1
|
Lechtreck KF, Mengoni I, Okivie B, Hilderhoff KB. In vivo analyses of radial spoke transport, assembly, repair and maintenance. Cytoskeleton (Hoboken) 2018; 75:352-362. [PMID: 30070024 DOI: 10.1002/cm.21457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023]
Abstract
Radial spokes (RSs) are multiprotein complexes that regulate dynein activity. In the cell body, RS proteins (RSPs) are present in a 12S precursor, which enters the flagella and converts into the axoneme-bound 20S spokes consisting of a head and stalk. To study RS dynamics in vivo, we expressed fluorescent protein (FP)-tagged versions of the head protein RSP4 and the stalk protein RSP3 to rescue the corresponding Chlamydomonas mutants pf1, lacking spoke heads, and pf14, lacking RSs entirely. RSP3 and RSP4 mostly co-migrated by intraflagellar transport (IFT). The transport was elevated during flagellar assembly and IFT of RSP4-FP depended on RSP3. To study RS assembly independently of ciliogenesis, strains expressing FP-tagged RSPs were mated to untagged cells with, without, or with partial RSs. Tagged RSPs were incorporated in a spotted fashion along wild-type-derived flagella indicating an exchange of RSs. During the repair of pf1-derived axonemes, RSP4-FP is added onto the preexisting spoke stalks with little exchange of RSP3. Thus, RSP3 and RSP4 are transported together but appear to separate inside flagella during the repair of RSs. The 12S RS precursor encompassing both proteins could represent a transport form to ensure stoichiometric delivery of RSPs into flagella by IFT.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Ilaria Mengoni
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Batare Okivie
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | | |
Collapse
|
2
|
Distribution patterns and impact of transposable elements in genes of green algae. Gene 2016; 594:151-159. [PMID: 27614292 DOI: 10.1016/j.gene.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
Transposable elements (TEs) are DNA sequences able to transpose in the host genome, a remarkable feature that enables them to influence evolutive trajectories of species. An investigation about the TE distribution and TE impact in different gene regions of the green algae species Chlamydomonas reinhardtii and Volvox carteri was performed. Our results indicate that TEs are very scarce near introns boundaries, suggesting that insertions in this region are negatively selected. This contrasts with previous results showing enrichment of tandem repeats in introns boundaries and suggests that different evolutionary forces are acting in these different classes of repeats. Despite the relatively low abundance of TEs in the genome of green algae when compared to mammals, the proportion of poly(A) sites derived from TEs found in C. reinhardtii was similar to that described in human and mice. This fact, associated with the enrichment of TEs in gene 5' and 3' flanks of C. reinhardtii, opens up the possibility that TEs may have considerably contributed for gene regulatory sequences evolution in this species. Moreover, it was possible identify several instances of TE exonization for C. reinhardtii, with a particularly interesting case from a gene coding for Condensin II, a protein involved in the maintenance of chromosomal structure, where the addition of a transposomal PHD finger may contribute to binding specificity of this protein. Taken together, our results suggest that the low abundance of TEs in green algae genomes is correlated with a strict negative selection process, combined with the retention of copies that contribute positively with gene structures.
Collapse
|
3
|
Dove WF. Weaving a Tapestry from Threads Spun by Geneticists: The Series Perspectives on Genetics, 1987-2008. Genetics 2016; 203:1011-22. [PMID: 27384024 PMCID: PMC4937473 DOI: 10.1534/genetics.116.191155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Perspectives column was initiated in 1987 when Jan Drake, Editor-in-Chief of GENETICS, invited Jim Crow and William Dove to serve as coeditors of "Anecdotal, Historical, and Critical Commentaries." As the series evolved over 21 years, under the guidance of Crow and Dove, the input of stories told by geneticists from many countries created a panorama of 20th-century genetics. Three recurrent themes are visible: how geneticists have created the science (as solitary investigators, in pairs, or in cooperative groups); how geneticists work hard, but find ways to have fun; and how public and private institutions have sustained the science of genetics, particularly in the United States. This article ends by considering how the Perspectives series and other communication formats can carry forward the core science of genetics from the 20th into the 21st century.
Collapse
Affiliation(s)
- William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology and Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53705
| |
Collapse
|
4
|
Douchi D, Qu Y, Longoni P, Legendre-Lefebvre L, Johnson X, Schmitz-Linneweber C, Goldschmidt-Clermont M. A Nucleus-Encoded Chloroplast Phosphoprotein Governs Expression of the Photosystem I Subunit PsaC in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:1182-99. [PMID: 27113776 PMCID: PMC4904667 DOI: 10.1105/tpc.15.00725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/25/2016] [Indexed: 05/05/2023]
Abstract
The nucleo-cytoplasmic compartment exerts anterograde control on chloroplast gene expression through numerous proteins that intervene at posttranscriptional steps. Here, we show that the maturation of psaC mutant (mac1) of Chlamydomonas reinhardtii is defective in photosystem I and fails to accumulate psaC mRNA. The MAC1 locus encodes a member of the Half-A-Tetratricopeptide (HAT) family of super-helical repeat proteins, some of which are involved in RNA transactions. The Mac1 protein localizes to the chloroplast in the soluble fraction. MAC1 acts through the 5' untranslated region of psaC transcripts and is required for their stability. Small RNAs that map to the 5'end of psaC RNA in the wild type but not in the mac1 mutant are inferred to represent footprints of MAC1-dependent protein binding, and Mac1 expressed in bacteria binds RNA in vitro. A coordinate response to iron deficiency, which leads to dismantling of the photosynthetic electron transfer chain and in particular of photosystem I, also causes a decrease of Mac1. Overexpression of Mac1 leads to a parallel increase in psaC mRNA but not in PsaC protein, suggesting that Mac1 may be limiting for psaC mRNA accumulation but that other processes regulate protein accumulation. Furthermore, Mac 1 is differentially phosphorylated in response to iron availability and to conditions that alter the redox balance of the electron transfer chain.
Collapse
Affiliation(s)
- Damien Douchi
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Yujiao Qu
- Institute of Biology, Molecular Genetics, Humboldt University of Berlin, D-10115 Berlin, Germany
| | - Paolo Longoni
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Linnka Legendre-Lefebvre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Xenie Johnson
- Unité Mixte de Recherche 7141, CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Lefebvre-Legendre L, Reifschneider O, Kollipara L, Sickmann A, Wolters D, Kück U, Goldschmidt-Clermont M. A pioneer protein is part of a large complex involved in trans-splicing of a group II intron in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:57-69. [PMID: 26611495 DOI: 10.1111/tpj.13089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 05/08/2023]
Abstract
Splicing of organellar introns requires the activity of numerous nucleus-encoded factors. In the chloroplast of Chlamydomonas reinhardtii, maturation of psaA mRNA encoding photosystem I subunit A involves two steps of trans-splicing. The exons, located on three separate transcripts, are flanked by sequences that fold to form the conserved structures of two group II introns. A fourth transcript contributes to assembly of the first intron, which is thus tripartite. The raa7 mutant (RNA maturation of psaA 7) is deficient in trans-splicing of the second intron of psaA, and may be rescued by transforming the chloroplast genome with an intron-less version of psaA. Using mapped-based cloning, we identify the RAA7 locus, which encodes a pioneer protein with no previously known protein domain or motif. The Raa7 protein, which is not associated with membranes, localizes to the chloroplast. Raa7 is a component of a large complex and co-sediments in sucrose gradients with the previously described splicing factors Raa1 and Raa2. Based on tandem affinity purification of Raa7 and mass spectrometry, Raa1 and Raa2 were identified as interacting partners of Raa7. Yeast two-hybrid experiments indicate that the interaction of Raa7 with Raa1 and Raa2 may be direct. We conclude that Raa7 is a component of a multimeric complex that is required for trans-splicing of the second intron of psaA. The characterization of this psaA trans-splicing complex is also of interest from an evolutionary perspective because the nuclear spliceosomal introns are thought to derive from group II introns, with which they show mechanistic and structural similarity.
Collapse
Affiliation(s)
- Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | - Olga Reifschneider
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften- ISAS - e.V., Otto Hahn Straße 6b, Dortmund, 44227, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften- ISAS - e.V., Otto Hahn Straße 6b, Dortmund, 44227, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
- Medizinische Fakultät, Medizinisches Proteom-Center, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Dirk Wolters
- Department of Analytical Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
6
|
The UVS9 gene of Chlamydomonas encodes an XPG homolog with a new conserved domain. DNA Repair (Amst) 2015; 37:33-42. [PMID: 26658142 DOI: 10.1016/j.dnarep.2015.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022]
Abstract
Nucleotide excision repair (NER) is a key pathway for removing DNA damage that destabilizes the DNA double helix. During NER a protein complex coordinates to cleave the damaged DNA strand on both sides of the damage. The resulting lesion-containing oligonucleotide is displaced from the DNA and a replacement strand is synthesized using the undamaged strand as template. Ultraviolet (UV) light is known to induce two primary forms of DNA damage, the cyclobutane pyrimidine dimer and the 6-4 photoproduct, both of which destabilize the DNA double helix. The uvs9 strain of Chlamydomonas reinhardtii was isolated based on its sensitivity to UV light and was subsequently shown to have a defect in NER. In this work, the UVS9 gene was cloned through molecular mapping and shown to encode a homolog of XPG, the structure-specific nuclease responsible for cleaving damaged DNA strands 3' to sites of damage during NER. 3' RACE revealed that the UVS9 transcript is alternatively polyadenylated. The predicted UVS9 protein is nearly twice as long as other XPG homologs, primarily due to an unusually long spacer region. Despite this difference, amino acid sequence alignment of UVS9p with XPG homologs revealed a new conserved domain involved in TFIIH interaction.
Collapse
|
7
|
Sun X, Perera S, Haas N, Lefebvre PA, Silflow CD. Using an RSP3 reporter gene system to investigate molecular regulation of hydrogenase expression in Chlamydomonas reinhardtii. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Jacobs J, Glanz S, Bunse-Grassmann A, Kruse O, Kück U. RNA trans-splicing: identification of components of a putative chloroplast spliceosome. Eur J Cell Biol 2010; 89:932-9. [PMID: 20705358 DOI: 10.1016/j.ejcb.2010.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Group II introns with highly complex RNA structures have been discovered in both prokaryotes and eukaryotic organelles. Usually, excision of non-coding group II intron sequences occurs by cis-splicing, the intramolecular ligation of exons in the same precursor RNA, but some group II introns are excised by intermolecular ligation. This process is called trans-splicing, and genome sequencing predicted that this type of RNA processing occurs in more than 180 organelle genomes from eukaryotes. A well characterised trans-spliced intron RNA is represented by the chloroplast psaA gene of the model alga Chlamydomonas reinhardtii. The psaA gene is split into three exons, which are widely distributed over the plastome and transcribed independently. PsaA exons are flanked by sequences typical for group II introns and joined by trans-splicing via two transesterification reactions. Although it is known that some group II introns are able to splice autocatalytically, trans-splicing of the psaA RNA depends on several nucleus and chloroplast encoded factors. The phylogenetic relationship between group II introns and nuclear spliceosomal RNA led to the hypothesis that these factors are part of large multiprotein and ribonucleoprotein complexes akin to the nuclear spliceosome. Here, we give a concise overview of experimental strategies to identify novel factors involved in trans-splicing of psaA RNA and review recent results that have elucidated the composition and function of a putative chloroplast spliceosome involved in processing of chloroplast precursor RNAs.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
9
|
Meinecke L, Alawady A, Schroda M, Willows R, Kobayashi MC, Niyogi KK, Grimm B, Beck CF. Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. PLANT MOLECULAR BIOLOGY 2010; 72:643-58. [PMID: 20127142 PMCID: PMC2837180 DOI: 10.1007/s11103-010-9604-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/13/2010] [Indexed: 05/12/2023]
Abstract
Two Chlamydomonas reinhardtii mutants defective in CHLM encoding Mg-protoporphyrin IX methyltransferase (MgPMT) were identified. The mutants, one with a missense mutation (chlM-1) and a second mutant with a splicing defect (chlM-2), do not accumulate chlorophyll, are yellow in the dark and dim light, and their growth is inhibited at higher light intensities. They accumulate Mg-protoporphyrin IX (MgProto), the substrate of MgPMT and this may be the cause for their light sensitivity. In the dark, both mutants showed a drastic reduction in the amounts of core proteins of photosystems I and II and light-harvesting chlorophyll a/b-binding proteins. However, LHC mRNAs accumulated above wild-type levels. The accumulation of the transcripts of the LHC and other genes that were expressed at higher levels in the mutants during dark incubation was attenuated in the initial phase of light exposure. No regulatory effects of the constitutively 7- to 18-fold increased MgProto levels on gene expression were detected, supporting previous results in which MgProto and heme in Chlamydomonas were assigned roles as second messengers only in the transient activation of genes by light.
Collapse
Affiliation(s)
- Linda Meinecke
- Fakultaet fuer Biologie, Institut fuer Biologie III, Universitaet Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Ali Alawady
- Institut fuer Biologie/Pflanzenphysiologie, Humboldt Universitaet, Philippstrasse 13, 10115 Berlin, Germany
| | - Michael Schroda
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Robert Willows
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, 2109 Australia
| | - Marilyn C. Kobayashi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102 USA
| | - Bernhard Grimm
- Institut fuer Biologie/Pflanzenphysiologie, Humboldt Universitaet, Philippstrasse 13, 10115 Berlin, Germany
| | - Christoph F. Beck
- Fakultaet fuer Biologie, Institut fuer Biologie III, Universitaet Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Zhao T, Wang W, Bai X, Qi Y. Gene silencing by artificial microRNAs in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:157-64. [PMID: 19054364 DOI: 10.1111/j.1365-313x.2008.03758.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular green alga. It is a model system for studying functions of the chloroplast, basal body and flagella. The completion of the Chlamydomonas genome sequence makes it possible to use reverse genetic approaches in this organism. Chlamydomonas contains a set of endogenous microRNAs (miRNAs) that down-regulate their target gene expression through mRNA cleavage. Here we developed an artificial miRNA-based strategy to knock down gene expression in Chlamydomonas. Using an endogenous Chlamydomonas miRNA precursor as the backbone, we constructed two artificial miRNAs (amiRNAs) targeting the MAA7 and RBCS1/2 genes, respectively. When overexpressed, these two amiRNAs could cleave their respective targets precisely at the predicted sites, resulting in greatly decreased accumulation of MAA7 and RBCS1/2 transcripts and expected mutant phenotypes. We further showed that the two amiRNAs could be produced simultaneously from a dimeric amiRNA precursor. We anticipate that the amiRNA technology developed in this study will be very useful in assessing the functions of individual genes and in genome-wide approaches.
Collapse
Affiliation(s)
- Tao Zhao
- National Institute of Biological Sciences, No.7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | |
Collapse
|
11
|
Grossman AR. In the Grip of Algal Genomics. TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES 2008; 616:54-76. [DOI: 10.1007/978-0-387-75532-8_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Piasecki BP, Diller KR, Brand JJ. Cryopreservation of Chlamydomonas reinhardtii: a cause of low viability at high cell density. Cryobiology 2008; 58:103-109. [PMID: 19041638 DOI: 10.1016/j.cryobiol.2008.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/21/2008] [Accepted: 11/05/2008] [Indexed: 11/15/2022]
Abstract
Cryopreservation is a practical method for stabilizing the genetic content of living algae over long periods of time. Yet, Chlamydomonas reinhardtii, the algal species most often utilized in studies requiring genetically defined strains, is difficult to cryopreserve with a consistently high post-thaw viability. Work described here demonstrates that C. reinhardtii retains high viability only when cryopreserved at a low cell density. Low viability at high cell density was caused by the release of an injurious substance into the culture medium. Rapid freezing and thawing under non-cryoprotective conditions released large amounts of the injurious substance. Heat denaturation of cells prevented the release of the injurious substance, but heating did not inactivate it after it was released. Even when concentrated, the injurious substance was non-toxic to cells under normal culture conditions. Reduced viability of cells cryopreserved in the presence of the injurious substance could not be attributed to changes in the tonicity of the medium. A mutant strain of C. reinhardtii (cw10) with a greatly diminished cell wall did not release a substance that reduced the post-thaw viability of wild-type or cw10 cryopreserved cells. Cryopreservation of cw10 cells was achieved with approximately the same post-thaw viability irrespective to the cell concentration at the time of freezing. Acid treatment of the injurious substance was able to partially diminish its injurious effect on cells during cryopreservation. We propose that diminished viability of C. reinhardtii cells cryopreserved at high cell densities is caused by the enzymatic release of a cell-wall component.
Collapse
Affiliation(s)
- Brian P Piasecki
- The University of Texas at Austin, Department of Molecular Cell and Developmental Biology and Culture Collection of Algae, Austin, TX 78712, USA
| | - Kenneth R Diller
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX 78712, USA
| | - Jerry J Brand
- The University of Texas at Austin, Department of Molecular Cell and Developmental Biology and Culture Collection of Algae, Austin, TX 78712, USA.
| |
Collapse
|
13
|
von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF. Heme, a plastid-derived regulator of nuclear gene expression in Chlamydomonas. THE PLANT CELL 2008; 20:552-67. [PMID: 18364467 PMCID: PMC2329926 DOI: 10.1105/tpc.107.054650] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 02/15/2008] [Accepted: 02/29/2008] [Indexed: 05/19/2023]
Abstract
To gain insight into the chloroplast-to-nucleus signaling role of tetrapyrroles, Chlamydomonas reinhardtii mutants in the Mg-chelatase that catalyzes the insertion of magnesium into protoporphyrin IX were isolated and characterized. The four mutants lack chlorophyll and show reduced levels of Mg-tetrapyrroles but increased levels of soluble heme. In the mutants, light induction of HSP70A was preserved, although Mg-protoporphyrin IX has been implicated in this induction. In wild-type cells, a shift from dark to light resulted in a transient reduction in heme levels, while the levels of Mg-protoporphyrin IX, its methyl ester, and protoporphyrin IX increased. Hemin feeding to cultures in the dark activated HSP70A. This induction was mediated by the same plastid response element (PRE) in the HSP70A promoter that has been shown to mediate induction by Mg-protoporphyrin IX and light. Other nuclear genes that harbor a PRE in their promoters also were inducible by hemin feeding. Extended incubation with hemin abrogated the competence to induce HSP70A by light or Mg-protoporphyrin IX, indicating that these signals converge on the same pathway. We propose that Mg-protoporphyrin IX and heme may serve as plastid signals that regulate the expression of nuclear genes.
Collapse
Affiliation(s)
- Erika D von Gromoff
- Fakultät für Biologie, Institut für Biologie III, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Shibagaki N, Grossman A. The State of Sulfur Metabolism in Algae: From Ecology to Genomics. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
|
17
|
Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 2007; 21:1190-203. [PMID: 17470535 PMCID: PMC1865491 DOI: 10.1101/gad.1543507] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endogenous small RNAs function in RNA interference (RNAi) pathways to control gene expression through mRNA cleavage, translational repression, or chromatin modification. Plants and animals contain many microRNAs (miRNAs) that play vital roles in development, including helping to specify cell type and tissue identity. To date, no miRNAs have been reported in unicellular organisms. Here we show that Chlamydomonas reinhardtii, a unicellular green alga, encodes many miRNAs. We also show that a Chlamydomonas miRNA can direct the cleavage of its target mRNA in vivo and in vitro. We further show that the expression of some miRNAs/Candidates increases or decreases during Chlamydomonas gametogenesis. In addition to miRNAs, Chlamydomonas harbors other types of small RNAs including phased small interfering RNAs (siRNAs) that are reminiscent of plant trans-acting siRNAs, as well as siRNAs originating from protein-coding genes and transposons. Our findings suggest that the miRNA pathway and some siRNA pathways are ancient mechanisms of gene regulation that evolved prior to the emergence of multicellularity.
Collapse
Affiliation(s)
- Tao Zhao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Guanglin Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijun Mi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Shan Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Gregory J. Hannon
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Xiu-Jie Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- E-MAIL ; FAX 86-10-64873428
| | - Yijun Qi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
- Corresponding author.E-mail ; FAX 86-10-80727873
| |
Collapse
|
18
|
Kim KS, Kustu S, Inwood W. Natural history of transposition in the green alga Chlamydomonas reinhardtii: use of the AMT4 locus as an experimental system. Genetics 2006; 173:2005-19. [PMID: 16702425 PMCID: PMC1569734 DOI: 10.1534/genetics.106.058263] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 05/10/2006] [Indexed: 11/18/2022] Open
Abstract
The AMT4 locus of the green alga Chlamydomonas reinhardtii, which we mapped to the long arm of chromosome 8, provides a good experimental system for the study of transposition. Most mutations that confer resistance to the toxic ammonium analog methylammonium are in AMT4 and a high proportion of spontaneous mutations are caused by transposon-related events. Among the 15 such events that we have characterized at the molecular level, 9 were associated with insertions of the retrotransposon TOC1, 2 with a small Gulliver-related transposon, and 1 with the Tcr1 transposon. We found that Tcr1 is apparently a foldback transposon with terminal inverted repeats that are much longer and more complex than previously realized. A duplication of Tcr1 yielded a configuration thought to be important for chromosomal evolution. Other mutations in AMT4 were caused by two mobile elements that have not been described before. The sequence of one, which we propose to call the Bill element, indicates that it probably transposes by way of a DNA intermediate and requires functions that it does not encode. The sequence of the other and bioinformatic analysis indicates that it derives from a miniature retrotransposon or TRIM, which we propose to call MRC1 (miniature retrotransposon of Chlamydomonas).
Collapse
Affiliation(s)
- Kwang-Seo Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
19
|
Hoffmann XK, Beck CF. Mating-induced shedding of cell walls, removal of walls from vegetative cells, and osmotic stress induce presumed cell wall genes in Chlamydomonas. PLANT PHYSIOLOGY 2005; 139:999-1014. [PMID: 16183845 PMCID: PMC1256013 DOI: 10.1104/pp.105.065037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/05/2005] [Accepted: 07/15/2005] [Indexed: 05/04/2023]
Abstract
The first step in sexual differentiation of the unicellular green alga Chlamydomonas reinhardtii is the formation of gametes. Three genes, GAS28, GAS30, and GAS31, encoding Hyp-rich glycoproteins that presumably are cell wall constituents, are expressed in the late phase of gametogenesis. These genes, in addition, are activated by zygote formation and cell wall removal and by the application of osmotic stress. The induction by zygote formation could be traced to cell wall shedding prior to gamete fusion since it was seen in mutants defective in cell fusion. However, it was absent in mutants defective in the initial steps of mating, i.e. in flagellar agglutination and in accumulation of adenosine 3',5'-cyclic monophosphate in response to this agglutination. Induction of the three GAS genes was also observed when cultures were exposed to hypoosmotic or hyperosmotic stress. To address the question whether the induction seen upon cell wall removal from both gametes and vegetative cells was elicited by osmotic stress, cell wall removal was performed under isosmotic conditions. Also under such conditions an activation of the genes was observed, suggesting that the signaling pathway(s) is (are) activated by wall removal itself.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Wall/genetics
- Chlamydomonas reinhardtii/cytology
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/growth & development
- Chlamydomonas reinhardtii/metabolism
- DNA, Algal/genetics
- DNA, Protozoan/genetics
- Gene Expression Regulation, Developmental
- Genes, Protozoan
- Glycoproteins/genetics
- Models, Biological
- Molecular Sequence Data
- Mutation
- Osmotic Pressure
- Protozoan Proteins/biosynthesis
- Protozoan Proteins/genetics
- RNA, Algal/genetics
- RNA, Algal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Sequence Homology, Amino Acid
Collapse
|
20
|
Kim KS, Feild E, King N, Yaoi T, Kustu S, Inwood W. Spontaneous mutations in the ammonium transport gene AMT4 of Chlamydomonas reinhardtii. Genetics 2005; 170:631-44. [PMID: 15802504 PMCID: PMC1450391 DOI: 10.1534/genetics.105.041574] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 02/25/2005] [Indexed: 11/18/2022] Open
Abstract
Evidence in several microorganisms indicates that Amt proteins are gas channels for NH(3) and CH(3)NH(2), and this has been confirmed structurally. Chlamydomonas reinhardtii has at least four AMT genes, the most reported for a microorganism. Under nitrogen-limiting conditions all AMT genes are transcribed and Chlamydomonas is sensitive to methylammonium toxicity. All 16 spontaneous methylammonium-resistant mutants that we analyzed had defects in accumulation of [(14)C]methylammonium. Genetic crosses indicated that 12 had lesions in a single locus, whereas two each had lesions in other loci. Lesions in different loci were correlated with different degrees of defect in [(14)C]methylammonium uptake. One mutant in the largest class had an insert in the AMT4 gene, and the insert cosegregated with methylammonium resistance in genetic crosses. The other 11 strains in this class also had amt4 lesions, which we characterized at the molecular level. Properties of the amt4 mutants were clearly different from those of rh1 RNAi lines. They indicated that the physiological substrates for Amt and Rh proteins, the only two members of their protein superfamily, are NH(3) and CO(2), respectively.
Collapse
Affiliation(s)
- Kwang-Seo Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
This review focuses on the biosynthesis of pigments in the unicellular alga Chlamydomonas reinhardtii and their physiological and regulatory functions in the context of information gathered from studies of other photosynthetic organisms. C. reinhardtii is serving as an important model organism for studies of photosynthesis and the pigments associated with the photosynthetic apparatus. Despite extensive information pertaining to the biosynthetic pathways critical for making chlorophylls and carotenoids, we are just beginning to understand the control of these pathways, the coordination between pigment and apoprotein synthesis, and the interactions between the activities of these pathways and those for other important cellular metabolites branching from these pathways. Other exciting areas relating to pigment function are also emerging: the role of intermediates of pigment biosynthesis as messengers that coordinate metabolism in the chloroplast with nuclear gene activity, and the identification of photoreceptors and their participation in critical cellular processes including phototaxis, gametogenesis, and the biogenesis of the photosynthetic machinery. These areas of research have become especially attractive for intensive development with the application of potent molecular and genomic tools currently being applied to studies of C. reinhardtii.
Collapse
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305, USA.
| | | | | |
Collapse
|
22
|
Zamora I, Feldman JL, Marshall WF. PCR-based assay for mating type and diploidy in Chlamydomonas. Biotechniques 2005; 37:534-6. [PMID: 15517961 DOI: 10.2144/04374bm01] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ivan Zamora
- University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
23
|
González-Ballester D, de Montaigu A, Higuera JJ, Galván A, Fernández E. Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas. PLANT PHYSIOLOGY 2005; 137:522-33. [PMID: 15665251 PMCID: PMC1065353 DOI: 10.1104/pp.104.050914] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/13/2004] [Accepted: 10/14/2004] [Indexed: 05/18/2023]
Abstract
The existence of mutants at specific steps in a pathway is a valuable tool of functional genomics in an organism. Heterologous integration occurring during transformation with a selectable marker in Chlamydomonas (Chlamydomonas reinhardtii) has been used to generate an ordered mutant library. A strain, having a chimeric construct (pNia1::arylsulfatase gene) as a sensor of the Nia1 gene promoter activity, was transformed with a plasmid bearing the paramomycin resistance AphVIII gene to generate insertional mutants defective at regulatory steps of the nitrate assimilation pathway. Twenty-two thousand transformants were obtained and maintained in pools of 96 for further use. The mutant library was screened for the following phenotypes: insensitivity to the negative signal of ammonium, insensitivity to the positive signal of nitrate, overexpression in nitrate, and inability to use nitrate. Analyses of mutants showed that (1) the number or integrated copies of the gene marker is close to 1; (2) the probability of cloning the DNA region at the marker insertion site is high (76%); (3) insertions occur randomly; and (4) integrations at different positions and orientations of the same genomic region appeared in at least three cases. Some of the mutants analyzed were found to be affected at putative new genes related to regulatory functions, such as guanylate cyclase, protein kinase, peptidyl-prolyl isomerase, or DNA binding. The Chlamydomonas mutant library constructed would also be valuable to identify any other gene with a screenable phenotype.
Collapse
Affiliation(s)
- David González-Ballester
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution, Department of Plant Biology, Stanford, California 94305, USA.
| |
Collapse
|
25
|
Hanikenne M, Krämer U, Demoulin V, Baurain D. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. PLANT PHYSIOLOGY 2005; 137:428-46. [PMID: 15710683 PMCID: PMC1065346 DOI: 10.1104/pp.104.054189] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/16/2004] [Accepted: 11/18/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Marc Hanikenne
- Metal Homeostasis Group, Max Planck Institute for Plant Molecular Physiology, 14476 Golm, Germany.
| | | | | | | |
Collapse
|
26
|
Stauber EJ, Hippler M. Chlamydomonas reinhardtii proteomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:989-1001. [PMID: 15707836 DOI: 10.1016/j.plaphy.2004.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/27/2004] [Indexed: 05/01/2023]
Abstract
Proteomics, based on the expanding genomic resources, has begun to reveal new details of Chlamydomonas reinhardtii biology. In particular, analyses focusing on subproteomes have already provided new insight into the dynamics and composition of the photosynthetic apparatus, the chloroplast ribosome, the oxidative phosphorylation machinery of the mitochondria, and the flagellum. It assisted to discovered putative new components of the circadian clockwork as well as shed a light on thioredoxin protein-protein interactions. In the future, quantitative techniques may allow large scale comparison of protein expression levels. Advances in software algorithms will likely improve the use of genomic databases for mass spectrometry (MS) based protein identification and validation of gene models that have been predicted from the genomic DNA sequences. Although proteomics has only been recently applied for exploring C. reinhardtii biology, it will likely be utilized extensively in the near future due to the already existing genetic, genomic, and biochemical tools.
Collapse
Affiliation(s)
- Einar J Stauber
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller Universität Jena, Dornburger Street 159, 07743 Jena, Germany
| | | |
Collapse
|
27
|
Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. THE PLANT CELL 2004; 16:2151-63. [PMID: 15269330 PMCID: PMC519204 DOI: 10.1105/tpc.104.021972] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 05/21/2004] [Indexed: 05/20/2023]
Abstract
DNA insertional transformants of Chlamydomonas reinhardtii were screened chemochromically for attenuated H(2) production. One mutant, displaying low H(2) gas photoproduction, has a nonfunctional copy of a gene that shows high homology to the family of isoamylase genes found in several photosynthetic organisms. DNA gel blotting and gene complementation were used to link this isoamylase gene to previously characterized nontagged sta7 mutants. This mutant is therefore denoted sta7-10. In C. reinhardtii, the STA7 isoamylase gene is important for the accumulation of crystalline starch, and the sta7-10 mutant reported here contains <3% of the glucose found in insoluble starch when compared with wild-type control cells. Hydrogen photoproduction rates, induced after several hours of dark, anaerobic treatment, are attenuated in sta7 mutants. RNA gel blot analysis indicates that the mRNA transcripts for both the HydA1 and HydA2 [Fe]-hydrogenase genes are expressed in the sta7-10 mutant at greater than wild-type levels 0.5 h after anaerobic induction. However, after 1.5 h, transcript levels of both HydA1 and HydA2 begin to decline rapidly and reach nearly undetectable levels after 7 h. In wild-type cells, the hydrogenase transcripts accumulate more slowly, reach a plateau after 4 h of anaerobic treatment, and maintain the same level of expression for >7 h under anaerobic incubation. Complementation of mutant cells with genomic DNA corresponding to the STA7 gene restores both the starch accumulation and H(2) production phenotypes. The results indicate that STA7 and starch metabolism play an important role in C. reinhardtii H(2) photoproduction. Moreover, the results indicate that mere anaerobiosis is not sufficient to maintain hydrogenase gene expression without the underlying physiology, an important aspect of which is starch metabolism.
Collapse
|
28
|
Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z. Chlamydomonas reinhardtii at the crossroads of genomics. EUKARYOTIC CELL 2004; 2:1137-50. [PMID: 14665449 PMCID: PMC326643 DOI: 10.1128/ec.2.6.1137-1150.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Arthur R Grossman
- The Carnegie Institution of Washington, Department of Plant Biology, Stanford, California 94305. Biology Department, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pollock SV, Colombo SL, Prout DL, Godfrey AC, Moroney JV. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere. PLANT PHYSIOLOGY 2003; 133:1854-61. [PMID: 14605215 PMCID: PMC300738 DOI: 10.1104/pp.103.032078] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 09/02/2003] [Accepted: 09/09/2003] [Indexed: 05/20/2023]
Abstract
This report describes a Chlamydomonas reinhardtii mutant that lacks Rubisco activase (Rca). Using the BleR (bleomycin resistance) gene as a positive selectable marker for nuclear transformation, an insertional mutagenesis screen was performed to select for cells that required a high-CO2 atmosphere for optimal growth. The DNA flanking the BleR insert of one of the high-CO2-requiring strains was cloned using thermal asymmetric interlaced-polymerase chain reaction and inverse polymerase chain reaction and sequenced. The flanking sequence matched the C. reinhardtii Rca cDNA sequence previously deposited in the National Center for Biotechnology Information database. The loss of a functional Rca in the strain was confirmed by the absence of Rca mRNA and protein. The open reading frame for Rca was cloned and expressed in pSL18, a C. reinhardtii expression vector conferring paromomycin resistance. This construct partially complemented the mutant phenotype, supporting the hypothesis that the loss of Rca was the reason the mutant grew poorly in a low-CO2 atmosphere. Sequencing of the C. reinhardtii Rca gene revealed that it contains 10 exons ranging in size from 18 to 470 bp. Low-CO2-grown rca1 cultures had a growth rate and maximum rate of photosynthesis 60% of wild-type cells. Results obtained from experiments on a cia5 rca1 double mutant also suggest that the CO2-concentrating mechanism partially compensates for the absence of an active Rca in the green alga C. reinhardtii.
Collapse
Affiliation(s)
- Steve V Pollock
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | | | |
Collapse
|
30
|
Hanikenne M. Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. THE NEW PHYTOLOGIST 2003; 159:331-340. [PMID: 33873346 DOI: 10.1046/j.1469-8137.2003.00788.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a useful model of a photosynthetic cell. This unicellular eukaryote has been intensively used for studies of a number of physiological processes such as photosynthesis, respiration, nitrogen assimilation, flagella motility and basal body function. Its easy-to-manipulate and short life cycle make this organism a powerful tool for genetic analysis. Over the past 15 yr, a dramatically increased number of molecular technologies (including nuclear and organellar transformation systems, cosmid, yeast artificial chromosome (YAC) and bacterial artificial chromosome (BAC) libraries, reporter genes, RNA interference, DNA microarrays, etc.) have been applied to Chlamydomonas. Moreover, as parts of the Chlamydomonas genome project, molecular mapping, as well as whole genome and extended expressed sequence tag (EST) sequencing programs, are currently underway. These developments have allowed Chlamydomonas to become an extremely valuable model for molecular approaches to heavy metal homeostasis and tolerance in photosynthetic organisms.
Collapse
Affiliation(s)
- M Hanikenne
- Genetics of Microorganisms, Department of Life Sciences, B22, University of Liège, B4000 Liège, Belgium
| |
Collapse
|
31
|
Li JB, Lin S, Jia H, Wu H, Roe BA, Kulp D, Stormo GD, Dutcher SK. Analysis of Chlamydomonas reinhardtii genome structure using large-scale sequencing of regions on linkage groups I and III. J Eukaryot Microbiol 2003; 50:145-55. [PMID: 12836870 DOI: 10.1111/j.1550-7408.2003.tb00109.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chlamydomonas reinhardtii is a unicellular green alga that has been used as a model organism for the study of flagella and basal bodies as well as photosynthesis. This report analyzes finished genomic DNA sequence for 0.5% of the nuclear genome. We have used three gene prediction programs as well as EST and protein homology data to estimate the total number of genes in Chlamydomonas to be between 12,000 and 16,400. Chlamydomonas appears to have many more genes than any other unicellular organism sequenced to date. Twenty-seven percent of the predicted genes have significant identity to both ESTs and to known proteins in other organisms, 32% of the predicted genes have significant identity to ESTs alone, and 14% have significant similarity to known proteins in other organisms. For gene prediction in Chlamydomonas, GreenGenie appeared to have the highest sensitivity and specificity at the exon level, scoring 71% and 82%. respectively. Two new alternative splicing events were predicted by aligning Chlamydomonas ESTs to the genomic sequence. Finally recombination differs between the two sequenced contigs. The 350-Kb of the Linkage group III contig is devoid of recombination, while the Linkage group I contig is 30 map units long over 33-kb.
Collapse
Affiliation(s)
- Jin Billy Li
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kathir P, LaVoie M, Brazelton WJ, Haas NA, Lefebvre PA, Silflow CD. Molecular map of the Chlamydomonas reinhardtii nuclear genome. EUKARYOTIC CELL 2003; 2:362-79. [PMID: 12684385 PMCID: PMC154841 DOI: 10.1128/ec.2.2.362-379.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 12/10/2002] [Indexed: 11/20/2022]
Abstract
We have prepared a molecular map of the Chlamydomonas reinhardtii genome anchored to the genetic map. The map consists of 264 markers, including sequence-tagged sites (STS), scored by use of PCR and agarose gel electrophoresis, and restriction fragment length polymorphism markers, scored by use of Southern blot hybridization. All molecular markers tested map to one of the 17 known linkage groups of C. reinhardtii. The map covers approximately 1,000 centimorgans (cM). Any position on the C. reinhardtii genetic map is, on average, within 2 cM of a mapped molecular marker. This molecular map, in combination with the ongoing mapping of bacterial artificial chromosome (BAC) clones and the forthcoming sequence of the C. reinhardtii nuclear genome, should greatly facilitate isolation of genes of interest by using positional cloning methods. In addition, the presence of easily assayed STS markers on each arm of each linkage group should be very useful in mapping new mutations in preparation for positional cloning.
Collapse
Affiliation(s)
- Pushpa Kathir
- Department of Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | | | | | |
Collapse
|
33
|
Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J, Tamse R, Zhang Z, Grossman AR. Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. PLANT PHYSIOLOGY 2003; 131:401-8. [PMID: 12586865 PMCID: PMC166817 DOI: 10.1104/pp.016899] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2002] [Revised: 11/13/2002] [Accepted: 11/19/2002] [Indexed: 05/17/2023]
Abstract
The National Science Foundation-funded Chlamydomonas reinhardtii genome project involves (a) construction and sequencing of cDNAs isolated from cells exposed to various environmental conditions, (b) construction of a high-density cDNA microarray, (c) generation of genomic contigs that are nucleated around specific physical and genetic markers, (d) generation of a complete chloroplast genome sequence and analyses of chloroplast gene expression, and (e) the creation of a Web-based resource that allows for easy access of the information in a format that can be readily queried. Phases of the project performed by the groups at the Carnegie Institution and Duke University involve the generation of normalized cDNA libraries, sequencing of cDNAs, analysis and assembly of these sequences to generate contigs and a set of predicted unique genes, and the use of this information to construct a high-density DNA microarray. In this paper, we discuss techniques involved in obtaining cDNA end-sequence information and the ways in which this information is assembled and analyzed. Descriptions of protocols for preparing cDNA libraries, assembling cDNA sequences and annotating the sequence information are provided (the reader is directed to Web sites for more detailed descriptions of these methods). We also discuss preliminary results in which the different cDNA libraries are used to identify genes that are potentially differentially expressed.
Collapse
Affiliation(s)
- Jeff Shrager
- Biology Department, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The mechanisms that control organelle size are unknown. Flagellar length regulation is the most accessible of all organelle-size-control problems, and experiments on flagellar assembly have provided important clues to how flagellar length is controlled, as a balance of assembly and disassembly. I propose that the inherent length dependence of intraflagellar transport might be what allows the flagellum to reach a defined length. This model of the flagellum might represent a general scheme for organelle size control that could apply to any organelle whose maintenance involves continuous assembly balanced by disassembly.
Collapse
Affiliation(s)
- Wallace Marshall
- Dept Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Ave, New Haven, CT, USA.
| |
Collapse
|
35
|
Matsuura K, Lefebvre PA, Kamiya R, Hirono M. Kinesin-II is not essential for mitosis and cell growth in Chlamydomonas. CELL MOTILITY AND THE CYTOSKELETON 2002; 52:195-201. [PMID: 12112134 DOI: 10.1002/cm.10051] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The FLA10 gene product (Fla10p) in Chlamydomonas, a heterotrimeric kinesin-II, plays a crucial role in flagellar assembly as a motor protein driving intraflagellar transport. This protein has also been suggested to play a role in mitosis based on its localization to mitotic spindle. A role for Fla10p in mitosis has been difficult to test because to date only conditional (temperature-sensitive) mutant alleles were available, and it is not known whether these retain residual function for mitosis at the non-permissive temperature. In this report, we describe a null allele of fla10 produced by insertional mutagenesis. This mutant does not assemble flagella, but proliferates at a rate identical to that of wild type cells. Observation of microtubule organization in the cell body revealed that normal mitotic spindles are formed in dividing mutant cells. Thus, we conclude that FLA10 kinesin plays no significant roles in mitosis.
Collapse
Affiliation(s)
- Kumi Matsuura
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
36
|
Simpson C, Stern D. Chlamydomonas reinhardtii as a model system for dissecting chloroplast RNA processing and decay mechanisms. Methods Enzymol 2002; 342:384-407. [PMID: 11586911 DOI: 10.1016/s0076-6879(01)42561-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C Simpson
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
37
|
Kovar DR, Yang P, Sale WS, Drobak BK, Staiger CJ. Chlamydomonas reinhardtiiproduces a profilin with unusual biochemical properties. J Cell Sci 2001; 114:4293-305. [PMID: 11739661 DOI: 10.1242/jcs.114.23.4293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of a profilin orthologue from Chlamydomonas reinhardtii. CrPRF, probably the only profilin isoform, is present in both the cell body and flagella. Examination of vegetative and gametic cells by immunofluorescence microscopy using multiple fixation procedures also revealed enrichment of CrPRF at the anterior of the cell near the base of flagella and near the base of the fertilization tubule in mating type plus gametes. Purified, recombinant CrPRF binds to actin with a Kd value ∼10–7 and displaces nuclei in a live cell ‘nuclear displacement’ assay, consistent with profilin’s ability to bind G-actin in vivo. However, when compared with other profilin isoforms, CrPRF has a relatively low affinity for poly-L-proline and for phosphatidylinositol (4,5) bisphosphate micelles. Furthermore, and surprisingly, CrPRF inhibits exchange of adenine nucleotide on G-actin in a manner similar to human ADF or DNase I. Thus, we postulate that a primary role for CrPRF is to sequester actin in Chlamydomonas. The unusual biochemical properties of CrPRF offer a new opportunity to distinguish specific functions for profilin isoforms.
Collapse
Affiliation(s)
- D R Kovar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | |
Collapse
|
38
|
Dent RM, Han M, Niyogi KK. Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii. TRENDS IN PLANT SCIENCE 2001; 6:364-371. [PMID: 11495790 DOI: 10.1016/s1360-1385(01)02018-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis by algae and plants supports much of life on Earth. Several model organisms are used to study this vital process, but the unicellular green alga Chlamydomonas reinhardtii offers significant advantages for the genetic dissection of photosynthesis. Recent experiments with Chlamydomonas have substantially advanced our understanding of several aspects of photosynthesis, including chloroplast biogenesis, structure-function relationships in photosynthetic complexes, and environmental regulation. Chlamydomonas is therefore the organism of choice for elucidating detailed functions of the hundreds of genes involved in plant photosynthesis.
Collapse
Affiliation(s)
- R M Dent
- Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
39
|
Harris EH. CHLAMYDOMONAS AS A MODEL ORGANISM. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:363-406. [PMID: 11337403 DOI: 10.1146/annurev.arplant.52.1.363] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The unicellular green alga Chlamydomonas offers a simple life cycle, easy isolation of mutants, and a growing array of tools and techniques for molecular genetic studies. Among the principal areas of current investigation using this model system are flagellar structure and function, genetics of basal bodies (centrioles), chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. A genome project has begun with compilation of expressed sequence tag data and gene expression studies and will lead to a complete genome sequence. Resources available to the research community include wild-type and mutant strains, plasmid constructs for transformation studies, and a comprehensive on-line database.
Collapse
Affiliation(s)
- Elizabeth H Harris
- Developmental, Cell and Molecular Biology Group, Biology Department, Duke University, Durham, North Carolina 27708-1000; e-mail:
| |
Collapse
|
40
|
Pérez-Martínez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d'Alayer J, Claros MG, Davidson E, King MP, González-Halphen D. Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 2001; 276:11302-9. [PMID: 11094061 DOI: 10.1074/jbc.m010244200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genomes of Chlamydomonad algae lack the cox2 gene that encodes the essential subunit COX II of cytochrome c oxidase. COX II is normally a single polypeptide encoded by a single mitochondrial gene. In this work we cloned two nuclear genes encoding COX II from both Chlamydomonas reinhardtii and Polytomella sp. The cox2a gene encodes a protein, COX IIA, corresponding to the N-terminal portion of subunit II of cytochrome c oxidase, and the cox2b gene encodes COX IIB, corresponding to the C-terminal region. The cox2a and cox2b genes are located in the nucleus and are independently transcribed into mRNAs that are translated into separate polypeptides. These two proteins assemble with other cytochrome c oxidase subunits in the inner mitochondrial membrane to form the mature multi-subunit complex. We propose that during the evolution of the Chlorophyte algae, the cox2 gene was divided into two mitochondrial genes that were subsequently transferred to the nucleus. This event was evolutionarily distinct from the transfer of an intact cox2 gene to the nucleus in some members the Leguminosae plant family.
Collapse
Affiliation(s)
- X Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F. Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Marshall WF, Vucica Y, Rosenbaum JL. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr Biol 2001; 11:308-17. [PMID: 11267867 DOI: 10.1016/s0960-9822(01)00094-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Centriole duplication is a key step in the cell cycle whose mechanism is completely unknown. Why new centrioles always form next to preexisting ones is a fundamental question. The simplest model is that preexisting centrioles nucleate the assembly of new centrioles, and that although centrioles can in some cases form de novo without this nucleation, the de novo assembly mechanism should be too slow to compete with normal duplication in order to maintain fidelity of centriole duplication. RESULTS We have measured the rate of de novo centriole assembly in vegetatively dividing cells that normally always contain centrioles. By using mutants of Chlamydomonas that are defective in centriole segregation, we obtained viable centrioleless cells that continue to divide, and find that within a single generation, 50% of these cells reacquire new centrioles by de novo assembly. This suggests that the rate of de novo assembly is approximately half the rate of templated duplication. A mutation in the VFL3 gene causes a complete loss of the templated assembly pathway without eliminating de novo assembly. A mutation in the centrin gene also reduced the rate of templated assembly. CONCLUSIONS These results suggest that there are two pathways for centriole assembly, namely a templated pathway that requires preexisting centrioles to nucleate new centriole assembly, and a de novo assembly pathway that is normally turned off when centrioles are present.
Collapse
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
42
|
Abstract
To cope with low nutrient availability in nature, organisms have evolved inducible systems that enable them to scavenge and efficiently utilize the limiting nutrient. Furthermore, organisms must have the capacity to adjust their rate of metabolism and make specific alterations in metabolic pathways that favor survival when the potential for cell growth and division is reduced. In this article I will focus on the acclimation of Chlamydomonas reinhardtii, a unicellular, eukaryotic green alga to conditions of nitrogen, sulfur and phosphorus deprivation. This organism has a distinguished history as a model for classical genetic analyses, but it has recently been developed for exploitation using an array of molecular and genomic tools. The application of these tools to the analyses of nutrient limitation responses (and other biological processes) is revealing mechanisms that enable Chlamydomonas to survive harsh environmental conditions and establishing relationships between the responses of this morphologically simple, photosynthetic eukaryote and those of both nonphotosynthetic organisms and vascular plants.
Collapse
|
43
|
Pan J, Snell WJ. Regulated targeting of a protein kinase into an intact flagellum. An aurora/Ipl1p-like protein kinase translocates from the cell body into the flagella during gamete activation in chlamydomonas. J Biol Chem 2000; 275:24106-14. [PMID: 10807915 DOI: 10.1074/jbc.m002686200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the green alga Chlamydomonas reinhardtii flagellar adhesion between gametes of opposite mating types leads to rapid cellular changes, events collectively termed gamete activation, that prepare the gametes for cell-cell fusion. As is true for gametes of most organisms, the cellular and molecular mechanisms that underlie gamete activation are poorly understood. Here we report on the regulated movement of a newly identified protein kinase, Chlamydomonas aurora/Ipl1p-like protein kinase (CALK), from the cell body to the flagella during gamete activation. CALK encodes a protein of 769 amino acids and is the newest member of the aurora/Ipl1p protein kinase family. Immunoblotting with an anti-CALK antibody showed that CALK was present as a 78/80-kDa doublet in vegetative cells and unactivated gametes of both mating types and was localized primarily in cell bodies. In cells undergoing fertilization, the 78-kDa CALK was rapidly targeted to the flagella, and within 5 min after mixing gametes of opposite mating types, the level of CALK in the flagella began to approach levels normally found in the cell body. Protein synthesis was not required for targeting, indicating that the translocated CALK and the cellular molecules required for its movement are present in unactivated gametes. CALK was also translocated to the flagella during flagellar adhesion of nonfusing mutant gametes, demonstrating that cell fusion was not required for movement. Finally, the requirement for flagellar adhesion could be bypassed; incubation of cells of a single mating type in dibutyryl cAMP led to CALK translocation to flagella in gametes but not vegetative cells. These experiments document a new event in gamete activation in Chlamydomonas and reveal the existence of a mechanism for regulated translocation of molecules into an intact flagellum.
Collapse
Affiliation(s)
- J Pan
- University of Texas, Southwestern Medical School, Dallas, Texas 75390-9039, USA
| | | |
Collapse
|
44
|
Lohret TA, Zhao L, Quarmby LM. Cloning of Chlamydomonas p60 katanin and localization to the site of outer doublet severing during deflagellation. CELL MOTILITY AND THE CYTOSKELETON 2000; 43:221-31. [PMID: 10401578 DOI: 10.1002/(sici)1097-0169(1999)43:3<221::aid-cm5>3.0.co;2-e] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Katanin, a heterodimeric microtubule-severing protein that localizes to sites of microtubule organization, can mediate in vitro the ATP-dependent disassembly of both taxol-stabilized microtubules and axonemal doublet microtubules. In the unicellular biflagellate alga Chlamydomonas, katanin has been implicated in deflagellation, a highly specific process that involves a Ca(2+)-signal transduction pathway starting at the plasma membrane and culminating in the severing of axonemal outer doublet microtubules and excision of both flagella from the cell body. Previously, we showed that the microtubule severing activity of deflagellation and katanin's 60 kD catalytic subunit (termed p60) purified with the flagellar basal body complex (FBBC). Additional evidence supporting the involvement of katanin in deflagellation came from the observation that an antibody against human p60 katanin significantly inhibited FBBC-associated microtubule-severing activity. Here we report the cloning of p60 katanin from Chlamydomonas reinhardtii. Immunogold electron microscopy places Chlamydomonas p60 at several locations within the basal body apparatus and associated structures. Importantly, we find a dense accumulation of colloidal gold labeling the distal end of the flagellar transition zone, the site of outer doublet severing during deflagellation. These results suggest that, in addition to a potential involvement in the deflagellation pathway, katanin-mediated microtubule-severing may be associated with multiple processes in Chlamydomonas.
Collapse
Affiliation(s)
- T A Lohret
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | | | |
Collapse
|
45
|
Grossman AR. Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. CURRENT OPINION IN PLANT BIOLOGY 2000; 3:132-137. [PMID: 10712957 DOI: 10.1016/s1369-5266(99)00053-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Genetic and physiological features of the green alga Chlamydomonas reinhardtii have provided a useful model for elucidating the function, biogenesis and regulation of the photosynthetic apparatus. Combining these characteristics with newly developed molecular technologies for engineering Chlamydomonas and the promise of global analyses of nuclear and chloroplast gene expression will add a new perspective to views on photosynthetic function and regulation.
Collapse
Affiliation(s)
- A R Grossman
- Department of Plant Biology, The Carnegie Institution of Washington, Stanford 94305, USA.
| |
Collapse
|
46
|
Abstract
Centrioles are the organizing centers around which centrosomes assemble. Despite a century of study, the molecular details of centriole function and assembly remain largely unknown. Recent work has exploited the unique advantages of unicellular algae to reveal proteins that play central roles in centriole biology.
Collapse
Affiliation(s)
- W F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|