1
|
Zang Y, Chaudhari K, Bashaw GJ. Tace/ADAM17 is a bi-directional regulator of axon guidance that coordinates distinct Frazzled and Dcc receptor signaling outputs. Cell Rep 2022; 41:111785. [PMID: 36476876 DOI: 10.1016/j.celrep.2022.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Frazzled (Fra) and deleted in colorectal cancer (Dcc) are homologous receptors that promote axon attraction in response to netrin. In Drosophila, Fra also acts independently of netrin by releasing an intracellular domain (ICD) that activates gene transcription. How neurons coordinate these pathways to make accurate guidance decisions is unclear. Here we show that the ADAM metalloprotease Tace cleaves Fra, and this instructs the switch between the two pathways. Genetic manipulations that either increase or decrease Tace levels disrupt midline crossing of commissural axons. These conflicting phenotypes reflect Tace's function as a bi-directional regulator of axon guidance, a function conserved in its vertebrate homolog ADAM17: while Tace induces the formation of the Fra ICD to activate transcription, excessive Tace cleavage of Fra and Dcc suppresses the response to netrin. We propose that Tace and ADAM17 are key regulators of midline axon guidance by establishing the balance between netrin-dependent and netrin-independent signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Restrepo LJ, DePew AT, Moese ER, Tymanskyj SR, Parisi MJ, Aimino MA, Duhart JC, Fei H, Mosca TJ. γ-secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Dev Cell 2022; 57:1643-1660.e7. [PMID: 35654038 DOI: 10.1016/j.devcel.2022.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/27/2022]
Abstract
Developing synapses mature through the recruitment of specific proteins that stabilize presynaptic and postsynaptic structure and function. Wnt ligands signaling via Frizzled (Fz) receptors play many crucial roles in neuronal and synaptic development, but whether and how Wnt and Fz influence synaptic maturation is incompletely understood. Here, we show that Fz2 receptor cleavage via the γ-secretase complex is required for postsynaptic development and maturation. In the absence of γ-secretase, Drosophila neuromuscular synapses fail to recruit postsynaptic scaffolding and cytoskeletal proteins, leading to behavioral deficits. Introducing presenilin mutations linked to familial early-onset Alzheimer's disease into flies leads to synaptic maturation phenotypes that are identical to those seen in null alleles. This conserved role for γ-secretase in synaptic maturation and postsynaptic development highlights the importance of Fz2 cleavage and suggests that receptor processing by proteins linked to neurodegeneration may be a shared mechanism with aspects of synaptic development.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Alison T DePew
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Elizabeth R Moese
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Stephen R Tymanskyj
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Hong Fei
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
Gallaud E, Ramdas Nair A, Horsley N, Monnard A, Singh P, Pham TT, Salvador Garcia D, Ferrand A, Cabernard C. Dynamic centriolar localization of Polo and Centrobin in early mitosis primes centrosome asymmetry. PLoS Biol 2020; 18:e3000762. [PMID: 32760088 PMCID: PMC7433902 DOI: 10.1371/journal.pbio.3000762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/18/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023] Open
Abstract
Centrosomes, the main microtubule organizing centers (MTOCs) of metazoan cells, contain an older "mother" and a younger "daughter" centriole. Stem cells either inherit the mother or daughter-centriole-containing centrosome, providing a possible mechanism for biased delivery of cell fate determinants. However, the mechanisms regulating centrosome asymmetry and biased centrosome segregation are unclear. Using 3D-structured illumination microscopy (3D-SIM) and live-cell imaging, we show in fly neural stem cells (neuroblasts) that the mitotic kinase Polo and its centriolar protein substrate Centrobin (Cnb) accumulate on the daughter centriole during mitosis, thereby generating molecularly distinct mother and daughter centrioles before interphase. Cnb's asymmetric localization, potentially involving a direct relocalization mechanism, is regulated by Polo-mediated phosphorylation, whereas Polo's daughter centriole enrichment requires both Wdr62 and Cnb. Based on optogenetic protein mislocalization experiments, we propose that the establishment of centriole asymmetry in mitosis primes biased interphase MTOC activity, necessary for correct spindle orientation.
Collapse
Affiliation(s)
- Emmanuel Gallaud
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | | | - Nicole Horsley
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| | - Arnaud Monnard
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| | - Priyanka Singh
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Tri Thanh Pham
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| | | | - Alexia Ferrand
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, Washington State, United States of America
| |
Collapse
|
4
|
Banerjee R, Rudloff Z, Naylor C, Yu MC, Gunawardena S. The presenilin loop region is essential for glycogen synthase kinase 3 β (GSK3β) mediated functions on motor proteins during axonal transport. Hum Mol Genet 2019; 27:2986-3001. [PMID: 29790963 DOI: 10.1093/hmg/ddy190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023] Open
Abstract
Neurons require intracellular transport of essential components for function and viability and defects in transport has been implicated in many neurodegenerative diseases including Alzheimer's disease (AD). One possible mechanism by which transport defects could occur is by improper regulation of molecular motors. Previous work showed that reduction of presenilin (PS) or glycogen synthase kinase 3 beta (GSK3β) stimulated amyloid precursor protein vesicle motility. Excess GSK3β caused transport defects and increased motor binding to membranes, while reduction of PS decreased active GSK3β and motor binding to membranes. Here, we report that functional PS and the catalytic loop region of PS is essential for the rescue of GSK3β-mediated axonal transport defects. Disruption of PS loop (PSΔE9) or expression of the non-functional PS variant, PSD447A, failed to rescue axonal blockages in vivo. Further, active GSK3β associated with and phosphorylated kinesin-1 in vitro. Our observations together with previous work that showed that the loop region of PS interacts with GSK3β propose a scaffolding mechanism for PS in which the loop region sequesters GSK3β away from motors for the proper regulation of motor function. These findings are important to uncouple the complex regulatory mechanisms that likely exist for motor activity during axonal transport in vivo.
Collapse
Affiliation(s)
- Rupkatha Banerjee
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Zoe Rudloff
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Crystal Naylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Michael C Yu
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
5
|
An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Drosophila Brain. Genetics 2017; 206:1479-1493. [PMID: 28495961 DOI: 10.1534/genetics.116.196881] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
Mutations in the Presenilin genes are the major genetic cause of Alzheimer's disease. Presenilin and Nicastrin are essential components of γ-secretase, a multi-subunit protease that cleaves Type I transmembrane proteins. Genetic studies in mice previously demonstrated that conditional inactivation of Presenilin or Nicastrin in excitatory neurons of the postnatal forebrain results in memory deficits, synaptic impairment, and age-dependent neurodegeneration. The roles of Drosophila Presenilin (Psn) and Nicastrin (Nct) in the adult fly brain, however, are unknown. To knockdown (KD) Psn or Nct selectively in neurons of the adult brain, we generated multiple shRNA lines. Using a ubiquitous driver, these shRNA lines resulted in 80-90% reduction of mRNA and pupal lethality-a phenotype that is shared with Psn and Nct mutants carrying nonsense mutations. Furthermore, expression of these shRNAs in the wing disc caused notching wing phenotypes, which are also shared with Psn and Nct mutants. Similar to Nct, neuron-specific Psn KD using two independent shRNA lines led to early mortality and rough eye phenotypes, which were rescued by a fly Psn transgene. Interestingly, conditional KD (cKD) of Psn or Nct in adult neurons using the elav-Gal4 and tubulin-Gal80ts system caused shortened lifespan, climbing defects, increases in apoptosis, and age-dependent neurodegeneration. Together, these findings demonstrate that, similar to their mammalian counterparts, Drosophila Psn and Nct are required for neuronal survival during aging and normal lifespan, highlighting an evolutionarily conserved role of Presenilin in neuronal protection in the aging brain.
Collapse
|
6
|
Dolma K, Iacobucci GJ, Hong Zheng K, Shandilya J, Toska E, White JA, Spina E, Gunawardena S. Presenilin influences glycogen synthase kinase-3 β (GSK-3β) for kinesin-1 and dynein function during axonal transport. Hum Mol Genet 2013; 23:1121-33. [DOI: 10.1093/hmg/ddt505] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Gunawardena S, Yang G, Goldstein LSB. Presenilin controls kinesin-1 and dynein function during APP-vesicle transport in vivo. Hum Mol Genet 2013; 22:3828-43. [PMID: 23710041 DOI: 10.1093/hmg/ddt237] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neurons and other cells require intracellular transport of essential components for viability and function. Previous work has shown that while net amyloid precursor protein (APP) transport is generally anterograde, individual vesicles containing APP move bi-directionally. This discrepancy highlights our poor understanding of the in vivo regulation of APP-vesicle transport. Here, we show that reduction of presenilin (PS) or suppression of gamma-secretase activity substantially increases anterograde and retrograde velocities for APP vesicles. Strikingly, PS deficiency has no effect on an unrelated cargo vesicle class containing synaptotagmin, which is powered by a different kinesin motor. Increased velocities caused by PS or gamma-secretase reduction require functional kinesin-1 and dynein motors. Together, our findings suggest that a normal function of PS is to repress kinesin-1 and dynein motor activity during axonal transport of APP vesicles. Furthermore, our data suggest that axonal transport defects induced by loss of PS-mediated regulatory effects on APP-vesicle motility could be a major cause of neuronal and synaptic defects observed in Alzheimer's Disease (AD) pathogenesis. Thus, perturbations of APP/PS transport could contribute to early neuropathology observed in AD, and highlight a potential novel therapeutic pathway for early intervention, prior to neuronal loss and clinical manifestation of disease.
Collapse
|
8
|
Hori K, Sen A, Kirchhausen T, Artavanis-Tsakonas S. Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. ACTA ACUST UNITED AC 2012; 195:1005-15. [PMID: 22162134 PMCID: PMC3241730 DOI: 10.1083/jcb.201104146] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ESCRT-III complex component Shrub plays a pivotal rate-limiting step in late endosomal ligand-independent Notch activation. The Notch signaling pathway defines a conserved mechanism that regulates cell fate decisions in metazoans. Signaling is modulated by a broad and multifaceted genetic circuitry, including members of the endocytic machinery. Several individual steps in the endocytic pathway have been linked to the positive or negative regulation of the Notch receptor. In seeking genetic elements involved in regulating the endosomal/lysosomal degradation of Notch, mediated by the molecular synergy between the ubiquitin ligase Deltex and Kurtz, the nonvisual β-arrestin in Drosophila, we identified Shrub, a core component of the ESCRT-III complex as a key modulator of this synergy. Shrub promotes the lysosomal degradation of the receptor by mediating its delivery into multivesicular bodies (MVBs). However, the interplay between Deltex, Kurtz, and Shrub can bypass this path, leading to the activation of the receptor. Our analysis shows that Shrub plays a pivotal rate-limiting step in late endosomal ligand-independent Notch activation, depending on the Deltex-dependent ubiquitinylation state of the receptor. This activation mode of the receptor emphasizes the complexity of Notch signal modulation in a cell and has significant implications for both development and disease.
Collapse
Affiliation(s)
- Kazuya Hori
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
9
|
Yamakawa T, Yamada K, Sasamura T, Nakazawa N, Kanai M, Suzuki E, Fortini ME, Matsuno K. Deficient Notch signaling associated with neurogenic pecanex is compensated for by the unfolded protein response in Drosophila. Development 2011; 139:558-67. [PMID: 22190636 DOI: 10.1242/dev.073858] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Notch (N) signaling machinery is evolutionarily conserved and regulates a broad spectrum of cell-specification events, through local cell-cell communication. pecanex (pcx) encodes a multi-pass transmembrane protein of unknown function, widely found from Drosophila to humans. The zygotic and maternal loss of pcx in Drosophila causes a neurogenic phenotype (hyperplasia of the embryonic nervous system), suggesting that pcx might be involved in N signaling. Here, we established that Pcx is a component of the N-signaling pathway. Pcx was required upstream of the membrane-tethered and the nuclear forms of activated N, probably in N signal-receiving cells, suggesting that pcx is required prior to or during the activation of N. pcx overexpression revealed that Pcx resides in the endoplasmic reticulum (ER). Disruption of pcx function resulted in enlargement of the ER that was not attributable to the reduced N signaling activity. In addition, hyper-induction of the unfolded protein response (UPR) by the expression of activated Xbp1 or dominant-negative Heat shock protein cognate 3 suppressed the neurogenic phenotype and ER enlargement caused by the absence of pcx. A similar suppression of these phenotypes was induced by overexpression of O-fucosyltransferase 1, an N-specific chaperone. Taking these results together, we speculate that the reduction in N signaling in embryos lacking pcx function might be attributable to defective ER functions, which are compensated for by upregulation of the UPR and possibly by enhancement of N folding. Our results indicate that the ER plays a previously unrecognized role in N signaling and that this ER function depends on pcx activity.
Collapse
Affiliation(s)
- Tomoko Yamakawa
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cuc HTT, Seo JB, Choi JK, Kim WT, Park SJ, Lee DW, Kim YS, Fortini ME, Koh YH. Generation and characterization of monoclonal antibodies specific to Drosophila presenilin. Hybridoma (Larchmt) 2009; 28:215-20. [PMID: 19519249 DOI: 10.1089/hyb.2008.0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The development of a monoclonal antibody (MAb) specific to Drosophila presenilin (Psn) proteins in vivo was the major aim of this study, since the absence of specific antibodies recognizing Psn proteins hampered our progress in understanding Psn functions during development, differentiation, and pathogenesis. By dot blot and immunofluorescence screenings, we found that MAb Psn2G6 specifically recognized Psn proteins in wing imaginal discs and brains of wild-type control W1118 larvae. MAb Psn2G6 also transgenically expressed a long form of wild-type Psn (Psn + 14 WT) proteins in wing imaginal discs of two independent transgenic lines. Transgenic expression of Psn + 14 WT proteins in psn(B3) larvae completely rescued the expression patterns of Psn proteins and the development of wing imaginal discs. In addition, neural hyperplasia observed in wing imaginal discs of psn(B3) larvae was also suppressed.
Collapse
Affiliation(s)
- Ho Thi Thu Cuc
- Ilsong Institute of Life Science, Hallym University , Dongan-gu, Anyang, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lecanu L, Tillement L, Rammouz G, Paul Tillement J, Greeson J, Papadopoulos V. Caprospinol: moving from a neuroactive steroid to a neurotropic drug. Expert Opin Investig Drugs 2009; 18:265-76. [DOI: 10.1517/13543780902762827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Carmine-Simmen K, Proctor T, Tschäpe J, Poeck B, Triphan T, Strauss R, Kretzschmar D. Neurotoxic effects induced by the Drosophila amyloid-beta peptide suggest a conserved toxic function. Neurobiol Dis 2008; 33:274-81. [PMID: 19049874 DOI: 10.1016/j.nbd.2008.10.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 09/25/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022] Open
Abstract
The accumulation of amyloid-beta (Abeta) into plaques is a hallmark feature of Alzheimer's disease (AD). While amyloid precursor protein (APP)-related proteins are found in most organisms, only Abeta fragments from human APP have been shown to induce amyloid deposits and progressive neurodegeneration. Therefore, it was suggested that neurotoxic effects are a specific property of human Abeta. Here we show that Abeta fragments derived from the Drosophila orthologue APPL aggregate into intracellular fibrils, amyloid deposits, and cause age-dependent behavioral deficits and neurodegeneration. We also show that APPL can be cleaved by a novel fly beta-secretase-like enzyme. This suggests that Abeta-induced neurotoxicity is a conserved function of APP proteins whereby the lack of conservation in the primary sequence indicates that secondary structural aspects determine their pathogenesis. In addition, we found that the behavioral phenotypes precede extracellular amyloid deposit formation, supporting results that intracellular Abeta plays a key role in AD.
Collapse
Affiliation(s)
- Katia Carmine-Simmen
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tang H, Kambris Z, Lemaitre B, Hashimoto C. A serpin that regulates immune melanization in the respiratory system of Drosophila. Dev Cell 2008; 15:617-26. [PMID: 18854145 PMCID: PMC2671232 DOI: 10.1016/j.devcel.2008.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/05/2008] [Accepted: 08/29/2008] [Indexed: 11/16/2022]
Abstract
Epithelial tissues facing the external environment are essential to combating microbial infection. In addition to providing a physical barrier, epithelial tissues mount chemical defenses to prevent invasion of internal tissues by pathogens. Here, we describe that the melanization reaction implicated in host defense is activated in the respiratory system, the trachea, of Drosophila. Tracheal melanization can be activated by the presence of microorganisms but is normally blocked by Spn77Ba, a protease inhibitor in the serpin family. Spn77Ba inhibits a protease cascade involving the MP1 and MP2 proteases that activates phenol oxidase, a key enzyme in melanin biosynthesis. Unexpectedly, we found that tracheal melanization resulting from Spn77Ba disruption induces systemic expression of the antifungal peptide Drosomycin via the Toll pathway. Such signaling between local and systemic immune responses could represent an alarm mechanism that prepares the host in case a pathogen breaches epithelial defenses to invade internal tissues.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Zakaria Kambris
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | - Bruno Lemaitre
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
- Global Health Institute, EPFL, CH-1015 Lausanne, Switzerland
| | - Carl Hashimoto
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
14
|
Knight D, Iliadi K, Charlton MP, Atwood HL, Boulianne GL. Presynaptic plasticity and associative learning are impaired in a Drosophila presenilin null mutant. Dev Neurobiol 2007; 67:1598-613. [PMID: 17562530 DOI: 10.1002/dneu.20532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by progressive memory and cognitive decline that is associated with changes in synaptic plasticity and neuronal cell loss. Recent evidence suggests that some of these defects may be due to a loss of normal presenilin activity. Here, we have examined the effect of loss of Drosophila presenilin (psn) function on synaptic plasticity and learning. Basal transmitter release was elevated in psn mutants while both paired pulse synaptic plasticity and post-tetanic potentiation were impaired. These defects in synaptic strength and plasticity were not due to developmental defects in NMJ morphology. We also found that psn null terminals take up significantly less FM 4-64 than control terminals when loaded with high frequency stimulation, suggesting a defect in synaptic vesicle availability or mobilization. To determine whether these reductions in synaptic plasticity had any impact on learning, we tested the larvae for defects in associative learning. Using both olfactory and visual learning assays, we found that associative learning is impaired in psn mutants compared with controls. Both the learning and synaptic defects could be rescued by expression of a full length psn transgene suggesting the defects are specifically due to a loss of psn function. Taken together, these results provide the first evidence of learning and synaptic defects in a Drosophila psn mutant and strongly suggest a presynaptic role for presenilin in normal neuronal function.
Collapse
Affiliation(s)
- David Knight
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1L7
| | | | | | | | | |
Collapse
|
15
|
Lu Y, Lv Y, Ye Y, Wang Y, Hong Y, Fortini ME, Zhong Y, Xie Z. A role for presenilin in post-stress regulation: effects of presenilin mutations on Ca2+ currents in Drosophila. FASEB J 2007; 21:2368-78. [PMID: 17428965 DOI: 10.1096/fj.06-6380com] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It has been shown that presenilin is involved in maintaining Ca2+ homeostasis in neurons, including regulating endoplasmic reticulum (ER) Ca2+ storage. From studies of primary cultures and cell lines, however, its role in stress-induced responses is still controversial. In the present study we analyzed the effects of presenilin mutations on membrane currents and synaptic functions in response to stress using an in vivo preparation. We examined voltage-gated K+ and Ca2+ currents at the Drosophila larval neuromuscular junction (NMJ) with voltage-clamp recordings. Our data showed that both currents were generally unaffected by loss-of-function or Alzheimer's disease (AD) -associated presenilin mutations under normal or stress conditions induced by heat shock (HS) or ER stress. In larvae expressing the mutant presenilins, prolonged Ca2+ tail current, reflecting slower deactivation kinetics of Ca2+ channels, was observed 1 day after stress treatments were terminated. It was further demonstrated that the L-type Ca2+ channel was specifically affected under these conditions. Moreover, synaptic plasticity at the NMJ was reduced in larvae expressing the mutant presenilins. At the behavioral level, memory in adult flies was impaired in the presenilin mutants 1 day after HS. The results show that presenilin function is important during the poststress period and its impairment contributes to memory dysfunction observed during adaptation to normal conditions after stress. Our findings suggest a new stress-related mechanism by which presenilin may be implicated in the neuropathology of AD.
Collapse
Affiliation(s)
- Yisheng Lu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China 100084
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cesario JM, Jang JK, Redding B, Shah N, Rahman T, McKim KS. Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators. J Cell Sci 2006; 119:4770-80. [PMID: 17077127 DOI: 10.1242/jcs.03235] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drosophila Subito is a kinesin 6 family member and ortholog of mitotic kinesin-like protein (MKLP2) in mammalian cells. Based on the previously established requirement for Subito in meiotic spindle formation and for MKLP2 in cytokinesis, we investigated the function of Subito in mitosis. During metaphase, Subito localized to microtubules at the center of the mitotic spindle, probably interpolar microtubules that originate at the poles and overlap in antiparallel orientation. Consistent with this localization pattern, subito mutants improperly assembled microtubules at metaphase, causing activation of the spindle assembly checkpoint and lagging chromosomes at anaphase. These results are the first demonstration of a kinesin 6 family member with a function in mitotic spindle assembly, possibly involving the interpolar microtubules. However, the role of Subito during mitotic anaphase resembles other kinesin 6 family members. Subito localizes to the spindle midzone at anaphase and is required for the localization of Polo, Incenp and Aurora B. Genetic evidence suggested that the effects of subito mutants are attenuated as a result of redundant mechanisms for spindle assembly and cytokinesis. For example, subito double mutants with ncd, polo, Aurora B or Incenp mutations were synthetic lethal with severe defects in microtubule organization.
Collapse
Affiliation(s)
- Jeff M Cesario
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | |
Collapse
|
17
|
Babcock M, Macleod GT, Leither J, Pallanck L. Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles. J Neurosci 2004; 24:3964-73. [PMID: 15102912 PMCID: PMC6729412 DOI: 10.1523/jneurosci.5259-03.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (SNAP) are cytosolic factors that promote vesicle fusion with a target membrane in both the constitutive and regulated secretory pathways. NSF and SNAP are thought to function by catalyzing the disassembly of a SNAP receptor (SNARE) complex consisting of membrane proteins of the secretory vesicle and target membrane. Although studies of NSF function have provided strong support for this model, the precise biochemical role of SNAP remains controversial. To further explore the function of SNAP, we have used mutational and transgenic approaches in Drosophila to investigate the effect of altered SNAP dosage on neurotransmitter release and SNARE complex metabolism. Our results indicate that reduced SNAP activity results in diminished neurotransmitter release and accumulation of a neural SNARE complex. Increased SNAP dosage results in defective synapse formation and a variety of tissue morphological defects without detectably altering the abundance of neural SNARE complexes. The SNAP overexpression phenotypes are enhanced by mutations in other secretory components and are at least partially overcome by co-overexpression of NSF, suggesting that these phenotypes derive from a specific perturbation of the secretory pathway. Our results indicate that SNAP promotes neurotransmitter release and SNARE complex disassembly but inhibits secretion when present at high abundance relative to NSF.
Collapse
Affiliation(s)
- Michael Babcock
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
18
|
Chao AT, Dierick HA, Addy TM, Bejsovec A. Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila. Genetics 2004; 165:601-12. [PMID: 14573473 PMCID: PMC1462801 DOI: 10.1093/genetics/165.2.601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens.
Collapse
Affiliation(s)
- Anna T Chao
- Department of Biology, Duke University, Durham, North Carolina 27708-1000, USA
| | | | | | | |
Collapse
|
19
|
Klein T. The tumour suppressor gene l(2)giant discs is required to restrict the activity of Notch to the dorsoventral boundary during Drosophila wing development. Dev Biol 2003; 255:313-33. [PMID: 12648493 DOI: 10.1016/s0012-1606(02)00052-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During the development of the Drosophila wing, the activity of the Notch signalling pathway is required to establish and maintain the organizing activity at the dorsoventral boundary (D/V boundary). At early stages, the activity of the pathway is restricted to a small stripe straddling the D/V boundary, and the establishment of this activity domain requires the secreted molecule fringe (fng). The activity domain will be established symmetrically at each side of the boundary of Fng-expressing and non-expressing cells. Here, I present evidence that the Drosophila tumour-suppressor gene lethal (2) gaint discs (lgd) is required to restrict the activity of Notch to the D/V boundary. In the absence of lgd function, the activity of Notch expands from its initial domain at the D/V boundary. This expansion requires the presence of at least one of the Notch ligands, which can activate Notch more efficiently in the mutants. The results further suggest that Lgd appears to act as a general repressor of Notch activity, because it also affects vein, eye, and bristle development.
Collapse
Affiliation(s)
- Thomas Klein
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931, Köln, Germany.
| |
Collapse
|
20
|
Takasugi N, Takahashi Y, Morohashi Y, Tomita T, Iwatsubo T. The mechanism of gamma-secretase activities through high molecular weight complex formation of presenilins is conserved in Drosophila melanogaster and mammals. J Biol Chem 2002; 277:50198-205. [PMID: 12388554 DOI: 10.1074/jbc.m205352200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in presenilin 1 (PS1) and PS2 genes contribute to the pathogenesis of early onset familial Alzheimer's disease by increasing secretion of the pathologically relevant Abeta42 polypeptides. PS genes are also implicated in Notch signaling through proteolytic processing of the Notch receptor in Caenorhabditis elegans, Drosophila melanogaster, and mammals. Here we show that Drosophila PS (Psn) protein undergoes endoproteolytic cleavage and forms a stable high molecular weight (HMW) complex in Drosophila S2 or mouse neuro2a (N2a) cells in a similar manner to mammalian PS. The loss-of-function recessive point mutations located in the C-terminal region of Psn, that cause an early pupal-lethal phenotype resembling Notch mutant in vivo, disrupted the HMW complex formation, and abolished gamma-secretase activities in cultured cells. The overexpression of Psn in mouse embryonic fibroblasts lacking PS1 and PS2 genes rescued the Notch processing. Moreover, disruption of the expression of Psn by double-stranded RNA-mediated interference completely abolished the gamma-secretase activity in S2 cells. Surprisingly, gamma-secretase activity dependent on wild-type Psn was associated with a drastic overproduction of Abeta1-42 from human betaAPP in N2a cells, but not in S2 cells. Our data suggest that the mechanism of gamma-secretase activities through formation of HMW PS complex, as well as its abolition by loss-of-function mutations located in the C terminus, are highly conserved features in Drosophila and mammals.
Collapse
Affiliation(s)
- Nobumasa Takasugi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
21
|
Annaert WG, Esselens C, Baert V, Boeve C, Snellings G, Cupers P, Craessaerts K, De Strooper B. Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins. Neuron 2001; 32:579-89. [PMID: 11719200 DOI: 10.1016/s0896-6273(01)00512-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The carboxyl terminus of presenilin 1 and 2 (PS1 and PS2) binds to the neuron-specific cell adhesion molecule telencephalin (TLN) in the brain. PS1 deficiency results in the abnormal accumulation of TLN in a yet unidentified intracellular compartment. The first transmembrane domain and carboxyl terminus of PS1 form a binding pocket with the transmembrane domain of TLN. Remarkably, APP binds to the same regions via part of its transmembrane domain encompassing the critical residues mutated in familial Alzheimer's disease. Our data surprisingly indicate a spatial dissociation between the binding site and the proposed catalytic site near the critical aspartates in PSs. They provide important experimental evidence to support a ring structure model for PS.
Collapse
Affiliation(s)
- W G Annaert
- Laboratory for Neuronal Cell Biology, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology, KUL-Gasthuisberg, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen X, Li Q, Fischer JA. Genetic analysis of the Drosophila DNAprim gene. The function of the 60-kd primase subunit of DNA polymerase opposes the fat facets signaling pathway in the developing eye. Genetics 2000; 156:1787-95. [PMID: 11102374 PMCID: PMC1461376 DOI: 10.1093/genetics/156.4.1787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila DNAprim gene encodes the large subunit (60 kD) of DNA primase, the part of DNA polymerase alpha that synthesizes RNA primers during DNA replication. The precise function of the 60-kD subunit is unknown. In a mutagenesis screen for suppressors of the fat facets (faf) mutant eye phenotype, we identified mutations in DNAprim. The faf gene encodes a deubiquitinating enzyme required specifically for patterning the compound eye. The DNA sequences of four DNAprim alleles were determined and these define essential protein domains. We show that while flies lacking DNAprim activity are lethal, flies with reduced DNAprim activity display morphological defects in their eyes, and unlike faf mutants, cell cycle abnormalities in larval eye discs. Mechanisms by which DNA primase levels might influence the faf-dependent cell communication pathway are discussed.
Collapse
Affiliation(s)
- X Chen
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|