1
|
Jaglarz MK, Kuziak A, Jankowska W. The pattern of the follicle cell diversification in ovarian follicles of the true fruit flies, Tephritidae. J Anat 2024; 245:643-657. [PMID: 38817113 PMCID: PMC11424825 DOI: 10.1111/joa.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
In flies (Diptera), the ovary displays several distinct patterns of the follicular epithelium formation and diversification. Two main patterns have been identified in the true flies or Brachycera, namely the Rhagio type and the Drosophila type. These patterns align with the traditional division of Brachycera into Orthorrhapha and Cyclorrhapha. However, studies of the follicular epithelium morphogenesis in cyclorrhaphans other than Drosophila are scarce. We characterise the developmental changes associated with the emergence of follicle cell (FC) diversity in two cyclorrhaphans belonging to the family Tephritidae (Brachycera, Cyclorrhapha). Our analysis revealed that the diversification of FCs in these species shows characteristics of both the Rhagio and Drosophila types. First, a distinct cluster of FCs, consisting of polar cells and border-like cells, differentiates at the posterior pole of the ovarian follicle. This feature is unique to the Rhagio type and has only been reported in species representing the Orthorrhapha group. Second, morphological criteria have identified a significantly smaller number of subpopulations of FCs than in Drosophila. Furthermore, while the general pattern of FC migration is similar to that of Drosophila, the distinctive migration of the anterior-dorsal FCs is absent. In the studied tephritids, the migration of the anterior polar cell/border cell cluster towards the anterior pole of the oocyte is followed by the posterior migration of the main body cuboidal FCs to cover the expanding oocyte. Finally, during the onset of vitellogenesis, a distinct subset of FCs migrates towards the centre of the ovarian follicle to cover the oocyte's anterior pole. Our study also highlights specific actions of some FCs that accompany the migration process, which has not been previously documented in cyclorrhaphans. These results support the hypothesis that the posterior and centripetal migrations of morphologically unique FC subsets arose in the common ancestor of Cyclorrhapha. These events appear to have occurred fairly recently in the evolutionary timeline of Diptera.
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Agata Kuziak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Wladyslawa Jankowska
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| |
Collapse
|
2
|
Dong Z, Pang L, Liu Z, Sheng Y, Li X, Thibault X, Reilein A, Kalderon D, Huang J. Single-cell expression profile of Drosophila ovarian follicle stem cells illuminates spatial differentiation in the germarium. BMC Biol 2023; 21:143. [PMID: 37340484 PMCID: PMC10283321 DOI: 10.1186/s12915-023-01636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND How stem cell populations are organized and regulated within adult tissues is important for understanding cancer origins and for developing cell replacement strategies. Paradigms such as mammalian gut stem cells and Drosophila ovarian follicle stem cells (FSC) are characterized by population asymmetry, in which stem cell division and differentiation are separately regulated processes. These stem cells behave stochastically regarding their contributions to derivative cells and also exhibit dynamic spatial heterogeneity. Drosophila FSCs provide an excellent model for understanding how a community of active stem cells maintained by population asymmetry is regulated. Here, we use single-cell RNA sequencing to profile the gene expression patterns of FSCs and their immediate derivatives to investigate heterogeneity within the stem cell population and changes associated with differentiation. RESULTS We describe single-cell RNA sequencing studies of a pre-sorted population of cells that include FSCs and the neighboring cell types, escort cells (ECs) and follicle cells (FCs), which they support. Cell-type assignment relies on anterior-posterior (AP) location within the germarium. We clarify the previously determined location of FSCs and use spatially targeted lineage studies as further confirmation. The scRNA profiles among four clusters are consistent with an AP progression from anterior ECs through posterior ECs and then FSCs, to early FCs. The relative proportion of EC and FSC clusters are in good agreement with the prevalence of those cell types in a germarium. Several genes with graded profiles from ECs to FCs are highlighted as candidate effectors of the inverse gradients of the two principal signaling pathways, Wnt and JAK-STAT, that guide FSC differentiation and division. CONCLUSIONS Our data establishes an important resource of scRNA-seq profiles for FSCs and their immediate derivatives that is based on precise spatial location and functionally established stem cell identity, and facilitates future genetic investigation of regulatory interactions guiding FSC behavior.
Collapse
Affiliation(s)
- Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Xavier Thibault
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amy Reilein
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Soriano A, Petit C, Ryan S, Jemc JC. Tracking Follicle Cell Development. Methods Mol Biol 2023; 2626:151-177. [PMID: 36715904 DOI: 10.1007/978-1-0716-2970-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Somatic follicle cells are critical support cells for Drosophila oogenesis, as they provide signals and molecules needed to produce a mature egg. Throughout this process, the follicle cells differentiate into multiple subpopulations and transition between three different cell cycle programs to support nurse cell and oocyte development. The follicle cells are mitotic in early egg chamber development, as they cover the germline cyst. In mid-oogenesis, follicle cells switch from mitosis to endocycling, increasing their ploidy from 2C to 16C. Finally, in late oogenesis, cells transition from endocycling to gene amplification, increasing the copy number of a small subset of genes, including the genes encoding proteins required for egg maturation. In order to explore the genetic regulation of these cell cycle switches and follicle cell development and specification, clonal analysis and the GAL4/UAS system are used frequently to reduce or increase expression of genes of interest. These genetic approaches combined with immunohistochemistry and in situ hybridization are powerful tools for characterizing the mechanisms regulating follicle cell development and the mitosis/endocycle and endocycle/gene amplification transitions. This chapter describes the genetic tools available to manipulate gene expression in follicle cells, as well as the methods and reagents that can be utilized to explore gene expression throughout follicle cell development.
Collapse
Affiliation(s)
- Adrianna Soriano
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Houston Baptist University, Houston, TX, USA
| | | | - Savannah Ryan
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Jennifer C Jemc
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Abstract
By the time a Drosophila egg is laid, both major body axes have already been defined and it contains all the nutrients needed to develop into a free-living larva in 24 h. By contrast, it takes almost a week to make an egg from a female germline stem cell, during the complex process of oogenesis. This review will discuss key symmetry-breaking steps in Drosophila oogenesis that lead to the polarisation of both body axes: the asymmetric divisions of the germline stem cells; the selection of the oocyte from the 16-cell germline cyst; the positioning of the oocyte at the posterior of the cyst; Gurken signalling from the oocyte to polarise the anterior-posterior axis of the somatic follicle cell epithelium around the developing germline cyst; the signalling back from the posterior follicle cells to polarise the anterior-posterior axis of the oocyte; and the migration of the oocyte nucleus that specifies the dorsal-ventral axis. Since each event creates the preconditions for the next, I will focus on the mechanisms that drive these symmetry-breaking steps, how they are linked and the outstanding questions that remain to be answered.
Collapse
|
5
|
Rincón-Ortega L, Valencia-Expósito A, Kabanova A, González-Reyes A, Martin-Bermudo MD. Integrins control epithelial stem cell proliferation in the Drosophila ovary by modulating the Notch pathway. Front Cell Dev Biol 2023; 11:1114458. [PMID: 36926523 PMCID: PMC10011466 DOI: 10.3389/fcell.2023.1114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Cell proliferation and differentiation show a remarkable inverse relationship. The temporal coupling between cell cycle withdrawal and differentiation of stem cells (SCs) is crucial for epithelial tissue growth, homeostasis and regeneration. Proliferation vs. differentiation SC decisions are often controlled by the surrounding microenvironment, of which the basement membrane (BM; a specialized form of extracellular matrix surrounding cells and tissues), is one of its main constituents. Years of research have shown that integrin-mediated SC-BM interactions regulate many aspects of SC biology, including the proliferation-to-differentiation switch. However, these studies have also demonstrated that the SC responses to interactions with the BM are extremely diverse and depend on the cell type and state and on the repertoire of BM components and integrins involved. Here, we show that eliminating integrins from the follicle stem cells (FSCs) of the Drosophila ovary and their undifferentiated progeny increases their proliferation capacity. This results in an excess of various differentiated follicle cell types, demonstrating that cell fate determination can occur in the absence of integrins. Because these phenotypes are similar to those found in ovaries with decreased laminin levels, our results point to a role for the integrin-mediated cell-BM interactions in the control of epithelial cell division and subsequent differentiation. Finally, we show that integrins regulate proliferation by restraining the activity of the Notch/Delta pathway during early oogenesis. Our work increases our knowledge of the effects of cell-BM interactions in different SC types and should help improve our understanding of the biology of SCs and exploit their therapeutic potential.
Collapse
Affiliation(s)
- Lourdes Rincón-Ortega
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | | | - Anna Kabanova
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| | - Maria D Martin-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Sevilla, Spain
| |
Collapse
|
6
|
Lee EH, Zinshteyn D, Miglo F, Wang MQ, Reinach J, Chau CM, Grosstephan JM, Correa I, Costa K, Vargas A, Johnson A, Longo SM, Alexander JI, O'Reilly AM. Sequential events during the quiescence to proliferation transition establish patterns of follicle cell differentiation in the Drosophila ovary. Biol Open 2023; 12:bio059625. [PMID: 36524613 PMCID: PMC9867896 DOI: 10.1242/bio.059625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells cycle between periods of quiescence and proliferation to promote tissue health. In Drosophila ovaries, quiescence to proliferation transitions of follicle stem cells (FSCs) are exquisitely feeding-dependent. Here, we demonstrate feeding-dependent induction of follicle cell differentiation markers, eyes absent (Eya) and castor (Cas) in FSCs, a patterning process that does not depend on proliferation induction. Instead, FSCs extend micron-scale cytoplasmic projections that dictate Eya-Cas patterning. We identify still life and sickie as necessary and sufficient for FSC projection growth and Eya-Cas induction. Our results suggest that sequential, interdependent events establish long-term differentiation patterns in follicle cell precursors, independently of FSC proliferation induction.
Collapse
Affiliation(s)
- Eric H. Lee
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Daniel Zinshteyn
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Fred Miglo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Melissa Q. Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jessica Reinach
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Cindy M. Chau
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Iliana Correa
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kelly Costa
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alberto Vargas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Aminah Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sheila M. Longo
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, Philadelphia, PA 19129, USA
| | - Jennifer I. Alexander
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alana M. O'Reilly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Immersion Science Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Drexel University College of Medicine, Molecular and Cellular Biology and Genetics Graduate Program, Philadelphia, PA 19129, USA
| |
Collapse
|
7
|
Wu Z, Liu JL. CTP synthase does not form cytoophidia in Drosophila interfollicular stalks. Exp Cell Res 2022; 418:113250. [PMID: 35691380 DOI: 10.1016/j.yexcr.2022.113250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
CTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. We show that Myc level is low in these two types of cells. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Moreover, overexpressing Myc induces cytoophidium formation in stalk cells. When CTPS is overexpressed, cytoophidia can be observed both in stalk cells and polar cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.
Collapse
Affiliation(s)
- Zheng Wu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 230 Haike Road, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
8
|
Milas A, Telley IA. Polarity Events in the Drosophila melanogaster Oocyte. Front Cell Dev Biol 2022; 10:895876. [PMID: 35602591 PMCID: PMC9117655 DOI: 10.3389/fcell.2022.895876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is a pre-requirement for many fundamental processes in animal cells, such as asymmetric cell division, axon specification, morphogenesis and epithelial tissue formation. For all these different processes, polarization is established by the same set of proteins, called partitioning defective (Par) proteins. During development in Drosophila melanogaster, decision making on the cellular and organism level is achieved with temporally controlled cell polarization events. The initial polarization of Par proteins occurs as early as in the germline cyst, when one of the 16 cells becomes the oocyte. Another marked event occurs when the anterior–posterior axis of the future organism is defined by Par redistribution in the oocyte, requiring external signaling from somatic cells. Here, we review the current literature on cell polarity events that constitute the oogenesis from the stem cell to the mature egg.
Collapse
Affiliation(s)
- Ana Milas
- *Correspondence: Ana Milas, ; Ivo A. Telley,
| | | |
Collapse
|
9
|
Slaidina M, Gupta S, Banisch TU, Lehmann R. A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res 2021; 31:1938-1951. [PMID: 34389661 DOI: 10.1101/gr.274340.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Organ function relies on the spatial organization and functional coordination of numerous cell types. The Drosophila ovary is a widely used model system to study the cellular activities underlying organ function, including stem cell regulation, cell signaling and epithelial morphogenesis. However, the relative paucity of cell type-specific reagents hinders investigation of molecular functions at the appropriate cellular resolution. Here, we used single-cell RNA sequencing to characterize all cell types of the stem cell compartment and early follicles of the Drosophila ovary. We computed transcriptional signatures and identified specific markers for nine states of germ cell differentiation, and 23 somatic cell types and subtypes. We uncovered an unanticipated diversity of escort cells, the somatic cells that directly interact with differentiating germline cysts. Three escort cell subtypes reside in discrete anatomical positions, and express distinct sets of secreted and transmembrane proteins, suggesting that diverse micro-environments support the progressive differentiation of germ cells. Finally, we identified 17 follicle cell subtypes, and characterized their transcriptional profiles. Altogether, we provide a comprehensive resource of gene expression, cell type-specific markers, spatial coordinates and functional predictions for 34 ovarian cell types and subtypes.
Collapse
Affiliation(s)
| | - Selena Gupta
- Skirball Institute, NYU Grossman School of Medicine
| | | | | |
Collapse
|
10
|
Germline soma communication mediated by gap junction proteins regulates epithelial morphogenesis. PLoS Genet 2021; 17:e1009685. [PMID: 34343194 PMCID: PMC8330916 DOI: 10.1371/journal.pgen.1009685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Gap junction (GJ) proteins, the primary constituents of GJ channels, are conserved determinants of patterning. Canonically, a GJ channel, made up of two hemi-channels contributed by the neighboring cells, facilitates transport of metabolites/ions. Here we demonstrate the involvement of GJ proteins during cuboidal to squamous epithelial transition displayed by the anterior follicle cells (AFCs) from Drosophila ovaries. Somatically derived AFCs stretch and flatten when the adjacent germline cells start increasing in size. GJ proteins, Innexin2 (Inx2) and Innexin4 (Inx4), functioning in the AFCs and germline respectively, promote the shape transformation by modulating calcium levels in the AFCs. Our observations suggest that alterations in calcium flux potentiate STAT activity to influence actomyosin-based cytoskeleton, possibly resulting in disassembly of adherens junctions. Our data have uncovered sequential molecular events underlying the cuboidal to squamous shape transition and offer unique insight into how GJ proteins expressed in the neighboring cells contribute to morphogenetic processes. Shape transitions between different subtypes of epithelial cells i.e., cuboidal, squamous and columnar are ubiquitous and are essential during organogenesis across animal kingdom. We demonstrate that heteromeric combination of gap junction proteins, Drosophila Innexin2 and Drosophila Innexin 4 (also known as Zero population growth or Zpg), expressed in the soma and germline of fly egg respectively, mediates the shape transition of cuboidal follicle cells to squamous fate. Interestingly, the two gap junction proteins likely participate as constituents of a calcium channel. Further, we show that somatic follicle cells and germline nurse cells communicate through calcium fluxes that activates STAT in the follicle cells. Activated STAT modulates the levels/ activity of junctional complexes thus aiding shape transition of cuboidal cells to squamous fate. These findings provide novel insights into how communication between different cell types with distinct origins achieve shape transitions essential for proper organ assemblies.
Collapse
|
11
|
Ogienko AA, Yarinich LA, Fedorova EV, Dorogova NV, Bayborodin SI, Baricheva EM, Pindyurin AV. GAGA Regulates Border Cell Migration in Drosophila. Int J Mol Sci 2020; 21:E7468. [PMID: 33050455 PMCID: PMC7589894 DOI: 10.3390/ijms21207468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Collective cell migration is a complex process that happens during normal development of many multicellular organisms, as well as during oncological transformations. In Drosophila oogenesis, a small set of follicle cells originally located at the anterior tip of each egg chamber become motile and migrate as a cluster through nurse cells toward the oocyte. These specialized cells are referred to as border cells (BCs) and provide a simple and convenient model system to study collective cell migration. The process is known to be complexly regulated at different levels and the product of the slow border cells (slbo) gene, the C/EBP transcription factor, is one of the key elements in this process. However, little is known about the regulation of slbo expression. On the other hand, the ubiquitously expressed transcription factor GAGA, which is encoded by the Trithorax-like (Trl) gene was previously demonstrated to be important for Drosophila oogenesis. Here, we found that Trl mutations cause substantial defects in BC migration. Partially, these defects are explained by the reduced level of slbo expression in BCs. Additionally, a strong genetic interaction between Trl and slbo mutants, along with the presence of putative GAGA binding sites within the slbo promoter and enhancer, suggests the direct regulation of this gene by GAGA. This idea is supported by the reduction in the slbo-Gal4-driven GFP expression within BC clusters in Trl mutant background. However, the inability of slbo overexpression to compensate defects in BC migration caused by Trl mutations suggests that there are other GAGA target genes contributing to this process. Taken together, the results define GAGA as another important regulator of BC migration in Drosophila oogenesis.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of the Regulation of Genetic Processes, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Lyubov A. Yarinich
- Department of the Regulation of Genetic Processes, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Fedorova
- Department of Cell Biology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.F.); (N.V.D.); (S.I.B.); (E.M.B.)
| | - Natalya V. Dorogova
- Department of Cell Biology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.F.); (N.V.D.); (S.I.B.); (E.M.B.)
| | - Sergey I. Bayborodin
- Department of Cell Biology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.F.); (N.V.D.); (S.I.B.); (E.M.B.)
| | - Elina M. Baricheva
- Department of Cell Biology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.V.F.); (N.V.D.); (S.I.B.); (E.M.B.)
| | - Alexey V. Pindyurin
- Department of the Regulation of Genetic Processes, Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| |
Collapse
|
12
|
Jevitt A, Chatterjee D, Xie G, Wang XF, Otwell T, Huang YC, Deng WM. A single-cell atlas of adult Drosophila ovary identifies transcriptional programs and somatic cell lineage regulating oogenesis. PLoS Biol 2020; 18:e3000538. [PMID: 32339165 PMCID: PMC7205450 DOI: 10.1371/journal.pbio.3000538] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/07/2020] [Accepted: 03/27/2020] [Indexed: 12/28/2022] Open
Abstract
Oogenesis is a complex developmental process that involves spatiotemporally regulated coordination between the germline and supporting, somatic cell populations. This process has been modeled extensively using the Drosophila ovary. Although different ovarian cell types have been identified through traditional means, the large-scale expression profiles underlying each cell type remain unknown. Using single-cell RNA sequencing technology, we have built a transcriptomic data set for the adult Drosophila ovary and connected tissues. Using this data set, we identified the transcriptional trajectory of the entire follicle-cell population over the course of their development from stem cells to the oogenesis-to-ovulation transition. We further identify expression patterns during essential developmental events that take place in somatic and germline cell types such as differentiation, cell-cycle switching, migration, symmetry breaking, nurse-cell engulfment, egg-shell formation, and corpus luteum signaling. Extensive experimental validation of unique expression patterns in both ovarian and nearby, nonovarian cells also led to the identification of many new cell type-and stage-specific markers. The inclusion of several nearby tissue types in this data set also led to our identification of functional convergence in expression between distantly related cell types such as the immune-related genes that were similarly expressed in immune cells (hemocytes) and ovarian somatic cells (stretched cells) during their brief phagocytic role in nurse-cell engulfment. Taken together, these findings provide new insight into the temporal regulation of genes in a cell-type specific manner during oogenesis and begin to reveal the relatedness in expression between cell and tissues types.
Collapse
Affiliation(s)
- Allison Jevitt
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor Otwell
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
13
|
Bernasek SM, Peláez N, Carthew RW, Bagheri N, Amaral LAN. Fly-QMA: Automated analysis of mosaic imaginal discs in Drosophila. PLoS Comput Biol 2020; 16:e1007406. [PMID: 32126077 PMCID: PMC7100978 DOI: 10.1371/journal.pcbi.1007406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/27/2020] [Accepted: 01/27/2020] [Indexed: 12/01/2022] Open
Abstract
Mosaic analysis provides a means to probe developmental processes in situ by generating loss-of-function mutants within otherwise wildtype tissues. Combining these techniques with quantitative microscopy enables researchers to rigorously compare RNA or protein expression across the resultant clones. However, visual inspection of mosaic tissues remains common in the literature because quantification demands considerable labor and computational expertise. Practitioners must segment cell membranes or cell nuclei from a tissue and annotate the clones before their data are suitable for analysis. Here, we introduce Fly-QMA, a computational framework that automates each of these tasks for confocal microscopy images of Drosophila imaginal discs. The framework includes an unsupervised annotation algorithm that incorporates spatial context to inform the genetic identity of each cell. We use a combination of real and synthetic validation data to survey the performance of the annotation algorithm across a broad range of conditions. By contributing our framework to the open-source software ecosystem, we aim to contribute to the current move toward automated quantitative analysis among developmental biologists.
Collapse
Affiliation(s)
- Sebastian M. Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Nicolás Peláez
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Richard W. Carthew
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, Illinois, United States of America
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, Illinois, United States of America
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois, United States of America
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
14
|
Modulation of Cell-Cell Interactions in Drosophila Oocyte Development. Cells 2020; 9:cells9020274. [PMID: 31979180 PMCID: PMC7072342 DOI: 10.3390/cells9020274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.
Collapse
|
15
|
Merkle JA, Wittes J, Schüpbach T. Signaling between somatic follicle cells and the germline patterns the egg and embryo of Drosophila. Curr Top Dev Biol 2019; 140:55-86. [PMID: 32591083 DOI: 10.1016/bs.ctdb.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.
Collapse
Affiliation(s)
- Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Julia Wittes
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
16
|
Kamath AD, Deehan MA, Frydman HM. Polar cell fate stimulates Wolbachia intracellular growth. Development 2018; 145:dev.158097. [PMID: 29467241 DOI: 10.1242/dev.158097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/12/2018] [Indexed: 11/20/2022]
Abstract
Bacteria are crucial partners in the development and evolution of vertebrates and invertebrates. A large fraction of insects harbor Wolbachia, bacterial endosymbionts that manipulate host reproduction to favor their spreading. Because they are maternally inherited, Wolbachia are under selective pressure to reach the female germline and infect the offspring. However, Wolbachia infection is not limited to the germline. Somatic cell types, including stem cell niches, have higher Wolbachia loads compared with the surrounding tissue. Here, we show a novel Wolbachia tropism to polar cells (PCs), specialized somatic cells in the Drosophila ovary. During oogenesis, all stages of PC development are easily visualized, facilitating the investigation of the kinetics of Wolbachia intracellular growth. Wolbachia accumulation is triggered by particular events of PC morphogenesis, including differentiation from progenitors and between stages 8 and 9 of oogenesis. Moreover, induction of ectopic PC fate is sufficient to promote Wolbachia accumulation. We found that Wolbachia PC tropism is evolutionarily conserved across most Drosophila species, but not in Culex mosquitos. These findings highlight the coordination of endosymbiont tropism with host development and cell differentiation.
Collapse
Affiliation(s)
- Ajit D Kamath
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Mark A Deehan
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Horacio M Frydman
- Department of Biology, Boston University, Boston, MA 02215, USA .,National Emerging Infectious Disease Laboratory, Boston University, Boston, MA 02118, USA
| |
Collapse
|
17
|
Dai W, Peterson A, Kenney T, Burrous H, Montell DJ. Quantitative microscopy of the Drosophila ovary shows multiple niche signals specify progenitor cell fate. Nat Commun 2017; 8:1244. [PMID: 29093440 PMCID: PMC5665863 DOI: 10.1038/s41467-017-01322-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 09/09/2017] [Indexed: 01/28/2023] Open
Abstract
Adult stem cells commonly give rise to transit-amplifying progenitors, whose progeny differentiate into distinct cell types. It is unclear if stem cell niche signals coordinate fate decisions within the progenitor pool. Here we use quantitative analysis of Wnt, Hh, and Notch signalling reporters and the cell fate markers Eyes Absent (Eya) and Castor (Cas) to study the effects of hyper-activation and loss of niche signals on progenitor development in the Drosophila ovary. Follicle stem cell (FSC) progeny adopt distinct polar, stalk, and main body cell fates. We show that Wnt signalling transiently inhibits expression of the main body cell fate determinant Eya, and Wnt hyperactivity strongly biases cells towards polar and stalk fates. Hh signalling independently controls the proliferation to differentiation transition. Notch is permissive but not instructive for differentiation of multiple cell types. These findings reveal that multiple niche signals coordinate cell fates and differentiation of progenitor cells.
Collapse
Affiliation(s)
- Wei Dai
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Amy Peterson
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Thomas Kenney
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Haley Burrous
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA
| | - Denise J Montell
- MCDB Department, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
18
|
Duhart JC, Parsons TT, Raftery LA. The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mech Dev 2017; 148:18-39. [PMID: 28433748 DOI: 10.1016/j.mod.2017.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Epithelial structures are foundational for tissue organization in all metazoans. Sheets of epithelial cells form lateral adhesive junctions and acquire apico-basal polarity perpendicular to the surface of the sheet. Genetic analyses in the insect model, Drosophila melanogaster, have greatly advanced our understanding of how epithelial organization is established, and how it is modulated during tissue morphogenesis. Major insights into collective cell migrations have come from analyses of morphogenetic movements within the adult follicular epithelium that cooperates with female germ cells to build a mature egg. Epithelial follicle cells progress through tightly choreographed phases of proliferation, patterning, reorganization and migrations, before they differentiate to form the elaborate structures of the eggshell. Distinct structural domains are organized by differential adhesion, within which lateral junctions are remodeled to further shape the organized epithelia. During collective cell migrations, adhesive interactions mediate supracellular organization of planar polarized macromolecules, and facilitate crawling over the basement membrane or traction against adjacent cell surfaces. Comparative studies with other insects are revealing the diversification of morphogenetic movements for elaboration of epithelial structures. This review surveys the repertoire of follicle cell morphogenesis, to highlight the coordination of epithelial plasticity with progressive differentiation of a secretory epithelium. Technological advances will keep this tissue at the leading edge for interrogating the precise spatiotemporal regulation of normal epithelial reorganization events, and provide a framework for understanding pathological tissue dysplasia.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Travis T Parsons
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, United States.
| |
Collapse
|
19
|
Flora P, McCarthy A, Upadhyay M, Rangan P. Role of Chromatin Modifications in Drosophila Germline Stem Cell Differentiation. Results Probl Cell Differ 2017; 59:1-30. [PMID: 28247044 DOI: 10.1007/978-3-319-44820-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During Drosophila oogenesis, germline stem cells (GSCs) self-renew and differentiate to give rise to a mature egg. Self-renewal and differentiation of GSCs are regulated by both intrinsic mechanisms such as regulation of gene expression in the germ line and extrinsic signaling pathways from the surrounding somatic niche. Epigenetic mechanisms, including histone-modifying proteins, nucleosome remodeling complexes, and histone variants, play a critical role in regulating intrinsic gene expression and extrinsic signaling cues from the somatic niche. In the GSCs, intrinsic epigenetic modifiers are required to maintain a stem cell fate by promoting expression of self-renewal factors and repressing the differentiation program. Subsequently, in the GSC daughters, epigenetic regulators activate the differentiation program to promote GSC differentiation. During differentiation, the GSC daughter undergoes meiosis to give rise to the developing egg, containing a compacted chromatin architecture called the karyosome. Epigenetic modifiers control the attachment of chromosomes to the nuclear lamina to aid in meiotic recombination and the release from the lamina for karyosome formation. The germ line is in close contact with the soma for the entirety of this developmental process. This proximity facilitates signaling from the somatic niche to the developing germ line. Epigenetic modifiers play a critical role in the somatic niche, modulating signaling pathways in order to coordinate the transition of GSC to an egg. Together, intrinsic and extrinsic epigenetic mechanisms modulate this exquisitely balanced program.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, USA.
- University at Albany SUNY, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
20
|
Ulmschneider B, Grillo-Hill BK, Benitez M, Azimova DR, Barber DL, Nystul TG. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J Cell Biol 2016; 215:345-355. [PMID: 27821494 PMCID: PMC5100294 DOI: 10.1083/jcb.201606042] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022] Open
Abstract
Despite extensive knowledge about the transcriptional regulation of stem cell differentiation, less is known about the role of dynamic cytosolic cues. We report that an increase in intracellular pH (pHi) is necessary for the efficient differentiation of Drosophila adult follicle stem cells (FSCs) and mouse embryonic stem cells (mESCs). We show that pHi increases with differentiation from FSCs to prefollicle cells (pFCs) and follicle cells. Loss of the Drosophila Na+-H+ exchanger DNhe2 lowers pHi in differentiating cells, impairs pFC differentiation, disrupts germarium morphology, and decreases fecundity. In contrast, increasing pHi promotes excess pFC cell differentiation toward a polar/stalk cell fate through suppressing Hedgehog pathway activity. Increased pHi also occurs with mESC differentiation and, when prevented, attenuates spontaneous differentiation of naive cells, as determined by expression of microRNA clusters and stage-specific markers. Our findings reveal a previously unrecognized role of pHi dynamics for the differentiation of two distinct types of stem cell lineages, which opens new directions for understanding conserved regulatory mechanisms.
Collapse
Affiliation(s)
- Bryne Ulmschneider
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Bree K Grillo-Hill
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192
| | - Marimar Benitez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Dinara R Azimova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| | - Diane L Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Todd G Nystul
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
21
|
Hedgehog Signaling Strength Is Orchestrated by the mir-310 Cluster of MicroRNAs in Response to Diet. Genetics 2016; 202:1167-83. [PMID: 26801178 PMCID: PMC4788116 DOI: 10.1534/genetics.115.185371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Since the discovery of microRNAs (miRNAs) only two decades ago, they have emerged as an essential component of the gene regulatory machinery. miRNAs have seemingly paradoxical features: a single miRNA is able to simultaneously target hundreds of genes, while its presence is mostly dispensable for animal viability under normal conditions. It is known that miRNAs act as stress response factors; however, it remains challenging to determine their relevant targets and the conditions under which they function. To address this challenge, we propose a new workflow for miRNA function analysis, by which we found that the evolutionarily young miRNA family, the mir-310s (mir-310/mir-311/mir-312/mir-313), are important regulators of Drosophila metabolic status. mir-310s-deficient animals have an abnormal diet-dependent expression profile for numerous diet-sensitive components, accumulate fats, and show various physiological defects. We found that the mir-310s simultaneously repress the production of several regulatory factors (Rab23, DHR96, and Ttk) of the evolutionarily conserved Hedgehog (Hh) pathway to sharpen dietary response. As the mir-310s expression is highly dynamic and nutrition sensitive, this signal relay model helps to explain the molecular mechanism governing quick and robust Hh signaling responses to nutritional changes. Additionally, we discovered a new component of the Hh signaling pathway in Drosophila, Rab23, which cell autonomously regulates Hh ligand trafficking in the germline stem cell niche. How organisms adjust to dietary fluctuations to sustain healthy homeostasis is an intriguing research topic. These data are the first to report that miRNAs can act as executives that transduce nutritional signals to an essential signaling pathway. This suggests miRNAs as plausible therapeutic agents that can be used in combination with low calorie and cholesterol diets to manage quick and precise tissue-specific responses to nutritional changes.
Collapse
|
22
|
Discs large 5, an Essential Gene in Drosophila, Regulates Egg Chamber Organization. G3-GENES GENOMES GENETICS 2015; 5:943-52. [PMID: 25795662 PMCID: PMC4426378 DOI: 10.1534/g3.115.017558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Discs large 5 (Dlg5) is a member of the MAGUK family of proteins that typically serve as molecular scaffolds and mediate signaling complex formation and localization. In vertebrates, Dlg5 has been shown to be responsible for polarization of neural progenitors and to associate with Rab11-positive vesicles in epithelial cells. In Drosophila, however, the function of Dlg5 is not well-documented. We have identified dlg5 as an essential gene that shows embryonic lethality. dlg5 embryos display partial loss of primordial germ cells (PGCs) during gonad coalescence between stages 12 and 15 of embryogenesis. Loss of Dlg5 in germline and somatic stem cells in the ovary results in the depletion of both cell lineages. Reduced expression of Dlg5 in the follicle cells of the ovary leads to a number of distinct phenotypes, including defects in egg chamber budding, stalk cell overgrowth, and ectopic polar cell induction. Interestingly, loss of Dlg5 in follicle cells results in abnormal distribution of a critical component of cell adhesion, E-cadherin, shown to be essential for proper organization of egg chambers.
Collapse
|
23
|
Abstract
The Drosophila melanogaster ovary has served as a popular and successful model for understanding a wide range of biological processes: stem cell function, germ cell development, meiosis, cell migration, morphogenesis, cell death, intercellular signaling, mRNA localization, and translational control. This review provides a brief introduction to Drosophila oogenesis, along with a survey of its diverse biological topics and the advanced genetic tools that continue to make this a popular developmental model system.
Collapse
|
24
|
Sahai-Hernandez P, Nystul TG. A dynamic population of stromal cells contributes to the follicle stem cell niche in the Drosophila ovary. Development 2013; 140:4490-8. [PMID: 24131631 DOI: 10.1242/dev.098558] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epithelial stem cells are maintained within niches that promote self-renewal by providing signals that specify the stem cell fate. In the Drosophila ovary, epithelial follicle stem cells (FSCs) reside in niches at the anterior tip of the tissue and support continuous growth of the ovarian follicle epithelium. Here, we demonstrate that a neighboring dynamic population of stromal cells, called escort cells, are FSC niche cells. We show that escort cells produce both Wingless and Hedgehog ligands for the FSC lineage, and that Wingless signaling is specific for the FSC niche whereas Hedgehog signaling is active in both FSCs and daughter cells. In addition, we show that multiple escort cells simultaneously encapsulate germ cell cysts and contact FSCs. Thus, FSCs are maintained in a dynamic niche by a non-dedicated population of niche cells.
Collapse
Affiliation(s)
- Pankaj Sahai-Hernandez
- Center for Reproductive Sciences, Departments of Anatomy and OB/GYN-RS, University of California, San Francisco, CA 94143-0452, USA
| | | |
Collapse
|
25
|
Castor is required for Hedgehog-dependent cell-fate specification and follicle stem cell maintenance in Drosophila oogenesis. Proc Natl Acad Sci U S A 2013; 110:E1734-42. [PMID: 23610413 DOI: 10.1073/pnas.1300725110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Asymmetric division of stem cells results in both self-renewal and differentiation of daughters. Understanding the molecules and mechanisms that govern differentiation of specific cell types from adult tissue stem cells is a major challenge in developmental biology and regenerative medicine. Drosophila follicle stem cells (FSCs) represent an excellent model system to study adult stem cell behavior; however, the earliest stages of follicle cell differentiation remain largely mysterious. Here we identify Castor (Cas) as a nuclear protein that is expressed in FSCs and early follicle cell precursors and then is restricted to differentiated polar and stalk cells once egg chambers form. Cas is required for FSC maintenance and polar and stalk cell fate specification. Eyes absent (Eya) is excluded from polar and stalk cells and represses their fate by inhibiting Cas expression. Hedgehog signaling is essential to repress Eya to allow Cas expression in polar and stalk cells. Finally, we show that the complementary patterns of Cas and Eya reveal the gradual differentiation of polar and stalk precursor cells at the earliest stages of their development. Our studies provide a marker for cell fates in this model and insight into the molecular and cellular mechanisms by which FSC progeny diverge into distinct fates.
Collapse
|
26
|
Hayashi Y, Sexton TR, Dejima K, Perry DW, Takemura M, Kobayashi S, Nakato H, Harrison DA. Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development 2013; 139:4162-71. [PMID: 23093424 DOI: 10.1242/dev.078055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In Drosophila, ligands of the Unpaired (Upd) family activate the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The JAK/STAT pathway controls many developmental events, including multiple functions in the ovary. These include an early role in the germarium for specification of stalk cells and a later role in the vitellarium to pattern the follicular epithelium surrounding each cyst. In this latter role, graded JAK/STAT activation specifies three distinct anterior follicular cell fates, suggesting that Upd is a morphogen in this system. Consistent with the JAK/STAT activation pattern in the vitellarium, Upd forms a concentration gradient on the apical surface of the follicular epithelium with a peak at its source, the polar cells. Like many morphogens, signaling and distribution of Upd are regulated by the heparan sulfate proteoglycans (HSPGs) Dally and Dally-like. Mutations in these glypican genes and in heparan sulfate biosynthetic genes result in disruption of JAK/STAT signaling, loss or abnormal formation of the stalk and significant reduction in the accumulation of extracellular Upd. Conversely, forced expression of Dally causes ectopic accumulation of Upd in follicular cells. Furthermore, biochemical studies reveal that Upd and Dally bind each other on the surface of the cell membrane. Our findings demonstrate that Drosophila glypicans regulate formation of the follicular gradient of the Upd morphogen, Upd. Furthermore, we establish the follicular epithelium as a new model for morphogen signaling in complex organ development.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012; 13:631-45. [PMID: 23000794 DOI: 10.1038/nrm3433] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.
Collapse
|
28
|
Garbiec A, Kubrakiewicz J. Differentiation of follicular cells in polytrophic ovaries of Neuroptera (Insecta: Holometabola). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:165-176. [PMID: 22300788 DOI: 10.1016/j.asd.2011.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
Mechanisms that underlie differentiation and diversification of the ovarian follicular epithelium in insects have been best characterized in a fruit fly, Drosophila melanogaster. Recent comparative analyses have shown that dipterans evolved a common, specific system of early patterning of their follicular epithelium, while some of the follicular cells acquired an ability to undertake active and invasive migrations. To gain insight into the evolution of the differentiation pathways we extended comparative analyses to Neuroptera, one of the most archaic holometabolan insects with polytrophic ovaries. Here, we show that the follicular cell differentiation pathway in neuropteran ovaries significantly differs from that observed in Drosophila and its relatives. In neuropteran ovaries differentiation of the germ line cells precedes the organization of the follicular epithelium. In consequence, at early stages of egg chamber formation germ cell clusters are not enveloped completely by the regular follicular epithelium but associate with two types of somatic cells: interstitial and prefollicular cells. Interstitial cells do not contribute to the formation of the follicular epithelium, while prefollicular cells diversify into a number of follicular cell subgroups. Some follicular cells remain in contact with the nurse cell compartment. The remaining ones associate with the lateral aspects of the oocyte and diversify into the mainbody follicular cells and the anterior and posterior centripetal cells. In the advanced stages of vitellogenesis protrusions of the anterior and posterior centripetal cells penetrate the nurse cell-oocyte interface and dragging behind their neighboring mainbody cells, eventually encapsulate the oocyte pole(s) with a confluent epithelial layer. The follicular cells in neuropteran ovaries are not migratory at all. They may only change their position relative to the germ line cells. Almost complete immobility of follicular cells in neuropteran egg chambers results in a lower number of diversified subpopulations when compared to Drosophila and other true flies.
Collapse
Affiliation(s)
- Arnold Garbiec
- Department of Animal Developmental Biology, Zoological Institute, University of Wrocław, Wrocław, Poland.
| | | |
Collapse
|
29
|
Chen HJ, Wang CM, Wang TW, Liaw GJ, Hsu TH, Lin TH, Yu JY. The Hippo pathway controls polar cell fate through Notch signaling during Drosophila oogenesis. Dev Biol 2011; 357:370-9. [PMID: 21781961 DOI: 10.1016/j.ydbio.2011.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/28/2011] [Accepted: 07/06/2011] [Indexed: 12/24/2022]
Abstract
During Drosophila oogenesis, the somatic follicle cells form an epithelial layer surrounding the germline cells to form egg chambers. In this process, follicle cell precursors are specified into polar cells, stalk cells, and main-body follicle cells. Proper specification of these three cell types ensures correct egg chamber formation and polarization of the anterior-posterior axis of the germline cells. Multiple signaling cascades coordinate to control the follicle cell fate determination, including Notch, JAK/STAT, and Hedgehog signaling pathways. Here, we show that the Hippo pathway also participates in polar cell specification. Over-activation of yorkie (yki) leads to egg chamber fusion, possibly through attenuation of polar cell specification. Loss-of-function experiments using RNAi knockdown or generation of mutant clones by mitotic recombination demonstrates that reduction of yki expression promotes polar cell formation in a cell-autonomous manner. Consistently, polar cells mutant for hippo (hpo) or warts (wts) are not properly specified, leading to egg chamber fusion. Furthermore, Notch activity is increased in yki mutant cells and reduction of Notch activity suppresses polar cell formation in yki mutant clones. These results demonstrate that yki represses polar cell fate through Notch signaling. Collectively, our data reveal that the Hippo pathway controls polar cell specification. Through repressing Notch activity, Yki serves as a key repressor in specifying polar cells during Drosophila oogenesis.
Collapse
Affiliation(s)
- Hsi-Ju Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
JAK-STAT signalling is required throughout telotrophic oogenesis and short-germ embryogenesis of the beetle Tribolium. Dev Biol 2010; 350:169-82. [PMID: 20974121 DOI: 10.1016/j.ydbio.2010.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 12/16/2022]
Abstract
In Drosophila, the JAK-STAT signalling pathway regulates a broad array of developmental functions including segmentation and oogenesis. Here we analysed the functions of Tribolium JAK-STAT signalling factors and of Suppressor Of Cytokine Signalling (SOCS) orthologues, which are known to function as negative regulators of JAK-STAT signalling, during telotrophic oogenesis and short-germ embryogenesis. The beetle Tribolium features telotrophic ovaries, which differ fundamentally from the polytrophic ovary of Drosophila. While we found the requirement for JAK-STAT signalling in specifying the interfollicular stalk to be principally conserved, we demonstrate that these genes also have early and presumably telotrophic specific functions. Moreover, we show that the SOCS genes crucially contribute to telotrophic Tribolium oogenesis, as their inactivation by RNAi results in compound follicles. During short-germ embryogenesis, JAK-STAT signalling is required in the maintenance of segment primordia, indicating that this signalling cascade acts in the framework of the segment-polarity network. In addition, we demonstrate that JAK-STAT signalling crucially contributes to early anterior patterning. We posit that this signalling cascade is involved in achieving accurate levels of expression of individual pair-rule and gap gene domains in early embryonic patterning.
Collapse
|
31
|
Abstract
The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal-ventral symmetry of the egg and embryo.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Developmental Biology, University of Cologne, Gyrhofstr. 17, D-50923 Cologne, Germany.
| | | |
Collapse
|
32
|
Vachias C, Couderc JL, Grammont M. A two-step Notch-dependant mechanism controls the selection of the polar cell pair in Drosophila oogenesis. Development 2010; 137:2703-11. [PMID: 20630949 DOI: 10.1242/dev.052183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Organisers control the patterning and growth of many tissues and organs. Correctly regulating the size of these organisers is crucial for proper differentiation to occur. Organiser activity in the epithelium of the Drosophila ovarian follicle resides in a pair of cells called polar cells. It is known that these two cells are selected from a cluster of equivalent cells. However, the mechanisms responsible for this selection are still unclear. Here, we present evidence that the selection of the two cells is not random but, by contrast, depends on an atypical two-step Notch-dependent mechanism. We show that this sequential process begins when one cell becomes refractory to Notch activation and is selected as the initial polar cell. This cell then produces a Delta signal that induces a high level of Notch activation in one other cell within the cluster. This Notch activity prevents elimination by apoptosis, allowing its selection as the second polar cell. Therefore, the mechanism used to select precisely two cells from among an equivalence group involves an inductive Delta signal that originates from one cell, itself unable to respond to Notch activation, and results in one other cell being selected to adopt the same fate. Given its properties, this two-step Notch-dependent mechanism represents a novel aspect of Notch action.
Collapse
Affiliation(s)
- Caroline Vachias
- CNRS 6247, Clermont University, UFR Médecine, Clermont-Ferrand F-63001, France
| | | | | |
Collapse
|
33
|
Shyu LF, Sun J, Chung HM, Huang YC, Deng WM. Notch signaling and developmental cell-cycle arrest in Drosophila polar follicle cells. Mol Biol Cell 2010; 20:5064-73. [PMID: 19846665 DOI: 10.1091/mbc.e09-01-0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Temporal and spatial regulation of cell division is critical for proper development of multicellular organisms. An important aspect of this regulation is cell-cycle arrest, which in many cell types is coupled with differentiated status. Here we report that the polar cells--a group of follicle cells differentiated early during Drosophila oogenesis--are arrested at G2 phase and can serve as a model cell type for investigation of developmental regulation of cell-cycle arrest. On examining the effects of String, a mitosis-promoting phosphatase Cdc25 homolog, and Notch signaling in polar cells, we found that misexpression of String can trigger mitosis in existing polar cells to induce extra polar cells. Normally, differentiation of the polar cells requires Notch signaling. We found that the Notch-induced extra polar cells arise through recruitment of the neighboring cells rather than promotion of proliferation, and they are also arrested at G2 phase. Notch signaling is probably involved in down-regulating String in polar cells, thus inducing the G2 cell-cycle arrest.
Collapse
Affiliation(s)
- Li-Fang Shyu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | | | | | | | | |
Collapse
|
34
|
Cyclin E-dependent protein kinase activity regulates niche retention of Drosophila ovarian follicle stem cells. Proc Natl Acad Sci U S A 2009; 106:21701-6. [PMID: 19966222 DOI: 10.1073/pnas.0909272106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Whether stem cells have unique cell cycle machineries and how they integrate with niche interactions remains largely unknown. We identified a hypomorphic cyclin E allele WX that strongly impairs the maintenance of follicle stem cells (FSCs) in the Drosophila ovary but does not reduce follicle cell proliferation or germline stem cell maintenance. CycE(WX) protein can still bind to the cyclin-dependent kinase catalytic subunit Cdk2, but forms complexes with reduced protein kinase activity measured in vitro. By creating additional CycE variants with different degrees of kinase dysfunction and expressing these and CycE(WX) at different levels, we found that higher CycE-Cdk2 kinase activity is required for FSC maintenance than to support follicle cell proliferation. Surprisingly, cycE(WX) FSCs were lost from their niches rather than arresting proliferation. Furthermore, FSC function was substantially restored by expressing either excess DE-cadherin or excess E2F1/DP, the transcription factor normally activated by CycE-Cdk2 phosphorylation of retinoblastoma proteins. These results suggest that FSC maintenance through niche adhesion is regulated by inputs that normally control S phase entry, possibly as a quality control mechanism to ensure adequate stem cell proliferation. We speculate that a positive connection between central regulators of the cell cycle and niche retention may be a common feature of highly proliferative stem cells.
Collapse
|
35
|
Regulation of epithelial stem cell replacement and follicle formation in the Drosophila ovary. Genetics 2009; 184:503-15. [PMID: 19948890 DOI: 10.1534/genetics.109.109538] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Though much has been learned about the process of ovarian follicle maturation through studies of oogenesis in both vertebrate and invertebrate systems, less is known about how follicles form initially. In Drosophila, two somatic follicle stem cells (FSCs) in each ovariole give rise to all polar cells, stalk cells, and main body cells needed to form each follicle. We show that one daughter from each FSC founds most follicles but that cell type specification is independent of cell lineage, in contrast to previous claims of an early polar/stalk lineage restriction. Instead, key intercellular signals begin early and guide cell behavior. An initial Notch signal from germ cells is required for FSC daughters to migrate across the ovariole and on occasion to replace the opposite stem cell. Both anterior and posterior polar cells arise in region 2b at a time when approximately 16 cells surround the cyst. Later, during budding, stalk cells and additional polar cells are specified in a process that frequently transfers posterior follicle cells onto the anterior surface of the next older follicle. These studies provide new insight into the mechanisms that underlie stem cell replacement and follicle formation during Drosophila oogenesis.
Collapse
|
36
|
Stall encodes an ADAMTS metalloprotease and interacts genetically with Delta in Drosophila ovarian follicle formation. Genetics 2009; 183:1027-40. [PMID: 19752215 DOI: 10.1534/genetics.109.107367] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ovarian follicle formation in Drosophila melanogaster requires stall (stl) gene function, both within and outside the ovary, for follicle individualization, stalk cell intercalation, and oocyte localization. We have identified the stl transcript as CG3622 and confirmed the presence of three alternatively spliced isoforms, contrary to current genome annotation. Here we show that the gene is expressed in both ovarian and brain tissues, which is consistent with previous evidence of an ovary nonautonomous function. On the basis of amino acid sequence, stl encodes a metalloprotease similar to the "a disintegrin and metalloprotease with thrombospondin" (ADAMTS) family. Although stl mutant ovaries fail to maintain the branched structure of the fusome and periodically show improperly localized oocytes, stl mutants do not alter oocyte determination. Within the ovary, stl is expressed in pupal basal stalks and in adult somatic cells of the posterior germarium and the follicular poles. Genetically, stl exhibits a strong mutant interaction with Delta (Dl), and Dl mutant ovaries show altered stl expression patterns. Additionally, a previously described genetic interactor, daughterless, also modulates stl expression in the somatic ovary and may do so directly in its capacity as a basic helix-loop-helix (bHLH) transcription factor. We propose a complex model of long-range extraovarian signaling through secretion or extracellular domain shedding, together with local intraovarian protein modification, to explain the dual sites of Stl metalloprotease function in oogenesis.
Collapse
|
37
|
Vied C, Kalderon D. Hedgehog-stimulated stem cells depend on non-canonical activity of the Notch co-activator Mastermind. Development 2009; 136:2177-86. [PMID: 19474148 DOI: 10.1242/dev.035329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal self-renewal of follicle stem cells (FSCs) in the Drosophila ovary requires Hedgehog (Hh) signaling. Excess Hh signaling, induced by loss of patched (ptc), causes cell-autonomous duplication of FSCs. We have used a genetic screen to identify Mastermind (Mam), the Notch pathway transcriptional co-activator, as a rare dose-dependent modifier of aberrant FSC expansion induced by excess Hh. Complete loss of Mam activity severely compromises the persistence of both normal and ptc mutant FSCs, but does not affect the maintenance of ovarian germline stem cells. Thus, Mam, like Hh, is a crucial stem cell factor that acts selectively on FSCs in the ovary. Surprisingly, other Notch pathway components, including Notch itself, are not similarly required for FSC maintenance. Furthermore, excess Notch pathway activity alone accelerates FSC loss and cannot ameliorate the more severe defects of mam mutant FSCs. This suggests an unconventional role for Mam in FSCs that is independent of Notch signaling. Loss of Mam reduces the expression of a Hh pathway reporter in FSCs but not in wing discs, suggesting that Mam might enhance Hh signaling specifically in stem cells of the Drosophila ovary.
Collapse
Affiliation(s)
- Cynthia Vied
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | |
Collapse
|
38
|
Reduced fertility of Drosophila melanogaster hybrid male rescue (Hmr) mutant females is partially complemented by Hmr orthologs from sibling species. Genetics 2009; 181:1437-50. [PMID: 19153254 DOI: 10.1534/genetics.108.100057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gene Hybrid male rescue (Hmr) causes lethality in interspecific hybrids between Drosophila melanogaster and its sibling species. Hmr has functionally diverged for this interspecific phenotype because lethality is caused specifically by D. melanogaster Hmr but not by D. simulans or D. mauritiana Hmr. Hmr was identified by the D. melanogaster partial loss-of-function allele Hmr1, which suppresses hybrid lethality but has no apparent phenotype within pure-species D. melanogaster. Here we have investigated the possible function of Hmr in D. melanogaster females using stronger mutant alleles. Females homozygous for Hmr mutants have reduced viability posteclosion and significantly reduced fertility. We find that reduced fertility of Hmr mutants is caused by a reduction in the number of eggs laid as well as reduced zygotic viability. Cytological analysis reveals that ovarioles from Hmr mutant females express markers that distinguish various stages of wild-type oogenesis, but that developing egg chambers fail to migrate posteriorly. D. simulans and D. mauritiana Hmr+ partially complement the reduced fertility of a D. melanogaster Hmr mutation. This partial complementation contrasts with the complete functional divergence previously observed for the interspecific hybrid lethality phenotype. We also investigate here the molecular basis of hybrid rescue associated with a second D. melanogaster hybrid rescue allele, In(1)AB. We show that In(1)AB is mutant for Hmr function, likely due to a missense mutation in an evolutionarily conserved amino acid. Two independently discovered hybrid rescue mutations are therefore allelic.
Collapse
|
39
|
Lethal(2)giant larvae is required in the follicle cells for formation of the initial AP asymmetry and the oocyte polarity during Drosophila oogenesis. Cell Res 2008; 18:372-84. [DOI: 10.1038/cr.2008.25] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
40
|
Kalidas S, Sanders C, Ye X, Strauss T, Kuhn M, Liu Q, Smith DP. Drosophila R2D2 mediates follicle formation in somatic tissues through interactions with Dicer-1. Mech Dev 2008; 125:475-85. [PMID: 18299191 DOI: 10.1016/j.mod.2008.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 01/10/2008] [Accepted: 01/14/2008] [Indexed: 11/27/2022]
Abstract
The miRNA pathway has been shown to regulate developmentally important genes. Dicer-1 is required to cleave endogenously encoded microRNA (miRNA) precursors into mature miRNAs that regulate endogenous gene expression. RNA interference (RNAi) is a gene silencing mechanism triggered by double-stranded RNA (dsRNA) that protects organisms from parasitic nucleic acids. In Drosophila, Dicer-2 cleaves dsRNA into 21 base-pair small interfering RNA (siRNA) that are loaded into RISC (RNA induced silencing complex) that in turn cleaves mRNAs homologous to the siRNAs. Dicer-2 co-purifies with R2D2, a low-molecular weight protein that loads siRNA onto Ago-2 in RISC. Loss of R2D2 results in defective RNAi. However, unlike mutants in other RNAi components like Dicer-2 or Ago-2, we report here that r2d2(1) mutants have striking developmental defects. r2d2(1) mutants have reduced female fertility, producing less than 1/10 the normal number of progeny. These escapers have normal morphology. We show R2D2 functions in the ovary, specifically in the somatic tissues giving rise to the stalk and other follicle cells critical for establishing the cellular architecture of the oocyte. Most interestingly, the female fertility defects are dramatically enhanced when one copy of the dcr-1 gene is missing and Dicer-1 protein co-immunoprecipitates with R2D2 antisera. These data show that r2d2(1) mutants have reduced viability and defective female fertility that stems from abnormal follicle cell function, and Dicer-1 impacts this process. We conclude that R2D2 functions beyond its role in RNA interference to include ovarian development in Drosophila.
Collapse
Affiliation(s)
- Savitha Kalidas
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard Dallas, TX 75390-9111, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 2008; 19:271-82. [PMID: 18304845 DOI: 10.1016/j.semcdb.2008.01.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/16/2008] [Indexed: 01/15/2023]
Abstract
Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. This epithelium of follicle cells encases germline cells to create an egg. In this review, we summarize progress toward understanding mechanisms that maintain the epithelium or permit migrations essential for oogenesis. Cell-cell communication is important, but the same signals are used repeatedly to control distinct events. Understanding intrinsic mechanisms that alter responses to developmental signals will be important to understand regulation of cell shape and organization.
Collapse
|
42
|
Ogienko AA, Fedorova SA, Baricheva EM. Basic aspects of ovarian development in Drosophila melanogaster. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407100055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Neuman-Silberberg FS. Drosophila female sterile mutation spoonbill interferes with multiple pathways in oogenesis. Genesis 2007; 45:369-81. [PMID: 17492752 DOI: 10.1002/dvg.20303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
spoonbill is a Drosophila female-sterile mutation, which displays a range of eggshell and egg chamber patterning defects. Previous analysis has shown that the mutation interfered with the function of two major signaling pathways, GRK/EGFR and DPP. In this report, the nature of spoonbill was further investigated to examine whether it was associated with additional pathways in oogenesis. Clonal analysis, presented here, demonstrated that most of the aberrant phenotypes associated with spoonbill were dependent on a mutant germline. Nevertheless, SPOONBILL may function also in the soma to ensure proper polarization and migration of the border-cell-cluster. Further, genetic interaction studies implicated spoonbill in additional unrelated pathways such as the one(s) involved in actin polymerization/depolymerization. Based on the previous data and the results presented here, it is anticipated that spoonbill may encode a multifunctional protein that perhaps coordinately regulated the activity of multiple signaling pathways during oogenesis.
Collapse
Affiliation(s)
- F Shira Neuman-Silberberg
- Department of Virology and Developmental Genetics, Faculty of Health Sciences and Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
44
|
Assa-Kunik E, Torres IL, Schejter ED, Johnston DS, Shilo BZ. Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways. Development 2007; 134:1161-9. [PMID: 17332535 DOI: 10.1242/dev.02800] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The specification of polar, main-body and stalk follicle cells in the germarium of the Drosophila ovary plays a key role in the formation of the egg chamber and polarisation of its anterior-posterior axis. High levels of Notch pathway activation, resulting from a germline Delta ligand signal, induce polar cells. Here we show that low Notch activation levels, originating from Delta expressed in the polar follicle cells, are required for stalk formation. The metalloprotease Kuzbanian-like, which cleaves and inactivates Delta, reduces the level of Delta signaling between follicle cells, thereby limiting the size of the stalk. We find that Notch activation is required in a continuous fashion to maintain the polar and stalk cell fates. We further demonstrate that mutual antagonism between the Notch and JAK/STAT signaling pathways provides a crucial facet of follicle cell patterning. Notch signaling in polar and main-body follicle cells inhibits JAK/STAT signaling by preventing STAT nuclear translocation, thereby restricting the influence of this pathway to stalk cells. Conversely, signaling by JAK/STAT reduces Notch signaling in the stalk. Thus, variations in the levels of Notch pathway activation, coupled with a continuous balance between the Notch and JAK/STAT pathways, specify the identity of the different follicle cell types and help establish the polarity of the egg chamber.
Collapse
Affiliation(s)
- Efrat Assa-Kunik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
45
|
Dobens L, Jaeger A, Peterson JS, Raftery LA. Bunched sets a boundary for Notch signaling to pattern anterior eggshell structures during Drosophila oogenesis. Dev Biol 2005; 287:425-37. [PMID: 16223477 DOI: 10.1016/j.ydbio.2005.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/01/2005] [Accepted: 09/06/2005] [Indexed: 01/01/2023]
Abstract
Organized boundaries between different cell fates are critical in patterning and organogenesis. In some tissues, long-range signals position a boundary, and local Notch signaling maintains it. How Notch activity is restricted to boundary regions is not well understood. During Drosophila oogenesis, the long-range signals EGF and Dpp regulate expression of bunched (bun), which encodes a homolog of mammalian transcription factors TSC-22 and GILZ. Here, we show that bun establishes a boundary for Notch signaling in the follicle cell epithelium. Notch signaling is active in anterior follicle cells and is required for concurrent follicle cell reorganizations including centripetal migration and operculum formation. bun is required in posterior columnar follicle cells to repress the centripetal migration fate, including gene expression, cell shape changes and accumulation of cytoskeletal components. bun mutant clones adjacent to the centripetally migrating follicle cells showed ectopic Notch responses. bun is necessary, but not sufficient, to down-regulate Serrate protein levels throughout the follicular epithelium. These data indicate that Notch signaling is necessary, but not sufficient, for centripetal migration and that bun regulates the level of Notch stimulation to position the boundary between centripetally migrating and stationary columnar follicle cells.
Collapse
Affiliation(s)
- Leonard Dobens
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Bldg. 149 13th Street, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
46
|
Muzzopappa M, Wappner P. Multiple roles of the F-box protein Slimb inDrosophilaegg chamber development. Development 2005; 132:2561-71. [PMID: 15857915 DOI: 10.1242/dev.01839] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Substrate-specific degradation of proteins by the ubiquitin-proteasome pathway is a precise mechanism that controls the abundance of key cell regulators. SCF complexes are a family of E3 ubiquitin ligases that target specific proteins for destruction at the 26S-proteasome. These complexes are composed of three constant polypeptides – Skp1, Cullin1/3 and Roc1/Rbx1– and a fourth variable adapter, the F-box protein. Slimb (Slmb) is a Drosophila F-Box protein that fulfills several roles in development and cell physiology. We analyzed its participation in egg chamber development and found that slmb is required in both the follicle cells and the germline at different stages of oogenesis. We observed that in slmbsomatic clones, morphogenesis of the germarium and encapsulation of the cyst were altered, giving rise to egg chambers with extra germline cells and two oocytes. Furthermore, in slmb somatic clones, we observed ectopic Fasciclin 3 expression, suggesting a delay in follicle cell differentiation,which correlated with the occurrence of ectopic polar cells, lack of interfollicular stalks and mislocalization of the oocyte. Later in oogenesis,Slmb was required in somatic cells to specify the position, size and morphology of dorsal appendages. Mild overactivation of the Dpp pathway caused similar phenotypes that could be antagonized by simultaneous overexpression of Slmb, suggesting that Slmb might normally downregulate the Dpp pathway in follicle cells. Indeed, ectopic expression of a dad-LacZ enhancer trap revealed that the Dpp pathway was upregulated in slmb somatic clones and, consistent with this, ectopic accumulation of the co-Smad protein,Medea, was recorded. By analyzing slmb germline clones, we found that loss of Slmb provoked a reduction in E2f2 and Dp levels, which correlated with misregulation of mitotic cycles during cyst formation, abnormal nurse cell endoreplication and impairment of dumping of the nurse cell content into the oocyte.
Collapse
Affiliation(s)
- Mariana Muzzopappa
- Instituto Leloir and IIB, FCEyN-Universidad de Buenos Aires, Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | | |
Collapse
|
47
|
Willard SS, Ozdowski EF, Jones NA, Cronmiller C. stall-mediated extrinsic control of ovarian follicle formation in Drosophila. Genetics 2005; 168:191-8. [PMID: 15454537 PMCID: PMC1448123 DOI: 10.1534/genetics.104.029918] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Complex patterns of morphogenesis require intricate coordination of multiple, regulatory processes that control cellular identities, shapes, and behaviors, both locally and over vast distances in the developing organism or tissue. Studying Drosophila oogenesis as a model for tissue morphogenesis, we have discovered extraovarian regulation of follicle formation. Clonal analysis and ovary transplantation have demonstrated that long-range control of follicle individualization requires stall gene function in cells outside of the ovary. Although tissue nonautonomous regulation has been shown to govern follicle maturation and survival, this is the first report of an extraovarian pathway involved in normal follicle formation.
Collapse
Affiliation(s)
- Stacey S Willard
- Department of Biology, University of Virginia, Charlottesville 22904-4328, USA
| | | | | | | |
Collapse
|
48
|
Althauser C, Jordan KC, Deng WM, Ruohola-Baker H. Fringe-dependent notch activation and tramtrack function are required for specification of the polar cells inDrosophilaoogenesis. Dev Dyn 2005; 232:1013-20. [PMID: 15765546 DOI: 10.1002/dvdy.20361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During Drosophila oogenesis, each egg chamber is encapsulated through the coordinated signaling of multiple pathways, resulting in the formation of polar cells at the termini and a row of stalk cells in between each egg chamber. Notch signaling is required for specification of a precursor group containing both stalk and polar cells. Together, the Notch and JAK/STAT pathways specify the stalk cells as well as a group of prepolar cells, from within that group. The mechanism by which the polar cells differentiate from the prepolar group involves apoptosis, but the pathways which control that process are largely unknown. We now demonstrate that Notch signaling, activated by Delta and transduced by the transcription factor Tramtrack, is involved in the process of refining the prepolar cell group to two polar cells. The glycosyltransferase Fringe is expressed and required cell-autonomously in prepolar cells for this process. However, the transcription factor Mirror, which inhibits fringe expression in other tissues and stages of development, as well as Serrate, one of the two known ligands for Notch, are not required for maturation of prepolar cells. This finding suggests that Fringe is necessary for generating positional information in localizing a high-affinity interaction between Notch and its ligand Delta, even if a second ligand is not essential.
Collapse
Affiliation(s)
- Cassandra Althauser
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | |
Collapse
|
49
|
Adam JC, Montell DJ. A role for extra macrochaetae downstream of Notch in follicle cell differentiation. Development 2005; 131:5971-80. [PMID: 15539491 DOI: 10.1242/dev.01442] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila ovary provides a model system for studying the mechanisms that regulate the differentiation of somatic stem cells into specific cell types. Ovarian somatic stem cells produce follicle cells, which undergo a binary choice during early differentiation. They can become either epithelial cells that surround the germline to form an egg chamber ('main body cells') or a specialized cell lineage found at the poles of egg chambers. This lineage goes on to make two cell types: polar cells and stalk cells. To better understand how this choice is made, we carried out a screen for genes that affect follicle cell fate specification or differentiation. We identified extra macrochaetae (emc), which encodes a helix-loop-helix protein, as a downstream effector of Notch signaling in the ovary. EMC is expressed in proliferating cells in the germarium, as well as in the main body follicle cells. EMC expression in the main body cells is Notch dependent, and emc mutant cells located on the main body failed to differentiate. EMC expression is reduced in the precursors of the polar and stalk cells, and overexpression of EMC caused dramatic egg chamber fusions, indicating that EMC is a negative regulator of polar and/or stalk cells. EMC and Notch were both required in the main body cells for expression of Eyes Absent (EYA), a negative regulator of polar and stalk cell fate. We propose that EMC functions downstream of Notch and upstream of EYA to regulate main body cell fate specification and differentiation.
Collapse
Affiliation(s)
- Jennifer C Adam
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
50
|
Horne-Badovinac S, Bilder D. Mass transit: Epithelial morphogenesis in theDrosophila egg chamber. Dev Dyn 2005; 232:559-74. [PMID: 15704134 DOI: 10.1002/dvdy.20286] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial cells use a striking array of morphogenetic behaviors to sculpt organs and body plans during development. Although it is clear that epithelial morphogenesis is largely driven by cytoskeletal rearrangements and changes in cell adhesion, little is known about how these processes are coordinated to construct complex biological structures from simple sheets of cells. The follicle cell epithelium of the Drosophila egg chamber exhibits a diverse range of epithelial movements in a genetically accessible tissue, making it an outstanding system for the study of epithelial morphogenesis. In this review, we move chronologically through the process of oogenesis, highlighting the dynamic movements of the follicle cells. We discuss the cellular architecture and patterning events that set the stage for morphogenesis, detail individual cellular movements, and focus on current knowledge of the cellular processes that drive follicle cell behavior.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| | | |
Collapse
|