance the efficiency of transcription elongation in a manner involving their physical proximity to nuclear pores and transcribed chromatin.
Collapse
|
7
|
Ramaseshadri P, Segers G, Flannagan R, Wiggins E, Clinton W, Ilagan O, McNulty B, Clark T, Bolognesi R. Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. PLoS One 2013; 8:e54270. [PMID: 23349844 PMCID: PMC3548817 DOI: 10.1371/journal.pone.0054270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Ingestion of double stranded RNA (dsRNA) has been previously demonstrated to be effective in triggering RNA interference (RNAi) in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte), providing potential novel opportunities for insect pest control. The putative Snf7 homolog of WCR (DvSnf7) has previously been shown to be an effective RNAi target for insect control, as DvSnf7 RNAi leads to lethality of WCR larvae. Snf7 functions as a part of the ESCRT (Endosomal Sorting Complex Required for Transport) pathway which plays a crucial role in cellular housekeeping by internalization, transport, sorting and lysosomal degradation of transmembrane proteins. To understand the effects that lead to death of WCR larvae by DvSnf7 RNAi, we examined some of the distinct cellular processes associated with ESCRT functions such as de-ubiquitination of proteins and autophagy. Our data indicate that ubiquitinated proteins accumulate in DvSnf7 dsRNA-fed larval tissues and that the autophagy process seems to be impaired. These findings suggest that the malfunctioning of these cellular processes in both midgut and fat body tissues triggered by DvSnf7 RNAi were the main effects leading to the death of WCR. This study also illustrates that Snf7 is an essential gene in WCR and its functions are consistent with biological functions described for other eukaryotes.
Collapse
Affiliation(s)
| | - Gerrit Segers
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Ronald Flannagan
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Elizabeth Wiggins
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - William Clinton
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Oliver Ilagan
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Brian McNulty
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Thomas Clark
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Renata Bolognesi
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| |
Collapse
|
8
|
Oliveira DL, Nakayasu ES, Joffe LS, Guimarães AJ, Sobreira TJP, Nosanchuk JD, Cordero RJB, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 2010; 5:e11113. [PMID: 20559436 PMCID: PMC2885426 DOI: 10.1371/journal.pone.0011113] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/21/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. CONCLUSIONS/SIGNIFICANCE Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.
Collapse
Affiliation(s)
- Débora L. Oliveira
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ernesto S. Nakayasu
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Luna S. Joffe
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tiago J. P. Sobreira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joshua D. Nosanchuk
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Radames J. B. Cordero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Susana Frases
- Laboratório de Biotecnologia, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Arturo Casadevall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Igor C. Almeida
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L. Rodrigues
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Snoek ISI, Tai SL, Pronk JT, Yde Steensma H, Daran JM. Involvement of Snf7p and Rim101p in the transcriptional regulation of TIR1 and other anaerobically upregulated genes in Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:367-84. [PMID: 20402793 DOI: 10.1111/j.1567-1364.2010.00622.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Despite the scientific and applied interest in the anaerobic metabolism of Saccharomyces cerevisiae, not all genes whose transcription is upregulated under anaerobic conditions have yet been linked to known transcription factors. Experiments with a reporter construct in which the promoter of the anaerobically upregulated TIR1 gene was fused to lacZ revealed a loss of anaerobic upregulation in an snf7Delta mutant. Anaerobic upregulation was restored by expression of a truncated allele of RIM101 that encodes for a constitutively active Rim101p. Analysis of lacZ expression in several deletion mutants confirmed that the effect of Snf7p on anaerobic upregulation of TIR1 involved Rim101p. Further studies with deletion mutants in NRG1, NRG2 and SMP1, which were previously shown to be regulated by Rim101p, could not totally elucidate the TIR1 regulation, suggesting the involvement of a more complex regulation network. However, the aerobic repression mechanism of TIR1 involved the general repressor Ssn6p-Tup1p. Transcriptome analysis in anaerobic chemostat cultures revealed that 26 additional genes exhibited an Snf7p/Rim101p-dependent anaerobic upregulation, among which, besides TIR1, are four other anaerobic genes SML1, MUC1, AAC3 and YBR300C. These results provide new evidence on the implication of the Rim101p cascade in the transcriptional regulation of anaerobic metabolism in S. cerevisiae.
Collapse
Affiliation(s)
- Ishtar S I Snoek
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
ESCRT-III protein Snf7 mediates high-level expression of the SUC2 gene via the Rim101 pathway. EUKARYOTIC CELL 2008; 7:1888-94. [PMID: 18806212 DOI: 10.1128/ec.00194-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The yeast (Saccharomyces cerevisiae) Snf7 family consists of six highly charged, coiled-coil-forming proteins involved in multivesicular body (MVB) formation. Although all proteins perform a common function at late endosomes, individual mutants also show distinct phenotypes. This suggests that Snf7 homologues have additional functions separate from their role in MVB formation. In this report, we explored the molecular basis for the sucrose-nonfermenting phenotype of snf7 mutants. Our Northern blotting experiments provide evidence that Snf7 is involved in the regulation of SUC2 transcription. The Snf7-dependent regulation of SUC2 transcription does not appear to involve the transcription factor Mig1, since Mig1 phosphorylation after glucose derepression was not affected in a Deltasnf7 mutant. Instead, we show that Snf7 influences SUC2 expression by regulating the level of the transcription factor Nrg1. Snf7 exerts its effects on Nrg1 levels through activation of the transcription factor Rim101, which is part of the yeast alkaline response pathway ("Rim101 pathway"). This is supported by the findings that deletion of RIM101 or overexpression of NRG1 from the ADH1 promoter leads to the same SUC2 expression level as deletion of SNF7. In addition, deletion of other components of the Rim101 pathway, like RIM13 and RIM20, led to the same growth phenotype on raffinose media as deletion of SNF7. Furthermore, Snf7 turned out to be dispensable for SUC2 expression in an NRG1 deletion background. Thus, the effects of Snf7 on SUC2 expression can be completely accounted for by its effect on Nrg1 levels.
Collapse
|
11
|
Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4. Mol Cell Biol 2008; 28:6796-818. [PMID: 18794364 DOI: 10.1128/mcb.00800-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.
Collapse
|
12
|
Kant P, Gordon M, Kant S, Zolla G, Davydov O, Heimer YM, Chalifa-Caspi V, Shaked R, Barak S. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. PLANT, CELL & ENVIRONMENT 2008; 31:697-714. [PMID: 18182014 DOI: 10.1111/j.1365-3040.2008.01779.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses are a primary cause of crop loss worldwide. The convergence of stress signalling pathways to a common set of transcription factors suggests the existence of upstream regulatory genes that control plant responses to multiple abiotic stresses. To identify such genes, data from published Arabidopsis thaliana abiotic stress microarray analyses were combined with our presented global analysis of early heat stress-responsive gene expression, in a relational database. A set of Multiple Stress (MST) genes was identified by scoring each gene for the number of abiotic stresses affecting expression of that gene. ErmineJ over-representation analysis of the MST gene set identified significantly enriched gene ontology biological processes for multiple abiotic stresses and regulatory genes, particularly transcription factors. A subset of MST genes including only regulatory genes that were designated 'Multiple Stress Regulatory' (MSTR) genes, was identified. To validate this strategy for identifying MSTR genes, mutants of the highest-scoring MSTR gene encoding the circadian clock protein CCA1, were tested for altered sensitivity to stress. A double mutant of CCA1 and its structural and functional homolog, LATE ELONGLATED HYPOCOTYL, exhibited greater sensitivity to salt, osmotic and heat stress than wild-type plants. This work provides a reference data set for further study of MSTR genes.
Collapse
Affiliation(s)
- Pragya Kant
- Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 2007; 17:1561-7. [PMID: 17683935 DOI: 10.1016/j.cub.2007.07.029] [Citation(s) in RCA: 385] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/13/2007] [Accepted: 07/16/2007] [Indexed: 12/12/2022]
Abstract
Defects in the endosomal-lysosomal pathway have been implicated in a number of neurodegenerative disorders. A key step in the endocytic regulation of transmembrane proteins occurs in a subset of late-endosomal compartments known as multivesicular bodies (MVBs), whose formation is controlled by endosomal sorting complex required for transport (ESCRT). The roles of ESCRT in dendritic maintenance and neurodegeneration remain unknown. Here, we show that mSnf7-2, a key component of ESCRT-III, is highly expressed in most mammalian neurons. Loss of mSnf7-2 in mature cortical neurons caused retraction of dendrites and neuronal cell loss. mSnf7-2 binds to CHMP2B, another ESCRT-III subunit, in which a rare dominant mutation is associated with frontotemporal dementia linked to chromosome 3 (FTD3). Ectopic expression of the mutant protein CHMP2B(Intron5) also caused dendritic retraction prior to neurodegeneration. CHMP2B(Intron5) was associated more avidly than CHMP2B(WT) with mSnf7-2, resulting in sequestration of mSnf7-2 in ubiquitin-positive late-endosomal vesicles in cortical neurons. Moreover, loss of mSnf7-2 or CHMP2B(Intron5) expression caused the accumulation of autophagosomes in cortical neurons and flies. These findings indicate that ESCRT-III dysfunction is associated with the autophagy pathway, suggesting a novel neurodegeneration mechanism that may have important implications for understanding FTD and other age-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-A Lee
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco, California 94158, USA
| | | | | | | | | |
Collapse
|
14
|
Sweeney NT, Brenman JE, Jan YN, Gao FB. The Coiled-Coil Protein Shrub Controls Neuronal Morphogenesis in Drosophila. Curr Biol 2006; 16:1006-11. [PMID: 16713958 DOI: 10.1016/j.cub.2006.03.067] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 03/23/2006] [Indexed: 11/18/2022]
Abstract
The diversity of neuronal cells, especially in the size and shape of their dendritic and axonal arborizations, is a striking feature of the mature nervous system. Dendritic branching is a complex process, and the underlying signaling mechanisms remain to be further defined at the mechanistic level. Here we report the identification of shrub mutations that increased dendritic branching. Single-cell clones of shrub mutant dendritic arborization (DA) sensory neurons in Drosophila larvae showed ectopic dendritic and axonal branching, indicating a cell-autonomous function for shrub in neuronal morphogenesis. shrub encodes an evolutionarily conserved coiled-coil protein homologous to the yeast protein Snf7, a key component in the ESCRT-III (endosomal sorting complex required for transport) complex that is involved in the formation of endosomal compartments known as multivesicular bodies (MVBs). We found that mouse orthologs could substitute for Shrub in mutant Drosophila embryos and that loss of Shrub function caused abnormal distribution of several early or late endosomal markers in DA sensory neurons. Our findings demonstrate that the novel coiled-coil protein Shrub functions in the endosomal pathway and plays an essential role in neuronal morphogenesis.
Collapse
Affiliation(s)
- Neal T Sweeney
- Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
15
|
Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 2005; 25:9478-90. [PMID: 16227598 PMCID: PMC1265799 DOI: 10.1128/mcb.25.21.9478-9490.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In many fungi, transcriptional responses to alkaline pH are mediated by conserved signal transduction machinery. In the homologous system in Saccharomyces cerevisiae, the zinc-finger transcription factor Rim101 is activated under alkaline conditions to regulate transcription of target genes. The activation of Rim101 is exerted through proteolytic processing of its C-terminal inhibitory domain. Regulated processing of Rim101 requires several proteins, including the calpain-like protease Rim13/Cpl1, a putative protease scaffold Rim20, putative transmembrane proteins Rim9, and Rim21/Pal2, and Rim8/Pal3 of unknown biochemical function. To identify new regulatory components and thereby determine the order of action among the components in the pathway, we screened for suppressors of rim9Delta and rim21Delta mutations. Three identified suppressors-did4/vps2, vps24, and vps4-all belonged to "class E" vps mutants, which are commonly defective in multivesicular body sorting. These mutations suppress rim8, rim9, and rim21 but not rim13 or rim20, indicating that Rim8, Rim9, and Rim21 act upstream of Rim13 and Rim20 in the pathway. Disruption of DID4, VPS24, or VPS4, by itself, uncouples pH sensing from Rim101 processing, leading to constitutive Rim101 activation. Based on extensive epistasis analysis between pathway-activating and -inactivating mutations, a model for architecture and regulation of the Rim101 pathway is proposed.
Collapse
Affiliation(s)
- Michio Hayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
16
|
Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J. Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:6772-88. [PMID: 16024810 PMCID: PMC1190364 DOI: 10.1128/mcb.25.15.6772-6788.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The divergently transcribed DIT1 and DIT2 genes of Saccharomyces cerevisiae, which belong to the mid-late class of sporulation-specific genes, are subject to Ssn6-Tup1-mediated repression in mitotic cells. The Ssn6-Tup1 complex, which is required for repression of diverse sets of coordinately regulated genes, is known to be recruited to target genes by promoter-specific DNA-binding proteins. In this study, we show that a 42-bp negative regulatory element (NRE) present in the DIT1-DIT2 intergenic region consists of two distinct subsites and that a multimer of each subsite supports efficient Ssn6-Tup1-dependent repression of a CYC1-lacZ reporter gene. By genetic screening procedures, we identified DFG16, YGR122w, VPS36, and the DNA-binding proteins Rim101 and Nrg1 as potential mediators of NRE-directed repression. We show that Nrg1 and Rim101 bind simultaneously to adjacent target sites within the NRE in vitro and act as corepressors in vivo. We have found that the ability of Rim101 to be proteolytically processed to its active form and mediate NRE-directed repression not only depends on the previously characterized RIM signaling pathway but also requires Dfg16, Ygr122w, and components of the ESCRT trafficking pathway. Interestingly, Rim101 was processed in bro1 and doa4 strains but was unable to mediate efficient repression.
Collapse
Affiliation(s)
- Karen Rothfels
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Barwell KJ, Boysen JH, Xu W, Mitchell AP. Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. EUKARYOTIC CELL 2005; 4:890-9. [PMID: 15879523 PMCID: PMC1140096 DOI: 10.1128/ec.4.5.890-899.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many fungal pH responses depend upon conserved Rim101p/PacC transcription factors, which are activated by C-terminal proteolytic processing. The means by which environmental pH is sensed by this pathway are not known. Here, we report a screen of the Saccharomyces cerevisiae viable deletion mutant library that has yielded a new gene required for processed Rim101p accumulation, DFG16. An S. cerevisiae dfg16Delta mutant expresses Rim101p-repressed genes at elevated levels. In addition, Candida albicans dfg16Delta/dfg16Delta mutants are defective in alkaline pH-induced filamentation, and their defect is suppressed by expression of truncated Rim101-405p. Thus, Dfg16p is a functionally conserved Rim101p pathway member. Many proteins required for processed Rim101p accumulation are members of the ESCRT complex, which functions in the formation of multivesicular bodies (MVBs). Staining with the dye FM4-64 indicates that the S. cerevisiae dfg16Delta mutant does not have an MVB defect. We find that two transcripts, PRY1 and ASN1, respond to mutations that affect both the Rim101p and MVB pathways but not to mutations that affect only one pathway. The S. cerevisiae dfg16Delta mutation does not affect PRY1 and ASN1 expression, thus confirming that Dfg16p function is restricted to the Rim101p pathway. Dfg16p is homologous to Aspergillus nidulans PalH, a component of the well-characterized PacC processing pathway. We verify that the previously recognized PalH homolog, Rim21p, also functions in the S. cerevisiae Rim101p pathway. Dfg16p is predicted to have seven membrane-spanning segments and a long hydrophilic C-terminal region, as expected if Dfg16p were a G-protein-coupled receptor.
Collapse
Affiliation(s)
- Karen J Barwell
- Department of Microbiology, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
18
|
Eguez L, Chung YS, Kuchibhatla A, Paidhungat M, Garrett S. Yeast Mn2+ transporter, Smf1p, is regulated by ubiquitin-dependent vacuolar protein sorting. Genetics 2005; 167:107-17. [PMID: 15166140 PMCID: PMC1470849 DOI: 10.1534/genetics.167.1.107] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conditional cdc1(Ts) mutants of S. cerevisiae arrest with a phenotype similar to that exhibited by Mn(2+)-depleted cells. Sequence similarity between Cdc1p and a class of Mn(2+)-dependent phosphoesterases, as well as the observation that conditional cdc1(Ts) growth can be ameliorated by Mn(2+) supplement, suggests that Cdc1p activity is sensitive to intracellular Mn(2+) levels. This article identifies several previously uncharacterized cdc1(Ts) suppressors as class E vps (vacuolar protein sorting) mutants and shows that these, as well as other vps mutants, accumulate high levels of intracellular Mn(2+). Yeast VPS genes play a role in delivery of membrane transporters to the vacuole for degradation, and we show that the vps mutants accumulate elevated levels of the high-affinity Mn(2+) transporter Smf1p. cdc1(Ts) conditional growth is also alleviated by mutations, including doa4 and ubc4, that compromise protein ubiquitination, and these ubiquitination defects are associated with Smf1p accumulation. Epistasis studies show that these suppressors require functional Smf1p to alleviate the cdc1(Ts) growth defect, whereas Smf1p is dispensable for cdc1(Ts) suppression by a mutation (cos16/per1) that does not influence intracellular Mn(2+) levels. Because Smf1p is ubiquitinated in vivo, we propose that Smf1p is targeted to the vacuole for degradation by ubiquitination-dependent protein sorting.
Collapse
Affiliation(s)
- Lorena Eguez
- Department of Microbiology and Molecular Genetics and Graduate School of Biomedical Sciences, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103-2714, USA
| | | | | | | | | |
Collapse
|
19
|
Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S. Role of acetylated human AP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene. EMBO J 2004; 22:6299-309. [PMID: 14633989 PMCID: PMC291836 DOI: 10.1093/emboj/cdg595] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human AP-endonuclease (APE1/Ref-1), a multifunctional protein central to repairing abasic sites and single-strand breaks in DNA, also plays a role in transcriptional regulation. Besides activating some transcription factors, APE1 is directly involved in Ca2+-dependent downregulation of parathyroid hormone (PTH) expression by binding to negative calcium response elements (nCaREs) present in the PTH promoter. Here we show that APE1 is acetylated both in vivo and in vitro by the transcriptional co-activator p300 which is activated by Ca2+. Acetylation at Lys6 or Lys7 enhances binding of APE1 to nCaRE. APE1 stably interacts with class I histone deacetylases (HDACs) in vivo. An increase in extracellular calcium enhances the level of acetylated APE1 which acts as a repressor for the PTH promoter. Moreover, chromatin immunoprecipitation (ChIP) assay revealed that acetylation of APE1 enhanced binding of the APE1-HDACs complex to the PTH promoter. These results indicate that acetylation of APE1 plays an important role in this key repair protein's action in transcriptional regulation.
Collapse
Affiliation(s)
- Kishor K Bhakat
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-1079, USA
| | | | | | | | | |
Collapse
|
20
|
Katoh K, Shibata H, Suzuki H, Nara A, Ishidoh K, Kominami E, Yoshimori T, Maki M. The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem 2003; 278:39104-13. [PMID: 12860994 DOI: 10.1074/jbc.m301604200] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alix (ALG-2-interacting protein X) is a 95-kDa protein that interacts with an EF-hand type Ca(2+)-binding protein, ALG-2 (apoptosis-linked gene 2), through its C-terminal proline-rich region. In this study, we searched for proteins that interact with human AlixDeltaC (a truncated form not containing the C-terminal region) by using a yeast two-hybrid screen, and we identified two similar human proteins, CHMP4a and CHMP4b (chromatin-modifying protein; charged multivesicular body protein), as novel binding partners of Alix. The interaction of Alix with CHMP4b was confirmed by a glutathione S-transferase pull-down assay and by co-immunoprecipitation experiments. Fluorescence microscopic analysis revealed that CHMP4b transiently expressed in HeLa cells mainly exhibited a punctate distribution in the perinuclear area and co-localized with co-expressed Alix. The distribution of CHMP4b partly overlapped the distributions of early and late endosomal marker proteins, EEA1 (early endosome antigen 1) and Lamp-1 (lysosomal membrane protein-1), respectively. Transient overexpression of CHMP4b induced the accumulation of ubiquitinated proteins as punctate patterns that were partly overlapped with the distribution of CHMP4b and inhibited the disappearance of endocytosed epidermal growth factor. In contrast, stably expressed CHMP4b in HEK293 cells was observed diffusely in the cytoplasm. Transient overexpression of AlixDeltaC in stably CHMP4b-expressing cells, however, induced formation of vesicle-like structures in which CHMP4b and AlixDeltaC were co-localized. SKD1(E235Q), a dominant negative form of the AAA type ATPase SKD1 that plays critical roles in the endocytic pathway, was co-immunoprecipitated with CHMP4b. Furthermore, CHMP4b co-localized with SKD1(E235Q) as punctate patterns in the perinuclear area, and Alix was induced to exhibit dot-like distributions overlapped with SKD1(E235Q) in HeLa cells. These results suggest that CHMP4b and Alix participate in formation of multivesicular bodies by cooperating with SKD1.
Collapse
Affiliation(s)
- Keiichi Katoh
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kemmeren P, van Berkum NL, Vilo J, Bijma T, Donders R, Brazma A, Holstege FCP. Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol Cell 2002; 9:1133-43. [PMID: 12049748 DOI: 10.1016/s1097-2765(02)00531-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assays capable of determining the properties of thousands of genes in parallel present challenges with regard to accurate data processing and functional annotation. Collections of microarray expression data are applied here to assess the quality of different high-throughput protein interaction data sets. Significant differences are found. Confidence in 973 out of 5342 putative two-hybrid interactions from S. cerevisiae is increased. Besides verification, integration of expression and interaction data is employed to provide functional annotation for over 300 previously uncharacterized genes. The robustness of these approaches is demonstrated by experiments that test the in silico predictions made. This study shows how integration improves the utility of different types of functional genomic data and how well this contributes to functional annotation.
Collapse
Affiliation(s)
- Patrick Kemmeren
- Genomics Laboratory, Department of Biomedical Genetics, University Medical Center Utrecht, P.O. Box 85060, 3508 AB Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Kranz A, Kinner A, Kölling R. A family of small coiled-coil-forming proteins functioning at the late endosome in yeast. Mol Biol Cell 2001; 12:711-23. [PMID: 11251082 PMCID: PMC30975 DOI: 10.1091/mbc.12.3.711] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The multispanning membrane protein Ste6, a member of the ABC-transporter family, is transported to the yeast vacuole for degradation. To identify functions involved in the intracellular trafficking of polytopic membrane proteins, we looked for functions that block Ste6 transport to the vacuole upon overproduction. In our screen, we identified several known vacuolar protein sorting (VPS) genes (SNF7/VPS32, VPS4, and VPS35) and a previously uncharacterized open reading frame, which we named MOS10 (more of Ste6). Sequence analysis showed that Mos10 is a member of a small family of coiled-coil-forming proteins, which includes Snf7 and Vps20. Deletion mutants of all three genes stabilize Ste6 and show a "class E vps phenotype." Maturation of the vacuolar hydrolase carboxypeptidase Y was affected in the mutants and the endocytic tracer FM4-64 and Ste6 accumulated in a dot or ring-like structure next to the vacuole. Differential centrifugation experiments demonstrated that about half of the hydrophilic proteins Mos10 and Vps20 was membrane associated. The intracellular distribution was further analyzed for Mos10. On sucrose gradients, membrane-associated Mos10 cofractionated with the endosomal t-SNARE Pep12, pointing to an endosomal localization of Mos10. The growth phenotypes of the mutants suggest that the "Snf7-family" members are involved in a cargo-specific event.
Collapse
Affiliation(s)
- A Kranz
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
23
|
Bhatnagar RS, Ashrafi K, Fütterer K, Waksman G, Gordon JI. 9 Biology and enzymology of protein N-myristoylation. PROTEIN LIPIDATION 2001. [DOI: 10.1016/s1874-6047(01)80022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Bowers K, Levi BP, Patel FI, Stevens TH. The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:4277-94. [PMID: 11102523 PMCID: PMC15072 DOI: 10.1091/mbc.11.12.4277] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We show that the vacuolar protein sorting gene VPS44 is identical to NHX1, a gene that encodes a sodium/proton exchanger. The Saccharomyces cerevisiae protein Nhx1p shows high homology to mammalian sodium/proton exchangers of the NHE family. Nhx1p is thought to transport sodium ions into the prevacuole compartment in exchange for protons. Pulse-chase experiments show that approximately 35% of the newly synthesized soluble vacuolar protein carboxypeptidase Y is missorted in nhx1 delta cells, and is secreted from the cell. nhx1 delta cells accumulate late Golgi, prevacuole, and lysosome markers in an aberrant structure next to the vacuole, and late Golgi proteins are proteolytically cleaved more rapidly than in wild-type cells. Our results show that efficient transport out of the prevacuolar compartment requires Nhx1p, and that nhx1 delta cells exhibit phenotypes characteristic of the "class E" group of vps mutants. In addition, we show that Nhx1p is required for protein trafficking even in the absence of the vacuolar ATPase. Our analysis of Nhx1p provides the first evidence that a sodium/proton exchange protein is important for correct protein sorting, and that intraorganellar ion balance may be important for endosomal function in yeast.
Collapse
Affiliation(s)
- K Bowers
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
25
|
Chan TF, Carvalho J, Riles L, Zheng XF. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc Natl Acad Sci U S A 2000; 97:13227-32. [PMID: 11078525 PMCID: PMC27207 DOI: 10.1073/pnas.240444197] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The target of rapamycin protein (TOR) is a highly conserved ataxia telangiectasia-related protein kinase essential for cell growth. Emerging evidence indicates that TOR signaling is highly complex and is involved in a variety of cellular processes. To understand its general functions, we took a chemical genomics approach to explore the genetic interaction between TOR and other yeast genes on a genomic scale. In this study, the rapamycin sensitivity of individual deletion mutants generated by the Saccharomyces Genome Deletion Project was systematically measured. Our results provide a global view of the rapamycin-sensitive functions of TOR. In contrast to conventional genetic analysis, this approach offers a simple and thorough analysis of genetic interaction on a genomic scale and measures genetic interaction at different possible levels. It can be used to study the functions of other drug targets and to identify novel protein components of a conserved core biological process such as DNA damage checkpoint/repair that is interfered with by a cell-permeable chemical compound.
Collapse
Affiliation(s)
- T F Chan
- Departments of Pathology and Immunology and Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
26
|
Amerik AY, Nowak J, Swaminathan S, Hochstrasser M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol Biol Cell 2000; 11:3365-80. [PMID: 11029042 PMCID: PMC14998 DOI: 10.1091/mbc.11.10.3365] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae DOA4 gene encodes a deubiquitinating enzyme that is required for rapid degradation of ubiquitin-proteasome pathway substrates. Both genetic and biochemical data suggest that Doa4 acts in this pathway by facilitating ubiquitin recycling from ubiquitinated intermediates targeted to the proteasome. Here we describe the isolation of 12 spontaneous extragenic suppressors of the doa4-1 mutation; these involve seven different genes, six of which were cloned. Surprisingly, all of the cloned DID (Doa4-independent degradation) genes encode components of the vacuolar protein-sorting (Vps) pathway. In particular, all are class E Vps factors, which function in the maturation of a late endosome/prevacuolar compartment into multivesicular bodies that then fuse with the vacuole. Four of the six Did proteins are structurally related, suggesting an overlap in function. In wild-type and several vps strains, Doa4-green fluorescent protein displays a cytoplasmic/nuclear distribution. However, in cells lacking the Vps4/Did6 ATPase, a large fraction of Doa4-green fluorescent protein, like several other Vps factors, concentrates at the late endosome-like class E compartment adjacent to the vacuole. These results suggest an unanticipated connection between protein deubiquitination and endomembrane protein trafficking in which Doa4 acts at the late endosome/prevacuolar compartment to recover ubiquitin from ubiquitinated membrane proteins en route to the vacuole.
Collapse
Affiliation(s)
- A Y Amerik
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
27
|
Ashrafi K, Farazi TA, Gordon JI. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J Biol Chem 1998; 273:25864-74. [PMID: 9748261 DOI: 10.1074/jbc.273.40.25864] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae contains four known acyl-CoA synthetases (fatty acid activation proteins, Faaps). Faa1p and Faa4p activate exogenously derived fatty acids. Acyl-CoA metabolism plays a critical role in regulating protein N-myristoylation by the essential enzyme, myristoyl-CoA:protein N-myristoyltransferase (Nmt1p). In this report, we have examined whether Faa1p and Faa4p have distinct roles in affecting protein N-myristoylation as cells transition from growth in rich media to a growth-arrested state during nutrient deprivation (stationary phase). The colony-forming potential of 10 isogenic strains was defined as a function of time spent in stationary phase. These strains contained either a wild type or mutant NMT1 allele, and wild type or null alleles of each FAA. Only the combination of the Nmt mutant (nmt451Dp; reduced affinity for myristoyl-CoA) and loss of Faa4p produced a dramatic loss of colony-forming units (CFU). The progressive millionfold reduction in CFU was associated with a deficiency in protein N-myristoylation that first appeared during logarithmic growth, worsened through the post-diauxic phase, and became extreme in stationary phase. Northern and Western blot analyses plus N-myristoyltransferase assays showed that Nmt is normally present only during the log and diauxic/post-diauxic periods, indicating that N-myristoylproteins present in stationary phase are "inherited" from these earlier phases. Moreover, FAA4 is the only FAA induced during the critical diauxic/early post-diauxic transition. Although substitution of nmt1-451D for NMT1 results in deficiencies in protein N-myristoylation, these deficiencies are modest and limited by compensatory responses that include augmented expression of nmt1-451D and precocious induction of FAA4 in log phase. Loss of Faa4p from nmt1-451D cells severely compromises their capacity to adequately myristoylate Nmt substrates prior to entry into stationary phase since none of the other Faaps are able to functionally compensate for its absence. To identify Nmt1p substrates that may affect maintenance of proliferative potential during stationary phase, we searched the yeast genome for known and putative N-myristoylproteins. Of the 64 genes found, 48 were successfully deleted in NMT1 cells. Removal of any one of the following nine substrates produced a loss of CFU similar to that observed in nmt1-451Dfaa4Delta cells: Arf1p, Arf2p, Sip2p, Van1p, Ptc2p, YBL049W (homology to Snf7p), YJR114W, YKR007W, and YMR077C. These proteins provide opportunities to further define the molecular mechanisms that regulate survival during stationary phase.
Collapse
Affiliation(s)
- K Ashrafi
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
28
|
Abstract
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.
Collapse
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas, Unidad de Bioquímica y Genética de Levaduras, CSIC, 28029 Madrid, Spain.
| |
Collapse
|
29
|
Tu J, Song W, Carlson M. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:4199-206. [PMID: 8754819 PMCID: PMC231417 DOI: 10.1128/mcb.16.8.4199] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Protein phosphatase type I (PP1) is involved in diverse cellular processes, and its activity toward specific substrates is thought to be controlled by different regulatory or targeting subunits. To identify regulatory subunits and substrates of the Saccharomyces cerevisiae PP1, encoded by GLC7, we used the two-hybrid system to detect interacting proteins. Among the many proteins identified were Gac1, a known glycogen regulatory subunit, and a protein with homology to Gac1. We also characterized a new gene designated GIP1, for Glc7-interacting protein. We show that a Gip1 fusion protein coimmunoprecipitates with PP1 from cell extracts. Molecular and genetic analyses indicate that GIP1 is expressed specifically during meiosis, affects transcription of late meiotic genes, and is essential for sporulation. Thus, the Gip1 protein is a candidate for a meiosis-specific substrate or regulator of PP1. Finally, we recovered two genes, RED1 and SCD5, with roles in meiosis and the vesicular secretory pathway, respectively. These results provide strong evidence implicating PP1 function in meiosis. In addition, this study indicates that the two-hybrid system offers a promising approach to understanding the multiple roles and interactions of PP1 in cellular regulation.
Collapse
Affiliation(s)
- J Tu
- Integrated Program in Cellular Biology, Molecular Biology and Biophysics Studies, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
30
|
Frederick DL, Tatchell K. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol Cell Biol 1996; 16:2922-31. [PMID: 8649403 PMCID: PMC231286 DOI: 10.1128/mcb.16.6.2922] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase.
Collapse
Affiliation(s)
- D L Frederick
- Department of Genetics, North Carolina State University, Raleigh 27695, USA
| | | |
Collapse
|
31
|
Yeghiayan P, Tu J, Vallier LG, Carlson M. Molecular analysis of the SNF8 gene of Saccharomyces cerevisiae. Yeast 1995; 11:219-24. [PMID: 7785322 DOI: 10.1002/yea.320110304] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutations in the SNF8 gene impair derepression of the SUC2 gene, encoding invertase, in response to glucose limitation of Saccharomyces cerevisiae. We report here the cloning of the SNF8 gene by complementation. Sequence analysis predicts a 26,936-dalton product. Disruption of the chromosomal locus caused a five-fold decrease in invertase derepression, defective growth on raffinose, and a sporulation defect in homozygous diploids. Genetic analysis of the interactions of the snf8 null mutation with spt6/ssn20 and ssn6 suppressors distinguished SNF8 from the groups, SNF1, SNF4 and SNF2, SNF5, SNF6. Notably, the snf8 ssn6 double mutants were extremely sick. Mutations of SNF8 and SNF7 showed similar phenotypes and genetic interactions, and the double mutant combination caused no additional phenotypic impairment. These findings suggest that SNF7 and SNF8 are functionally related.
Collapse
Affiliation(s)
- P Yeghiayan
- Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
32
|
The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 7935396 DOI: 10.1128/mcb.14.10.6789] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned the GLC7/DIS2S1 gene by complementation of the cid1-226 mutation, which relieves glucose repression in Saccharomyces cerevisiae. GLC7 encodes the catalytic subunit of type 1 protein phosphatase (PP1). Genetic analysis and sequencing showed that cid1-226 is an allele of GLC7, now designated glc7-T152K, which alters threonine 152 to lysine. We also show that the glc7-1 and glc7-T152K alleles cause distinct phenotypes: glc7-1 causes a severe defect in glycogen accumulation but does not relieve glucose repression, whereas glc7-T152K does not prevent glycogen accumulation. These findings are discussed in light of evidence that interaction with different regulatory or targeting subunits directs the participation of PP1 in diverse cellular regulatory mechanisms. Finally, genetic studies suggest that PP1 functions antagonistically to the SNF1 protein kinase in the regulatory response to glucose.
Collapse
|
33
|
Tu J, Carlson M. The GLC7 type 1 protein phosphatase is required for glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:6789-96. [PMID: 7935396 PMCID: PMC359209 DOI: 10.1128/mcb.14.10.6789-6796.1994] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We cloned the GLC7/DIS2S1 gene by complementation of the cid1-226 mutation, which relieves glucose repression in Saccharomyces cerevisiae. GLC7 encodes the catalytic subunit of type 1 protein phosphatase (PP1). Genetic analysis and sequencing showed that cid1-226 is an allele of GLC7, now designated glc7-T152K, which alters threonine 152 to lysine. We also show that the glc7-1 and glc7-T152K alleles cause distinct phenotypes: glc7-1 causes a severe defect in glycogen accumulation but does not relieve glucose repression, whereas glc7-T152K does not prevent glycogen accumulation. These findings are discussed in light of evidence that interaction with different regulatory or targeting subunits directs the participation of PP1 in diverse cellular regulatory mechanisms. Finally, genetic studies suggest that PP1 functions antagonistically to the SNF1 protein kinase in the regulatory response to glucose.
Collapse
Affiliation(s)
- J Tu
- Institute of Cancer Research, Columbia University, New York, New York 10032
| | | |
Collapse
|