1
|
Cardador M, Krüger S, Dunker S, Brakel A, Hoffmann R, Nagel R, Jakob T, Goss R, Sasso S. Extensive remodeling during Chlamydomonas reinhardtii zygote maturation leads to highly resistant zygospores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17238. [PMID: 39924694 PMCID: PMC11808170 DOI: 10.1111/tpj.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
The unicellular soil alga Chlamydomonas reinhardtii forms diploid zygotes during its sexual cycle. The process of a zygote maturing into a highly resistant zygospore remains poorly understood despite its importance for survival under adverse environmental conditions. Here we describe the detailed timeline of morphological and physiological changes during zygote maturation in darkness on ammonium-free Tris-acetate-phosphate agar plates. The formation of a multilayered cell wall is primarily responsible for the increase in cell size in the first few days after zygote formation. Desiccation and freezing tolerance also develop in the period 3-7 days. Photosynthetic and respiratory activity decrease to reach minimal levels after 7-10 days, accompanied by a partial dedifferentiation of the chloroplast that includes chlorophyll degradation followed by the possible disappearance of the pyrenoid. In contrast to the decreasing concentrations of most carotenoids in the first few days after zygote formation, ketocarotenoids can first be detected after 3 days and their accumulation is completed after 10 days. Furthermore, the zygote degrades a large proportion of its starch and enriches oligosaccharides that may serve as osmoprotectants. The storage lipid triacylglycerol is accumulated at the expense of thylakoid membrane lipids, which mirrors the conversion of a metabolically active cell into a dormant spore on the metabolic level. Taken together, zygote maturation is a multifaceted process that yields mature zygospores after ~ 3 weeks. This work sheds light on the complete time course of the remodeling of a photosynthetically active eukaryotic cell into a dormant, highly resistant spore.
Collapse
Affiliation(s)
| | - Stephanie Krüger
- Biozentrum, Microscopy UnitMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Susanne Dunker
- Helmholtz Centre for Environmental Research (UFZ)Department for Physiological DiversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Alexandra Brakel
- Institute of Bioanalytical ChemistryLeipzig UniversityLeipzigGermany
- Center for Biotechnology and BiomedicineLeipzigGermany
| | - Ralf Hoffmann
- Institute of Bioanalytical ChemistryLeipzig UniversityLeipzigGermany
- Center for Biotechnology and BiomedicineLeipzigGermany
| | - Raimund Nagel
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Torsten Jakob
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Reimund Goss
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Severin Sasso
- Institute of BiologyLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
2
|
Takahashi K, Suzuki S, Kawai-Toyooka H, Yamamoto K, Hamaji T, Ootsuki R, Yamaguchi H, Kawachi M, Higashiyama T, Nozaki H. Reorganization of the ancestral sex-determining regions during the evolution of trioecy in Pleodorina starrii. Commun Biol 2023; 6:590. [PMID: 37296191 PMCID: PMC10256686 DOI: 10.1038/s42003-023-04949-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The coexistence of three sexual phenotypes (male, female and bisexual) in a single species, 'trioecy', is rarely found in diploid organisms such as flowering plants and invertebrates. However, trioecy in haploid organisms has only recently been reported in a green algal species, Pleodorina starrii. Here, we generated whole-genome data of the three sex phenotypes of P. starrii to reveal a reorganization of the ancestral sex-determining regions (SDRs) in the sex chromosomes: the male and bisexual phenotypes had the same "male SDR" with paralogous gene expansions of the male-determining gene MID, whereas the female phenotype had a "female SDR" with transposition of the female-specific gene FUS1 to autosomal regions. Although the male and bisexual sex phenotypes had the identical male SDR and harbored autosomal FUS1, MID and FUS1 expression during sexual reproduction differed between them. Thus, the coexistence of three sex phenotypes in P. starrii is possible.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hiroko Kawai-Toyooka
- Department of Frontier Bioscience, Hosei University, Kajino-cho, Koganei, Tokyo, 184-8584, Japan
| | - Kayoko Yamamoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Takashi Hamaji
- Research and Development Initiative, Chuo University, Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Natural Sciences, Faculty of Arts and Sciences, Komazawa University, Komazawa, Setagaya-ku, Tokyo, 154-8525, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
3
|
Craig RJ, Gallaher SD, Shu S, Salomé PA, Jenkins JW, Blaby-Haas CE, Purvine SO, O’Donnell S, Barry K, Grimwood J, Strenkert D, Kropat J, Daum C, Yoshinaga Y, Goodstein DM, Vallon O, Schmutz J, Merchant SS. The Chlamydomonas Genome Project, version 6: Reference assemblies for mating-type plus and minus strains reveal extensive structural mutation in the laboratory. THE PLANT CELL 2023; 35:644-672. [PMID: 36562730 PMCID: PMC9940879 DOI: 10.1093/plcell/koac347] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 05/20/2023]
Abstract
Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.
Collapse
Affiliation(s)
- Rory J Craig
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sean D Gallaher
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Shengqiang Shu
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095, USA
| | - Jerry W Jenkins
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Crysten E Blaby-Haas
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Samuel O’Donnell
- Laboratory of Computational and Quantitative Biology, UMR 7238, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris 75005, France
| | - Kerrie Barry
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Chris Daum
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - David M Goodstein
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
| | - Olivier Vallon
- Unité Mixte de Recherche 7141, CNRS, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris 75005, France
| | - Jeremy Schmutz
- United States Department of Energy, Joint Genome Institute, Berkeley, California 94720, USA
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Gamete dimorphism of the isogamous green alga (Chlamydomonas reinhardtii), is regulated by the mating type-determining gene, MID. Commun Biol 2022; 5:1333. [PMID: 36473948 PMCID: PMC9726906 DOI: 10.1038/s42003-022-04275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The gametes of chlorophytes differ morphologically even in isogamy and are divided into two types (α and β) based on the mating type- or sex-specific asymmetric positioning of the mating structure (cell fusion apparatus) with respect to the flagellar beat plane and eyespot, irrespective of the difference in gamete size. However, the relationship between this morphological trait and the mating type or sex determination system is unclear. Using mating type-reversed strains of the isogamous alga Chlamydomonas reinhardtii, produced by deletion or introduction of the mating type-determining gene MID, we revealed that the positioning of the mating structure is associated with conversion of mating types (mt- and mt+), implying that this trait is regulated by MID. Moreover, the dominant mating type is associated with the type β phenotype, as in the chlorophyte species Ulva prolifera. Our findings may provide a genetic basis for mating type- or sex-specific asymmetric positioning of the chlorophyte mating structure.
Collapse
|
5
|
Snell WJ. Uncovering an ancestral green ménage à trois: Contributions of Chlamydomonas to the discovery of a broadly conserved triad of plant fertilization proteins. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102275. [PMID: 36007296 PMCID: PMC9899528 DOI: 10.1016/j.pbi.2022.102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 05/10/2023]
Abstract
During sexual reproduction in the unicellular green alga Chlamydomonas, gametes undergo the conserved cellular events that define fertilization across the tree of life. After initial ciliary adhesion, plus and minus gametes attach to each other at plasma membrane sites specialized for fusion, their bilayers merge, and cell coalescence into a quadri-ciliated cell signals for nuclear fusion. Recent findings show that these conserved cellular events are driven by 3 conserved protein families, FUS1/GEX2, HAP2/GCS1, and KAR5/GEX1. New results also show that species-specific recognition in Chlamydomonas activates the ancestral, viral-like fusogen HAP2 to drive fusion; that the conserved nuclear envelope fusion protein KAR5/GEX1 is also essential for nuclear fusion in Arabidopsis; and that heterodimerization of BELL-KNOX proteins signals for nuclear fusion in Chlamydomonas through early diverging land plants. This review outlines how Chlamydomonas's Janus-like position in evolution along with the ease of working with its gametes have revealed broadly conserved mechanisms.
Collapse
Affiliation(s)
- William J Snell
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
6
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Jia M, Munz J, Lee J, Shelley N, Xiong Y, Joo S, Jin E, Lee JH. The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:337-357. [PMID: 35043510 DOI: 10.1111/tpj.15673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Moyan Jia
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jacob Munz
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Nolan Shelley
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yuan Xiong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - EonSeon Jin
- Department of Life Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
8
|
Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA. Nat Commun 2022; 13:1133. [PMID: 35241655 PMCID: PMC8894339 DOI: 10.1038/s41467-022-28807-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 12/26/2022] Open
Abstract
Most sexual organisms inherit organelles from one parent, commonly by excluding organelles from the smaller gametes. However, post-mating elimination of organelles derived from one gamete ensures uniparental inheritance, where the underlying mechanisms to distinguish organelles by their origin remain obscure. Mating in Chlamydomonas reinhardtii combines isomorphic plus and minus gametes, but chloroplast DNA from minus gametes is selectively degraded in zygotes. Here, we identify OTU2p (otubain protein 2), encoded in the plus mating-type locus MT+, as the protector of plus chloroplast. Otu2p is an otubain-like deubiquitinase, which prevents proteasome-mediated degradation of the preprotein translocase of the outer chloroplast membrane (TOC) during gametogenesis. Using OTU2p-knockouts and proteasome inhibitor treatment, we successfully redirect selective DNA degradation in chloroplasts with reduced TOC levels regardless of mating type, demonstrating that plus-specific Otu2p establishes uniparental chloroplast DNA inheritance. Our work documents that a sex-linked organelle quality control mechanism drives the uniparental organelle inheritance without dimorphic gametes. Most sexual organisms ensure that organelles are inherited from a single parent. Here, the authors describe OTU2p, a Chlamydomonas deubiquitinase that drives uniparental organelle inheritance without gametic dimorphism by preventing proteasome-mediated degradation exclusively in gametes of the plus mating type.
Collapse
|
9
|
Pinello JF, Clark TG. HAP2-Mediated Gamete Fusion: Lessons From the World of Unicellular Eukaryotes. Front Cell Dev Biol 2022; 9:807313. [PMID: 35071241 PMCID: PMC8777248 DOI: 10.3389/fcell.2021.807313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/29/2023] Open
Abstract
Most, if not all the cellular requirements for fertilization and sexual reproduction arose early in evolution and are retained in extant lineages of single-celled organisms including a number of important model organism species. In recent years, work in two such species, the green alga, Chlamydomonas reinhardtii, and the free-living ciliate, Tetrahymena thermophila, have lent important new insights into the role of HAP2/GCS1 as a catalyst for gamete fusion in organisms ranging from protists to flowering plants and insects. Here we summarize the current state of knowledge around how mating types from these algal and ciliate systems recognize, adhere and fuse to one another, current gaps in our understanding of HAP2-mediated gamete fusion, and opportunities for applying what we know in practical terms, especially for the control of protozoan parasites.
Collapse
Affiliation(s)
- Jennifer F. Pinello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Theodore G. Clark
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Benites LF, Bucchini F, Sanchez-Brosseau S, Grimsley N, Vandepoele K, Piganeau G. Evolutionary Genomics of Sex-Related Chromosomes at the Base of the Green Lineage. Genome Biol Evol 2021; 13:6380139. [PMID: 34599324 PMCID: PMC8557840 DOI: 10.1093/gbe/evab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although sex is now accepted as a ubiquitous and ancestral feature of eukaryotes, direct observation of sex is still lacking in most unicellular eukaryotic lineages. Evidence of sex is frequently indirect and inferred from the identification of genes involved in meiosis from whole genome data and/or the detection of recombination signatures from genetic diversity in natural populations. In haploid unicellular eukaryotes, sex-related chromosomes are named mating-type (MTs) chromosomes and generally carry large genomic regions where recombination is suppressed. These regions have been characterized in Fungi and Chlorophyta and determine gamete compatibility and fusion. Two candidate MT+ and MT− alleles, spanning 450–650 kb, have recently been described in Ostreococcus tauri, a marine phytoplanktonic alga from the Mamiellophyceae class, an early diverging branch in the green lineage. Here, we investigate the architecture and evolution of these candidate MT+ and MT− alleles. We analyzed the phylogenetic profile and GC content of MT gene families in eight different genomes whose divergence has been previously estimated at up to 640 Myr, and found evidence that the divergence of the two MT alleles predates speciation in the Ostreococcus genus. Phylogenetic profiles of MT trans-specific polymorphisms in gametologs disclosed candidate MTs in two additional species, and possibly a third. These Mamiellales MT candidates are likely to be the oldest mating-type loci described to date, which makes them fascinating models to investigate the evolutionary mechanisms of haploid sex determination in eukaryotes.
Collapse
Affiliation(s)
- Luis Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sophie Sanchez-Brosseau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Gwenaël Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
11
|
Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. THE PLANT CELL 2021; 33:1016-1041. [PMID: 33793842 PMCID: PMC8226300 DOI: 10.1093/plcell/koab026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.
Collapse
Affiliation(s)
| | - Ahmed R Hasan
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Peter D Keightley
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| |
Collapse
|
12
|
Kariyawasam T, Joo S, Lee J, Toor D, Gao AF, Noh KC, Lee JH. TALE homeobox heterodimer GSM1/GSP1 is a molecular switch that prevents unwarranted genetic recombination in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:938-953. [PMID: 31368133 DOI: 10.1111/tpj.14486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic sexual life cycles alternate between haploid and diploid stages, the transitions between which are delineated by cell fusion and meiotic division. Transcription factors in the TALE-class homeobox family, GSM1 and GSP1, predominantly control gene expression for the haploid-to-diploid transition during sexual reproduction in the unicellular green alga, Chlamydomonas reinhardtii. To understand the roles that GSM1 and GSP1 play in zygote development, we used gsm1 and gsp1 mutants and examined fused gametes that normally undergo the multiple organellar fusions required for the genetic unity of the zygotes. In gsm1 and gsp1 zygotes, no fusion was observed for the nucleus and chloroplast. Surprisingly, mitochondria and endoplasmic reticulum, which undergo dynamic autologous fusion/fission, did not undergo heterologous fusions in gsm1 or gsp1 zygotes. Furthermore, the mutants failed to resorb their flagella, an event that normally renders the zygotes immotile. When gsm1 and gsp1 zygotes resumed the mitotic cycle, their two nuclei fused prior to mitosis, but neither chloroplastic nor mitochondrial fusion took place, suggesting that these fusions are specifically turned on by GSM1/GSP1. Taken together, this study shows that organellar restructuring during zygotic diploidization does not occur by default but is triggered by a combinatorial switch, the GSM1/GSP1 dyad. This switch may represent an ancient mechanism that evolved to restrict genetic recombination during sexual development.
Collapse
Affiliation(s)
| | - Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ally F Gao
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Kyung-Chul Noh
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Hasan AR, Duggal JK, Ness RW. Consequences of recombination for the evolution of the mating type locus in Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2019; 224:1339-1348. [PMID: 31222749 DOI: 10.1111/nph.16003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Recombination suppression in sex chromosomes and mating type loci can lead to degeneration as a result of reduced selection efficacy and Muller's ratchet effects. However, genetic exchange in the form of noncrossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low degrees of allelic differentiation in the dimorphic mating-type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT. Here, we calculate degree of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region. We find that degree of LD predicts selection efficacy across MT, and that purifying selection is stronger in shared genes than in MT-limited genes to the point of being equivalent to that of autosomal genes. We argue that while crossover suppression is needed in the mating-type loci of many isogamous systems, these loci are less likely to experience selection to differentiate further. Thus, recombination can act in these regions and prevent degeneration caused by Hill-Robertson effects.
Collapse
Affiliation(s)
- Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Jaspreet K Duggal
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Rob W Ness
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
14
|
Abstract
The reproductive adaptations of land plants have played a key role in their terrestrial colonization and radiation. This encompasses mechanisms used for the production, dispersal and union of gametes to support sexual reproduction. The production of small motile male gametes and larger immotile female gametes (oogamy) in specialized multicellular gametangia evolved in the charophyte algae, the closest extant relatives of land plants. Reliance on water and motile male gametes for sexual reproduction was retained by bryophytes and basal vascular plants, but was overcome in seed plants by the dispersal of pollen and the guided delivery of non-motile sperm to the female gametes. Here we discuss the evolutionary history of male gametogenesis in streptophytes (green plants) and the underlying developmental biology, including recent advances in bryophyte and angiosperm models. We conclude with a perspective on research trends that promise to deliver a deeper understanding of the evolutionary and developmental mechanisms of male gametogenesis in plants.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
15
|
Hamaji T, Kawai-Toyooka H, Uchimura H, Suzuki M, Noguchi H, Minakuchi Y, Toyoda A, Fujiyama A, Miyagishima SY, Umen JG, Nozaki H. Anisogamy evolved with a reduced sex-determining region in volvocine green algae. Commun Biol 2018; 1:17. [PMID: 30271904 PMCID: PMC6123790 DOI: 10.1038/s42003-018-0019-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 11/09/2022] Open
Abstract
Male and female gametes differing in size-anisogamy-emerged independently from isogamous ancestors in various eukaryotic lineages, although genetic bases of this emergence are still unknown. Volvocine green algae are a model lineage for investigating the transition from isogamy to anisogamy. Here we focus on two closely related volvocine genera that bracket this transition-isogamous Yamagishiella and anisogamous Eudorina. We generated de novo nuclear genome assemblies of both sexes of Yamagishiella and Eudorina to identify the dimorphic sex-determining chromosomal region or mating-type locus (MT) from each. In contrast to the large (>1 Mb) and complex MT of oogamous Volvox, Yamagishiella and Eudorina MT are smaller (7-268 kb) and simpler with only two sex-limited genes-the minus/male-limited MID and the plus/female-limited FUS1. No prominently dimorphic gametologs were identified in either species. Thus, the first step to anisogamy in volvocine algae presumably occurred without an increase in MT size and complexity.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Haruka Uchimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masahiro Suzuki
- Kobe University Research Center for Inland Seas, Awaji, Hyogo, 656-2401, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yohei Minakuchi
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Shin-Ya Miyagishima
- Department of Cell Genetics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - James G Umen
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO, 63132, USA
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
16
|
Joo S, Nishimura Y, Cronmiller E, Hong RH, Kariyawasam T, Wang MH, Shao NC, El Akkad SED, Suzuki T, Higashiyama T, Jin E, Lee JH. Gene Regulatory Networks for the Haploid-to-Diploid Transition of Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2017; 175:314-332. [PMID: 28710131 PMCID: PMC5580766 DOI: 10.1104/pp.17.00731] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
The sexual cycle of the unicellular Chlamydomonas reinhardtii culminates in the formation of diploid zygotes that differentiate into dormant spores that eventually undergo meiosis. Mating between gametes induces rapid cell wall shedding via the enzyme g-lysin; cell fusion is followed by heterodimerization of sex-specific homeobox transcription factors, GSM1 and GSP1, and initiation of zygote-specific gene expression. To investigate the genetic underpinnings of the zygote developmental pathway, we performed comparative transcriptome analysis of both pre- and post-fertilization samples. We identified 253 transcripts specifically enriched in early zygotes, 82% of which were not up-regulated in gsp1 null zygotes. We also found that the GSM1/GSP1 heterodimer negatively regulates the vegetative wall program at the posttranscriptional level, enabling prompt transition from vegetative wall to zygotic wall assembly. Annotation of the g-lysin-induced and early zygote genes reveals distinct vegetative and zygotic wall programs, supported by concerted up-regulation of genes encoding cell wall-modifying enzymes and proteins involved in nucleotide-sugar metabolism. The haploid-to-diploid transition in Chlamydomonas is masterfully controlled by the GSM1/GSP1 heterodimer, translating fertilization and gamete coalescence into a bona fide differentiation program. The fertilization-triggered integration of genes required to make related, but structurally and functionally distinct organelles-the vegetative versus zygote cell wall-presents a likely scenario for the evolution of complex developmental gene regulatory networks.
Collapse
Affiliation(s)
- Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Evan Cronmiller
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ran Ha Hong
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Saif-El-Din El Akkad
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Takamasa Suzuki
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tetsuya Higashiyama
- ERATO, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Eonseon Jin
- Department Life Sciences, Research Institute for Natural Sciences, Hanyang University, 222 Wangsipri-ro, Sungdong-gu, Seoul 133-791, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
17
|
Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production. Proc Natl Acad Sci U S A 2017; 114:E4296-E4305. [PMID: 28484037 PMCID: PMC5448231 DOI: 10.1073/pnas.1619928114] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.
Collapse
|
18
|
Sekimoto H. Sexual reproduction and sex determination in green algae. JOURNAL OF PLANT RESEARCH 2017; 130:423-431. [PMID: 28188480 DOI: 10.1007/s10265-017-0908-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt+) and mating type minus (mt-), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt+ and mt- mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
19
|
Identification and Characterization of a cis-Regulatory Element for Zygotic Gene Expression in Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2016; 6:1541-8. [PMID: 27172209 PMCID: PMC4889651 DOI: 10.1534/g3.116.029181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Upon fertilization Chlamydomonas reinhardtii zygotes undergo a program of differentiation into a diploid zygospore that is accompanied by transcription of hundreds of zygote-specific genes. We identified a distinct sequence motif we term a zygotic response element (ZYRE) that is highly enriched in promoter regions of C reinhardtii early zygotic genes. A luciferase reporter assay was used to show that native ZYRE motifs within the promoter of zygotic gene ZYS3 or intron of zygotic gene DMT4 are necessary for zygotic induction. A synthetic luciferase reporter with a minimal promoter was used to show that ZYRE motifs introduced upstream are sufficient to confer zygotic upregulation, and that ZYRE-controlled zygotic transcription is dependent on the homeodomain transcription factor GSP1. We predict that ZYRE motifs will correspond to binding sites for the homeodomain proteins GSP1-GSM1 that heterodimerize and activate zygotic gene expression in early zygotes.
Collapse
|
20
|
Mignerot L, Coelho SM. The origin and evolution of the sexes: Novel insights from a distant eukaryotic linage. C R Biol 2016; 339:252-7. [PMID: 27236828 DOI: 10.1016/j.crvi.2016.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Sexual reproduction is an extraordinarily widespread phenomenon that assures the production of new genetic combinations in nearly all eukaryotic lineages. Although the core features of sexual reproduction (meiosis and syngamy) are highly conserved, the control mechanisms that determine whether an individual is male or female are remarkably labile across eukaryotes. In genetically controlled sexual systems, gender is determined by sex chromosomes, which have emerged independently and repeatedly during evolution. Sex chromosomes have been studied in only a handful of classical model organism, and empirical knowledge on the origin and evolution of the sexes is still surprisingly incomplete. With the advent of new generation sequencing, the taxonomic breadth of model systems has been rapidly expanding, bringing new ideas and fresh views on this fundamental aspect of biology. This mini-review provides a quick state of the art of how the remarkable richness of the sexual characteristics of the brown algae is helping to increase our knowledge about the evolution of sex determination.
Collapse
Affiliation(s)
- Laure Mignerot
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités, UPMC (Université Paris-6, station biologique de Roscoff, place George-Teissier, CS 90074, 29688 Roscoff cedex, France
| | - Susana M Coelho
- CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universités, UPMC (Université Paris-6, station biologique de Roscoff, place George-Teissier, CS 90074, 29688 Roscoff cedex, France.
| |
Collapse
|
21
|
Sequence of the Gonium pectorale Mating Locus Reveals a Complex and Dynamic History of Changes in Volvocine Algal Mating Haplotypes. G3-GENES GENOMES GENETICS 2016; 6:1179-89. [PMID: 26921294 PMCID: PMC4856071 DOI: 10.1534/g3.115.026229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii. Compared to C. reinhardtii MT, G. pectorale MT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectorale MT has more overlap with that of V. carteri MT than with C. reinhardtii MT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii. Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT–, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale–V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale. These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs.
Collapse
|
22
|
Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallaher SD, Merchant SS, Umen J, Pellegrini M. Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle. PLANT PHYSIOLOGY 2015; 169:2730-43. [PMID: 26450704 PMCID: PMC4677889 DOI: 10.1104/pp.15.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/07/2015] [Indexed: 05/02/2023]
Abstract
The green alga Chlamydomonas reinhardtii undergoes gametogenesis and mating upon nitrogen starvation. While the steps involved in its sexual reproductive cycle have been extensively characterized, the genome-wide transcriptional and epigenetic changes underlying different life cycle stages have yet to be fully described. Here, we performed transcriptome and methylome sequencing to quantify expression and DNA methylation from vegetative and gametic cells of each mating type and from zygotes. We identified 361 gametic genes with mating type-specific expression patterns and 627 genes that are specifically induced in zygotes; furthermore, these sex-related gene sets were enriched for secretory pathway and alga-specific genes. We also examined the C. reinhardtii nuclear methylation map with base-level resolution at different life cycle stages. Despite having low global levels of nuclear methylation, we detected 23 hypermethylated loci in gene-poor, repeat-rich regions. We observed mating type-specific differences in chloroplast DNA methylation levels in plus versus minus mating type gametes followed by chloroplast DNA hypermethylation in zygotes. Lastly, we examined the expression of candidate DNA methyltransferases and found three, DMT1a, DMT1b, and DMT4, that are differentially expressed during the life cycle and are candidate DNA methylases. The expression and methylation data we present provide insight into cell type-specific transcriptional and epigenetic programs during key stages of the C. reinhardtii life cycle.
Collapse
Affiliation(s)
- David Lopez
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Takashi Hamaji
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Janette Kropat
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Peter De Hoff
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Marco Morselli
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Liudmilla Rubbi
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sorel Fitz-Gibbon
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sean D Gallaher
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sabeeha S Merchant
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - James Umen
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Matteo Pellegrini
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| |
Collapse
|
23
|
Mori T, Kawai-Toyooka H, Igawa T, Nozaki H. Gamete Dialogs in Green Lineages. MOLECULAR PLANT 2015; 8:1442-54. [PMID: 26145252 DOI: 10.1016/j.molp.2015.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/15/2015] [Accepted: 06/28/2015] [Indexed: 05/20/2023]
Abstract
Gamete fusion is a core process of sexual reproduction and, in both plants and animals, different sex gametes fuse within species. Although most of the molecular factors involved in gamete interaction are still unknown in various sex-possessing eukaryotes, reports of such factors in algae and land plants have been increasing in the past decade. In particular, knowledge of gamete interaction in flowering plants and green algae has increased since the identification of the conserved gamete fusion factor generative cell specific 1/hapless 2 (GCS1/HAP2). GCS1 was first identified as a pollen generative cell-specific transmembrane protein in the lily (Lilium longiflorum), and was then shown to function not only in flowering plant gamete fusion but also in various eukaryotes, including unicellular protists and metazoans. In addition, although initially restricted to Chlamydomonas, knowledge of gamete attachment in flowering plants was also acquired. This review focuses on recent progress in the study of gamete interaction in volvocine green algae and flowering plants and discusses conserved mechanisms of gamete recognition, attachment, and fusion leading to zygote formation.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroko Kawai-Toyooka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Igawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
Abstract
Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and androecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.
Collapse
|
25
|
Satou Y, Hirayama K, Mita K, Fujie M, Chiba S, Yoshida R, Endo T, Sasakura Y, Inaba K, Satoh N. Sustained heterozygosity across a self-incompatibility locus in an inbred ascidian. Mol Biol Evol 2014; 32:81-90. [PMID: 25234703 DOI: 10.1093/molbev/msu268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Because self-incompatibility loci are maintained heterozygous and recombination within self-incompatibility loci would be disadvantageous, self-incompatibility loci are thought to contribute to structural and functional differentiation of chromosomes. Although the hermaphrodite chordate, Ciona intestinalis, has two self-incompatibility genes, this incompatibility system is incomplete and self-fertilization occurs under laboratory conditions. Here, we established an inbred strain of C. intestinalis by repeated self-fertilization. Decoding genome sequences of sibling animals of this strain identified a 2.4-Mbheterozygous region on chromosome 7. A self-incompatibility gene, Themis-B, was encoded within this region. This observation implied that this self-incompatibility locus and the linkage disequilibrium of its flanking region contribute to the formation of the 2.4-Mb heterozygous region, probably through recombination suppression. We showed that different individuals in natural populations had different numbers and different combinations of Themis-B variants, and that the rate of self-fertilization varied among these animals. Our result explains why self-fertilization occurs under laboratory conditions. It also supports the concept that the Themis-B locus is preferentially retained heterozygous in the inbred line and contributes to the formation of the 2.4-Mb heterozygous region. High structural variations might suppress recombination, and this long heterozygous region might represent a preliminary stage of structural differentiation of chromosomes.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Kazuko Hirayama
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Kaoru Mita
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Manabu Fujie
- Marine Genomics Unit and DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Shota Chiba
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Reiko Yoshida
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Toshinori Endo
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Nori Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan Marine Genomics Unit and DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
26
|
Higuera JJ, Fernandez E, Galvan A. Chlamydomonas NZF1, a tandem-repeated zinc finger factor involved in nitrate signalling by controlling the regulatory gene NIT2. PLANT, CELL & ENVIRONMENT 2014; 37:2139-50. [PMID: 24548141 DOI: 10.1111/pce.12305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 05/04/2023]
Abstract
The Chlamydomonas reinhardtii NIT2 gene plays a central role in nitrate assimilation, thus, nit2 mutants are not able to sense or to use nitrate for growth. NIT2 protein is an RWP-RK-type transcriptional factor related to nodule inception (Nin, NLP) proteins from plants. NIT2 expression is down-regulated in ammonium and up-regulated under nitrogen deprivation. However, intracellular nitrate is required to activate NIT2 for subsequent expression of NIA1 and other nitrate assimilation genes. In this work, mutants defective in nitrate sensing have been studied. The identification of genomic regions affected allows proposing putative loci/genes for nitrate signalling in the alga. Among them, a CrNZF1 (Nitrate Zinc Finger 1) that encodes a tandem zinc finger protein CCCH-type. In the nzf1 mutant, the expression of the regulatory gene NIT2 is decreased and also that of nitrate assimilation genes. In this mutant, polyadenylated forms of NIT2 with different lengths could be detected, whereas in the wild type there appeared preferentially the longest forms. CrNZF1 is proposed to regulate NIT2 polyadenylation and thus nitrate signalling and nitrate-dependent growth in the alga.
Collapse
Affiliation(s)
- Jose Javier Higuera
- Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad de Cordoba, Campus de Rabanales, Campus de Excelencia Internacional Agroalimentario (CeiA3), Edif. Severo Ochoa, 14071, Córdoba, Spain
| | | | | |
Collapse
|
27
|
Abstract
Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.
Collapse
Affiliation(s)
- Ursula Goodenough
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | |
Collapse
|
28
|
Sex determination directs uniparental mitochondrial inheritance in Phycomyces. EUKARYOTIC CELL 2013; 13:186-9. [PMID: 24243797 DOI: 10.1128/ec.00203-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Uniparental inheritance (UPI) of mitochondria is common among eukaryotes. The underlying molecular basis by which the sexes of the parents control this non-Mendelian pattern of inheritance is yet to be fully understood. Two major factors have complicated the understanding of the role of sex-specific genes in the UPI phenomenon: in many cases (i) fusion occurs between cells of unequal size or (ii) mating requires a large region of the genome or chromosome that includes genes unrelated to sex determination. The fungus Phycomyces blakesleeanus is a member of the Mucoromycotina and has a simple mating type locus encoding only one high-mobility group (HMG) domain protein, and mating occurs by fusion of isogamous cells, thus providing a model system without the limitations mentioned above. Analysis of more than 250 progeny from a series of genetic crosses between wild-type strains of Phycomyces revealed a correlation between the individual genes in the mating type locus and UPI of mitochondria. Inheritance is from the plus (+) sex type and is associated with degradation of the mtDNA from the minus (-) parent. These findings suggest that UPI can be directly controlled by genes that determine sex identity, independent of cell size or the complexity of the genetic composition of a sex chromosome.
Collapse
|
29
|
Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS. Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. THE PLANT CELL 2013; 25:4305-23. [PMID: 24280389 PMCID: PMC3875720 DOI: 10.1105/tpc.113.117580] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/08/2013] [Accepted: 10/31/2013] [Indexed: 05/17/2023]
Abstract
To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall-deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation-induced dramatic remodeling of the transcriptome, there were relatively few differences (5 × 10(2)) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype.
Collapse
Affiliation(s)
- Ian K. Blaby
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Anne G. Glaesener
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Tabea Mettler
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany 14476
| | - Sorel T. Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Sean D. Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Bensheng Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Nanette R. Boyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany 14476
| | - Shannon Johnson
- Genome Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
- Address correspondence to
| |
Collapse
|
30
|
Lin H, Miller ML, Granas DM, Dutcher SK. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii. PLoS Genet 2013; 9:e1003841. [PMID: 24086163 PMCID: PMC3784568 DOI: 10.1371/journal.pgen.1003841] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle L. Miller
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Granas
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Genomic Sciences and System Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. PLoS Genet 2013; 9:e1003724. [PMID: 24009520 PMCID: PMC3757049 DOI: 10.1371/journal.pgen.1003724] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions. Sex chromosomes and mating-type loci are often atypical in their structure and evolutionary dynamics. One distinguishing feature is the absence of recombination that results in genetic isolation and promotes rapid evolution and sometimes degeneration. We investigated gene content, sex-regulated expression, and recombination of mating locus (MT) genes in the unicellular alga Chlamydomonas reinhardtii. Despite the lack of observable recombination in and around Chlamydomonas MT, genes from its two mating types are far more similar to each other than expected for a non-recombining region. This discrepancy is explained by our finding evidence of genetic exchange between the two mating types within wild populations. In addition, we observed an unexpected asymmetry in the recombination behavior of the two mating types that may have contributed to the preferential expansion of one MT haplotype over the other through insertion of new genes. Our data suggest a mechanism to explain the emergence of heteromorphic sex chromosomes in haploid organisms by asymmetric expansion rather than by loss or degeneration as occurs in some Y or W chromosomes from diploid organisms. Our observations support a revised view of recombination in sex-determining regions as a quantitative phenomenon that can significantly affect rates of evolution and sex-linked genetic diversification.
Collapse
|
32
|
Ning J, Otto TD, Pfander C, Schwach F, Brochet M, Bushell E, Goulding D, Sanders M, Lefebvre PA, Pei J, Grishin NV, Vanderlaan G, Billker O, Snell WJ. Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates. Genes Dev 2013; 27:1198-215. [DOI: 10.1101/gad.212746.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Hamaji T, Ferris PJ, Nishii I, Nishimura Y, Nozaki H. Distribution of the sex-determining gene MID and molecular correspondence of mating types within the isogamous genus Gonium (Volvocales, Chlorophyta). PLoS One 2013; 8:e64385. [PMID: 23696888 PMCID: PMC3655996 DOI: 10.1371/journal.pone.0064385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Isogamous organisms lack obvious cytological differences in the gametes of the two complementary mating types. Consequently, it is difficult to ascertain which of the two mating types are homologous when comparing related but sexual isolated strains or species. The colonial volvocalean algal genus Gonium consists of such isogamous organisms with heterothallic mating types designated arbitrarily as plus or minus in addition to homothallic strains. Homologous molecular markers among lineages may provide an "objective" framework to assign heterothallic mating types. METHODOLOGY/PRINCIPAL FINDINGS Using degenerate primers designed based on previously reported MID orthologs, the "master regulator" of mating types/sexes in the colonial Volvocales, MID homologs were identified and their presence/absence was examined in nine strains of four species of Gonium. Only one of the two complementary mating types in each of the four heterothallic species has a MID homolog. In addition to heterothallic strains, a homothallic strain of G. multicoccum has MID. Molecular evolutionary analysis suggests that MID of this homothallic strain retains functional constraint comparable to that of the heterothallic strains. CONCLUSION/SIGNIFICANCE We coordinated mating genotypes based on presence or absence of a MID homolog, respectively, in heterothallic species. This scheme should be applicable to heterothallic species of other isogamous colonial Volvocales including Pandorina and Yamagishiella. Homothallism emerged polyphyletically in the colonial Volvocales, although its mechanism remains unknown. Our identification of a MID homolog for a homothallic strain of G. multicoccum suggests a MID-dependent mechanism is involved in the sexual developmental program of this homothallic species.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
34
|
Abstract
It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| |
Collapse
|
35
|
Luo L, Lee J, Herrin DL. Mapping of the css (chloroplast splicing suppressor) gene(s) to a recombinationally suppressed region of chromosome III in Chlamydomonas reinhardtii. Genome 2012; 55:483-91. [PMID: 22708527 DOI: 10.1139/g2012-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous work, three suppressors of defective group I introns (7151, 71N1, 7120) were isolated from a mutant of Chlamydomonas reinhardtii that had a splicing-deficient chloroplast large subunit (LSU) rRNA intron. Genetic analysis indicated that the 7151 and 71N1 suppressor mutations each involved single nuclear loci, and that the 7151 mutation was dominant. Here we present genetic evidence that the 7120 suppressor also involves a single nuclear locus and that the mutation is dominant in vegetative diploids. Moreover, we have employed crosses with the S1D2 strain and molecular markers to map the 7120 and 71N1 suppressors. Based on an analysis of 800 progeny from 7120 × S1D2, the 7120 suppressor is located in a region of ~400 kb on chromosome III that is devoid of recombination. The ~400-kb region contains at least 72 genes, about one-third of which (i.e., 22) are predicted to be organelle targeted. Similar analysis of 71N1 × S1D2 using 400 progeny also pointed to the recombination-deficient region of chromosome III, raising the possibility that these mutations could affect the same gene. These efforts lay the foundation for identifying the css (chloroplast splicing suppressor) gene(s), which promotes splicing of multiple chloroplast group I introns.
Collapse
Affiliation(s)
- Liming Luo
- Section of Molecular Cell and Developmental Biology, and the Institute for Cellular and Molecular Biology, 1 University Station A6700, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
36
|
Nishimura Y, Shikanai T, Nakamura S, Kawai-Yamada M, Uchimiya H. Gsp1 triggers the sexual developmental program including inheritance of chloroplast DNA and mitochondrial DNA in Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:2401-14. [PMID: 22715041 PMCID: PMC3406891 DOI: 10.1105/tpc.112.097865] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/16/2012] [Accepted: 05/23/2012] [Indexed: 05/24/2023]
Abstract
The isogamous green alga Chlamydomonas reinhardtii has emerged as a premier model for studying the genetic regulation of fertilization and sexual development. A key regulator is known to be a homeoprotein gene, GAMETE-SPECIFIC PLUS1 (GSP1), which triggers the zygotic program. In this study, we isolated a mutant, biparental31 (bp31), which lacks GSP1. bp31 mt+ gametes fuse normally to form zygotes, but the sexual development of the resulting diploid cell is arrested and pellicle/zygospore/tetrad formation is abolished. The uniparental inheritance of chloroplast (cp) and mitochondrial (mt) DNA (cytoplasmic inheritance) was also impaired. bp31 has a deletion of ∼60 kb on chromosome 2, including GSP1. The mutant phenotype was not rescued by transformation with GSP1 alone but could be rescued by the cotransformation with GSP1 and another gene, INOSITOL MONOPHOSPHATASE-LIKE1, which is involved in various cellular processes, including the phosphatidylinositol signaling pathway. This study confirms the importance of Gsp1 in mediating the zygotic program, including the uniparental inheritance of cp/mtDNA. Moreover, the results also suggest a role for inositol metabolism in the sexual developmental program.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Kyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
37
|
Goubet PM, Bergès H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl AC, Fobis-Loisy I, Vekemans X, Castric V. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 2012; 8:e1002495. [PMID: 22457631 PMCID: PMC3310759 DOI: 10.1371/journal.pgen.1002495] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022] Open
Abstract
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae. Self-incompatibility is a common genetic system preventing selfing through recognition and rejection of self-pollen in hermaphroditic flowering plants. In the Brassicaceae family, this system is controlled by a single genomic region, called the S-locus, where many distinct specificities segregate in natural populations. In this study, we obtained genomic sequences comprising the S-locus in two closely related Brassicaceae species, Arabidopsis lyrata and A. halleri, and analyzed their diversity and patterns of molecular evolution. We report compelling evidence that the S-locus presents many similar properties with other genomic regions involved in the determination of mating-types in mammals, insects, plants, or fungi. In particular, in spite of their diversity, these genomic regions all show absence of similarity in intergenic sequences, large depth of genealogies, highly divergent organization, and accumulation of transposable elements. Moreover, some of these features were found to vary according to dominance of the S-locus specificities, suggesting that dominance/recessivity interactions are key drivers of the evolution of this genomic region.
Collapse
Affiliation(s)
- Pauline M. Goubet
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Nicolas Helmstetter
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Sophie Mangenot
- Genoscope, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Sophie Gallina
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Anne-Catherine Holl
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Vekemans
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Vincent Castric
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
38
|
New Insights into the Regulation of Sexual Reproduction in Closterium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:309-38. [DOI: 10.1016/b978-0-12-394308-8.00014-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Abstract
Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132 USA
| | - Bradley J S C Olson
- Molecular Cellular and Developmental Biology, Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
40
|
Umen JG. Evolution of sex and mating loci: an expanded view from Volvocine algae. Curr Opin Microbiol 2011; 14:634-41. [PMID: 22035946 PMCID: PMC3233229 DOI: 10.1016/j.mib.2011.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 01/25/2023]
Abstract
Sexual reproduction in Volvocine algae coevolved with the acquisition of multicellularity. Unicellular genera such as Chlamydomonas and small colonial genera from this group have classical mating types with equal-sized gametes, while larger multicellular genera such as Volvox have differentiated males and females that produce sperm and eggs respectively. Newly available sequence from the Volvox and Chlamydomonas genomes and mating loci open up the potential to investigate how sex-determining regions co-evolve with major changes in development and sexual reproduction. The expanded size and sequence divergence between the male and female haplotypes of the Volvox mating locus (MT) not only provide insights into how the colonial Volvocine algae might have evolved sexual dimorphism, but also raise questions about why the putative ancestral-like MT locus in Chlamydomonas shows less divergence between haplotypes than expected.
Collapse
Affiliation(s)
- James G Umen
- The Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132, USA.
| |
Collapse
|
41
|
Paixão T, Phadke SS, Azevedo RBR, Zufall RA. SEX RATIO EVOLUTION UNDER PROBABILISTIC SEX DETERMINATION. Evolution 2011; 65:2050-60. [DOI: 10.1111/j.1558-5646.2011.01266.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Hallmann A. Evolution of reproductive development in the volvocine algae. ACTA ACUST UNITED AC 2010; 24:97-112. [PMID: 21174128 PMCID: PMC3098969 DOI: 10.1007/s00497-010-0158-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/27/2010] [Indexed: 11/26/2022]
Abstract
The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed.
Collapse
Affiliation(s)
- Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
43
|
Nishii I, Miller SM. Volvox: simple steps to developmental complexity? CURRENT OPINION IN PLANT BIOLOGY 2010; 13:646-53. [PMID: 21075047 DOI: 10.1016/j.pbi.2010.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/30/2010] [Accepted: 10/22/2010] [Indexed: 05/14/2023]
Abstract
Volvox, Chlamydomonas, and their close relatives - collectively the volvocine green algae - comprise an excellent system for investigating the origins of developmental complexity. Over a relatively short period of time Volvox evolved an impressive suite of developmental traits, including asymmetric cell division, multicellularity with germ-soma division of labor, embryonic morphogenesis, and oogamy. Recent molecular genetic analyses of important developmental genes and comparative analyses of the fully sequenced Volvox and Chlamydomonas genomes have provided important insights into how these and other traits came to be. Surprisingly, the acquisition of much of the developmental innovation in this family seems to have involved relatively minor tinkering with the ancestral unicellular blueprint.
Collapse
Affiliation(s)
- Ichiro Nishii
- Biological Sciences, Nara Women's University, Nara-shi, Nara Pref. 630-8506, Japan
| | | |
Collapse
|
44
|
Lin H, Kwan AL, Dutcher SK. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii. PLoS Genet 2010; 6:e1001105. [PMID: 20838591 PMCID: PMC2936527 DOI: 10.1371/journal.pgen.1001105] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/02/2010] [Indexed: 01/30/2023] Open
Abstract
The essential coenzyme nicotinamide adenine dinucleotide (NAD+) plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis), as in plants, or nicotinamide, as in mammals (salvage synthesis). The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO), quinolinate synthetase (QS), quinolate phosphoribosyltransferase (QPT), nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), and NAD+ synthetase (NS). Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1) or plasmids with cloned genes (nic1-1 and nic15-1) into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT) constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1) has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity. Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme. NAD+ is necessary for electron transfer in many metabolic reactions. NAD+ functions as a substrate for several enzymes, one of which is sirtuin, an enzyme involved in gene regulation and aging. NAD+ can be synthesized either from amino acids (de novo) or metabolites (salvage). Given the importance of NAD+, enzymes involved in NAD+ synthesis are targets for drug discovery. In the unicellular green alga Chlamydomonas we investigated both the de novo and salvage NAD+ biosynthetic pathways. Mutations in the plant-like de novo synthesis pathway lead to a nicotinamide-requiring phenotype. We identified an insertional mutation in the first enzyme in the mammal-like salvage pathway; it has no growth defect in cells with an active de novo synthesis pathway but causes lethality when the de novo synthesis pathway is inactive. Coupled with NAD+ biosynthesis, sirtuin is involved in NAD+ consumption. Our study links upregulation of a sirtuin gene with extended life span in the nic13-1 mutant strain, which has a defective de novo synthesis pathway and suggests that Chlamydomonas is an excellent genetic model to study NAD+ metabolism and cell longevity.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alan L. Kwan
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
45
|
Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 2010; 186:9-31. [PMID: 20855574 PMCID: PMC2940314 DOI: 10.1534/genetics.110.117697] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
46
|
Differential replication of two chloroplast genome forms in heteroplasmic Chlamydomonas reinhardtii gametes contributes to alternative inheritance patterns. Genetics 2010; 185:1167-81. [PMID: 20519744 DOI: 10.1534/genetics.110.118265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two mechanisms for chloroplast DNA replication have been revealed through the study of an unusual heteroplasmic strain of the green alga Chlamydomonas reinhardtii. Heteroplasmy is a state in which more than one genome type occurs in a mitochondrion or chloroplast. The Chlamydomonas strain spa19 bears two distinct chloroplast genomes, termed PS+ and PS-. PS+ genomes predominate and are stably maintained in vegetative cells, despite their lack of known replication origins. In sexual crosses with spa19 as the mating type plus parent, however, PS+ genomes are transmitted in only approximately 25% of tetrads, whereas the PS- genomes are faithfully inherited in all progeny. In this research, we have explored the mechanism underlying this biased uniparental inheritance. We show that the relative reduction and dilution of PS+ vs. PS- genomes takes place during gametogenesis. Bromodeoxyuridine labeling, followed by immunoprecipitation and PCR, was used to compare replication activities of PS+ and PS- genomes. We found that the replication of PS+ genomes is specifically suppressed during gametogenesis and germination of zygospores, a phenomenon that also was observed when spa19 cells were treated with rifampicin, an inhibitor of the chloroplast RNA polymerase. Furthermore, when bromodeoxyuridine incorporation was compared at 11 sites within the chloroplast genome between vegetative cells, gametes, and rifampicin-treated cells by quantitative PCR, we found that incorporation was often reduced at the same sites in gametes that were also sensitive to rifampicin treatment. We conclude that a transcription-mediated form of DNA replication priming, which may be downregulated during gametogenesis, is indispensable for robust maintenance of PS+ genomes. These results highlight the potential for chloroplast genome copy number regulation through alternative replication strategies.
Collapse
|
47
|
Ferris P, Olson BJ, De Hoff PL, Douglass S, Diaz-Cano DC, Prochnik S, Geng S, Rai R, Grimwood J, Schmutz J, Nishii I, Hamaji T, Nozaki H, Pellegrini M, Umen JG. Evolution of an expanded sex-determining locus in Volvox. Science 2010; 328:351-4. [PMID: 20395508 PMCID: PMC2880461 DOI: 10.1126/science.1186222] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although dimorphic sexes have evolved repeatedly in multicellular eukaryotes, their origins are unknown. The mating locus (MT) of the sexually dimorphic multicellular green alga Volvox carteri specifies the production of eggs and sperm and has undergone a remarkable expansion and divergence relative to MT from Chlamydomonas reinhardtii, which is a closely related unicellular species that has equal-sized gametes. Transcriptome analysis revealed a rewired gametic expression program for Volvox MT genes relative to Chlamydomonas and identified multiple gender-specific and sex-regulated transcripts. The retinoblastoma tumor suppressor homolog MAT3 is a Volvox MT gene that displays sexually regulated alternative splicing and evidence of gender-specific selection, both of which are indicative of cooption into the sexual cycle. Thus, sex-determining loci affect the evolution of both sex-related and non-sex-related genes.
Collapse
Affiliation(s)
- Patrick Ferris
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Peter L. De Hoff
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Stephen Douglass
- Institute for Genomics and Proteomics and Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, 90095, USA
| | - David Casero Diaz-Cano
- Institute for Genomics and Proteomics and Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, 90095, USA
| | - Simon Prochnik
- U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Walnut Creek, California, 95498, USA
| | - Sa Geng
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Rhitu Rai
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Laboratory of Plant Microbe Interaction, National Research Center on Plant Biotechnology, Pusa Campus, Indian Agricultural Research Institute, New Delhi-110012, India
| | - Jane Grimwood
- Genome Sequencing Center, Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, 35906, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, 35906, USA
| | - Ichiro Nishii
- Department of Biological Science, Nara Women's University, Nara 630-8506, Japan
| | - Takashi Hamaji
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Matteo Pellegrini
- Institute for Genomics and Proteomics and Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, 90095, USA
| | - James G. Umen
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
48
|
Nishimura Y. Uniparental inheritance of cpDNA and the genetic control of sexual differentiation in Chlamydomonas reinhardtii. JOURNAL OF PLANT RESEARCH 2010; 123:149-162. [PMID: 20196233 DOI: 10.1007/s10265-009-0292-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An intriguing feature of most eukaryotes is that chloroplast (cp) and mitochondrial (mt) genomes are inherited almost exclusively from one parent. Uniparental inheritance of cp/mt genomes was long thought to be a passive outcome, based on the fact that eggs contain multiple numbers of organelles, while male gametes contribute,at best, only a few cp/mtDNA. However, the process is likely to be more dynamic because uniparental inheritance occurs in organisms that produce gametes of identical sizes (isogamous). In Chlamydomonas reinhardtii,the uniparental inheritance of cp/mt genomes is achieved by a series of mating type-controlled events that actively eliminate the mating type minus (mt-) cpDNA.The method by which Chlamydomonas selectively degrades mt- cpDNA has long fascinated researchers, and is the subject of this review.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Sciences, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japane.
| |
Collapse
|
49
|
Miyamura S. Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type. JOURNAL OF PLANT RESEARCH 2010; 123:171-184. [PMID: 20112126 DOI: 10.1007/s10265-010-0309-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Cytological and genetic investigations of two major groups of green algae, chlorophyte and streptophyte green algae, show a predominance of uniparental inheritance of the plastid and mitochondrial genomes in most species. However, in some crosses of isogamous species of Ulva compressa, these genomes are transmitted from mt+, mt(-), and both parents. In species with uniparental organelle inheritance, various mechanisms can eliminate organelles and their DNA during male gametogenesis or after fertilization. Concerning plastid inheritance, two major mechanisms are widespread in green algae: (1) digestion of plastid DNA during male gametogenesis, during fertilization, or after fertilization; and (2) disintegration or fusion of the plastid in the zygote. The first mechanism also eliminates the mitochondrial DNA in anisogamous and oogamous species. These mechanisms would ensure the predominantly uniparental inheritance of organelle genomes in green algae. To trace the evolutionary history of cytoplasmic inheritance in green algae, the relations between uniparental inheritance and sex type were considered in isogamous, anisogamous, and oogamous species using sex-specific features that might be nearly universal among Chlorophyta.
Collapse
Affiliation(s)
- Shinichi Miyamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
50
|
Hamaji T, Ferris PJ, Nishii I, Nozaki H. IDENTIFICATION OF THE MINUS MATING-TYPE SPECIFIC GENE MTD1 FROM GONIUM PECTORALE (VOLVOCALES, CHLOROPHYTA)(1). JOURNAL OF PHYCOLOGY 2009; 45:1310-1314. [PMID: 27032588 DOI: 10.1111/j.1529-8817.2009.00744.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gonium pectorale O. F. Müll. (Volvocales, Chlorophyta), a colonial 8- or 16-cellular alga, is phylogenetically important as an intermediate form between isogametic unicellular Chlamydomonas and oogamous Volvox. We identified the mating-type specific gene GpMTD1, from G. pectorale, the first homologue of Chlamydomonas reinhardtii MTD1 (CrMTD1). The GpMTD1 gene was found to be present only in the minus mating-type locus and was expressed specifically in the gametic phase as is the case for CrMTD1, suggested to participate in development of the minus gametes. This gene is useful as a probe in analyzing the bacterial artificial chromosome (BAC) library for resolving genomic structures of the mating-type loci in isogamous and oogamous colonial volvocaleans.
Collapse
Affiliation(s)
- Takashi Hamaji
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, JapanPlant Biology Laboratory, Salk Institute, La Jolla, California 92037, USAAdvanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Patrick J Ferris
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, JapanPlant Biology Laboratory, Salk Institute, La Jolla, California 92037, USAAdvanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Ichiro Nishii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, JapanPlant Biology Laboratory, Salk Institute, La Jolla, California 92037, USAAdvanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, JapanPlant Biology Laboratory, Salk Institute, La Jolla, California 92037, USAAdvanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198, JapanDepartment of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|