1
|
Adams-Brown SE, Reid KZ. The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes. Int J Mol Sci 2025; 26:2845. [PMID: 40243440 PMCID: PMC11989106 DOI: 10.3390/ijms26072845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
One of the biggest challenges to eukaryotic gene expression is coordinating transcription in the nucleus and protein synthesis in the cytoplasm. However, little is known about how these major steps in gene expression are connected. The Target of Rapamycin (TOR) signaling pathway is crucial in connecting these critical phases of gene expression. Highly conserved among eukaryotic cells, TOR regulates growth, metabolism, and cellular equilibrium in response to changes in nutrients, energy levels, and stress conditions. This review examines the extensive role of TOR in gene expression regulation. We highlight how TOR is involved in phosphorylation, remodeling chromatin structure, and managing the factors that facilitate transcription and translation. Furthermore, the critical functions of TOR extend to processing RNA, assembling RNA-protein complexes, and managing their export from the nucleus, demonstrating its wide-reaching impact throughout the cell. Our discussion emphasizes the integral roles of TOR in bridging the processes of transcription and translation and explores how it orchestrates these complex cellular processes.
Collapse
Affiliation(s)
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
2
|
Bérard M, Merlini L, Martin SG. Proteomic and phosphoproteomic analyses reveal that TORC1 is reactivated by pheromone signaling during sexual reproduction in fission yeast. PLoS Biol 2024; 22:e3002963. [PMID: 39705284 PMCID: PMC11750111 DOI: 10.1371/journal.pbio.3002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic data sets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these data sets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
Collapse
Affiliation(s)
- Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Merlini
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Morozumi Y, Hayashi Y, Chu CM, Sofyantoro F, Akikusa Y, Fukuda T, Shiozaki K. Fission yeast Pib2 localizes to vacuolar membranes and regulates TOR complex 1 through evolutionarily conserved domains. FEBS Lett 2024; 598:2886-2896. [PMID: 39010328 DOI: 10.1002/1873-3468.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
TOR complex 1 (TORC1) is a multi-protein kinase complex that coordinates cellular growth with environmental cues. Recent studies have identified Pib2 as a critical activator of TORC1 in budding yeast. Here, we show that loss of Pib2 causes severe growth defects in fission yeast cells, particularly when basal TORC1 activity is diminished by hypomorphic mutations in tor2, the gene encoding the catalytic subunit of TORC1. Consistently, TORC1 activity is significantly compromised in the tor2 hypomorphic mutants lacking Pib2. Moreover, as in budding yeast, fission yeast Pib2 localizes to vacuolar membranes via its FYVE domain, with its tail motif indispensable for TORC1 activation. These results strongly suggest that Pib2-mediated positive regulation of TORC1 is evolutionarily conserved between the two yeast species.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yumi Hayashi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Cuong Minh Chu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Morozumi Y, Mahayot F, Nakase Y, Soong JX, Yamawaki S, Sofyantoro F, Imabata Y, Oda AH, Tamura M, Kofuji S, Akikusa Y, Shibatani A, Ohta K, Shiozaki K. Rapamycin-sensitive mechanisms confine the growth of fission yeast below the temperatures detrimental to cell physiology. iScience 2024; 27:108777. [PMID: 38269097 PMCID: PMC10805665 DOI: 10.1016/j.isci.2023.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Cells cease to proliferate above their growth-permissible temperatures, a ubiquitous phenomenon generally attributed to heat damage to cellular macromolecules. We here report that, in the presence of rapamycin, a potent inhibitor of Target of Rapamycin Complex 1 (TORC1), the fission yeast Schizosaccharomyces pombe can proliferate at high temperatures that usually arrest its growth. Consistently, mutations to the TORC1 subunit RAPTOR/Mip1 and the TORC1 substrate Sck1 significantly improve cellular heat resistance, suggesting that TORC1 restricts fission yeast growth at high temperatures. Aiming for a more comprehensive understanding of the negative regulation of high-temperature growth, we conducted genome-wide screens, which identified additional factors that suppress cell proliferation at high temperatures. Among them is Mks1, which is phosphorylated in a TORC1-dependent manner, forms a complex with the 14-3-3 protein Rad24, and suppresses the high-temperature growth independently of Sck1. Our study has uncovered unexpected mechanisms of growth restraint even below the temperatures deleterious to cell physiology.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fontip Mahayot
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukiko Nakase
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Jia Xin Soong
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sayaka Yamawaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - Yuki Imabata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Arisa H. Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shunsuke Kofuji
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ayu Shibatani
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Segreto R, Bazafkan H, Millinger J, Schenk M, Atanasova L, Doppler M, Büschl C, Boeckstaens M, Soto Diaz S, Schreiner U, Sillo F, Balestrini R, Schuhmacher R, Zeilinger S. The TOR kinase pathway is relevant for nitrogen signaling and antagonism of the mycoparasite Trichoderma atroviride. PLoS One 2022; 16:e0262180. [PMID: 34972198 PMCID: PMC8719763 DOI: 10.1371/journal.pone.0262180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/18/2021] [Indexed: 01/14/2023] Open
Abstract
Trichoderma atroviride (Ascomycota, Sordariomycetes) is a well-known mycoparasite applied for protecting plants against fungal pathogens. Its mycoparasitic activity involves processes shared with plant and human pathogenic fungi such as the production of cell wall degrading enzymes and secondary metabolites and is tightly regulated by environmental cues. In eukaryotes, the conserved Target of Rapamycin (TOR) kinase serves as a central regulator of cellular growth in response to nutrient availability. Here we describe how alteration of the activity of TOR1, the single and essential TOR kinase of T. atroviride, by treatment with chemical TOR inhibitors or by genetic manipulation of selected TOR pathway components affected various cellular functions. Loss of TSC1 and TSC2, that are negative regulators of TOR complex 1 (TORC1) in mammalian cells, resulted in altered nitrogen source-dependent growth of T. atroviride, reduced mycoparasitic overgrowth and, in the case of Δtsc1, a diminished production of numerous secondary metabolites. Deletion of the gene encoding the GTPase RHE2, whose mammalian orthologue activates mTORC1, led to rapamycin hypersensitivity and altered secondary metabolism, but had an only minor effect on vegetative growth and mycoparasitic overgrowth. The latter also applied to mutants missing the npr1-1 gene that encodes a fungus-specific kinase known as TOR target in yeast. Genome-wide transcriptome analysis confirmed TOR1 as a regulatory hub that governs T. atroviride metabolism and processes associated to ribosome biogenesis, gene expression and translation. In addition, mycoparasitism-relevant genes encoding terpenoid and polyketide synthases, peptidases, glycoside hydrolases, small secreted cysteine-rich proteins, and G protein coupled receptors emerged as TOR1 targets. Our results provide the first in-depth insights into TOR signaling in a fungal mycoparasite and emphasize its importance in the regulation of processes that critically contribute to the antagonistic activity of T. atroviride.
Collapse
Affiliation(s)
- Rossana Segreto
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Hoda Bazafkan
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Julia Millinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Martina Schenk
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Lea Atanasova
- Institute of Food Technology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Christoph Büschl
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Mélanie Boeckstaens
- Département de Biologie Moléculaire, Laboratory of Biology of Membrane Transport, Université Libre de Bruxelles, Gosselies, Belgium
| | - Silvia Soto Diaz
- Département de Biologie Moléculaire, Laboratory of Biology of Membrane Transport, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | | | | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Center for Analytical Chemistry, University of Natural, Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
6
|
Calvo IA, Sharma S, Paulo JA, Gulka AO, Boeszoermenyi A, Zhang J, Lombana JM, Palmieri CM, Laviolette LA, Arthanari H, Iliopoulos O, Gygi SP, Motamedi M. The fission yeast FLCN/FNIP complex augments TORC1 repression or activation in response to amino acid (AA) availability. iScience 2021; 24:103338. [PMID: 34805795 PMCID: PMC8590082 DOI: 10.1016/j.isci.2021.103338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The target of Rapamycin complex1 (TORC1) senses and integrates several environmental signals, including amino acid (AA) availability, to regulate cell growth. Folliculin (FLCN) is a tumor suppressor (TS) protein in renal cell carcinoma, which paradoxically activates TORC1 in response to AA supplementation. Few tractable systems for modeling FLCN as a TS are available. Here, we characterize the FLCN-containing complex in Schizosaccharomyces pombe (called BFC) and show that BFC augments TORC1 repression and activation in response to AA starvation and supplementation, respectively. BFC co-immunoprecipitates V-ATPase, a TORC1 modulator, and regulates its activity in an AA-dependent manner. BFC genetic and proteomic networks identify the conserved peptide transmembrane transporter Ptr2 and the phosphoribosylformylglycinamidine synthase Ade3 as new AA-dependent regulators of TORC1. Overall, these data ascribe an additional repressive function to Folliculin in TORC1 regulation and reveal S. pombe as an excellent system for modeling the AA-dependent, FLCN-mediated repression of TORC1 in eukaryotes.
Collapse
Affiliation(s)
- Isabel A. Calvo
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Shalini Sharma
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander O.D. Gulka
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Andras Boeszoermenyi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyu Zhang
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Jose M. Lombana
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Christina M. Palmieri
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Laura A. Laviolette
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Haribabu Arthanari
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Othon Iliopoulos
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
7
|
Qian J, Su S, Liu P. Experimental Approaches in Delineating mTOR Signaling. Genes (Basel) 2020; 11:E738. [PMID: 32630768 PMCID: PMC7397015 DOI: 10.3390/genes11070738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
The mTOR signaling controls essential biological functions including proliferation, growth, metabolism, autophagy, ageing, and others. Hyperactivation of mTOR signaling leads to a plethora of human disorders; thus, mTOR is an attractive drug target. The discovery of mTOR signaling started from isolation of rapamycin in 1975 and cloning of TOR genes in 1993. In the past 27 years, numerous research groups have contributed significantly to advancing our understanding of mTOR signaling and mTOR biology. Notably, a variety of experimental approaches have been employed in these studies to identify key mTOR pathway members that shape up the mTOR signaling we know today. Technique development drives mTOR research, while canonical biochemical and yeast genetics lay the foundation for mTOR studies. Here in this review, we summarize major experimental approaches used in the past in delineating mTOR signaling, including biochemical immunoprecipitation approaches, genetic approaches, immunofluorescence microscopic approaches, hypothesis-driven studies, protein sequence or motif search driven approaches, and bioinformatic approaches. We hope that revisiting these distinct types of experimental approaches will provide a blueprint for major techniques driving mTOR research. More importantly, we hope that thinking and reasonings behind these experimental designs will inspire future mTOR research as well as studies of other protein kinases beyond mTOR.
Collapse
Affiliation(s)
- Jiayi Qian
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Forte GM, Davie E, Lie S, Franz-Wachtel M, Ovens AJ, Wang T, Oakhill JS, Maček B, Hagan IM, Petersen J. Import of extracellular ATP in yeast and man modulates AMPK and TORC1 signalling. J Cell Sci 2019; 132:jcs223925. [PMID: 30814334 PMCID: PMC6467490 DOI: 10.1242/jcs.223925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 02/15/2019] [Indexed: 01/31/2023] Open
Abstract
AMP-activated kinase (AMPK) and target of rapamycin (TOR) signalling coordinate cell growth, proliferation, metabolism and cell survival with the nutrient environment of cells. The poor vasculature and nutritional stress experienced by cells in solid tumours raises the question: how do they assimilate sufficient nutrients to survive? Here, we show that human and fission yeast cells import ATP and AMP from their external environment to regulate AMPK and TOR signalling. Exposure of fission yeast (Schizosaccharomyces pombe) and human cells to external AMP impeded cell growth; however, in yeast this restraining impact required AMPK. In contrast, external ATP rescued the growth defect of yeast mutants with reduced TORC1 signalling; furthermore, exogenous ATP transiently enhanced TORC1 signalling in both yeast and human cell lines. Addition of the PANX1 channel inhibitor probenecid blocked ATP import into human cell lines suggesting that this channel may be responsible for both ATP release and uptake in mammals. In light of these findings, it is possible that the higher extracellular ATP concentration reported in solid tumours is both scavenged and recognized as an additional energy source beneficial for cell growth.
Collapse
Affiliation(s)
- Gabriella M Forte
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Elizabeth Davie
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Shervi Lie
- Flinders Centre for Innovation in Cancer, College of Medicine & Public health, Flinders University, Adelaide, SA 5001, Australia
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Ashley J Ovens
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Tingting Wang
- Flinders Centre for Innovation in Cancer, College of Medicine & Public health, Flinders University, Adelaide, SA 5001, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Boris Maček
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Iain M Hagan
- Cancer Research UK Manchester institute, Alderley Park, Macclesfield SK10 4TG, United Kingdom
| | - Janni Petersen
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
- Flinders Centre for Innovation in Cancer, College of Medicine & Public health, Flinders University, Adelaide, SA 5001, Australia
- South Australia Health and Medical Research Institute, North Terrace, PO Box 11060, Adelaide SA 5000 Australia
| |
Collapse
|
9
|
Teng X, Yau E, Sing C, Hardwick JM. Whi2 signals low leucine availability to halt yeast growth and cell death. FEMS Yeast Res 2018; 18:5083179. [PMID: 30165592 PMCID: PMC6149368 DOI: 10.1093/femsyr/foy095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/26/2018] [Indexed: 12/16/2022] Open
Abstract
Cells are exquisitely tuned to environmental ques. Amino acid availability is rapidly sensed, allowing cells to adjust molecular processes and implement short or long-term metabolic shifts accordingly. How levels of most individual amino acids may be sensed and subsequently signaled to inform cells of their nutrient status is largely unknown. We made the unexpected observation that small changes in the levels of specific amino acids can have a profound effect on yeast cell growth, leading to the identification of yeast Whi2 as a negative regulator of cell growth in low amino acids. Although Whi2 was originally thought to be fungi-specific, Whi2 appears to share a conserved structural domain found in a family of 25 largely uncharacterized human genes encoding the KCTD (potassium channel tetramerization domain) protein family. Insights gained from yeast Whi2 are likely to be revealing about human KCTDs, many of which have been implicated or demonstrated to cause disease when mutated. Here we report new evidence that Whi2 responds to specific amino acids in the medium, particularly low leucine levels. We also discuss the known pathways of amino acid signaling and potential points of regulation by Whi2 in nutrient signaling in yeast and mammals.
Collapse
Affiliation(s)
- Xinchen Teng
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 215123 Suzhou, Jiangsu Province, People's Republic of China
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| | - Eric Yau
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - Cierra Sing
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205-2103, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2103, USA
| |
Collapse
|
10
|
Nakase Y, Matsumoto T. The RHEB-mTOR axis regulates expression of Tf2 transposons in fission yeast. J Cell Sci 2018; 131:jcs.221457. [PMID: 30301783 DOI: 10.1242/jcs.221457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/01/2018] [Indexed: 01/12/2023] Open
Abstract
The human TSC2 gene, mutations in which predispose individuals to the disease tuberous sclerosis complex (TSC), encodes a GTPase-activating protein for the GTPase RHEB. Loss of TSC2 results in constitutive activation of RHEB and its target mammalian target of rapamycin (mTOR). We have previously reported that fission yeast (Schizosaccharomyces pombe) Tf2 retrotransposons (hereafter Tf2s) are abnormally induced upon nitrogen starvation in cells lacking the tsc2+ gene (Δtsc2), a homolog of the human TSC2 gene, and in cells with a dominant-active mutation in the fission yeast RHEB GTPase (rhb1-DA4). We report here that induction of Tf2s in these mutants is suppressed upon overexpression of the cgs2+ gene, which encodes a cAMP-specific phosphodiesterase, or upon deletion of components in the glucose/cAMP signaling pathway, namely Cyr1, Pka1, Tor1 and the stress-activated transcription factor Atf1. The results suggest that the glucose/cAMP signaling pathway is downregulated when cells are starved for nitrogen. We also show that Tf2 proteins are degraded via autophagy, which is under control of Tor2, a homolog of human mTOR. It appears that failure in the two processes, downregulation of the glucose/cAMP signaling pathway and induction of autophagy, allows abnormal induction of Tf2s upon nitrogen starvation in Δtsc2 and rhb1-DA4 cells.
Collapse
Affiliation(s)
- Yukiko Nakase
- Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto 606-8501, Japan
| | - Tomohiro Matsumoto
- Radiation Biology Center, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto 606-8501, Japan .,Graduate School of Biostudies, Kyoto University, Yoshida-Konoe cho, Sakyo ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Tee AR. The Target of Rapamycin and Mechanisms of Cell Growth. Int J Mol Sci 2018; 19:ijms19030880. [PMID: 29547541 PMCID: PMC5877741 DOI: 10.3390/ijms19030880] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023] Open
Abstract
Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin) is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1) enhances the cell’s capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.
Collapse
Affiliation(s)
- Andrew R Tee
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
12
|
Chia KH, Fukuda T, Sofyantoro F, Matsuda T, Amai T, Shiozaki K. Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases. eLife 2017; 6:30880. [PMID: 29199950 PMCID: PMC5752196 DOI: 10.7554/elife.30880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022] Open
Abstract
TOR complex 1 (TORC1) is an evolutionarily conserved protein kinase complex that promotes cellular macromolecular synthesis and suppresses autophagy. Amino-acid-induced activation of mammalian TORC1 is initiated by its recruitment to the RagA/B-RagC/D GTPase heterodimer, which is anchored to lysosomal membranes through the Ragulator complex. We have identified in the model organism Schizosaccharomyces pombe a Ragulator-like complex that tethers the Gtr1-Gtr2 Rag heterodimer to the membranes of vacuoles, the lysosome equivalent in yeasts. Unexpectedly, the Ragulator-Rag complex is not required for the vacuolar targeting of TORC1, but the complex plays a crucial role in attenuating TORC1 activity independently of the Tsc1-Tsc2 complex, a known negative regulator of TORC1 signaling. The GATOR1 complex, which functions as Gtr1 GAP, is essential for the TORC1 attenuation by the Ragulator-Rag complex, suggesting that Gtr1GDP-Gtr2 on vacuolar membranes moderates TORC1 signaling for optimal cellular response to nutrients.
Collapse
Affiliation(s)
- Kim Hou Chia
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tomoyuki Fukuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Cellular Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fajar Sofyantoro
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Takato Matsuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Takamitsu Amai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Kazuhiro Shiozaki
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
| |
Collapse
|
13
|
Laboucarié T, Detilleux D, Rodriguez-Mias RA, Faux C, Romeo Y, Franz-Wachtel M, Krug K, Maček B, Villén J, Petersen J, Helmlinger D. TORC1 and TORC2 converge to regulate the SAGA co-activator in response to nutrient availability. EMBO Rep 2017; 18:2197-2218. [PMID: 29079657 DOI: 10.15252/embr.201744942] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Gene expression regulation is essential for cells to adapt to changes in their environment. Co-activator complexes have well-established roles in transcriptional regulation, but less is known about how they sense and respond to signaling cues. We have previously shown that, in fission yeast, one such co-activator, the SAGA complex, controls gene expression and the switch from proliferation to differentiation in response to nutrient availability. Here, using a combination of genetic, biochemical, and proteomic approaches, we show that SAGA responds to nutrients through the differential phosphorylation of its Taf12 component, downstream of both the TORC1 and TORC2 pathways. Taf12 phosphorylation increases early upon starvation and is controlled by the opposing activities of the PP2A phosphatase, which is activated by TORC1, and the TORC2-activated Gad8AKT kinase. Mutational analyses suggest that Taf12 phosphorylation prevents cells from committing to differentiation until starvation reaches a critical level. Overall, our work reveals that SAGA is a direct target of nutrient-sensing pathways and has uncovered a mechanism by which TORC1 and TORC2 converge to control gene expression and cell fate decisions.
Collapse
Affiliation(s)
| | | | | | - Céline Faux
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | - Yves Romeo
- CRBM, CNRS, University of Montpellier, Montpellier, France
| | | | | | - Boris Maček
- Proteome Center Tübingen, Tuebingen, Germany
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, School of Medicine, Faculty of Health Science, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
14
|
Nguyen TP, Frank AR, Jewell JL. Amino acid and small GTPase regulation of mTORC1. CELLULAR LOGISTICS 2017; 7:e1378794. [PMID: 29296509 PMCID: PMC5739091 DOI: 10.1080/21592799.2017.1378794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/03/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) family. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1), which integrates multiple environmental signals to control cell growth and metabolism. Nutrients, specifically amino acids, are the most potent stimuli for mTORC1 activation. Multiple studies have focused on how leucine and arginine activate mTORC1 through the Rag GTPases, with mechanistic details slowly emerging. Recently, a Rag GTPase-independent glutamine signaling pathway to mTORC1 has been identified, suggesting that mTORC1 is differentially regulated through distinct pathways by specific amino acids. In this review, we summarize our current understanding of how amino acids modulate mTORC1, and the role of other small GTPases in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
15
|
Abstract
All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.
Collapse
|
16
|
Armijo ME, Campos T, Fuentes-Villalobos F, Palma ME, Pincheira R, Castro AF. Rheb signaling and tumorigenesis: mTORC1 and new horizons. Int J Cancer 2015; 138:1815-23. [PMID: 26234902 DOI: 10.1002/ijc.29707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 01/05/2023]
Abstract
Rheb is a conserved small GTPase that belongs to the Ras superfamily, and is mainly involved in activation of cell growth through stimulation of mTORC1 activity. Because deregulation of the Rheb/mTORC1 signaling is associated with proliferative disorders and cancer, inhibition of mTORC1 has been therapeutically approached. Although this therapy has proven antitumor activity, its efficacy is not as expected. Here, we will review the main work on the identification of the role of Rheb in cell growth, and on the relevance of Rheb in proliferative disorders, including cancer. We will also review the Rheb functions that could explain tumor resistance to therapies with mTORC1 inhibitors, and will mainly focus our discussion on mTORC1-independent Rheb functions that could also be implicated in cancer cell survival and tumorigenesis. The current progress on the understanding of the noncanonical Rheb functions prompts future studies to establish their relevance in cancer and in the context of current cancer therapies.
Collapse
Affiliation(s)
- Marisol E Armijo
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Tania Campos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Francisco Fuentes-Villalobos
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Mario E Palma
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Roxana Pincheira
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| | - Ariel F Castro
- Laboratorio de Transducción de Señales y Cáncer, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad De Concepción, Concepción, Chile
| |
Collapse
|
17
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Davie E, Forte GMA, Petersen J. Nitrogen regulates AMPK to control TORC1 signaling. Curr Biol 2015; 25:445-54. [PMID: 25639242 PMCID: PMC4331286 DOI: 10.1016/j.cub.2014.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/06/2014] [Accepted: 12/10/2014] [Indexed: 10/29/2022]
Abstract
BACKGROUND Cell growth and cell-cycle progression are tightly coordinated to enable cells to adjust their size (timing of division) to the demands of proliferation in varying nutritional environments. In fission yeast, nitrogen stress results in sustained proliferation at a reduced size. RESULTS Here, we show that cells can sense nitrogen stress to reduce target of rapamycin complex-1 (TORC1) activity. Nitrogen-stress-induced TORC1 inhibition differs from amino-acid-dependent control of TORC1 and requires the Ssp2 (AMPKα) kinase, the Tsc1/2 complex, and Rhb1 GTPase. Importantly, the β and γ regulatory subunits of AMPK are not required to control cell division in response to nitrogen stress, providing evidence for a nitrogen-sensing mechanism that is independent of changes in intracellular ATP/AMP levels. The CaMKK homolog Ssp1 is constitutively required for phosphorylation of the AMPKα(Ssp2) T loop. However, we find that a second homolog CaMKK(Ppk34) is specifically required to stimulate AMPKα(Ssp2) activation in response to nitrogen stress. Finally, ammonia also controls mTORC1 activity in human cells; mTORC1 is activated upon the addition of ammonium to glutamine-starved Hep3B cancer cells. CONCLUSIONS The alternative nitrogen source ammonia can simulate TORC1 activity to support growth and division under challenging nutrient settings, a situation often seen in cancer.
Collapse
Affiliation(s)
- Elizabeth Davie
- Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Gabriella M A Forte
- Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Janni Petersen
- Faculty of Life Sciences, University of Manchester, C.4255 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, SA 5001, Australia.
| |
Collapse
|
20
|
Olwill SA, Joffroy C, Gille H, Vigna E, Matschiner G, Allersdorfer A, Lunde BM, Jaworski J, Burrows JF, Chiriaco C, Christian HJ, Hülsmeyer M, Trentmann S, Jensen K, Hohlbaum AM, Audoly L. A Highly Potent and Specific MET Therapeutic Protein Antagonist with Both Ligand-Dependent and Ligand-Independent Activity. Mol Cancer Ther 2013; 12:2459-71. [DOI: 10.1158/1535-7163.mct-13-0318] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Cao M, Tan X, Jin W, Zheng H, Xu W, Rui Y, Li L, Cao J, Wu X, Cui G, Ke K, Gao Y. Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation. Neurochem Int 2013; 62:406-17. [PMID: 23391520 DOI: 10.1016/j.neuint.2013.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/16/2012] [Accepted: 01/26/2013] [Indexed: 12/16/2022]
Abstract
Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time-space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nakase Y, Nakase M, Kashiwazaki J, Murai T, Otsubo Y, Mabuchi I, Yamamoto M, Takegawa K, Matsumoto T. Fission yeast Any1, β-arrestin-like protein, is involved in TSC-Rheb signaling and the regulation of amino acid transporters. J Cell Sci 2013; 126:3972-81. [DOI: 10.1242/jcs.128355] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rheb GTPase and the Tsc1-Tsc2 protein complex, which serves as a GTPase-activating protein for Rheb, play critical roles in the regulation of cell growth in response to extracellular conditions. In Schizosaccharomyces pombe, Rheb and Tsc1-Tsc2 regulate cell cycle progression, the onset of meiosis, and the uptake of amino acids. In cells lacking Tsc2 (Δtsc2), the amino acid transporter Aat1, which is normally expressed on the plasma membrane under starvation conditions, is confined to the Golgi. Here, we show that the loss of either pub1+, encoding an E3 ubiquitin ligase, or any1+, encoding a β-arrestin-like protein, allows constitutive expression of Aat1 on the plasma membrane in Δtsc2 cells, suggesting that Pub1 and Any1 are required for localization of Aat1 to the Golgi. Subsequent analysis revealed that in the Golgi, Pub1 and Any1 form a complex that ubiquitinates Aat1. Physical interaction of Pub1 and Any1 is more stable in Δtsc2 than in wild-type cells and is independent of Tor2 activity. These results indicate that the TSC-Rheb signaling pathway regulates localization of amino acid transporters via Pub1 and Any1 in Tor2-independent manner. Our study demonstrates that unlike budding yeast in which Rsp5 and ARTs, a pair of proteins analogous to Pub1 and Any1, respectively, primarily act to reduce expression of the transporters on PM when nutrients are abundant, the primary role of fission yeast Pub1 and Any1 is to store the transporter in the Golgi under nutrient-rich conditions.
Collapse
|
23
|
Lee MN, Koh A, Park D, Jang JH, Kwak D, Jeon H, Kim J, Choi EJ, Jeong H, Suh PG, Ryu SH. Deacetylated αβ-tubulin acts as a positive regulator of Rheb GTPase through increasing its GTP-loading. Cell Signal 2012. [PMID: 23178303 DOI: 10.1016/j.cellsig.2012.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ras homolog enriched in brain (Rheb) regulates diverse cellular functions by modulating its nucleotide-bound status. Although Rheb contains a high basal GTP level, the regulatory mechanism of Rheb is not well understood. In this study, we propose soluble αβ-tubulin acts as a constitutively active Rheb activator, which may explain the reason why Rheb has a high basal GTP levels. We found that soluble αβ-tubulin is a direct Rheb-binding protein and that its deacetylated form has a high binding affinity for Rheb. Modulation of both soluble and acetylated αβ-tubulin levels affects the level of GTP-bound Rheb. This occurs in the mitotic phase in which the level of acetylated αβ-tubulin is increased but that of GTP-bound Rheb is decreased. Constitutively active Rheb-overexpressing cells showed an abnormal mitotic progression, suggesting the deacetylated αβ-tubulin-mediated regulation of Rheb status may be important for proper mitotic progression. Taken together, we propose that deacetylated soluble αβ-tubulin is a novel type of positive regulator of Rheb and may play a role as a temporal regulator for Rheb during the cell cycle.
Collapse
Affiliation(s)
- Mi Nam Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. EUKARYOTIC CELL 2011; 11:168-82. [PMID: 22194462 DOI: 10.1128/ec.05200-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is a major fungal pathogen in humans. In C. albicans, secreted aspartyl protease 2 (Sap2) is the most highly expressed secreted aspartic protease in vitro and is a virulence factor. Recent research links the small GTPase Rhb1 to C. albicans target of rapamycin (TOR) signaling in response to nitrogen availability. The results of this study show that Rhb1 is related to cell growth through the control of SAP2 expression when protein is the major nitrogen source. This process involves various components of the TOR signaling pathway, including Tor1 kinase and its downstream effectors. TOR signaling not only controls SAP2 transcription but also affects Sap2 protein levels, possibly through general amino acid control. DNA microarray analysis identifies other target genes downstream of Rhb1 in addition to SAP2. These findings provide new insight into nutrients, Rhb1-TOR signaling, and expression of C. albicans virulence factor.
Collapse
|
25
|
Nakashima A, Sato T, Tamanoi F. Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci 2010; 123:777-86. [PMID: 20144990 DOI: 10.1242/jcs.060319] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular activities are regulated by environmental stimuli through protein phosphorylation. Target of rapamycin (TOR), a serine/threonine kinase, plays pivotal roles in cell proliferation and cell growth in response to nutrient status. In Schizosaccharomyces pombe, TORC1, which contains Tor2, plays crucial roles in nutrient response. Here we find a nitrogen-regulated phosphoprotein, p27, in S. pombe using the phospho-Akt substrate antibody. Response of p27 phosphorylation to nitrogen availability is mediated by TORC1 and the TSC-Rhb1 signaling, but not by TORC2 or other nutrient stress-related pathways. Database and biochemical analyses indicate that p27 is identical to ribosomal protein S6 (Rps6). Ser235 and Ser236 in Rps6 are necessary for Rps6 phosphorylation by TORC1. These Rps6 phosphorylations are dispensable for cell viability. Rps6 phosphorylation by TORC1 also responds to availability of glucose and is inhibited by osmotic and oxidative stresses. Rapamycin inhibits the ability of TORC1 to phosphorylate Rps6, owing to interaction of the rapamycin-FKBP12 complex with the FRB domain in Tor2. Rapamycin also leads to a decrease in cell size in a TORC1-dependent manner. Our findings demonstrate that the nutrient-responsive and rapamycin-sensitive TORC1-S6 signaling exists in S. pombe, and that this pathway plays a role in cell size control.
Collapse
Affiliation(s)
- Akio Nakashima
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
26
|
Abstract
The TSC/Rheb/TORC1/S6K/S6 signaling pathway plays critical roles in regulating protein synthesis and growth in eukaryotes. Our recent work using fission yeast Schizosaccharomyces pombe revealed that this signaling pathway is conserved from humans to fission yeast. In addition to target of rapamycin (TOR) homologsand tuberous sclerosis complex (TSC) homologs, fission yeast but not budding yeast, has a functional homolog of Rheb, a small G-protein acting as an activator of TOR complex 1 (TORC1). Several lines of genetic evidence suggest that the Tsc1-Tsc2 complex and Rheb act as upstream players of TORC1 in fission yeast. We have recently demonstrated that TORC1, but not TORC2, regulates phosphorylation of ribosomal protein S6 in response to nutrient availability. Candidate S6 kinase (S6K) protein has been identified. In addition, we find that rapamycin prevents a subset of TORC1 activity to regulate S6 phosphorylation in fission yeast.
Collapse
Affiliation(s)
- Akio Nakashima
- Department of Microbiology, Immunology and Molecular Genetics Molecular Biology Institute, Jonsson Comprehensive Cancer Center University of California, Los Angeles, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics Molecular Biology Institute, Jonsson Comprehensive Cancer Center University of California, Los Angeles, California, USA
| |
Collapse
|
27
|
Pires ABL, Gramacho KP, Silva DC, Góes-Neto A, Silva MM, Muniz-Sobrinho JS, Porto RF, Villela-Dias C, Brendel M, Cascardo JCM, Pereira GAG. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol 2009; 9:158. [PMID: 19653910 PMCID: PMC2782264 DOI: 10.1186/1471-2180-9-158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 08/04/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. RESULTS Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus. CONCLUSION The identification of genes with increased expression in this phase of the life cycle of M. perniciosa opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both in vivo and in vitro of M. perniciosa basidiomata and the first description of genes expressed at this stage of the fungal life cycle.
Collapse
Affiliation(s)
- Acássia B L Pires
- Centro de Biotecnologia e Genética, Laboratório de Genômica e Expressão Gênica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-000, Ilhéus-Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Distinctive responses to nitrogen starvation in the dominant active mutants of the fission yeast Rheb GTPase. Genetics 2009; 183:517-27. [PMID: 19620394 DOI: 10.1534/genetics.109.105379] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rheb, a Ras-like small GTPase conserved from human to yeast, controls Tor kinase and plays a central role in the regulation of cell growth depending on extracellular conditions. Rhb1 (a fission yeast homolog of Rheb) regulates amino acid uptake as well as response to nitrogen starvation. In this study, we generated two mutants, rhb1-DA4 and rhb1-DA8, and characterized them genetically. The V17A mutation within the G1 box defined for the Ras-like GTPases was responsible for rhb1-DA4 and Q52R I76F within the switch II domain for rhb1-DA8. In fission yeast, two events--the induction of the meiosis-initiating gene mei2+ and cell division without cell growth--are a typical response to nitrogen starvation. Under nitrogen-rich conditions, Rheb stimulates Tor kinase, which, in turn, suppresses the response to nitrogen starvation. While amino acid uptake was prevented by both rhb1-DA4 and rhb1-DA8 in a dominant fashion, the response to nitrogen starvation was prevented only by rhb1-DA4. rhb1-DA8 thereby allowed genetic dissection of the Rheb-dependent signaling cascade. We postulate that the signaling cascade may branch below Rhb1 or Tor2 and regulate the amino acid uptake and response to nitrogen starvation independently.
Collapse
|
29
|
Tsao CC, Chen YT, Lan CY. A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol 2008; 46:126-36. [PMID: 19095072 DOI: 10.1016/j.fgb.2008.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 02/02/2023]
Abstract
Rheb is a new member of the small G proteins of the Ras superfamily in eukaryotic organisms and controls various physiological processes. Activity of Rheb is regulated by Tsc2, a GTPase-activating protein (GAP). In this study, we have identified Candida albicans homologs of Rheb (named as Rhb1) and Tsc2. Deletion of the RHB1 gene showed enhanced sensitivity to rapamycin (an inhibitor of TOR kinase), suggesting that Rhb1 is associated with the TOR signaling pathway in C. albicans. Further analysis indicated RHB1 and TSC2 are involved in nitrogen starvation-induced filamentation, likely by controlling the expression of MEP2 whose gene product is an ammonium permease and a sensor for the nitrogen signal. Moreover, we have demonstrated that Rhb1 is also involved in cell wall integrity pathway, by transferring signals through the TOR kinase and the Mkc1 MAP kinase pathway. Together, this study brings new insights into the complex interplay of signaling and regulatory pathways in C. albicans.
Collapse
Affiliation(s)
- Chang-Chih Tsao
- Institute of Molecular and Cellular Biology, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, ROC
| | | | | |
Collapse
|
30
|
Abstract
Fission yeast has two TOR kinases, Tor1 and Tor2. Recent studies have indicated that this microbe has a TSC/Rheb/TOR pathway like higher eukaryotes. Two TOR complexes, namely TORC1 and TORC2, have been identified in this yeast, as in budding yeast and mammals. Fission yeast TORC1, which contains Tor2, and TORC2, which contains Tor1, apparently have opposite functions with regard to the promotion of G1 arrest and sexual development. Rapamycin does not inhibit growth of wild-type fission yeast cells, unlike other eukaryotic cells, but precise analyses have revealed that rapamycin affects certain cellular functions involving TOR in this yeast. It appears that fission yeast has a potential to be an ideal model system to investigate the TOR signaling pathways.
Collapse
Affiliation(s)
- Yoko Otsubo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | |
Collapse
|
31
|
Abstract
Rheb (Ras-homolog enriched in brain) is a component of the phosphatidylinositol 3-kinase (PI3K) target of rapamycin (TOR) signaling pathway, functioning as a positive regulator of TOR. Constitutively active mutants of Rheb induce oncogenic transformation in cell culture. The transformed cells are larger and contain more protein than their normal counterparts. They show constitutive phosphorylation of the ribosomal protein S6 kinase and the eukaryotic initiation factor 4E-binding protein 1, two downstream targets of TOR. The TOR-specific inhibitor rapamycin strongly interferes with transformation induced by constitutively active Rheb, suggesting that TOR activity is essential for the oncogenic effects of mutant Rheb. Rheb-induced transformation is also dependent on a C-terminal farnesylation signal that mediates localization to a cellular membrane. An engineered N-terminal myristylation signal can substitute for the farnesylation. Immunofluorescence localizes wild-type and mutant Rheb to vesicular structures in the cytoplasm, overlapping with the endoplasmic reticulum.
Collapse
Affiliation(s)
- H Jiang
- 1Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
32
|
Hershenson MB, Brown M, Camoretti-Mercado B, Solway J. Airway smooth muscle in asthma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:523-55. [PMID: 18039134 DOI: 10.1146/annurev.pathmechdis.1.110304.100213] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Airway smooth muscle plays a multifaceted role in the pathogenesis of asthma. We review the current understanding of the contribution of airway myocytes to airway inflammation, airway wall remodeling, and airflow obstruction in this prevalent disease syndrome. Together, these roles make airway smooth muscle an attractive target for asthma therapy.
Collapse
Affiliation(s)
- Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
33
|
Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, Ebe M, Yanagida M. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells 2008; 12:1357-70. [PMID: 18076573 DOI: 10.1111/j.1365-2443.2007.01141.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nutrients are essential for cell growth and division. Screening of Schizosaccharomyces pombe temperature-sensitive strains led to the isolation of a nutrient-insensitive mutant, tor2-287. This mutant produces a nitrogen starvation-induced arrest phenotype in rich media, fails to recover from the arrest, and is hypersensitive to rapamycin. The L2048S substitution mutation in the catalytic domain in close proximity to the adenine base of ATP is unique as it is the sole known genetic cause of rapamycin hypersensitivity. Localization of Tor2 was speckled in the vegetative cytoplasm, and both speckled and membranous in the arrested cell cytoplasm. Using mass spectroscopic analysis, we identified six subunits (Tco89, Bit61, Toc1, Tel2, Tti1 and Cka1) that, in addition to the six previously identified subunits (Tor1, Tor2, Mip1/Raptor, Ste20/Rictor, Sin1/Avo1 and Wat1/Lst8), comprise the TOR complexes (TORCs). All of the subunits so far examined are multiply phosphorylated. Tel2 bound to Tti1 interacts with various phosphatidyl inositol kinase (PIK)-related kinases including Tra1, Tra2 and Rad3, as well as Tor1 and Tor2. Schizosaccharomyces pombe TORCs should thus be functionally redundant and might be broadly regulated through different subunits that are either common or specific to the two TORCs, or even common to various PIK-related kinases. Functional redundancy of the TORCs may explain the rapamycin hypersensitivity of tor2-287.
Collapse
Affiliation(s)
- Takeshi Hayashi
- The G0 Cell Unit, Okinawa Institute of Science and Technology Promotion Corporation, Suzaki 12-22, Uruma, Okinawa 904-2234, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 2007; 13:121-8. [PMID: 17909916 DOI: 10.1038/embor.2011.257] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/15/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pancreatic cancer is an exceptionally lethal disease with an annual mortality nearly equivalent to its annual incidence. This dismal rate of survival is due to several factors including late presentation with locally advanced, unresectable tumors, early metastatic disease, and rapidly arising chemoresistance. To study the mechanisms of chemoresistance in pancreatic cancer we developed two gemcitabine-resistant pancreatic cancer cell lines. METHODS Resistant cells were obtained by culturing L3.6pl and AsPC-1 cells in serially increasing concentrations of gemcitabine. Stable cultures were obtained that were 40- to 50-fold increased in resistance relative to parental cells. Immunofluorescent staining was performed to examine changes in beta-catenin and E-cadherin localization. Protein expression was determined by immunoblotting. Migration and invasion were determined by modified Boyden chamber assays. Fluorescence-activated cell sorting (FACS) analyses were performed to examine stem cell markers. RESULTS Gemcitabine-resistant cells underwent distinct morphological changes, including spindle-shaped morphology, appearance of pseudopodia, and reduced adhesion characteristic of transformed fibroblasts. Gemcitabine-resistant cells were more invasive and migratory. Gemcitabine-resistant cells were increased in vimentin and decreased in E-cadherin expression. Immunofluorescence and immunoblotting revealed increased nuclear localization of total beta-catenin. These alterations are hallmarks of epithelial-to-mesenchymal transition (EMT). Resistant cells were activated in the receptor protein tyrosine kinase, c-Met and increased in expression of the stem cell markers CD (cluster of differentiation)24, CD44, and epithelial-specific antigen (ESA). CONCLUSIONS Gemcitabine-resistant pancreatic tumor cells are associated with EMT, a more-aggressive and invasive phenotype in numerous solid tumors. The increased phosphorylation of c-Met may also be related to chemoresistance and EMT and presents as an attractive adjunctive chemotherapeutic target in pancreatic cancer.
Collapse
|
35
|
Boulay A, Lane HA. The mammalian target of rapamycin kinase and tumor growth inhibition. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2007; 172:99-124. [PMID: 17607938 DOI: 10.1007/978-3-540-31209-3_7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anne Boulay
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
36
|
Abstract
The regulatory circuits that control the activities of the two distinct target of rapamycin (TOR) complexes, TORC1 and TORC2, and of Akt have been a focus of intense research in recent years. It has become increasingly evident that these regulatory circuits control some of the most fundamental aspects of metabolism, cell growth, proliferation, survival, and differentiation at both the cellular and organismal levels. As such, they also play a pivotal role in the genesis of diseases including cancer, diabetes, aging, and degenerative diseases. This review highlights recent developments aimed at deciphering the interplay between Akt and mTORCs as well as their role in embryonic development and in cancer.
Collapse
Affiliation(s)
- Prashanth T Bhaskar
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | |
Collapse
|
37
|
Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci U S A 2007; 104:3514-9. [PMID: 17360675 PMCID: PMC1805553 DOI: 10.1073/pnas.0608510104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Indexed: 12/19/2022] Open
Abstract
Rheb is a unique member of the Ras superfamily GTP-binding proteins. We as well as others previously have shown that Rheb is a critical component of the TSC/TOR signaling pathway. In fission yeast, Rheb is encoded by the rhb1 gene. Rhb1p is essential for growth and directly interacts with Tor2p. In this article, we report identification of 22 single amino acid changes in the Tor2 protein that enable growth in the absence of Rhb1p. These mutants also exhibit decreased mating efficiency. Interestingly, the mutations are located in the C-terminal half of the Tor2 protein, clustering mainly within the FAT and kinase domains. We noted some differences in the effect of a mutation in the FAT domain (L1310P) and in the kinase domain (E2221K) on growth and mating. Although the Tor2p mutations bypass Rhb1p's requirement for growth, they are incapable of suppressing Rhb1p's requirement for resistance to stress and toxic amino acids, pointing to multiple functions of Rhb1p. In mammalian systems, we find that mammalian target of rapamycin (mTOR) carrying analogous mutations (L1460P or E2419K), although sensitive to rapamycin, exhibits constitutive activation even when the cells are starved for nutrients. These mutations do not show significant difference in their ability to form complexes with Raptor, Rictor, or mLST8. Furthermore, we present evidence that mutant mTOR can complex with wild-type mTOR and that this heterodimer is active in nutrient-starved cells.
Collapse
Affiliation(s)
- Jun Urano
- *Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and
| | - Tatsuhiro Sato
- *Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and
| | - Tomohiko Matsuo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yoko Otsubo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Fuyuhiko Tamanoi
- *Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095; and
| |
Collapse
|
38
|
Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 2007; 27:3154-64. [PMID: 17261596 PMCID: PMC1899950 DOI: 10.1128/mcb.01039-06] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast has two TOR (target of rapamycin) kinases, namely Tor1 and Tor2. Tor1 is required for survival under stressed conditions, proper G(1) arrest, and sexual development. In contrast, Tor2 is essential for growth. To analyze the functions of Tor2, we constructed two temperature-sensitive tor2 mutants. Interestingly, at the restrictive temperature, these mutants mimicked nitrogen starvation by arresting the cell cycle in G(1) phase and initiating sexual development. Microarray analysis indicated that expression of nitrogen starvation-responsive genes was induced extensively when Tor2 function was suppressed, suggesting that Tor2 normally mediates a signal from the nitrogen source. As with mammalian and budding yeast TOR, we find that fission yeast TOR also forms multiprotein complexes analogous to TORC1 and TORC2. The raptor homologue, Mip1, likely forms a complex predominantly with Tor2, producing TORC1. The rictor/Avo3 homologue, Ste20, and the Avo1 homologue, Sin1, appear to form TORC2 mainly with Tor1 but may also bind Tor2. The Lst8 homologue, Wat1, binds to both Tor1 and Tor2. Our analysis shows, with respect to promotion of G(1) arrest and sexual development, that the loss of Tor1 (TORC2) and the loss of Tor2 (TORC1) exhibit opposite effects. This highlights an intriguing functional relationship among TOR kinase complexes in the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Tomohiko Matsuo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
39
|
Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M. Opposite effects of tor1 and tor2 on nitrogen starvation responses in fission yeast. Genetics 2006; 175:1153-62. [PMID: 17179073 PMCID: PMC1840069 DOI: 10.1534/genetics.106.064170] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The TOR protein kinases exhibit a conserved role in regulating cellular growth and proliferation. In the fission yeast two TOR homologs are present. tor1(+) is required for starvation and stress responses, while tor2(+) is essential. We report here that Tor2 depleted cells show a phenotype very similar to that of wild-type cells starved for nitrogen, including arrest at the G(1) phase of the cell cycle, induction of nitrogen-starvation-specific genes, and entrance into the sexual development pathway. The phenotype of tor2 mutants is in a striking contrast to the failure of tor1 mutants to initiate sexual development or arrest in G(1) under nitrogen starvation conditions. Tsc1 and Tsc2, the genes mutated in the human tuberous sclerosis complex syndrome, negatively regulate the mammalian TOR via inactivation of the GTPase Rheb. We analyzed the genetic relationship between the two TOR genes and the Schizosaccharomyces pombe orthologs of TSC1, TSC2, and Rheb. Our data suggest that like in higher eukaryotes, the Tsc1-2 complex negatively regulates Tor2. In contrast, the Tsc1-2 complex and Tor1 appear to work in parallel, both positively regulating amino acid uptake through the control of expression of amino acid permeases. Additionally, either Tsc1/2 or Tor1 are required for growth on a poor nitrogen source such as proline. Mutants lacking Tsc1 or Tsc2 are highly sensitive to rapamycin under poor nitrogen conditions, suggesting that the function of Tor1 under such conditions is sensitive to rapamycin. We discuss the complex genetic interactions between tor1(+), tor2(+), and tsc1/2(+) and the implications for rapamycin sensitivity in tsc1 or tsc2 mutants.
Collapse
Affiliation(s)
- Ronit Weisman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|
40
|
Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T, Toda T. Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cells 2006; 11:1367-79. [PMID: 17121544 DOI: 10.1111/j.1365-2443.2006.01025.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The target of rapamycin (Tor) plays a pivotal role in cell growth and metabolism. Yeast contains two related proteins, Tor1 and Tor2. In fission yeast, Tor1 is dispensable for normal growth but is involved in amino acid uptake and cell survival under various stress conditions. In contrast, Tor2 is essential for cell proliferation; however, its physiological function remains unknown. Here we characterize the roles of fission yeast Tor2 by creating temperature sensitive (tor2(ts)) mutants. Remarkably, we have found that tor2(ts) mimics nitrogen starvation responses, because the mutant displays a number of phenotypes that are normally induced only on nitrogen deprivation. These include G1 cell-cycle arrest with a small cell size, induction of autophagy and commitment to sexual differentiation. By contrast, tor1Deltator2(ts) double mutant cells show distinct phenotypes, as the cells cease division with normal cell size in the absence of G1 arrest. Tor2 physically interacts with the conserved Rhb1/GTPase. Intriguingly, over-expression of rhb1(+) or deletion of Rhb1-GAP-encoding tsc2(+) is capable of rescuing stress-sensitive phenotypes of the tor1 mutant, implying that Tor1 and Tor2 also share functions in cell survival under adverse environment. We propose that Tor1 and Tor2 are involved in both corroborative and independent roles in nutrient sensing and stress response pathways.
Collapse
Affiliation(s)
- Masahiro Uritani
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Oya Suruga-ku, Shizuoka 422-8529, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The story of rapamycin is a pharmaceutical fairytale. Discovered as an antifungal activity in a soil sample collected on Easter Island, this macrocyclic lactone and its derivatives are now billion dollar drugs, used in, and being evaluated for, a number of clinical applications. Taking advantage of its antifungal property, the molecular Target Of Rapamycin, TOR, was first described in the budding yeast Saccharomyces cerevisiae. TORs encode large, Ser/Thr protein kinases that reside in two distinct, structurally and functionally conserved, multi-protein complexes. In yeast, these complexes coordinate many different aspects of cell growth. TOR complex 1, TORC1, promotes protein synthesis and other anabolic processes, while inhibiting macroautophagy and other catabolic and stress-response processes. TORC2 primarily regulates cell polarity, although additional readouts of this complex are beginning to be characterized. TORC1 appears to be activated by nutrient cues and inhibited by stresses and rapamycin; however, detailed mechanisms are not known. In contrast, TORC2 is insensitive to rapamycin and physiological regulators of this complex have yet to be defined. Given the unsurpassed resources available to yeast researchers, this simple eukaryote continues to contribute to our understanding of eukaryotic cell growth in general and TOR function in particular.
Collapse
Affiliation(s)
- C De Virgilio
- Département de Microbiologie et Médecine Moléculaire, Université de Genève, CMU, Geneva, Switzerland.
| | | |
Collapse
|
42
|
Alvarez B, Moreno S. Fission yeast Tor2 promotes cell growth and represses cell differentiation. J Cell Sci 2006; 119:4475-85. [PMID: 17046992 DOI: 10.1242/jcs.03241] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model system in which to study the coordination of cell growth and cell differentiation. In the presence of nutrients, fission yeast cells grow and divide; in the absence of nutrients, they stop growing and undergo cell differentiation. The molecular mechanisms underlying this response are not fully understood. Here, we demonstrate that Tor2, a fission yeast member of the TOR protein kinase family, is central to controlling the switch between cell growth and cell differentiation in response to nutrient availability. Tor2 controls cell growth and ribosome biogenesis by regulating ribosomal protein gene expression. We have found that Tor2 has an additional function in repressing sexual differentiation. Tor2 overexpression strongly represses mating, meiosis and sporulation efficiency, whereas Tor2 inactivation has the opposite effect, leading to cell differentiation, regardless of the nutritional conditions. This newly revealed function of Tor2 appears to operate by interfering with the functions of the transcription factor Ste11 and the meiosis-promoting RNA-binding protein Mei2. Thus, our data reveal a unique regulatory function of the Tor pathway – ensuring that growth and cell differentiation become mutually exclusive and that the choice between them depends on environmental conditions.
Collapse
Affiliation(s)
- Beatriz Alvarez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | |
Collapse
|
43
|
Yuan J, Shan Y, Chen X, Tang W, Luo K, Ni J, Wan B, Yu L. Identification and characterization of RHEBL1, a novel member of Ras family, which activates transcriptional activities of NF-kappa B. Mol Biol Rep 2006; 32:205-14. [PMID: 16328882 DOI: 10.1007/s11033-005-0984-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
The Ras family of small GTPases regulates a wide variety of cellular functions that include cell growth, differentiation, and transformation. In this study, we identified and characterized a novel member of Ras family named RHEBL1, belonging to the Rheb branch of small GTPase proteins. The cDNA sequence contains an open reading frame of 551 bp, encoding a putative protein of 183 amino acid residues. The expression pattern of RHEBL1 showed that it was ubiquitously expressed in 17 tissues. RHEBL1 gene encodes a 20.69 kDa protein, localized in cytoplasm when overexpressed in COS7 cells. Reporter gene assays showed that overexpression of RHEBL1 in HEK 293T cells strongly activated the transcriptional activities of NF-kappa B, while the mutant (D60K) only weakly activates NF-kappa B-mediated transcription. Our findings suggest that RHEBL1 is a positive regulator of NF-kappa B-mediated gene transcription.
Collapse
Affiliation(s)
- Jian Yuan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Handan Road, Shanghai 200433, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, Tabancay AP, Kato-Stankiewicz J, Tamanoi F. Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 2006; 58:1074-86. [PMID: 16262791 DOI: 10.1111/j.1365-2958.2005.04877.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rheb GTPase is a key player in the control of growth, cell cycle and nutrient uptake that is conserved from yeast to humans. To further our understanding of the Rheb pathway, we sought to identify hyperactivating mutations in the Schizosaccharomyces pombe Rheb, Rhb1. Hyperactive forms of Rhb1 were found to result from single amino acid changes at valine-17, serine-21, lysine-120 or asparagine-153. Expression of these mutants confers resistance to canavanine and thialysine, phenotypes which are similar to phenotypes exhibited by cells lacking the Tsc1/Tsc2 complex that negatively regulates Rhb1. The thialysine-resistant phenotype of the hyperactive Rhb1 mutants is suppressed by a second mutation in the effector domain. Purified mutant proteins exhibit dramatically decreased binding of GDP, while their GTP binding is not drastically affected. In addition, some of the mutant proteins show significantly decreased GTPase activities. Thus the hyperactivating mutations are expected to result in an increase in the GTP-bound/GDP-bound ratio of Rhb1. By using the hyperactive mutant, Rhb1(K120R), we have been able to demonstrate that Rhb1 interacts with Tor2, one of the two S. pombe TOR (Target of Rapamycin) proteins. These fission yeast results provide the first evidence for a GTP-dependent association of Rheb with Tor.
Collapse
Affiliation(s)
- Jun Urano
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dann SG, Thomas G. The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett 2006; 580:2821-9. [PMID: 16684541 DOI: 10.1016/j.febslet.2006.04.068] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
The target of rapamycin (TOR) is an ancient effector of cell growth that integrates signals from growth factors and nutrients. Two downstream effectors of mammalian TOR, the translational components S6K1 and 4EBP1, are commonly used as reporters of mTOR activity. The conical signaling cascade initiated by growth factors is mediated by PI3K, PKB, TSC1/2 and Rheb. However, the process through which nutrients, i.e., amino acids, activate mTOR remains largely unknown. Evidence exists for both an intracellular and/or a membrane bound sensor for amino acid mediated mTOR activation. Research in eukaryotic models, has implicated amino acid transporters as nutrient sensors. This review describes recent advances in nutrient signaling that impinge on mTOR and its targets including hVps34, class III PI3K, a transducer of nutrient availability to mTOR.
Collapse
Affiliation(s)
- Stephen G Dann
- University of Cincinnati Genome Research Institute, 2180 East Galbraith Road, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
46
|
Nakase Y, Fukuda K, Chikashige Y, Tsutsumi C, Morita D, Kawamoto S, Ohnuki M, Hiraoka Y, Matsumoto T. A defect in protein farnesylation suppresses a loss of Schizosaccharomyces pombe tsc2+, a homolog of the human gene predisposing to tuberous sclerosis complex. Genetics 2006; 173:569-78. [PMID: 16624901 PMCID: PMC1526497 DOI: 10.1534/genetics.106.056895] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human Tsc1 and Tsc2 genes predispose to tuberous sclerosis complex (TSC), a disorder characterized by the wide spread of benign tumors. Tsc1 and Tsc2 proteins form a complex and serve as a GTPase-activating protein (GAP) for Rheb, a GTPase regulating a downstream kinase, mTOR. The genome of Schizosaccharomyces pombe contains tsc1(+) and tsc2(+), homologs of human Tsc1 and Tsc2, respectively. In this study we analyzed the gene expression profile on a genomewide scale and found that deletion of either tsc1(+) or tsc2(+) affects gene induction upon nitrogen starvation. Three hours after nitrogen depletion genes encoding permeases and genes required for meiosis are less induced. Under the same condition, retrotransposons, G1-cyclin (pas1(+)), and inv1(+) are more induced. We also demonstrate that a mutation (cpp1-1) in a gene encoding a beta-subunit of a farnesyltransferase can suppress most of the phenotypes associated with deletion of tsc1(+) or tsc2(+). When a mutant of rhb1(+) (homolog of human Rheb), which bypasses the requirement of protein farnesylation, was expressed, the cpp1-1 mutation could no longer suppress, indicating that deficient farnesylation of Rhb1 contributes to the suppression. On the basis of these results, we discuss TSC pathology and possible improvement in chemotherapy for TSC.
Collapse
|
47
|
Patel PH, Tamanoi F. Using Drosophila and yeast genetics to investigate a role for the Rheb GTPase in cell growth. Methods Enzymol 2006; 407:443-54. [PMID: 16757344 DOI: 10.1016/s0076-6879(05)07036-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The small, Ras-like GTPase Rheb plays an important role in the regulation of cell growth by the insulin/PI3K and nutrient/TOR pathways in eukaryotic systems. Studies in genetically tractable organisms such as Drosophila melanogaster and fission yeast (S. pombe) were critical for establishing the significance of Rheb in cell growth. In Drosophila, we find that overexpression of Drosophila Rheb (dRheb) in S2 cells causes their accumulation in S phase and an increase in cell size. In contrast, treatment of S2 cells with double-stranded RNA (RNAi) toward dRheb results in G1 arrest and a reduction in cell size. These altered cell size phenotypes observed in culture are also recapitulated in vivo. Overexpression of dRheb results in increased cell and tissue size without an increase in cell number; reduction of dRheb function results in reduced cell and tissue size. In S. pombe, inhibition of Rheb (SpRheb) expression also results in small, rounded cells that arrest in G0/G1. We will discuss here how we use Drosophila and S. pombe to explain a mechanism by which Rheb promotes cell growth.
Collapse
Affiliation(s)
- Parthive H Patel
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
48
|
Abstract
More than 10 years ago, Rheb (Ras homolog enriched in brain) was identified as a highly conserved protein that is a member of the Ras superfamily of small GTPases, which play critical roles in cell growth and proliferation. Recently, a convergence of genetic and biochemical evidence from yeast, Drosophila, and mammalian cells has placed Rheb upstream of the mammalian target of rapamycin (mTOR) and immediately downstream of the tumor suppressors TSC1 (hamartin) and TSC2 (tuberin). Rheb plays a key role in the regulation of cell growth in response to growth factors, nutrients, and amino acids linking PI3K and TOR signaling. Rheb activation of the nutrient and energy-sensitive TOR pathway leads to the direct phosphorylation of two known downstream translational control targets by mTOR, the 40S ribosomal S6 kinase 1 (S6K1) and the eukaryotic translation initiation factor 4E (eIF4E)- binding protein 1 (4E-BP1). Appropriate regulation of this pathway is crucial for the proper control of cell growth, proliferation, survival, and differentiation. Inappropriate regulation of these signaling molecules, therefore, can lead to a variety of human diseases. In this chapter, we describe cell biological and biochemical methods commonly used to study Rheb activation and dissect its role in the mTOR-signaling pathway.
Collapse
Affiliation(s)
- Jessie Hanrahan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
49
|
Abstract
TSC1 and TSC2 are two recently identified tumour suppressor genes encoding hamartin and tuberin, respectively, and involved in pathogenesis of tuberous sclerosis, neurological disorder connected with the development of hamartomas in numerous organ systems, including the brain, kidneys, heart and liver. Both protein products of TSC1 and TSC2 form an intracellular complex exerting GTPase-activating (GAP) activity towards a small G protein, Ras homologue enriched in brain (Rheb). Inhibition of Rheb is important for the regulation of mTOR pathway, while mutation of hamartin or tuberin results in uncontrolled cell cycle progression. Tuberin, possessing the Rheb-GAP domain, is phosphorylated by several kinases that confer the signals of growth factor stimulation or low cellular energy levels. Such a modification of tuberin influences its activity within the complex with hamartin and positively or negatively modulates mTOR-regulated protein translation and cellular proliferation. Current article describes biochemical properties of hamartin and tuberin, their known regulatory phosphorylation sites and binding partners.
Collapse
Affiliation(s)
- Jaroslaw Jozwiak
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
50
|
van Slegtenhorst M, Mustafa A, Henske EP. Pas1, a G1 cyclin, regulates amino acid uptake and rescues a delay in G1 arrest in Tsc1 and Tsc2 mutants in Schizosaccharomyces pombe. Hum Mol Genet 2005; 14:2851-8. [PMID: 16115814 DOI: 10.1093/hmg/ddi317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tuberous sclerosis complex is a tumor suppressor syndrome caused by mutations in either the TSC1 or the TSC2 gene. Previous studies have shown that deletion of the TSC1 or TSC2 ortholog in Schizosaccharomyces pombe results in an amino acid uptake defect, with conditional lethality. We identified a G1 cyclin, pas1+, as a high-copy suppressor of this defect in Deltatsc1. Disruption of pas1+ causes defects in arginine and leucine uptake that are remarkably similar to Deltatsc1 and Deltatsc2, whereas Deltapas1Deltatsc1 and Deltapas1Deltatsc2 double mutants have more severe amino acid uptake defects. In a second screen, we identified a novel G63D/S165 N mutant of the small GTPase Rhb1, the target of the Tsc1/Tsc2 protein complex. The Rhb1 mutant suppresses amino acid uptake in Deltatsc1 yeast, but not in Deltapas1 yeast. Hence, Pas1 does not regulate amino acid uptake through Rhb1. To determine whether Pas1 links nutrient availability to cell cycle progression downstream of the Tsc1/Tsc2 complex, we examined the kinetics of G1 arrest in single and double mutant strains. After nitrogen starvation, Deltatsc1 and Deltatsc2 yeast had a delay in G1 arrest when compared with wild-type, which was rescued by deletion of pas1+. In summary, we identified the G1 cyclin, Pas1, as a novel regulator of amino acid uptake. Our data support a model in which Pas1 inhibits G1 arrest downstream of Tsc1 and Tsc2, linking nutrient uptake and cell cycle progression in yeast.
Collapse
|