1
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
2
|
Neyhart JL, Kantar MB, Zalapa J, Vorsa N. Genomic-environmental associations in wild cranberry (Vaccinium macrocarpon Ait.). G3 (BETHESDA, MD.) 2022; 12:jkac203. [PMID: 35944211 PMCID: PMC9526045 DOI: 10.1093/g3journal/jkac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Understanding the genetic basis of local adaptation in natural plant populations, particularly crop wild relatives, may be highly useful for plant breeding. By characterizing genetic variation for adaptation to potentially stressful environmental conditions, breeders can make targeted use of crop wild relatives to develop cultivars for novel or changing environments. This is especially appealing for improving long-lived woody perennial crops such as the American cranberry (Vaccinium macrocarpon Ait.), the cultivation of which is challenged by biotic and abiotic stresses. In this study, we used environmental association analyses in a collection of 111 wild cranberry accessions to identify potentially adaptive genomic regions for a range of bioclimatic and soil conditions. We detected 126 significant associations between SNP marker loci and environmental variables describing temperature, precipitation, and soil attributes. Many of these markers tagged genes with functional annotations strongly suggesting a role in adaptation to biotic or abiotic conditions. Despite relatively low genetic variation in cranberry, our results suggest that local adaptation to divergent environments is indeed present, and the identification of potentially adaptive genetic variation may enable a selective use of this germplasm for breeding more stress-tolerant cultivars.
Collapse
Affiliation(s)
- Jeffrey L Neyhart
- USDA, Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, Chatsworth, NJ 08019, USA
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Juan Zalapa
- USDA, Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Nicholi Vorsa
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
3
|
Crain J, Larson S, Dorn K, DeHaan L, Poland J. Genetic architecture and QTL selection response for Kernza perennial grain domestication traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2769-2784. [PMID: 35763029 PMCID: PMC9243872 DOI: 10.1007/s00122-022-04148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Analysis of multi-year breeding program data revealed that the genetic architecture of an intermediate wheatgrass population was highly polygenic for both domestication and agronomic traits, supporting the use of genomic selection for new crop domestication. Perennial grains have the potential to provide food for humans and decrease the negative impacts of annual agriculture. Intermediate wheatgrass (IWG, Thinopyrum intermedium, Kernza®) is a promising perennial grain candidate that The Land Institute has been breeding since 2003. We evaluated four consecutive breeding cycles of IWG from 2016 to 2020 with each cycle containing approximately 1100 unique genets. Using genotyping-by-sequencing markers, quantitative trait loci (QTL) were mapped for 34 different traits using genome-wide association analysis. Combining data across cycles and years, we found 93 marker-trait associations for 16 different traits, with each association explaining 0.8-5.2% of the observed phenotypic variance. Across the four cycles, only three QTL showed an FST differentiation > 0.15 with two corresponding to a decrease in floret shattering. Additionally, one marker associated with brittle rachis was 216 bp from an ortholog of the btr2 gene. Power analysis and quantitative genetic theory were used to estimate the effective number of QTL, which ranged from a minimum of 33 up to 558 QTL for individual traits. This study suggests that key agronomic and domestication traits are under polygenic control and that molecular methods like genomic selection are needed to accelerate domestication and improvement of this new crop.
Collapse
Affiliation(s)
- Jared Crain
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA
| | - Steve Larson
- USDA-ARS, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| | - Kevin Dorn
- USDA-ARS, Soil Management and Sugarbeet Research, Fort Collins, CO, 80526, USA
| | - Lee DeHaan
- The Land Institute, 2440 E. Water Well Rd, Salina, KS, 67401, USA
| | - Jesse Poland
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS, 66506, USA.
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Avia K, Lipinska AP, Mignerot L, Montecinos AE, Jamy M, Ahmed S, Valero M, Peters AF, Cock JM, Roze D, Coelho SM. Genetic Diversity in the UV Sex Chromosomes of the Brown Alga Ectocarpus. Genes (Basel) 2018; 9:E286. [PMID: 29882839 PMCID: PMC6027523 DOI: 10.3390/genes9060286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.
Collapse
Affiliation(s)
- Komlan Avia
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
| | - Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Laure Mignerot
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Alejandro E Montecinos
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
- Facultad de Ciencias, Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | - Mahwash Jamy
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Sophia Ahmed
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, University of Paris VI, UC, UACH, UMI 3614, 29688 Roscoff, France.
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France.
| |
Collapse
|
5
|
High-Resolution Mapping of Crossover Events in the Hexaploid Wheat Genome Suggests a Universal Recombination Mechanism. Genetics 2017; 206:1373-1388. [PMID: 28533438 DOI: 10.1534/genetics.116.196014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/12/2017] [Indexed: 11/18/2022] Open
Abstract
During meiosis, crossovers (COs) create new allele associations by reciprocal exchange of DNA. In bread wheat (Triticum aestivum L.), COs are mostly limited to subtelomeric regions of chromosomes, resulting in a substantial loss of breeding efficiency in the proximal regions, though these regions carry ∼60-70% of the genes. Identifying sequence and/or chromosome features affecting recombination occurrence is thus relevant to improve and drive recombination. Using the recent release of a reference sequence of chromosome 3B and of the draft assemblies of the 20 other wheat chromosomes, we performed fine-scale mapping of COs and revealed that 82% of COs located in the distal ends of chromosome 3B representing 19% of the chromosome length. We used 774 SNPs to genotype 180 varieties representative of the Asian and European genetic pools and a segregating population of 1270 F6 lines. We observed a common location for ancestral COs (predicted through linkage disequilibrium) and the COs derived from the segregating population. We delineated 73 small intervals (<26 kb) on chromosome 3B that contained 252 COs. We observed a significant association of COs with genic features (73 and 54% in recombinant and nonrecombinant intervals, respectively) and with those expressed during meiosis (67% in recombinant intervals and 48% in nonrecombinant intervals). Moreover, while the recombinant intervals contained similar amounts of retrotransposons and DNA transposons (42 and 53%), nonrecombinant intervals had a higher level of retrotransposons (63%) and lower levels of DNA transposons (28%). Consistent with this, we observed a higher frequency of a DNA motif specific to the TIR-Mariner DNA transposon in recombinant intervals.
Collapse
|
6
|
The relationship of recombination rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol Biol 2015; 15:194. [PMID: 26377000 PMCID: PMC4574184 DOI: 10.1186/s12862-015-0473-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background Although homologous recombination affects the efficacy of selection in populations, the pattern of recombination rate evolution and its effects on genome evolution across plants are largely unknown. Recombination can reduce genome size by enabling the removal of LTR retrotransposons, alter codon usage by GC biased gene conversion, contribute to complex histories of gene duplication and loss through tandem duplication, and enhance purifying selection on genes. Therefore, variation in recombination rate across species may explain some of the variation in genomic architecture as well as rates of molecular evolution. We used phylogenetic comparative methods to investigate the evolution of global meiotic recombination rate in angiosperms and its effects on genome architecture and selection at the molecular level using genetic maps and genome sequences from thirty angiosperm species. Results Recombination rate is negatively correlated with genome size, which is likely caused by the removal of LTR retrotransposons. After correcting recombination rates for euchromatin content, we also found an association between global recombination rate and average gene family size. This suggests a role for recombination in the preservation of duplicate genes or expansion of gene families. An analysis of the correlation between the ratio of nonsynonymous to synonymous substitution rates (dN/dS) and recombination rate in 3748 genes indicates that higher recombination rates are associated with an increased efficacy of purifying selection, suggesting that global recombination rates affect variation in rates of molecular evolution across distantly related angiosperm species, not just between populations. We also identified shifts in dN/dS for recombination proteins that are associated with shifts in global recombination rate across our sample of angiosperms. Conclusions Although our analyses only reveal correlations, not mechanisms, and do not include potential covariates of recombination rate, like effective population size, they suggest that global recombination rates may play an important role in shaping the macroevolutionary patterns of gene and genome evolution in plants. Interspecific recombination rate variation is tightly correlated with genome size as well as variation in overall LTR retrotransposon abundances. Recombination may shape gene-to-gene variation in dN/dS between species, which might impact the overall gene duplication and loss rates. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0473-3) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Wang Y, Shahid MQ, Huang H, Wang Y. Nucleotide diversity patterns of three divergent soybean populations: evidences for population-dependent linkage disequilibrium and taxonomic status of Glycine gracilis. Ecol Evol 2015; 5:3969-78. [PMID: 26442568 PMCID: PMC4588648 DOI: 10.1002/ece3.1550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022] Open
Abstract
The level of linkage disequilibrium (LD) is a major factor to determine DNA polymorphism pattern of a population and to construct high‐resolution maps useful in localizing and gene cloning of complicated traits. Here, we investigated LD level of three soybean populations with different genetic backgrounds and taxonomic status of G. gracilis by comparing the DNA polymorphism patterns of four high‐diversity single‐copy nuclear genes. A total of 152, 22, and 77 accessions of G. soja, G. gracilis, and G. max were observed. The results indicated that G. max retained only 75.3 (π) and 39% (θ) of the nucleotide polymorphism found in G. soja. Four gene loci evolved according to neutrality in both G. max and G. gracilis populations, and three gene loci evolved according to neutrality in G. soja population by Tajima's and Fu and Li's test. However, one gene locus deviated from neutrality by Fu and Li's test in the G. soja population. Further, medial level of LD (average r2 = 0.2426) was found in intragene in G. max and G. gracilis populations, but unexpected low level of LD (r2 ≤ 0.0539) was found in G. soja population. Significant genetic differentiation was detected between G. max and G. soja populations and also between G. max and G. gracilis populations; however, nonsignificant genetic differentiation was found between G. gracilis and G. soja populations. The results suggest that LD level depends on genetic background of soybean population, and implicit that G. gracilis should be regarded as the variant of G. soja, not as an independent species.
Collapse
Affiliation(s)
- Yunsheng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden Chinese Academy of Science Wuhan Hubei 430074 China ; College of Environment and Life Science Kaili University Kaili Guizhou 556011 China
| | - Muhammad Qasim Shahid
- College of Agriculture South China Agricultural University Guangzhou Guangdong 510642 China
| | - Hongwen Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden Chinese Academy of Science Wuhan Hubei 430074 China ; Key Laboratory of Plant Resources Conservation and Sustainable Utilization Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Science Guangzhou Guangdong 510642 China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture Wuhan Botanical Garden Chinese Academy of Science Wuhan Hubei 430074 China
| |
Collapse
|
8
|
Hough J, Williamson RJ, Wright SI. Patterns of Selection in Plant Genomes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135851] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants show a wide range of variation in mating system, ploidy level, and demographic history, allowing for unique opportunities to investigate the evolutionary and genetic factors affecting genome-wide patterns of positive and negative selection. In this review, we highlight recent progress in our understanding of the extent and nature of selection on plant genomes. We discuss differences in selection as they relate to variation in demography, recombination, mating system, and ploidy. We focus on the population genetic consequences of these factors and argue that, although variation in the magnitude of purifying selection is well documented, quantifying rates of positive selection and disentangling the relative importance of recombination, demography, and ploidy are ongoing challenges. Large-scale comparative studies that examine the relative and joint importance of these processes, combined with explicit models of population history and selection, are key and feasible goals for future work.
Collapse
Affiliation(s)
- Josh Hough
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Robert J. Williamson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2;, ,
| |
Collapse
|
9
|
Genomic signatures of selection at linked sites: unifying the disparity among species. Nat Rev Genet 2013; 14:262-74. [PMID: 23478346 DOI: 10.1038/nrg3425] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetics theory supplies powerful predictions about how natural selection interacts with genetic linkage to sculpt the genomic landscape of nucleotide polymorphism. Both the spread of beneficial mutations and the removal of deleterious mutations act to depress polymorphism levels, especially in low-recombination regions. However, empiricists have documented extreme disparities among species. Here we characterize the dominant features that could drive differences in linked selection among species--including roles for selective sweeps being 'hard' or 'soft'--and the concealing effects of demography and confounding genomic variables. We advocate targeted studies of closely related species to unify our understanding of how selection and linkage interact to shape genome evolution.
Collapse
|
10
|
Figueroa DM, Bass HW. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation. Chromosome Res 2012; 20:363-80. [PMID: 22588802 PMCID: PMC3391363 DOI: 10.1007/s10577-012-9281-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 12/18/2022]
Abstract
Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the cytogenetic maps, regardless of chromosome number or maize inbred line source, with just some of the telomeric loci exempted. Finally and somewhat surprisingly, we observed considerable variation between the relative arm positions of loci when comparing our cytogenetic FISH map to the B73 genomic physical maps, even where comparisons were to a B73-derived cytogenetic map. This variation is more evident between different chromosome arms, but less so within a given arm, ruling out any type of inbred-line dependent global features of linear deoxyribonucleic acid compared with the meiotic fiber organization. This study provides a means for analyzing the maize genome structure by producing new connections for integrating the cytogenetic, linkage, and physical maps of maize.
Collapse
Affiliation(s)
- Debbie M Figueroa
- Department of Biological Science, Florida State University, Tallahassee, 32306-4295, USA.
| | | |
Collapse
|
11
|
Smukowski CS, Noor MAF. Recombination rate variation in closely related species. Heredity (Edinb) 2011; 107:496-508. [PMID: 21673743 PMCID: PMC3242630 DOI: 10.1038/hdy.2011.44] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/21/2011] [Accepted: 04/27/2011] [Indexed: 11/09/2022] Open
Abstract
Despite their importance to successful meiosis and various evolutionary processes, meiotic recombination rates sometimes vary within species or between closely related species. For example, humans and chimpanzees share virtually no recombination hotspot locations in the surveyed portion of the genomes. However, conservation of recombination rates between closely related species has also been documented, raising an apparent contradiction. Here, we evaluate how and why conflicting patterns of recombination rate conservation and divergence may be observed, with particular emphasis on features that affect recombination, and the scale and method with which recombination is surveyed. Additionally, we review recent studies identifying features influencing fine-scale and broad-scale recombination patterns and informing how quickly recombination rates evolve, how changes in recombination impact selection and evolution in natural populations, and more broadly, which forces influence genome evolution.
Collapse
Affiliation(s)
- C S Smukowski
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
12
|
Saintenac C, Faure S, Remay A, Choulet F, Ravel C, Paux E, Balfourier F, Feuillet C, Sourdille P. Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot. Chromosoma 2010; 120:185-98. [PMID: 21161258 DOI: 10.1007/s00412-010-0302-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/27/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
In bread wheat (Triticum aestivum L.), initial studies using deletion lines indicated that crossover (CO) events occur mainly in the telomeric regions of the chromosomes with a possible correlation with the presence of genes. However, little is known about the distribution of COs at the sequence level. To investigate this, we studied in detail the pattern of COs along a contig of 3.110 Mb using two F2 segregating populations (Chinese Spring × Renan (F2-CsRe) and Chinese Spring × Courtot (F2-CsCt)) each containing ~2,000 individuals. The availability of the sequence of the contig from Cs enabled the development of 318 markers among which 23 co-dominant polymorphic markers (11 SSRs and 12 SNPs) were selected for CO distribution analyses. The distribution of CO events was not homogeneous throughout the contig, ranging from 0.05 to 2.77 cM/Mb, but was conserved between the two populations despite very different contig recombination rate averages (0.82 cM/Mb in F2-CsRe vs 0.35 cM/Mb in F2-CsCt). The CO frequency was correlated with the percentage of coding sequence in Cs and with the polymorphism rate between Cs and Re or Ct in both populations, indicating an impact of these two factors on CO distribution. At a finer scale, COs were found in a region covering 2.38 kb, spanning a gene coding for a glycosyl transferase (Hga3), suggesting the presence of a CO hotspot. A non-crossover event covering at least 453 bp was also identified in the same interval. From these results, we can conclude that gene content could be one of the factors driving recombination in bread wheat.
Collapse
Affiliation(s)
- Cyrille Saintenac
- UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, INRA-UBP, Domaine de Crouël, 234 Avenue du Brézet, Clermont-Ferrand, 63100, France
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 2010; 42:1027-30. [DOI: 10.1038/ng.684] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
|
14
|
Mackiewicz D, Zawierta M, Waga W, Cebrat S. Genome analyses and modelling the relationships between coding density, recombination rate and chromosome length. J Theor Biol 2010; 267:186-92. [PMID: 20728453 DOI: 10.1016/j.jtbi.2010.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 06/29/2010] [Accepted: 08/17/2010] [Indexed: 01/23/2023]
Abstract
In the human genomes, recombination frequency between homologous chromosomes during meiosis is highly correlated with their physical length while it differs significantly when their coding density is considered. Furthermore, it has been observed that the recombination events are distributed unevenly along the chromosomes. We have found that many of such recombination properties can be predicted by computer simulations of population evolution based on the Monte Carlo methods. For example, these simulations have shown that the probability of acceptance of the recombination events by selection is higher at the ends of chromosomes and lower in their middle parts. The regions of high coding density are more prone to enter the strategy of haplotype complementation and to form clusters of genes, which are "recombination deserts". The phenomenon of switching in-between the purifying selection and haplotype complementation has a phase transition character, and many relations between the effective population size, coding density, chromosome size and recombination frequency are those of the power law type.
Collapse
Affiliation(s)
- Dorota Mackiewicz
- Department of Genomics, Biotechnology Faculty, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | | | |
Collapse
|
15
|
Peto M, Grant DM, Shoemaker RC, Cannon SB. Applying small-scale DNA signatures as an aid in assembling soybean chromosome sequences. Adv Bioinformatics 2010; 2010:976792. [PMID: 20827309 PMCID: PMC2933861 DOI: 10.1155/2010/976792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
Previous work has established a genomic signature based on relative counts of the 16 possible dinucleotides. Until now, it has been generally accepted that the dinucleotide signature is characteristic of a genome and is relatively homogeneous across a genome. However, we found some local regions of the soybean genome with a signature differing widely from that of the rest of the genome. Those regions were mostly centromeric and pericentromeric, and enriched for repetitive sequences. We found that DNA binding energy also presented large-scale patterns across soybean chromosomes. These two patterns were helpful during assembly and quality control of soybean whole genome shotgun scaffold sequences into chromosome pseudomolecules.
Collapse
Affiliation(s)
- Myron Peto
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - David M. Grant
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Randy C. Shoemaker
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Steven B. Cannon
- USDA-ARS-CICGR Unit and Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Papazova N, Zhang D, Gruden K, Vojvoda J, Yang L, Buh Gasparic M, Blejec A, Fouilloux S, De Loose M, Taverniers I. Evaluation of the reliability of maize reference assays for GMO quantification. Anal Bioanal Chem 2010; 396:2189-201. [PMID: 20069284 DOI: 10.1007/s00216-009-3386-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 11/24/2022]
Abstract
A reliable PCR reference assay for relative genetically modified organism (GMO) quantification must be specific for the target taxon and amplify uniformly along the commercialised varieties within the considered taxon. Different reference assays for maize (Zea mays L.) are used in official methods for GMO quantification. In this study, we evaluated the reliability of eight existing maize reference assays, four of which are used in combination with an event-specific polymerase chain reaction (PCR) assay validated and published by the Community Reference Laboratory (CRL). We analysed the nucleotide sequence variation in the target genomic regions in a broad range of transgenic and conventional varieties and lines: MON 810 varieties cultivated in Spain and conventional varieties from various geographical origins and breeding history. In addition, the reliability of the assays was evaluated based on their PCR amplification performance. A single base pair substitution, corresponding to a single nucleotide polymorphism (SNP) reported in an earlier study, was observed in the forward primer of one of the studied alcohol dehydrogenase 1 (Adh1) (70) assays in a large number of varieties. The SNP presence is consistent with a poor PCR performance observed for this assay along the tested varieties. The obtained data show that the Adh1 (70) assay used in the official CRL NK603 assay is unreliable. Based on our results from both the nucleotide stability study and the PCR performance test, we can conclude that the Adh1 (136) reference assay (T25 and Bt11 assays) as well as the tested high mobility group protein gene assay, which also form parts of CRL methods for quantification, are highly reliable. Despite the observed uniformity in the nucleotide sequence of the invertase gene assay, the PCR performance test reveals that this target sequence might occur in more than one copy. Finally, although currently not forming a part of official quantification methods, zein and SSIIb assays are found to be highly reliable in terms of nucleotide stability and PCR performance and are proposed as good alternative targets for a reference assay for maize.
Collapse
Affiliation(s)
- Nina Papazova
- Technology and Food Sciences, Institute for Agricultural and Fisheries Research (ILVO), Burg. Van Gansberghelaan 115, 9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Jaramillo-Correa JP, Verdú M, González-Martínez SC. The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol Biol 2010; 10:22. [PMID: 20100325 PMCID: PMC2826329 DOI: 10.1186/1471-2148-10-22] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 01/25/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Despite its role as a generator of haplotypic variation, little is known about how the rates of recombination evolve across taxa. Recombination is a very labile force, susceptible to evolutionary and life trait related processes, which have also been correlated with general levels of genetic diversity. For example, in plants, it has been shown that long-lived outcrossing taxa, such as trees, have higher heterozygosity (He) at SSRs and allozymes than selfing or annual species. However, some of these tree taxa have surprisingly low levels of nucleotide diversity at the DNA sequence level, which points to recombination as a potential generator of genetic diversity in these organisms. In this study, we examine how genome-wide and within-gene rates of recombination evolve across plant taxa, determine whether such rates are influenced by the life-form adopted by species, and evaluate if higher genome-wide rates of recombination translate into higher He values, especially in trees. RESULTS Estimates of genome-wide (cM/Mb) recombination rates from 81 higher plants showed a significant phylogenetic signal. The use of different comparative phylogenetic models demonstrated that there is a positive correlation between recombination rate and He (0.83 +/- 0.29), and that trees have higher rates of genome-wide recombination than short-lived herbs and shrubs. A significant taxonomic component was further made evident by our models, as conifers exhibited lower recombination rates than angiosperms. This trend was also found at the within-gene level. CONCLUSIONS Altogether, our results illustrate how both common ancestry and life-history traits have to be taken into account for understanding the evolution of genetic diversity and genomic rates of recombination across plant species, and highlight the relevance of species life forms to explain general levels of diversity and recombination.
Collapse
Affiliation(s)
- Juan P Jaramillo-Correa
- Departamento de Sistemas y Recursos Forestales, Centro de Investigación Forestal, CIFOR-INIA, Carretera de La Coruña, km 7.5, ES-28040 Madrid, Spain
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Tercer circuito Exterior, Apartado Postal 70-275, México, DF
| | - Miguel Verdú
- CIDE, Centro de Investigaciones sobre Desertificación (CSIC-UV-GV). Camí de la Marjal s/n Apartado Oficial. ES-46470 Albal, València, Spain
| | - Santiago C González-Martínez
- Departamento de Sistemas y Recursos Forestales, Centro de Investigación Forestal, CIFOR-INIA, Carretera de La Coruña, km 7.5, ES-28040 Madrid, Spain
| |
Collapse
|
18
|
Drost DR, Novaes E, Boaventura-Novaes C, Benedict CI, Brown RS, Yin T, Tuskan GA, Kirst M. A microarray-based genotyping and genetic mapping approach for highly heterozygous outcrossing species enables localization of a large fraction of the unassembled Populus trichocarpa genome sequence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:1054-67. [PMID: 19220791 DOI: 10.1111/j.1365-313x.2009.03828.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microarrays have demonstrated significant power for genome-wide analyses of gene expression, and recently have also revolutionized the genetic analysis of segregating populations by genotyping thousands of loci in a single assay. Although microarray-based genotyping approaches have been successfully applied in yeast and several inbred plant species, their power has not been proven in an outcrossing species with extensive genetic diversity. Here we have developed methods for high-throughput microarray-based genotyping in such species using a pseudo-backcross progeny of 154 individuals of Populus trichocarpa and P. deltoides analyzed with long-oligonucleotide in situ-synthesized microarray probes. Our analysis resulted in high-confidence genotypes for 719 single-feature polymorphism (SFP) and 1014 gene expression marker (GEM) candidates. Using these genotypes and an established microsatellite (SSR) framework map, we produced a high-density genetic map comprising over 600 SFPs, GEMs and SSRs. The abundance of gene-based markers allowed us to localize over 35 million base pairs of previously unplaced whole-genome shotgun (WGS) scaffold sequence to putative locations in the genome of P. trichocarpa. A high proportion of sampled scaffolds could be verified for their placement with independently mapped SSRs, demonstrating the previously un-utilized power that high-density genotyping can provide in the context of map-based WGS sequence reassembly. Our results provide a substantial contribution to the continued improvement of the Populus genome assembly, while demonstrating the feasibility of microarray-based genotyping in a highly heterozygous population. The strategies presented are applicable to genetic mapping efforts in all plant species with similarly high levels of genetic diversity.
Collapse
Affiliation(s)
- Derek R Drost
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Applications of Linkage Disequilibrium and Association Mapping in Maize. MOLECULAR GENETIC APPROACHES TO MAIZE IMPROVEMENT 2008. [DOI: 10.1007/978-3-540-68922-5_13] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Structure-function analysis of the barley genome: the gene-rich region of chromosome 2HL. Funct Integr Genomics 2008; 9:67-79. [PMID: 18958509 DOI: 10.1007/s10142-008-0099-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/03/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
A major gene-rich region on the end of the long arm of Triticeae group 2 chromosomes exhibits high recombination frequencies, making it an attractive region for positional cloning. Traits known to be controlled by this region include chasmogamy/cleistogamy, frost tolerance at flowering, grain yield, head architecture, and resistance to Fusarium head blight and rusts. To assist these cloning efforts, we constructed detailed genetic maps of barley chromosome 2H, including 61 polymerase chain reaction markers. Colinearity with rice occurred in eight distinct blocks, including five blocks in the terminal gene-rich region. Alignment of rice sequences from the junctions of colinear chromosome segments provided no evidence for the involvement of long (>2.5 kb) inverted repeats in generating inversions. However, reuse of some junction sequences in two or three separate evolutionary breakage/fusion events was implicated, suggesting the presence of fragile sites. Sequencing across 91 gene fragments totaling 107 kb from four barley genotypes revealed the highest single nucleotide substitution and insertion-deletion polymorphism levels in the terminal regions of the chromosome arms. The maps will assist in the isolation of genes from the chromosome 2L gene-rich region in barley and wheat by providing markers and accelerating the identification of the corresponding points in the rice genome sequence.
Collapse
|
21
|
Contrasting patterns of transposable-element insertion polymorphism and nucleotide diversity in autotetraploid and allotetraploid Arabidopsis species. Genetics 2008; 179:581-92. [PMID: 18493073 DOI: 10.1534/genetics.107.085761] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been hypothesized that polyploidy permits the proliferation of transposable elements, due to both the masking of deleterious recessive mutations and the breakdown of host silencing mechanisms. We investigated the patterns of insertion polymorphism of an Ac-like transposable element and nucleotide diversity at 18 gene fragments in the allotetraploid Arabidopsis suecica and the autotetraploid A. arenosa. All identified insertions were fixed in A. suecica, and many were clearly inherited from the parental species A. thaliana or A. arenosa. These results are inconsistent with a rapid increase in transposition associated with hybrid breakdown but support the evidence from nucleotide polymorphism patterns of a recent single origin of this species leading to genomewide fixations of transposable elements. In contrast, most insertions were segregating at very low frequencies in A. arenosa samples, showing a significant departure from neutrality in favor of purifying selection, even when we account for population subdivision inferred from sequence variation. Patterns of nucleotide variation at reference genes are consistent with the TE results, showing evidence for higher effective population sizes in A. arenosa than in related diploid taxa but a near complete population bottleneck associated with the origins of A. suecica.
Collapse
|
22
|
Kawabe A, Forrest A, Wright SI, Charlesworth D. High DNA sequence diversity in pericentromeric genes of the plant Arabidopsis lyrata. Genetics 2008; 179:985-95. [PMID: 18505875 PMCID: PMC2429891 DOI: 10.1534/genetics.107.085282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 04/05/2008] [Indexed: 11/18/2022] Open
Abstract
Differences in neutral diversity at different loci are predicted to arise due to differences in mutation rates and from the "hitchhiking" effects of natural selection. Consistent with hitchhiking models, Drosophila melanogaster chromosome regions with very low recombination have unusually low nucleotide diversity. We compared levels of diversity from five pericentromeric regions with regions of normal recombination in Arabidopsis lyrata, an outcrossing close relative of the highly selfing A. thaliana. In contrast with the accepted theoretical prediction, and the pattern in Drosophila, we found generally high diversity in pericentromeric genes, which is consistent with the observation in A. thaliana. Our data rule out balancing selection in the pericentromeric regions, suggesting that hitchhiking is more strongly reducing diversity in the chromosome arms than the pericentromere regions.
Collapse
Affiliation(s)
- Akira Kawabe
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
23
|
Jenkins G, Phillips D, Mikhailova EI, Timofejeva L, Jones RN. Meiotic genes and proteins in cereals. Cytogenet Genome Res 2008; 120:291-301. [PMID: 18504358 DOI: 10.1159/000121078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2007] [Indexed: 12/20/2022] Open
Abstract
We review the current status of our understanding and knowledge of the genes and proteins controlling meiosis in five major cereals, rye, wheat, barley, rice and maize. For each crop, we describe the genetic and genomic infrastructure available to investigators, before considering the inventory of genes and proteins that have roles to play in this process. Emphasis is given throughout as to how translational genomic and proteomic approaches have enabled us to circumvent some of the intractable features of this important group of plants.
Collapse
Affiliation(s)
- G Jenkins
- Institute of Biological Sciences, University of Wales, Aberystwyth, UK.
| | | | | | | | | |
Collapse
|
24
|
Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB. High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:945-52. [PMID: 18278477 DOI: 10.1007/s00122-008-0726-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 01/28/2008] [Indexed: 05/05/2023]
Abstract
Large numbers of single nucleotide polymorphism (SNP) markers are now available for a number of crop species. However, the high-throughput methods for multiplexing SNP assays are untested in complex genomes, such as soybean, that have a high proportion of paralogous genes. The Illumina GoldenGate assay is capable of multiplexing from 96 to 1,536 SNPs in a single reaction over a 3-day period. We tested the GoldenGate assay in soybean to determine the success rate of converting verified SNPs into working assays. A custom 384-SNP GoldenGate assay was designed using SNPs that had been discovered through the resequencing of five diverse accessions that are the parents of three recombinant inbred line (RIL) mapping populations. The 384 SNPs that were selected for this custom assay were predicted to segregate in one or more of the RIL mapping populations. Allelic data were successfully generated for 89% of the SNP loci (342 of the 384) when it was used in the three RIL mapping populations, indicating that the complex nature of the soybean genome had little impact on conversion of the discovered SNPs into usable assays. In addition, 80% of the 342 mapped SNPs had a minor allele frequency >10% when this assay was used on a diverse sample of Asian landrace germplasm accessions. The high success rate of the GoldenGate assay makes this a useful technique for quickly creating high density genetic maps in species where SNP markers are rapidly becoming available.
Collapse
Affiliation(s)
- David L Hyten
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Buckner B, Swaggart KA, Wong CC, Smith HA, Aurand KM, Scanlon MJ, Schnable PS, Janick-Buckner D. Expression and nucleotide diversity of the maize RIK gene. J Hered 2008; 99:407-16. [PMID: 18310068 DOI: 10.1093/jhered/esn013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The K homology (KH) domain is a conserved sequence present in a wide variety of RNA-binding proteins. The rough sheath2-interacting KH domain (RIK) protein of maize has been implicated in the maintenance of the repressed chromatin state of knox genes during leaf primordia initiation. The amino acid sequences of the publicly available plant RIK proteins contain a splicing factor 1 (SF1)-like KH domain core sequence motif that distinguishes them from all other SF1-like KH domain-containing proteins. We demonstrate that the maize RIK gene exhibits surprisingly little nucleotide sequence diversity among Zea species and subspecies. Microarray hybridization experiments demonstrate that RIK has a higher level of expression in the shoot apical meristem as compared with 14-day seedling. Reverse transcriptase-polymerase chain reaction analysis of RIK indicates that the gene is expressed in many tissues, albeit at lower levels in older leaf samples. Taken together, these data suggest that the RIK protein may be involved in the maintenance of an inactive chromatin state of knox and possibly other genes in nonmeristematic tissues.
Collapse
Affiliation(s)
- Brent Buckner
- Department of Biology, Truman State University, 100 East Normal Street, Kirksville, MO 63501, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Multilocus patterns of polymorphism and selection across the X chromosome of Caenorhabditis remanei. Genetics 2008; 178:1661-72. [PMID: 18245859 DOI: 10.1534/genetics.107.085803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural selection and neutral processes such as demography, mutation, and gene conversion all contribute to patterns of polymorphism within genomes. Identifying the relative importance of these varied components in evolution provides the principal challenge for population genetics. To address this issue in the nematode Caenorhabditis remanei, I sampled nucleotide polymorphism at 40 loci across the X chromosome. The site-frequency spectrum for these loci provides no evidence for population size change, and one locus presents a candidate for linkage to a target of balancing selection. Selection for codon usage bias leads to the non-neutrality of synonymous sites, and despite its weak magnitude of effect (N(e)s approximately 0.1), is responsible for profound patterns of diversity and divergence in the C. remanei genome. Although gene conversion is evident for many loci, biased gene conversion is not identified as a significant evolutionary process in this sample. No consistent association is observed between synonymous-site diversity and linkage-disequilibrium-based estimators of the population recombination parameter, despite theoretical predictions about background selection or widespread genetic hitchhiking, but genetic map-based estimates of recombination are needed to rigorously test for a diversity-recombination relationship. Coalescent simulations also illustrate how a spurious correlation between diversity and linkage-disequilibrium-based estimators of recombination can occur, due in part to the presence of unbiased gene conversion. These results illustrate the influence that subtle natural selection can exert on polymorphism and divergence, in the form of codon usage bias, and demonstrate the potential of C. remanei for detecting natural selection from genomic scans of polymorphism.
Collapse
|
27
|
Tenaillon MI, Austerlitz F, Tenaillon O. Apparent mutational hotspots and long distance linkage disequilibrium resulting from a bottleneck. J Evol Biol 2008; 21:541-50. [PMID: 18205779 DOI: 10.1111/j.1420-9101.2007.01490.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genome wide patterns of nucleotide diversity and recombination reveal considerable variation including hotspots. Some studies suggest that these patterns are primarily dictated by individual locus history related at a broader scale to the population demographic history. Because bottlenecks have occurred in the history of numerous species, we undertook a simulation approach to investigate their impact on the patterns of aggregation of polymorphic sites and linkage disequilibrium (LD). We developed a new index (Polymorphism Aggregation Index) to characterize this aggregation and showed that variation in the density of polymorphic sites results from an interplay between the bottleneck scenario and the recombination rate. Under particular conditions, aggregation is maximized and apparent mutation hotspots resulting in a 50-fold increase in polymorphic sites density can occur. In similar conditions, long distance LD can be detected.
Collapse
Affiliation(s)
- M I Tenaillon
- UMR8120 de Génétique Végétale, INRA/Univ. Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
28
|
Abstract
Despite its status as one of the world's major crops, linkage disequilibrium (LD) patterns have not been systematically characterized across the genome of Asian rice (Oryza sativa). Such information is critical to fully exploit the genome sequence for mapping complex traits using association techniques. Here we characterize LD in five 500-kb regions of the rice genome in three major cultivated rice varieties (indica, tropical japonica, and temperate japonica) and in the wild ancestor of Asian rice, Oryza rufipogon. Using unlinked SNPs to determine the amount of background linkage disequilibrium in each population, we find that the extent of LD is greatest in temperate japonica (probably >500 kb), followed by tropical japonica (approximately 150 kb) and indica (approximately 75 kb). LD extends over a shorter distance in O. rufipogon (<<40 kb) than in any of the O. sativa groups assayed here. The differences in the extent of LD among these groups are consistent with differences in outcrossing and recombination rate estimates. As well as heterogeneity between groups, our results suggest variation in LD patterns among genomic regions. We demonstrate the feasibility of genomewide association mapping in cultivated Asian rice using a modest number of SNPs.
Collapse
|
29
|
Auzanneau J, Huyghe C, Julier B, Barre P. Linkage disequilibrium in synthetic varieties of perennial ryegrass. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:837-47. [PMID: 17701396 DOI: 10.1007/s00122-007-0612-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 07/08/2007] [Indexed: 05/04/2023]
Abstract
Synthetic varieties obtained after three to four panmictic generations are variable, not structured and so can be used for association studies. The pattern of linkage disequilibrium (LD) decay determines whether a genome scan or a candidate gene approach can be used for an association study between genotype and phenotype. Our goal was to evaluate the effect of the number of parents used to build the synthetic varieties on the pattern of LD decay. LD was investigated in the gibberelic acid insensitive gene (GAI) region in three synthetic varieties of perennial ryegrass (Lolium perenne L.) chosen for their contrasted number of parents in the initial polycrosses. Results were compared with those obtained from a core collection. STS and SSR markers were used to evaluate variation, structuration and LD in each variety. As expected, the varieties variability increased with the number of parents almost up to the core collection variability. No structuration was observed in the varieties. Significant LDs were observed up to 1.6 Mb in a variety originated from six related parents and not above 174 kb in a variety originated from 336 parents. These results suggest that a candidate gene approach can be used when varieties have a large number of parents and a genome scan approach can be envisaged in specific regions when varieties have a low number of parents. Nevertheless, we strongly recommend to estimate the pattern of LD decay in the population and in the genomic region studied before performing an association study.
Collapse
Affiliation(s)
- J Auzanneau
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, BP6, 86600, Lusignan, France
| | | | | | | |
Collapse
|
30
|
Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, York TL, Polato NR, Olsen KM, Nielsen R, McCouch SR, Bustamante CD, Purugganan MD. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 2007; 3:1745-56. [PMID: 17907810 PMCID: PMC1994709 DOI: 10.1371/journal.pgen.0030163] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 08/06/2007] [Indexed: 11/18/2022] Open
Abstract
Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been the dominant demographic model for domesticated species, cannot explain the derived nucleotide polymorphism site frequency spectrum in rice. Instead, a bottleneck model that incorporates selective sweeps, or a more complex demographic model that includes subdivision and gene flow, are more plausible explanations for patterns of variation in domesticated rice varieties. If selective sweeps are indeed the explanation for the observed nucleotide data of domesticated rice, it suggests that strong selection can leave its imprint on genome-wide polymorphism patterns, contrary to expectations that selection results only in a local signature of variation.
Collapse
Affiliation(s)
- Ana L Caicedo
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ. Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 2007; 177:457-68. [PMID: 17660563 PMCID: PMC2013689 DOI: 10.1534/genetics.107.074054] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgression(-)the former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines ( = 0.0094) than wild populations ( = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome ( approximately 3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.
Collapse
Affiliation(s)
- Judith M Kolkman
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tam SM, Causse M, Garchery C, Burck H, Mhiri C, Grandbastien MA. The distribution of copia-type retrotransposons and the evolutionary history of tomato and related wild species. J Evol Biol 2007; 20:1056-72. [PMID: 17465916 DOI: 10.1111/j.1420-9101.2007.01293.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Retrotransposons are mobile genetic elements that amplify throughout the genome and may be important contributors of genetic diversity. Their distribution is influenced by element behaviour and host-driven controls. We analysed the distribution of three copia-type retrotransposons, ToRTL1, T135 and Tnt1 using sequence-specific amplification polymorphism in self-compatible (SC) and incompatible (SI) species of Solanum subsection Lycopersicon, and genetically mapped polymorphic insertions in S. lycopersicum (tomato). The majority of polymorphic insertions (61%) are located in centromeric regions of the tomato genome. A significant positive relationship was detected between insertion polymorphisms and mating system, independent of selection as most insertions were found to be neutral. As insertion patterns successfully inferred interspecific relationships of Solanum subsection Lycopersicon, our results suggest that the distribution of ToRTL1, T135 and Tnt1 may essentially be determined by selection removing strongly deleterious insertions, with genetic drift and mating system, but not recombination rate, playing important roles.
Collapse
Affiliation(s)
- S M Tam
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Centre de Versailles, F-78026 Versailles cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Despite dramatic differences in genome size--and thus space for recombination to occur--previous workers found no correlation between recombination rate and genome size in flowering plants. Here I re-investigate these claims using phylogenetic comparative methods to test a large data set of recombination data in angiosperms. I show that genome size is significantly correlated with recombination rate across a wide sampling of species and that change in genome size explains a meaningful proportion ( approximately 20%) of variation in recombination rate. I show that the strength of this correlation is comparable with that of several characters previously linked to evolutionary change in recombination rate, but argue that consideration of processes of genome size change likely make the observed correlation a conservative estimate. And finally, although I find that recombination rate increases less than proportionally to change in genome size, several mechanistic and theoretical arguments suggest that this result is not unexpected.
Collapse
Affiliation(s)
- J Ross-Ibarra
- Department of Genetics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
34
|
Manicacci D, Falque M, Le Guillou S, Piégu B, Henry AM, Le Guilloux M, Damerval C, De Vienne D. Maize Sh2 gene is constrained by natural selection but escaped domestication. J Evol Biol 2007; 20:503-16. [PMID: 17305816 DOI: 10.1111/j.1420-9101.2006.01264.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Zea mays L., we studied the molecular evolution of Shrunken2 (Sh2), a gene that encodes the large subunits of a major enzyme in endosperm starch biosynthesis, ADP-glucose pyrophosphorylase. We compared 4669 bp of the Sh2 coding region on 50 accessions of maize and teosinte. Very few nucleotide polymorphisms were found when compared with other genes in Z. mays, revealing an effect of purifying selection in the whole species that predates domestication. Additionally, the comparison of Sh2 sequences in all Z. mays subspecies and outgroups Z. diploperennis and Tripsacum dactyloides suggests the occurrence of an ancient selective sweep in the Sh2 3' region. The amount and nature of nucleotide diversity are similar in both maize and teosinte, confirming previous results that suggested that Sh2 has not been involved in maize domestication. The very low level of nucleotide diversity as well as the highly conserved protein sequence suggest that natural selection retained effective Sh2 allele(s) long before agriculture started, making human selection inefficient on this gene.
Collapse
Affiliation(s)
- D Manicacci
- UMR de Génétique Végétale (8120), Ferme du Moulon, F91 190 Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK. Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 2007; 8:77-84. [PMID: 17173059 DOI: 10.1038/nrg1970] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our knowledge of recombination rates and patterns in plants is far from being comprehensive. However, compelling evidence indicates a central role for recombination, through its influences on mutation and selection, in the evolution of plant genomes. Furthermore, recombination seems to be generally higher and more variable in plants than in animals, which could be one of the primary reasons for differences in genome lability between these two kingdoms. Much additional study of recombination in plants is needed to investigate these ideas further.
Collapse
Affiliation(s)
- Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, USA.
| | | | | | | | | |
Collapse
|
36
|
Able JA, Langridge P, Milligan AS. Capturing diversity in the cereals: many options but little promiscuity. TRENDS IN PLANT SCIENCE 2007; 12:71-9. [PMID: 17224300 DOI: 10.1016/j.tplants.2006.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/06/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
It is generally recognized by geneticists and plant breeders alike that there is a need to further improve the ability to capture and manipulate genetic diversity. The effective harnessing of diversity in traditional breeding programmes is limited and, therefore, it is vital that meiotic recombination can be manipulated given that it plays a pivotal role in generating diversity. With the advent of a wider range of genomics technologies, our understanding of meiotic processes should increase rapidly. Although comparative genetics has been useful, particularly in the broader grass family, the development of physical maps, long-range sequencing and transcript profiles promises to unravel the complexities of genomes as large or larger than wheat. Highlighting the most significant findings to date, this review pools the knowledge on these tools and reproductive processes.
Collapse
Affiliation(s)
- Jason A Able
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture, Food & Wine, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
37
|
Wright SI, Foxe JP, DeRose-Wilson L, Kawabe A, Looseley M, Gaut BS, Charlesworth D. Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata. Genetics 2006; 174:1421-30. [PMID: 16951057 PMCID: PMC1667078 DOI: 10.1534/genetics.106.062588] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated DNA sequence diversity for loci on chromosomes 1 and 2 in six natural populations of Arabidopsis lyrata and tested for the role of natural selection in structuring genomewide patterns of variability, specifically examining the effects of recombination rate on levels of silent polymorphism. In contrast with theoretical predictions from models of genetic hitchhiking, maximum-likelihood-based analyses of diversity and divergence do not suggest reduction of diversity in the region of suppressed recombination near the centromere of chromosome 1, except in a single population from Russia, in which the pericentromeric region may have undergone a local selective sweep or demographic process that reduced variability. We discuss various possibilities that might explain why nucleotide diversity in most A. lyrata populations is not related to recombination rate, including genic recombination hotspots, and low gene density in the low recombination rate region.
Collapse
Affiliation(s)
- Stephen I Wright
- Department of Biology, York University, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
38
|
Singer T, Fan Y, Chang HS, Zhu T, Hazen SP, Briggs SP. A high-resolution map of Arabidopsis recombinant inbred lines by whole-genome exon array hybridization. PLoS Genet 2006; 2:e144. [PMID: 17044735 PMCID: PMC1564425 DOI: 10.1371/journal.pgen.0020144] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/27/2006] [Indexed: 11/30/2022] Open
Abstract
Recombinant populations were the basis for Mendel's first genetic experiments and continue to be key to the study of genes, heredity, and genetic variation today. Genotyping several hundred thousand loci in a single assay by hybridizing genomic DNA to oligonucleotide arrays provides a powerful technique to improve precision linkage mapping. The genotypes of two accessions of Arabidopsis were compared by using a 400,000 feature exon-specific oligonucleotide array. Around 16,000 single feature polymorphisms (SFPs) were detected in ~8,000 of the ~26,000 genes represented on the array. Allelic variation at these loci was measured in a recombinant inbred line population, which defined the location of 815 recombination breakpoints. The genetic linkage map had a total length of 422.5 cM, with 676 informative SFP markers representing intervals of ~0.6 cM. One hundred fifteen single gene intervals were identified. Recombination rate, SFP distribution, and segregation in this population are not uniform. Many genomic regions show a clustering of recombination events including significant hot spots. The precise haplotype structure of the recombinant population was defined with unprecedented accuracy and resolution. The resulting linkage map allows further refinement of the hundreds of quantitative trait loci identified in this well-studied population. Highly variable recombination rates along each chromosome and extensive segregation distortion were observed in the population. A goal of many genetic studies is to discover the underlying genetic condition (the genotype) of a specific physical manifestation in an organism (the phenotype), such as diabetes in humans or leaf rust in cultivated wheat. A limitation to making such discoveries is the ability to resolve genotype. Gene arrays carry representations of the genome, called features, at high-density on a surface the size of a thumbnail. In this study, microarrays designed to measure gene expression were used to detect DNA sequence polymorphisms. DNA from two different Arabidopsis strains was hybridized to arrays representing nearly the entire coding region of the genome. Differences in hybridization intensity indicated differences in DNA sequence. The sequence differences, termed single feature polymorphisms, were then assayed in a population of 100 plants derived through inbreeding the progeny from the two parental strains. The precise location of the genetic recombination breakpoints was defined for each line. As a result, Singer et al. were able to generate one of the first very high-resolution genotyping data sets in a multicellular organism that allowed the construction of a high-resolution genetic map of Arabidopsis. This map will greatly facilitate attempts to make definitive associations between genotypes and phenotypes.
Collapse
Affiliation(s)
- Tatjana Singer
- Torrey Mesa Research Institute, Syngenta Research and Technology, San Diego, California, United States of America.
| | | | | | | | | | | |
Collapse
|
39
|
Morrell PL, Toleno DM, Lundy KE, Clegg MT. Estimating the contribution of mutation, recombination and gene conversion in the generation of haplotypic diversity. Genetics 2006; 173:1705-23. [PMID: 16624913 PMCID: PMC1526701 DOI: 10.1534/genetics.105.054502] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 04/11/2006] [Indexed: 11/18/2022] Open
Abstract
Recombination occurs through both homologous crossing over and homologous gene conversion during meiosis. The contribution of recombination relative to mutation is expected to be dramatically reduced in inbreeding organisms. We report coalescent-based estimates of the recombination parameter (rho) relative to estimates of the mutation parameter (theta) for 18 genes from the highly self-fertilizing grass, wild barley, Hordeum vulgare ssp. spontaneum. Estimates of rho/theta are much greater than expected, with a mean rho/theta approximately 1.5, similar to estimates from outcrossing species. We also estimate rho with and without the contribution of gene conversion. Genotyping errors can mimic the effect of gene conversion, upwardly biasing estimates of the role of conversion. Thus we report a novel method for identifying genotyping errors in nucleotide sequence data sets. We show that there is evidence for gene conversion in many large nucleotide sequence data sets including our data that have been purged of all detectable sequencing errors and in data sets from Drosophila melanogaster, D. simulans, and Zea mays. In total, 13 of 27 loci show evidence of gene conversion. For these loci, gene conversion is estimated to contribute an average of twice as much as crossing over to total recombination.
Collapse
Affiliation(s)
- Peter L Morrell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
40
|
Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, Aquadro CF, Kresovich S. Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor. Genetics 2006; 173:953-64. [PMID: 16547110 PMCID: PMC1526520 DOI: 10.1534/genetics.105.054312] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/13/2006] [Indexed: 11/18/2022] Open
Abstract
Multilocus surveys of sequence variation can be used to identify targets of directional selection, which are expected to have reduced levels of variation. Following a population bottleneck, the signal of directional selection may be hard to detect because many loci may have low variation by chance and the frequency spectrum of variation may be perturbed in ways that resemble the effects of selection. Cultivated Sorghum bicolor contains a subset of the genetic diversity found in its wild ancestor(s) due to the combined effects of a domestication bottleneck and human selection on traits associated with agriculture. As a framework for distinguishing between the effects of demography and selection, we sequenced 204 loci in a diverse panel of 17 cultivated S. bicolor accessions. Genomewide patterns of diversity depart strongly from equilibrium expectations with regard to the variance of the number of segregating sites, the site frequency spectrum, and haplotype configuration. Furthermore, gene genealogies of most loci with an excess of low frequency variants and/or an excess of segregating sites do not show the characteristic signatures of directional and diversifying selection, respectively. A simple bottleneck model provides an improved but inadequate fit to the data, suggesting the action of other population-level factors, such as population structure and migration. Despite a known history of recent selection, we find little evidence for directional selection, likely due to low statistical power and lack of an appropriate null model.
Collapse
Affiliation(s)
- Martha T Hamblin
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Sawers RJH, Viney J, Farmer PR, Bussey RR, Olsefski G, Anufrikova K, Hunter CN, Brutnell TP. The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. PLANT MOLECULAR BIOLOGY 2006; 60:95-106. [PMID: 16463102 DOI: 10.1007/s11103-005-2880-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/05/2005] [Indexed: 05/06/2023]
Abstract
Semi-dominant Oil yellow1 (Oy1) mutants of maize (Zea mays) are deficient in the conversion of protoporphyrin IX to magnesium protoporphyrin IX, the first committed step of chlorophyll biosynthesis. Using a candidate gene approach, a cDNA clone was isolated that was predicted to encode the I subunit of magnesium chelatase (ZmCHLI) and mapped to the same genetic interval as Oy1. Allelic variation was identified at ZmCHLI between wild-type plants and plants carrying semi-dominant alleles of Oy1. These differences revealed putative amino acid substitutions that could account for the alterations in protein function. Candidate lesions were tested by introduction of homologous changes into the Synechocystis magnesium chelatase I gene (SschlI) and characterization of the activity of mutant protein variants in an in vitro enzyme activity assay. The results of these analyses suggest that SsChlI protein variants containing the substitutions identified in the dominant Oy1 maize alleles lack activity necessary for magnesium chelation and confer a semi-dominant phenotype via competitive inhibition of wild-type SsChlI.
Collapse
Affiliation(s)
- Ruairidh J H Sawers
- Boyce Thompson Institute, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Anderson LK, Lai A, Stack SM, Rizzon C, Gaut BS. Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 2005; 16:115-22. [PMID: 16339046 PMCID: PMC1356135 DOI: 10.1101/gr.4249906] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes. When this conversion is made, most of the EST markers used in the study are located distally on the chromosomes in euchromatin. ESTs are significantly clustered on chromosomes, even when only euchromatic chromosomal segments are considered. Gene density and recombination rate (as measured by EST and RN frequencies, respectively) are strongly correlated. However, crossover frequencies for telomeric intervals are much higher than was expected from their EST frequencies. For pachytene chromosomes, EST density is about fourfold higher in euchromatin compared with heterochromatin, while DNA density is 1.4 times higher in heterochromatin than in euchromatin. Based on DNA density values and the fraction of pachytene chromosome length that is euchromatic, we estimate that approximately 1500 Mbp of the maize genome is in euchromatin. This overview of the organization of the maize genome will be useful in examining genome and chromosome evolution in plants.
Collapse
Affiliation(s)
- Lorinda K Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Interest in the level and organization of nucleotide diversity in domesticated plant lineages has recently been motivated by the potential for using association-based mapping techniques as a means for identifying the genes underlying complex traits. To date, however, such data have been available only for a relatively small number of well-characterized plant taxa. Here we provide the first detailed description of patterns of nucleotide polymorphism in wild and cultivated sunflower (Helianthus annuus), using sequence data from nine nuclear genes. The results of this study indicate that wild sunflower harbors at least as much nucleotide diversity as has been reported in other wild plant taxa, with randomly selected sequence pairs being expected to differ at 1 of every 70 bp. In contrast, cultivated sunflower has retained only 40-50% of the diversity present in the wild. Consistent with this dramatic reduction in polymorphism, a phylogenetic analysis of our data revealed that the cultivars form a monophyletic clade, adding to the growing body of evidence that sunflower is the product of a single domestication. Eight of the nine loci surveyed appeared to be evolving primarily under purifying selection, while the remaining locus may have been the subject of positive selection. Linkage disequilibrium (LD) decayed very rapidly in the self-incompatible wild sunflower, with the expected LD falling to negligible levels within 200 bp. The cultivars, on the other hand, exhibited somewhat higher levels of LD, with nonrandom associations persisting up to approximately 1100 bp. Taken together, these results suggest that association-based approaches will provide a high degree of resolution for the mapping of functional variation in sunflower.
Collapse
Affiliation(s)
- Aizhong Liu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
44
|
Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. THE PLANT CELL 2005; 17:2859-72. [PMID: 16227451 PMCID: PMC1276015 DOI: 10.1105/tpc.105.037242] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays subsp mays) was domesticated from teosinte (Z. mays subsp parviglumis) through a single domestication event in southern Mexico between 6000 and 9000 years ago. This domestication event resulted in the original maize landrace varieties, which were spread throughout the Americas by Native Americans and adapted to a wide range of environmental conditions. Starting with landraces, 20th century plant breeders selected inbred lines of maize for use in hybrid maize production. Both domestication and crop improvement involved selection of specific alleles at genes controlling key morphological and agronomic traits, resulting in reduced genetic diversity relative to unselected genes. Here, we sequenced 1095 maize genes from a sample of 14 inbred lines and chose 35 genes with zero sequence diversity as potential targets of selection. These 35 genes were then sequenced in a sample of diverse maize landraces and teosintes and tested for selection. Using two statistical tests, we identified eight candidate genes. Extended gene sequencing of these eight candidate loci confirmed that six were selected throughout the gene, and the remaining two exhibited evidence of selection in the 3' portion of each gene. The selected genes have functions consistent with agronomic selection for nutritional quality, maturity, and productivity. Our large-scale screen for artificial selection allows identification of genes of potential agronomic importance even when gene function and the phenotype of interest are unknown.
Collapse
Affiliation(s)
- Masanori Yamasaki
- Division of Plant Sciences, University of Missouri, Columbia, Misssouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stump AD, Fitzpatrick MC, Lobo NF, Traoré S, Sagnon N, Costantini C, Collins FH, Besansky NJ. Centromere-proximal differentiation and speciation in Anopheles gambiae. Proc Natl Acad Sci U S A 2005; 102:15930-5. [PMID: 16247019 PMCID: PMC1276105 DOI: 10.1073/pnas.0508161102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M and S molecular forms of Anopheles gambiae are undergoing speciation as they adapt to heterogeneities in the environment, spreading malaria in the process. We hypothesized that their divergence despite gene flow is facilitated by reduced recombination at the centromeric (proximal) end of the X chromosome. We sequenced introns from 22 X chromosome genes in M and S from two locations of West Africa where the forms are sympatric. Generally, in both forms nucleotide diversity was high distally, lower proximally, and very low nearest the centromere. Conversely, differentiation between the forms was virtually zero distally and very high proximally. Pairwise comparisons to a close relative, the sibling species Anopheles arabiensis, demonstrated uniformly high divergence regardless of position along the X chromosome, suggesting that this pattern is not purely mechanical. Instead, the pattern observed for M and S suggests the action of divergent natural selection countering gene flow only at the proximal end of the X chromosome, where recombination is reduced. Comparison of sites with fixed differences between M and S to the corresponding sites in A. arabiensis revealed that derived substitutions had been fixed in both forms, further supporting the hypothesis that both have been under selection. These derived substitutions are fixed in the two West African samples and in samples of S from western and coastal Kenya, suggesting that selection occurred before the forms expanded to their current ranges. Our findings are consistent with a role for suppressed genetic recombination in speciation of A. gambiae.
Collapse
Affiliation(s)
- Aram D Stump
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Charlesworth D, Vekemans X, Castric V, Glémin S. Plant self-incompatibility systems: a molecular evolutionary perspective. THE NEW PHYTOLOGIST 2005; 168:61-9. [PMID: 16159321 DOI: 10.1111/j.1469-8137.2005.01443.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Incompatibility recognition systems preventing self-fertilization have evolved several times in independent lineages of Angiosperm plants, and three main model systems are well characterized at the molecular level [the gametophytic self-incompatibility (SI) systems of Solanaceae, Rosaceae and Anthirrhinum, the very different system of poppy, and the system in Brassicaceae with sporophytic control of pollen SI reactions]. In two of these systems, the genes encoding both components of pollen-pistil recognition are now known, showing clearly that these two proteins are distinct, that is, SI is a lock-and-key mechanism. Here, we review recent findings in the three well-studied systems in the light of these results and analyse their implications for understanding polymorphism and coevolution of the two SI genes, in the context of a tightly linked genome region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratory, King's Buildings, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
47
|
Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH, Kresovich S. Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 2005; 171:1247-56. [PMID: 16157678 PMCID: PMC1456844 DOI: 10.1534/genetics.105.041566] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patterns of linkage disequilibrium (LD) are of interest because they provide evidence of both equilibrium (e.g., mating system or long-term population structure) and nonequilibrium (e.g., demographic or selective) processes, as well as because of their importance in strategies for identifying the genetic basis of complex phenotypes. We report patterns of short and medium range (up to 100 kb) LD in six unlinked genomic regions in the partially selfing domesticated grass, Sorghum bicolor. The extent of allelic associations in S. bicolor, as assessed by pairwise measures of LD, is higher than in maize but lower than in Arabidopsis, in qualitative agreement with expectations based on mating system. Quantitative analyses of the population recombination parameter, rho, however, based on empirical estimates of rates of recombination, mutation, and self-pollination, show that LD is more extensive than expected under a neutral equilibrium model. The disparity between rho and the population mutation parameter, , is similar to that observed in other species whose population history appears to be complex. From a practical standpoint, these results suggest that S. bicolor is well suited for association studies using reasonable numbers of markers, since LD typically extends at least several kilobases but has largely decayed by 15 kb.
Collapse
Affiliation(s)
- Martha T Hamblin
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
48
|
Moeller DA, Tiffin P. Genetic diversity and the evolutionary history of plant immunity genes in two species of Zea. Mol Biol Evol 2005; 22:2480-90. [PMID: 16120802 DOI: 10.1093/molbev/msi247] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plant pathogenesis-related genes (PR genes) code for enzymes, enzyme inhibitors, and other peptides that confer resistance to pathogens and herbivores. Although several PR genes have been the subject of molecular population genetic analyses, a general understanding of their long-term evolutionary dynamics remains incomplete. Here we analyze sequence data from 17 PR genes from two closely related teosinte species of central Mexico. In addition to testing whether patterns of diversity at individual loci depart from expectations under a neutral model, we compared patterns of diversity at defense genes, as a class, to nondefense genes. In Zea diploperennis, the majority of defense genes have patterns of diversity consistent with neutral expectations while at least two genes showed evidence of recent positive selection consistent with arms-race models of antagonistic coevolution. In Zea mays ssp. parviglumis, by contrast, analyses of both defense and nondefense genes revealed strong and consistent departures from the neutral model, suggestive of nonequilibrium population dynamics or population structure. Nevertheless, we found a significant excess of replacement polymorphism in defense genes compared to nondefense genes. Although we cannot exclude relaxed selective constraint as an explanation, our results are consistent with temporally variable (transient or episodic) selection or geographically variable selection acting on parviglumis defense genes. The different patterns of diversity found in the two Zea species may be explained by parviglumis' greater distribution and population structure together with geographic variation in selection.
Collapse
Affiliation(s)
- David A Moeller
- Department of Plant Biology, University of Minnesota, Saint Paul, USA
| | | |
Collapse
|
49
|
Roselius K, Stephan W, Städler T. The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 2005; 171:753-63. [PMID: 16085701 PMCID: PMC1456785 DOI: 10.1534/genetics.105.043877] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyzed the effects of mating system and recombination rate on single nucleotide polymorphisms using 14 single-copy nuclear loci from single populations of five species of wild tomatoes (Solanum section Lycopersicon). The taxa investigated comprise two self-compatible (SC) and three self-incompatible (SI) species. The observed reduction in nucleotide diversity in the SC populations compared to the SI populations is much stronger than expected under the neutral effects of the mating system on effective population size. Importantly, outgroup sequences available for 11 of the 14 loci yield strong positive correlations between silent nucleotide diversity and silent divergence, indicative of marked among-locus differences in mutation rates and/or selective constraints. Furthermore, using a physical estimate of local recombination rates, we find that silent nucleotide diversity (but not divergence) is positively correlated with recombination rate in two of the SI species. However, this correlation is not nearly as strong as in other well-characterized species (in particular, Drosophila). We propose that nucleotide diversity in Lycopersicon is dominated mainly by differences in neutral mutation rates and/or selective constraints among loci, demographic processes (such as population subdivision), and background selection. In addition, we hypothesize that the soil seed bank plays an important role in the maintenance of the large genetic diversity in the SI species (in particular L. peruvianum).
Collapse
Affiliation(s)
- Kerstin Roselius
- Department Biologie II, Abteilung Evolutionsbiologie, University of Munich (LMU), Planegg-Martinsried, Germany
| | | | | |
Collapse
|
50
|
Gupta PK, Rustgi S, Kulwal PL. Linkage disequilibrium and association studies in higher plants: present status and future prospects. PLANT MOLECULAR BIOLOGY 2005; 57:461-85. [PMID: 15821975 DOI: 10.1007/s11103-005-0257-z] [Citation(s) in RCA: 288] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 01/04/2005] [Indexed: 05/19/2023]
Abstract
During the last two decades, DNA-based molecular markers have been extensively utilized for a variety of studies in both plant and animal systems. One of the major uses of these markers is the construction of genome-wide molecular maps and the genetic analysis of simple and complex traits. However, these studies are generally based on linkage analysis in mapping populations, thus placing serious limitations in using molecular markers for genetic analysis in a variety of plant systems. Therefore, alternative approaches have been suggested, and one of these approaches makes use of linkage disequilibrium (LD)-based association analysis. Although this approach of association analysis has already been used for studies on genetics of complex traits (including different diseases) in humans, its use in plants has just started. In the present review, we first define and distinguish between LD and association mapping, and then briefly describe various measures of LD and the two methods of its depiction. We then give a list of different factors that affect LD without discussing them, and also discuss the current issues of LD research in plants. Later, we also describe the various uses of LD in plant genomics research and summarize the present status of LD research in different plant genomes. In the end, we discuss briefly the future prospects of LD research in plants, and give a list of softwares that are useful in LD research, which is available as electronic supplementary material (ESM).
Collapse
Affiliation(s)
- Pushpendra K Gupta
- Molecular Biology Laboratory, Department of Genetics & Plant Breeding, Ch. Charan Singh University, Meerut 250 004 (UP), India.
| | | | | |
Collapse
|