1
|
Lichman V, Ozerov M, López ME, Noreikiene K, Kahar S, Pukk L, Burimski O, Gross R, Vasemägi A. Whole-genome analysis reveals phylogenetic and demographic history of Eurasian perch. JOURNAL OF FISH BIOLOGY 2024; 105:871-885. [PMID: 38897597 DOI: 10.1111/jfb.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
The contemporary diversity and distribution of species are shaped by their evolutionary and ecological history. This can be deciphered with the help of phylogenetic and demographic analysis methods, ideally combining and supplementing information from mitochondrial and nuclear genomes. In this study, we investigated the demographic history of Eurasian perch (Perca fluviatilis), a highly adaptable teleost with a distribution range across Eurasia. We combined whole-genome resequencing data with available genomic resources to analyse the phylogeny, phylogeography, and demographic history of P. fluviatilis populations from Europe and Siberia. We identified five highly diverged evolutionary mtDNA lineages, three of which show a strong signal of admixture in the Baltic Sea region. The estimated mean divergence time between these lineages ranged from 0.24 to 1.42 million years. Based on nuclear genomes, two distinct demographic trajectories were observed in European and Siberian samples reflecting contrasting demographic histories ca. 30,000-100,000 years before the present. A comparison of mtDNA and nuclear DNA evolutionary trees and AMOVA revealed concordances, as well as incongruences, between the two types of data, most likely reflecting recent postglacial colonization and hybridization events. Overall, our findings demonstrate the power and usefulness of genome-wide information for delineating historical processes that have shaped the genome of P. fluviatilis. We also highlight the added value of data-mining existing transcriptomic resources to complement novel sequence data, helping to shed light on putative glacial refugia and postglacial recolonization routes.
Collapse
Affiliation(s)
- Vitalii Lichman
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Mikhail Ozerov
- Biodiversity Unit, University of Turku, Turku, Finland
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - María-Eugenia López
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Kristina Noreikiene
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Department of Botany and Genetics, Vilnius University, Vilnius, Lithuania
| | - Siim Kahar
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Lilian Pukk
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Oksana Burimski
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Riho Gross
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
2
|
Poikela N, Laetsch DR, Hoikkala V, Lohse K, Kankare M. Chromosomal Inversions and the Demography of Speciation in Drosophila montana and Drosophila flavomontana. Genome Biol Evol 2024; 16:evae024. [PMID: 38482698 PMCID: PMC10972691 DOI: 10.1093/gbe/evae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 04/01/2024] Open
Abstract
Chromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5. A comparison of demographic models estimated for inverted and noninverted (colinear) chromosomal regions suggests that these inversions arose before the time of the species split. We detected a low rate of interspecific gene flow (introgression) from D. montana to D. flavomontana, which was further reduced inside inversions and was lower in allopatric than in sympatric populations. Together, these results suggest that the inversions were already present in the common ancestral population and that gene exchange between the sister taxa was reduced within inversions both before and after the onset of species divergence. Such ancestrally polymorphic inversions may foster speciation by allowing the accumulation of genetic divergence in loci involved in adaptation and reproductive isolation inside inversions early in the speciation process, while gene exchange at colinear regions continues until the evolving reproductive barriers complete speciation. The overlapping X inversions are particularly good candidates for driving the speciation process of D. montana and D. flavomontana, since they harbor strong genetic incompatibilities that were detected in a recent study of experimental introgression.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ville Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| |
Collapse
|
3
|
Yan Z, Ogilvie HA, Nakhleh L. Comparing inference under the multispecies coalescent with and without recombination. Mol Phylogenet Evol 2023; 181:107724. [PMID: 36720421 DOI: 10.1016/j.ympev.2023.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Accurate inference of population parameters plays a pivotal role in unravelling evolutionary histories. While recombination has been universally accepted as a fundamental process in the evolution of sexually reproducing organisms, it remains challenging to model it exactly. Thus, existing coalescent-based approaches make different assumptions or approximations to facilitate phylogenetic inference, which can potentially bring about biases in estimates of evolutionary parameters when recombination is present. In this article, we evaluate the performance of population parameter estimation using three methods-StarBEAST2, SNAPP, and diCal2-that represent three different types of inference. We performed whole-genome simulations in which recombination rates, mutation rates, and levels of incomplete lineage sorting were varied. We show that StarBEAST2 using short or medium-sized loci is robust to realistic rates of recombination, which is in agreement with previous studies. SNAPP, as expected, is generally unaffected by recombination events. Most surprisingly, diCal2, a method that is designed to explicitly account for recombination, performs considerably worse than other methods under comparison.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Computer Science, Rice University, 6100 Main Street, Houston 77005, TX, USA.
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, 6100 Main Street, Houston 77005, TX, USA.
| | - Luay Nakhleh
- Department of Computer Science, Rice University, 6100 Main Street, Houston 77005, TX, USA.
| |
Collapse
|
4
|
Zhu T, Flouri T, Yang Z. A simulation study to examine the impact of recombination on phylogenomic inferences under the multispecies coalescent model. Mol Ecol 2022; 31:2814-2829. [PMID: 35313033 PMCID: PMC9321900 DOI: 10.1111/mec.16433] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Tianqi Zhu
- Institute of Applied Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences Beijing 100190 China
| | - Tomáš Flouri
- Department of Genetics, Evolution and Environment University College London London WC1E 6BT UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment University College London London WC1E 6BT UK
| |
Collapse
|
5
|
Walton W, Stone GN, Lohse K. Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Mol Ecol 2021; 30:4538-4550. [PMID: 34252238 DOI: 10.1111/mec.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Signatures of past changes in population size have been detected in genome-wide variation in many species. However, the causes of such demographic changes and the extent to which they are shared across co-distributed species remain poorly understood. During Pleistocene glacial maxima, many temperate European species were confined to southern refugia. While vicariance and range expansion processes associated with glacial cycles have been widely documented, it is unclear whether refugial populations of co-distributed species have experienced shared histories of population size change. We analyse whole-genome sequence data to reconstruct and compare demographic histories during the Quaternary for Iberian refuge populations in a single ecological guild (seven species of chalcid parasitoid wasps associated with oak cynipid galls). For four of these species, we find support for large changes in effective population size (Ne ) through the Pleistocene that coincide with major climate events. However, there is little evidence that the timing, direction and magnitude of demographic change are shared across species, suggesting that demographic histories in this guild are largely idiosyncratic, even at the scale of a single glacial refugium.
Collapse
Affiliation(s)
- William Walton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Ebdon S, Laetsch DR, Dapporto L, Hayward A, Ritchie MG, Dincӑ V, Vila R, Lohse K. The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Mol Ecol 2021; 30:3575-3589. [PMID: 33991396 DOI: 10.1111/mec.15981] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
The Pleistocene glacial cycles had a profound impact on the ranges and genetic make-up of organisms. While it is clear that the contact zones that have been described for many sister taxa are secondary and have formed in the current interglacial, it is unclear when the taxa involved began to diverge. Previous estimates based on small numbers of loci are unreliable given the stochasticity of genetic drift and the contrasting effects of incomplete lineage sorting and gene flow on gene divergence. Here, we use genome-wide transcriptome data to estimate divergence for 18 sister species pairs of European butterflies showing either sympatric or contact zone distributions. We find that in most cases, species divergence predates the mid-Pleistocene transition or even the entire Pleistocene period. We also show that although post-divergence gene flow is restricted to contact zone pairs, they are not systematically younger than sympatric pairs. This suggests that contact zones are not limited to the initial stages of the speciation process, but can involve notably old taxa. Finally, we show that mitochondrial divergence and nuclear divergence are only weakly correlated and mitochondrial divergence is higher for contact zone pairs.
Collapse
Affiliation(s)
- Sam Ebdon
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Leonardo Dapporto
- ZEN Laboratory, Dipartimento di Biologia, Università di Firenze, Firenze, Italy
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, UK
| | - Vlad Dincӑ
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Spain
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Guo Y, Peng Z, Liu J, Yuan N, Wang Z, Du J. Systematic Comparisons of Positively Selected Genes between Gossypium arboreum and Gossypium raimondii Genomes. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190227151013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Studies of Positively Selected Genes (PSGs) in microorganisms and
mammals have provided insights into the dynamics of genome evolution and the genetic basis of
differences between species by using whole genome-wide scans. Systematic investigations and
comparisons of PSGs in plants, however, are still limited.
Objective:
A systematic comparison of PSGs between the genomes of two cotton species,
Gossypium arboreum (G. arboreum) and G. raimondii, will give the key answer for revealing
molecular evolutionary differences in plants.
Methods:
Genome sequences of G. arboreum and G. raimondii were compared, including Whole
Genome Duplication (WGD) events and genomic features such as gene number, gene length,
codon bias index, evolutionary rate, number of expressed genes, and retention of duplicated
copies.
Results:
Unlike the PSGs in G. raimondii, G. arboreum comprised more PSGs, smaller gene size
and fewer expressed gene. In addition, the PSGs evolved at a higher rate of synonymous
substitutions, but were subjected to lower selection pressure. The PSGs in G. arboreum were also
retained with a lower number of duplicate gene copies than G. raimondii after a single WGD event
involving Gossypium.
Conclusion:
These data indicate that PSGs in G. arboreum and G. raimondii differ not only in
Ka/Ks, but also in their evolutionary, structural, and expression properties, indicating that
divergence of G. arboreum and G. raimondii was associated with differences in PSGs in terms of
evolutionary rates, gene length, expression patterns, and WGD retention in Gossypium.
Collapse
Affiliation(s)
- Yue Guo
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen Peng
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Liu
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Na Yuan
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhen Wang
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
8
|
Chai H, Chen W, Zhang X, Su K, Zhao Y. Structural variation and phylogenetic analysis of the mating-type locus in the genus Morchella. Mycologia 2019; 111:551-562. [DOI: 10.1080/00275514.2019.1628553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hongmei Chai
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650223 Yunnan, China
| | - Weimin Chen
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650223 Yunnan, China
| | - Xiaolei Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650223 Yunnan, China
| | - Kaimei Su
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650223 Yunnan, China
| | - Yongchang Zhao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650223 Yunnan, China
| |
Collapse
|
9
|
Jennings WB. On the independent gene trees assumption in phylogenomic studies. Mol Ecol 2017; 26:4862-4871. [PMID: 28752599 DOI: 10.1111/mec.14274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
Multilocus coalescent methods for inferring species trees or historical demographic parameters typically require the assumption that gene trees for sampled SNPs or DNA sequence loci are conditionally independent given their species tree. In practice, researchers have used different criteria to delimit "independent loci." One criterion identifies sampled loci as being independent of each other if they undergo Mendelian independent assortment (IA criterion). O'Neill et al. (2013, Molecular Ecology, 22, 111-129) used this approach in their phylogeographic study of North American tiger salamander species complex. In two other studies, researchers developed a pair of related methods that employ an independent genealogies criterion (IG criterion), which considers the effects of population-level recombination on correlations between the gene trees of intrachromosomal loci. Here, I explain these three methods, illustrate their use with example data, and evaluate their efficacies. I show that the IA approach is more conservative, is simpler to use and requires fewer assumptions than the IG approaches. However, IG approaches can identify much larger numbers of independent loci than the IA method, which, in turn, allows researchers to obtain more precise and accurate estimates of species trees and historical demographic parameters. A disadvantage of the IG methods is that they require an estimate of the population recombination rate. Despite their drawbacks, IA and IG approaches provide molecular ecologists with promising a priori methods for selecting SNPs or DNA sequence loci that likely meet the independence assumption in coalescent-based phylogenomic studies.
Collapse
Affiliation(s)
- W Bryan Jennings
- Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Abstract
Our understanding of the chronology of human evolution relies on the “molecular clock” provided by the steady accumulation of substitutions on an evolutionary lineage. Recent analyses of human pedigrees have called this understanding into question by revealing unexpectedly low germline mutation rates, which imply that substitutions accrue more slowly than previously believed. Translating mutation rates estimated from pedigrees into substitution rates is not as straightforward as it may seem, however. We dissect the steps involved, emphasizing that dating evolutionary events requires not “a mutation rate” but a precise characterization of how mutations accumulate in development in males and females—knowledge that remains elusive.
Collapse
Affiliation(s)
- Priya Moorjani
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Ziyue Gao
- Howard Hughes Medical Institute & Dept. of Genetics, Stanford University, Stanford, California, United States of America
- * E-mail: (PM); (ZG); (MP)
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- * E-mail: (PM); (ZG); (MP)
| |
Collapse
|
11
|
Abstract
Events in primate evolution are often dated by assuming a constant rate of substitution per unit time, but the validity of this assumption remains unclear. Among mammals, it is well known that there exists substantial variation in yearly substitution rates. Such variation is to be expected from differences in life history traits, suggesting it should also be found among primates. Motivated by these considerations, we analyze whole genomes from 10 primate species, including Old World Monkeys (OWMs), New World Monkeys (NWMs), and apes, focusing on putatively neutral autosomal sites and controlling for possible effects of biased gene conversion and methylation at CpG sites. We find that substitution rates are up to 64% higher in lineages leading from the hominoid-NWM ancestor to NWMs than to apes. Within apes, rates are ∼2% higher in chimpanzees and ∼7% higher in the gorilla than in humans. Substitution types subject to biased gene conversion show no more variation among species than those not subject to it. Not all mutation types behave similarly, however; in particular, transitions at CpG sites exhibit a more clocklike behavior than do other types, presumably because of their nonreplicative origin. Thus, not only the total rate, but also the mutational spectrum, varies among primates. This finding suggests that events in primate evolution are most reliably dated using CpG transitions. Taking this approach, we estimate the human and chimpanzee divergence time is 12.1 million years, and the human and gorilla divergence time is 15.1 million years.
Collapse
|
12
|
Phung TN, Huber CD, Lohmueller KE. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species. PLoS Genet 2016; 12:e1006199. [PMID: 27508305 PMCID: PMC4980041 DOI: 10.1371/journal.pgen.1006199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/25/2016] [Indexed: 11/18/2022] Open
Abstract
A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only if more of the genome is under purifying selection than currently believed. Our work has implications for understanding the evolution of genomes and interpreting patterns of genetic variation. Genetic variation at neutral sites can be reduced through linkage to nearby selected sites. This pattern has been used to show the widespread effects of natural selection at shaping patterns of genetic diversity across genomes from a variety of species. However, it is not entirely clear whether natural selection has an effect on neutral divergence between species. Here we show that putatively neutral divergence between closely related species (human and chimp) and between distantly related pairs of species (humans and mice) show signatures consistent with having been affected by linkage to selected sites. Further, our theoretical models and simulations show that natural selection indirectly affecting linked neutral sites can generate these patterns. Unless substantially more of the genome is under the direct effects of purifying selection than currently believed, our results argue that natural selection has played an important role in shaping variation in levels of putatively neutral sequence divergence across the genome. Our findings further suggest that divergence-based estimates of neutral mutation rate variation across the genome as well as certain estimators of population history may be confounded by linkage to selected sites.
Collapse
Affiliation(s)
- Tanya N. Phung
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Christian D. Huber
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kirk E. Lohmueller
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Ottenburghs J, Megens HJ, Kraus RH, Madsen O, van Hooft P, van Wieren SE, Crooijmans RP, Ydenberg RC, Groenen MA, Prins HH. A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Mol Phylogenet Evol 2016; 101:303-313. [DOI: 10.1016/j.ympev.2016.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/27/2016] [Accepted: 05/20/2016] [Indexed: 11/26/2022]
|
14
|
Nürnberger B, Lohse K, Fijarczyk A, Szymura JM, Blaxter ML. Para-allopatry in hybridizing fire-bellied toads (Bombina bombina and B. variegata): Inference from transcriptome-wide coalescence analyses. Evolution 2016; 70:1803-18. [PMID: 27282112 PMCID: PMC5129456 DOI: 10.1111/evo.12978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/26/2022]
Abstract
Ancient origins, profound ecological divergence, and extensive hybridization make the fire‐bellied toads Bombina bombina and B. variegata (Anura: Bombinatoridae) an intriguing test case of ecological speciation. Previous modeling has proposed that the narrow Bombina hybrid zones represent strong barriers to neutral introgression. We test this prediction by inferring the rate of gene exchange between pure populations on either side of the intensively studied Kraków transect. We developed a method to extract high confidence sets of orthologous genes from de novo transcriptome assemblies, fitted a range of divergence models to these data and assessed their relative support with analytic likelihood calculations. There was clear evidence for postdivergence gene flow, but, as expected, no perceptible signal of recent introgression via the nearby hybrid zone. The analysis of two additional Bombina taxa (B. v. scabra and B. orientalis) validated our parameter estimates against a larger set of prior expectations. Despite substantial cumulative introgression over millions of years, adaptive divergence of the hybridizing taxa is essentially unaffected by their lack of reproductive isolation. Extended distribution ranges also buffer them against small‐scale environmental perturbations that have been shown to reverse the speciation process in other, more recent ecotypes.
Collapse
Affiliation(s)
- Beate Nürnberger
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom. .,Current Address: Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Anna Fijarczyk
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom.,Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.,Current Address: Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jacek M Szymura
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Mark L Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
15
|
Taub DR, Page J. Molecular Signatures of Natural Selection for Polymorphic Genes of the Human Dopaminergic and Serotonergic Systems: A Review. Front Psychol 2016; 7:857. [PMID: 27375535 PMCID: PMC4896960 DOI: 10.3389/fpsyg.2016.00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
A large body of research has examined the behavioral and mental health consequences of polymorphisms in genes of the dopaminergic and serotonergic systems. Along with this, there has been considerable interest in the possibility that these polymorphisms have developed and/or been maintained due to the action of natural selection. Episodes of natural selection on a gene are expected to leave molecular “footprints” in the DNA sequences of the gene and adjacent genomic regions. Here we review the research literature investigating molecular signals of selection for genes of the dopaminergic and serotonergic systems. The gene SLC6A4, which codes for a serotonin transport protein, was the one gene for which there was consistent support from multiple studies for a selective episode. Positive selection on SLC6A4 appears to have been initiated ∼ 20–25,000 years ago in east Asia and possibly in Europe. There are scattered reports of molecular signals of selection for other neurotransmitter genes, but these have generally failed at replication across studies. In spite of speculation in the literature about selection on these genes, current evidence from population genomic analyses supports selectively neutral processes, such as genetic drift and population dynamics, as the principal drivers of recent evolution in dopaminergic and serotonergic genes other than SLC6A4.
Collapse
Affiliation(s)
- Daniel R Taub
- Department of Biology, Southwestern University, Georgetown TX, USA
| | - Joshua Page
- Department of Biology, Southwestern University, GeorgetownTX, USA; School of Medicine, Washington University, St LouisMO, USA
| |
Collapse
|
16
|
Inferring Bottlenecks from Genome-Wide Samples of Short Sequence Blocks. Genetics 2015; 201:1157-69. [PMID: 26341659 PMCID: PMC4649642 DOI: 10.1534/genetics.115.179861] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/01/2015] [Indexed: 01/02/2023] Open
Abstract
The advent of the genomic era has necessitated the development of methods capable of analyzing large volumes of genomic data efficiently. Being able to reliably identify bottlenecks—extreme population size changes of short duration—not only is interesting in the context of speciation and extinction but also matters (as a null model) when inferring selection. Bottlenecks can be detected in polymorphism data via their distorting effect on the shape of the underlying genealogy. Here, we use the generating function of genealogies to derive the probability of mutational configurations in short sequence blocks under a simple bottleneck model. Given a large number of nonrecombining blocks, we can compute maximum-likelihood estimates of the time and strength of the bottleneck. Our method relies on a simple summary of the joint distribution of polymorphic sites. We extend the site frequency spectrum by counting mutations in frequency classes in short sequence blocks. Using linkage information over short distances in this way gives greater power to detect bottlenecks than the site frequency spectrum and potentially opens up a wide range of demographic histories to blockwise inference. Finally, we apply our method to genomic data from a species of pig (Sus cebifrons) endemic to islands in the center and west of the Philippines to estimate whether a bottleneck occurred upon island colonization and compare our scheme to Li and Durbin’s pairwise sequentially Markovian coalescent (PSMC) both for the pig data and using simulations.
Collapse
|
17
|
Meyer WK, Venkat A, Kermany AR, van de Geijn B, Zhang S, Przeworski M. Evolutionary history inferred from the de novo assembly of a nonmodel organism, the blue-eyed black lemur. Mol Ecol 2015. [PMID: 26198179 PMCID: PMC4557055 DOI: 10.1111/mec.13327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lemurs, the living primates most distantly related to humans, demonstrate incredible diversity in behaviour, life history patterns and adaptive traits. Although many lemur species are endangered within their native Madagascar, there is no high-quality genome assembly from this taxon, limiting population and conservation genetic studies. One critically endangered lemur is the blue-eyed black lemur Eulemur flavifrons. This species is fixed for blue irises, a convergent trait that evolved at least four times in primates and was subject to positive selection in humans, where 5′ regulatory variation of OCA2 explains most of the brown/blue eye colour differences. We built a de novo genome assembly for E. flavifrons, providing the most complete lemur genome to date, and a high confidence consensus sequence for close sister species E. macaco, the (brown-eyed) black lemur. From diversity and divergence patterns across the genomes, we estimated a recent split time of the two species (160 Kya) and temporal fluctuations in effective population sizes that accord with known environmental changes. By looking for regions of unusually low diversity, we identified potential signals of directional selection in E. flavifrons at MITF, a melanocyte development gene that regulates OCA2 and has previously been associated with variation in human iris colour, as well as at several other genes involved in melanin biosynthesis in mammals. Our study thus illustrates how whole-genome sequencing of a few individuals can illuminate the demographic and selection history of nonmodel species.
Collapse
Affiliation(s)
- Wynn K Meyer
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Aarti Venkat
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Amir R Kermany
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Bryce van de Geijn
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Sidi Zhang
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL, 60637, USA
| | - Molly Przeworski
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.,Howard Hughes Medical Institute, University of Chicago, Chicago, IL, 60637, USA.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
18
|
Lohse K, Clarke M, Ritchie MG, Etges WJ. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution 2015; 69:1178-90. [PMID: 25824653 PMCID: PMC5029762 DOI: 10.1111/evo.12650] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
Abstract
Models of speciation‐with‐gene‐flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Magnus Clarke
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Michael G Ritchie
- School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| | - William J Etges
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
19
|
Rogers AR, Bohlender RJ. Bias in estimators of archaic admixture. Theor Popul Biol 2015; 100C:63-78. [DOI: 10.1016/j.tpb.2014.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 11/30/2022]
|
20
|
Abstract
Recombination allows different parts of the genome to have different genealogical histories. When a species splits in two, allelic lineages sort into the two descendant species, and this lineage sorting varies along the genome. If speciation events are close in time, the lineage sorting process may be incomplete at the second speciation event and lead to gene genealogies that do not match the species phylogeny. We review different recent approaches to model lineage sorting along the genome and show how it is possible to learn about population sizes, natural selection, and recombination rates in ancestral species from application of these models to genome alignments of great ape species.
Collapse
Affiliation(s)
- Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark; , ,
| | | | | |
Collapse
|
21
|
Abstract
The great ape families are the species most closely related to our own, comprising chimpanzees, bonobos, gorillas, and orangutans. They live exclusively in tropical rainforests in Central Africa and the islands of Southeast Asia. Due to their close evolutionary relationship with humans, great apes share many cognitive, physiological, and morphological similarities with humans. The members of the great ape family make obvious models to facilitate the further understanding about humans' biology and history. This review will discuss how the recent addition of genome-wide data from great apes has furthered humans' understanding of these species and humanity, especially in the realm of evolutionary genetics.
Collapse
|
22
|
Tessereau C, Lesecque Y, Monnet N, Buisson M, Barjhoux L, Léoné M, Feng B, Goldgar DE, Sinilnikova OM, Mousset S, Duret L, Mazoyer S. Estimation of the RNU2 macrosatellite mutation rate by BRCA1 mutation tracing. Nucleic Acids Res 2014; 42:9121-30. [PMID: 25034697 PMCID: PMC4132748 DOI: 10.1093/nar/gku639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Large tandem repeat sequences have been poorly investigated as severe technical limitations and their frequent absence from the genome reference hinder their analysis. Extensive allelotyping of this class of variation has not been possible until now and their mutational dynamics are still poorly known. In order to estimate the mutation rate of a macrosatellite, we analysed in detail the RNU2 locus, which displays at least 50 different alleles containing 5-82 copies of a 6.1 kb repeat unit. Mining data from the 1000 Genomes Project allowed us to precisely estimate copy numbers of the RNU2 repeat unit using read depth of coverage. This further revealed significantly different mean values in various recent modern human populations, favoring a scenario of fast evolution of this locus. Its proximity to a disease gene with numerous founder mutations, BRCA1, within the same linkage disequilibrium block, offered the unique opportunity to trace RNU2 arrays over a large timescale. Analysis of the transmission of RNU2 arrays associated with one ‘private’ mutation in an extended kindred and four founder mutations in multiple kindreds gave an estimation by maximum likelihood of 5 × 10−3 mutations per generation, which is close to that of microsatellites.
Collapse
Affiliation(s)
- Chloé Tessereau
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France Genomic Vision, Bagneux, Paris, France
| | - Yann Lesecque
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, France
| | - Nastasia Monnet
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Monique Buisson
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Laure Barjhoux
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Mélanie Léoné
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Bingjian Feng
- Department of Dermatology and Huntsman Cancer Institute University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David E Goldgar
- Department of Dermatology and Huntsman Cancer Institute University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Olga M Sinilnikova
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Sylvain Mousset
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, France
| | - Sylvie Mazoyer
- Genetics of Breast Cancer Team, Cancer Research Centre of Lyon, CNRS UMR5286, Inserm U1052, Université Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
23
|
Miryeganeh M, Takayama K, Tateishi Y, Kajita T. Long-distance dispersal by sea-drifted seeds has maintained the global distribution of Ipomoea pes-caprae subsp. brasiliensis (Convolvulaceae). PLoS One 2014; 9:e91836. [PMID: 24755614 PMCID: PMC3995641 DOI: 10.1371/journal.pone.0091836] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 02/15/2014] [Indexed: 11/18/2022] Open
Abstract
Ipomoea pes-caprae (Convolvulaceae), a pantropical plant with sea-drifted seeds, is found globally in the littoral areas of tropical and subtropical regions. Unusual long-distance seed dispersal has been believed to be responsible for its extraordinarily wide distribution; however, the actual level of inter-population migration has never been studied. To clarify the level of migration among populations of I. pes-caprae across its range, we investigated nucleotide sequence variations by using seven low-copy nuclear markers and 272 samples collected from 34 populations that cover the range of the species. We applied coalescent-based approaches using Bayesian and maximum likelihood methods to assess migration rates, direction of migration, and genetic diversity among five regional populations. Our results showed a high number of migrants among the regional populations of I. pes-caprae subsp. brasiliensis, which suggests that migration among distant populations was maintained by long-distance seed dispersal across its global range. These results also provide strong evidence for recent trans-oceanic seed dispersal by ocean currents in all three oceanic regions. We also found migration crossing the American continents. Although this is an apparent land barrier for sea-dispersal, migration between populations of the East Pacific and West Atlantic regions was high, perhaps because of trans-isthmus migration via pollen dispersal. Therefore, the migration and gene flow among populations across the vast range of I. pes-caprae is maintained not only by seed dispersal by sea-drifted seeds, but also by pollen flow over the American continents. On the other hand, populations of subsp. pes-caprae that are restricted to only the northern part of the Indian Ocean region were highly differentiated from subsp. brasiliensis. Cryptic barriers that prevented migration by sea dispersal between the ranges of the two subspecies and/or historical differentiation that caused local adaptation to different environmental factors in each region could explain the genetic differentiation between the subspecies.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Japan
| | - Koji Takayama
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoichi Tateishi
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nakagami-gun Okinawa, Japan
| | - Tadashi Kajita
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, Japan
- * E-mail:
| |
Collapse
|
24
|
Saniotis A, Henneberg M. The end of the world as we know it: an analysis of evolutionary and cultural factors which may reduce future human survival. Glob Bioeth 2014. [DOI: 10.1080/11287462.2014.897069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
25
|
Abstract
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4-7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination.
Collapse
|
26
|
Hearn J, Stone GN, Bunnefeld L, Nicholls JA, Barton NH, Lohse K. Likelihood-based inference of population history from low-coveragede novogenome assemblies. Mol Ecol 2013; 23:198-211. [DOI: 10.1111/mec.12578] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Jack Hearn
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Graham N. Stone
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Lynsey Bunnefeld
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - James A. Nicholls
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| | - Nicholas H. Barton
- Institute of Science and Technology; Am Campus 1 A-3400 Klosterneuburg Austria
| | - Konrad Lohse
- Institute of Evolutionary Biology; University of Edinburgh; Edinburgh EH9 3JT UK
| |
Collapse
|
27
|
Zou XH, Yang Z, Doyle JJ, Ge S. Multilocus estimation of divergence times and ancestral effective population sizes of Oryza species and implications for the rapid diversification of the genus. THE NEW PHYTOLOGIST 2013; 198:1155-1164. [PMID: 23574344 DOI: 10.1111/nph.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/08/2013] [Indexed: 06/02/2023]
Abstract
· Despite substantial investigations into Oryza phylogeny and evolution, reliable estimates of the divergence times and ancestral effective population sizes of major lineages in Oryza are challenging. · We sampled sequences of 106 single-copy nuclear genes from all six diploid genomes of Oryza to investigate the divergence times through extensive relaxed molecular clock analyses and estimated the ancestral effective population sizes using maximum likelihood and Bayesian methods. · We estimated that Oryza originated in the middle Miocene (c. 13-15 million years ago; Ma) and obtained an explicit time frame for two rapid diversifications in this genus. The first diversification involving the extant F-/G-genomes and possibly the extinct H-/J-/K-genomes occurred in the middle Miocene immediately after (within < 1 Myr) the origin of Oryza. The second giving rise to the A-/B-/C-genomes happened c. 5-6 Ma. We found that ancestral effective population sizes were much larger than those of extant species in Oryza. · We suggest that the climate fluctuations during the period from the middle Miocene to Pliocene may have contributed to the two rapid diversifications of Oryza species. Such information helps better understand the evolutionary history of Oryza and provides further insights into the pattern and mechanism of diversification in plants in general.
Collapse
Affiliation(s)
- Xin-Hui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ziheng Yang
- Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jeff J Doyle
- Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY, 14853, USA
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
28
|
Ségurel L, Thompson EE, Flutre T, Lovstad J, Venkat A, Margulis SW, Moyse J, Ross S, Gamble K, Sella G, Ober C, Przeworski M. The ABO blood group is a trans-species polymorphism in primates. Proc Natl Acad Sci U S A 2012; 109:18493-8. [PMID: 23091028 PMCID: PMC3494955 DOI: 10.1073/pnas.1210603109] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ABO histo-blood group, the critical determinant of transfusion incompatibility, was the first genetic polymorphism discovered in humans. Remarkably, ABO antigens are also polymorphic in many other primates, with the same two amino acid changes responsible for A and B specificity in all species sequenced to date. Whether this recurrence of A and B antigens is the result of an ancient polymorphism maintained across species or due to numerous, more recent instances of convergent evolution has been debated for decades, with a current consensus in support of convergent evolution. We show instead that genetic variation data in humans and gibbons as well as in Old World monkeys are inconsistent with a model of convergent evolution and support the hypothesis of an ancient, multiallelic polymorphism of which some alleles are shared by descent among species. These results demonstrate that the A and B blood groups result from a trans-species polymorphism among distantly related species and has remained under balancing selection for tens of millions of years-to date, the only such example in hominoids and Old World monkeys outside of the major histocompatibility complex.
Collapse
Affiliation(s)
- Laure Ségurel
- Department of Human Genetics
- Howard Hughes Medical Institute, and
| | | | - Timothée Flutre
- Department of Human Genetics
- Department of Genetics and Plant Breeding, Institut National de la Recherche Agronomique, Unité de Recherche 1164, 78026 Versailles, France
| | | | | | | | - Jill Moyse
- Lincoln Park Zoo, Chicago, IL 60614; and
| | - Steve Ross
- Lincoln Park Zoo, Chicago, IL 60614; and
| | | | - Guy Sella
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Molly Przeworski
- Department of Human Genetics
- Howard Hughes Medical Institute, and
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| |
Collapse
|
29
|
Abstract
Paleopopulation genetics is a new field that focuses on the population genetics of extinct groups and ancestral populations (i.e., populations ancestral to extant groups). With recent advances in DNA sequencing technologies, we now have unprecedented ability to directly assay genetic variation from fossils. This allows us to address issues, such as past population structure, changes in population size, and evolutionary relationships between taxa, at a much greater resolution than can traditional population genetics studies. In this review, we discuss recent developments in this emerging field as well as prospects for the future.
Collapse
Affiliation(s)
- Jeffrey D Wall
- Institute for Human Genetics and Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94134, USA.
| | | |
Collapse
|
30
|
Lohmueller KE, Albrechtsen A, Li Y, Kim SY, Korneliussen T, Vinckenbosch N, Tian G, Huerta-Sanchez E, Feder AF, Grarup N, Jørgensen T, Jiang T, Witte DR, Sandbæk A, Hellmann I, Lauritzen T, Hansen T, Pedersen O, Wang J, Nielsen R. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome. PLoS Genet 2011; 7:e1002326. [PMID: 22022285 PMCID: PMC3192825 DOI: 10.1371/journal.pgen.1002326] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 08/16/2011] [Indexed: 12/30/2022] Open
Abstract
A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.
Collapse
Affiliation(s)
- Kirk E Lohmueller
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamamichi M, Gojobori J, Innan H. An autosomal analysis gives no genetic evidence for complex speciation of humans and chimpanzees. Mol Biol Evol 2011; 29:145-56. [PMID: 21903679 DOI: 10.1093/molbev/msr172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There have been conflicting arguments as to what happened in the human-chimpanzee speciation event. Patterson et al. (2006, Genetic evidence for complex speciation of humans and chimpanzees. Nature 441:1103-1108) proposed a hypothesis that the human-chimpanzee speciation event involved a complicated demographic process: that is, the ancestral lineages of humans and chimpanzees experienced temporal isolation followed by a hybridization event. This hypothesis stemmed from two major observations: a wide range of human-chimpanzee nucleotide divergence across the autosomal genome and very low divergence in the X chromosome. In contrast, Innan and Watanabe (2006, The effect of gene flow on the coalescent time in the human-chimpanzee ancestral population. Mol Biol Evol. 23:1040-1047) demonstrated that the null model of instantaneous speciation fits the genome-wide divergence data for the two species better than alternative models involving partial isolation and migration. To reconcile these two conflicting reports, we first reexamined the analysis of autosomal data by Patterson et al. (2006). By providing a theoretical framework for their analysis, we demonstrated that their observation is what is theoretically expected under the null model of instantaneous speciation with a large ancestral population. Our analysis indicated that the observed wide range of autosomal divergence is simply due to the coalescent process in the large ancestral population of the two species. To further verify this, we developed a maximum likelihood function to detect evidence of hybridization in genome-wide divergence data. Again, the null model with no hybridization best fits the data. We conclude that the simplest speciation model with instantaneous split adequately describes the human-chimpanzee speciation event, and there is no strong reason to involve complicated factors in explaining the autosomal data.
Collapse
Affiliation(s)
- Masato Yamamichi
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | | | | |
Collapse
|
32
|
Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, Stütz AM, Urban AE, Grubert F, Lam HYK, Lee WP, Busby M, Indap AR, Garrison E, Huff C, Xing J, Snyder MP, Jorde LB, Batzer MA, Korbel JO, Marth GT, 1000 Genomes Project. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 2011; 7:e1002236. [PMID: 21876680 PMCID: PMC3158055 DOI: 10.1371/journal.pgen.1002236] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/24/2011] [Indexed: 11/18/2022] Open
Abstract
As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations.
Collapse
Affiliation(s)
- Chip Stewart
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Deniz Kural
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michael P. Strömberg
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Jerilyn A. Walker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Miriam K. Konkel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Adrian M. Stütz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexander E. Urban
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Fabian Grubert
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Hugo Y. K. Lam
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Wan-Ping Lee
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michele Busby
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Amit R. Indap
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Erik Garrison
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Chad Huff
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Jinchuan Xing
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark A. Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jan O. Korbel
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gabor T. Marth
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| | | |
Collapse
|
33
|
Mailund T, Dutheil JY, Hobolth A, Lunter G, Schierup MH. Estimating divergence time and ancestral effective population size of Bornean and Sumatran orangutan subspecies using a coalescent hidden Markov model. PLoS Genet 2011; 7:e1001319. [PMID: 21408205 PMCID: PMC3048369 DOI: 10.1371/journal.pgen.1001319] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/25/2011] [Indexed: 12/01/2022] Open
Abstract
Due to genetic variation in the ancestor of two populations or two species, the divergence time for DNA sequences from two populations is variable along the genome. Within genomic segments all bases will share the same divergence-because they share a most recent common ancestor-when no recombination event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may be possible if we can decode the divergence times along a genomic alignment. Here, we present a new hidden Markov model that infers the changing divergence (coalescence) times along the genome alignment using a coalescent framework, in order to estimate the speciation time, the recombination rate, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report a negative correlation between chromosome size and ancestral effective population size, which we interpret as a signature of recombination increasing the efficacy of selection.
Collapse
Affiliation(s)
- Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Denmark.
| | | | | | | | | |
Collapse
|
34
|
Hobolth A, Dutheil JY, Hawks J, Schierup MH, Mailund T. Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Res 2011; 21:349-56. [PMID: 21270173 PMCID: PMC3044849 DOI: 10.1101/gr.114751.110] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We search the complete orangutan genome for regions where humans are more closely related to orangutans than to chimpanzees due to incomplete lineage sorting (ILS) in the ancestor of human and chimpanzees. The search uses our recently developed coalescent hidden Markov model (HMM) framework. We find ILS present in ∼1% of the genome, and that the ancestral species of human and chimpanzees never experienced a severe population bottleneck. The existence of ILS is validated with simulations, site pattern analysis, and analysis of rare genomic events. The existence of ILS allows us to disentangle the time of isolation of humans and orangutans (the speciation time) from the genetic divergence time, and we find speciation to be as recent as 9-13 million years ago (Mya; contingent on the calibration point). The analyses provide further support for a recent speciation of human and chimpanzee at ∼4 Mya and a diverse ancestor of human and chimpanzee with an effective population size of about 50,000 individuals. Posterior decoding infers ILS for each nucleotide in the genome, and we use this to deduce patterns of selection in the ancestral species. We demonstrate the effect of background selection in the common ancestor of humans and chimpanzees. In agreement with predictions from population genetics, ILS was found to be reduced in exons and gene-dense regions when we control for confounding factors such as GC content and recombination rate. Finally, we find the broad-scale recombination rate to be conserved through the complete ape phylogeny.
Collapse
Affiliation(s)
- Asger Hobolth
- Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Julien Y. Dutheil
- Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - John Hawks
- University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Mikkel H. Schierup
- Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Biology, Aarhus University, DK-8000 Aarhus C, Denmark
- Corresponding authors.E-mail ; fax 45-8942-3077.E-mail
| | - Thomas Mailund
- Bioinformatics Research Center, Aarhus University, DK-8000 Aarhus C, Denmark
- Corresponding authors.E-mail ; fax 45-8942-3077.E-mail
| |
Collapse
|
35
|
Harris EE. Nonadaptive processes in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 143 Suppl 51:13-45. [PMID: 21086525 DOI: 10.1002/ajpa.21439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Evolutionary biology has tended to focus on adaptive evolution by positive selection as the primum mobile of evolutionary trajectories in species while underestimating the importance of nonadaptive evolutionary processes. In this review, I describe evidence that suggests that primate and human evolution has been strongly influenced by nonadaptive processes, particularly random genetic drift and mutation. This is evidenced by three fundamental effects: a relative relaxation of selective constraints (i.e., purifying selection), a relative increase in the fixation of slightly deleterious mutations, and a general reduction in the efficacy of positive selection. These effects are observed in protein-coding, regulatory regions, and in gene expression data, as well as in an augmentation of fixation of large-scale mutations, including duplicated genes, mobile genetic elements, and nuclear mitochondrial DNA. The evidence suggests a general population-level explanation such as a reduction in effective population size (N(e)). This would have tipped the balance between the evolutionary forces of natural selection and random genetic drift toward genetic drift for variants having small selective effects. After describing these proximate effects, I describe the potential consequences of these effects for primate and human evolution. For example, an increase in the fixation of slightly deleterious mutations could potentially have led to an increase in the fixation rate of compensatory mutations that act to suppress the effects of slightly deleterious substitutions. The potential consequences of compensatory evolution for the evolution of novel gene functions and in potentially confounding the detection of positively selected genes are explored. The consequences of the passive accumulation of large-scale genomic mutations by genetic drift are unclear, though evidence suggests that new gene copies as well as insertions of transposable elements into genes can potentially lead to adaptive phenotypes. Finally, because a decrease in selective constraint at the genetic level is expected to have effects at the morphological level, I review studies that compare rates of morphological change in various mammalian and island populations where N(e) is reduced. Furthermore, I discuss evidence that suggests that craniofacial morphology in the Homo lineage has shifted from an evolutionary rate constrained by purifying selection toward a neutral evolutionary rate.
Collapse
Affiliation(s)
- Eugene E Harris
- Department of Biological Sciences and Geology, Queensborough Community College, City University of New York, Bayside, NY 10364, USA.
| |
Collapse
|
36
|
Xing J, Watkins WS, Hu Y, Huff CD, Sabo A, Muzny DM, Bamshad MJ, Gibbs RA, Jorde LB, Yu F. Genetic diversity in India and the inference of Eurasian population expansion. Genome Biol 2010; 11:R113. [PMID: 21106085 PMCID: PMC3156952 DOI: 10.1186/gb-2010-11-11-r113] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/29/2010] [Accepted: 11/24/2010] [Indexed: 01/11/2023] Open
Abstract
Background Genetic studies of populations from the Indian subcontinent are of great interest because of India's large population size, complex demographic history, and unique social structure. Despite recent large-scale efforts in discovering human genetic variation, India's vast reservoir of genetic diversity remains largely unexplored. Results To analyze an unbiased sample of genetic diversity in India and to investigate human migration history in Eurasia, we resequenced one 100-kb ENCODE region in 92 samples collected from three castes and one tribal group from the state of Andhra Pradesh in south India. Analyses of the four Indian populations, along with eight HapMap populations (692 samples), showed that 30% of all SNPs in the south Indian populations are not seen in HapMap populations. Several Indian populations, such as the Yadava, Mala/Madiga, and Irula, have nucleotide diversity levels as high as those of HapMap African populations. Using unbiased allele-frequency spectra, we investigated the expansion of human populations into Eurasia. The divergence time estimates among the major population groups suggest that Eurasian populations in this study diverged from Africans during the same time frame (approximately 90 to 110 thousand years ago). The divergence among different Eurasian populations occurred more than 40,000 years after their divergence with Africans. Conclusions Our results show that Indian populations harbor large amounts of genetic variation that have not been surveyed adequately by public SNP discovery efforts. Our data also support a delayed expansion hypothesis in which an ancestral Eurasian founding population remained isolated long after the out-of-Africa diaspora, before expanding throughout Eurasia.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Blum MGB, Jakobsson M. Deep Divergences of Human Gene Trees and Models of Human Origins. Mol Biol Evol 2010; 28:889-98. [DOI: 10.1093/molbev/msq265] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
38
|
Lohse K, Sharanowski B, Stone GN. Quantifying the pleistocene history of the oak gall parasitoid Cecidostiba fungosa using twenty intron loci. Evolution 2010; 64:2664-81. [PMID: 20455927 DOI: 10.1111/j.1558-5646.2010.01024.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The longitudinal spread of temperate organisms into refugial populations in Southern Europe is generally assumed to predate the last interglacial. However, few studies have attempted to quantify this process in nonmodel organisms using explicit models and multilocus data. We used sequence data for 20 intron-spanning loci (12 kb per individual) to resolve the history of refugial populations of a widespread western Palaearctic oak gall parasitoid Cecidostiba fungosa (Pteromalidae). Using maximum likelihood and Bayesian methods we assess alternative population tree topologies and estimate divergence times and ancestral population sizes under a model of divergence between three refugia (Middle East, Balkans and Iberia). Both methods support an "Out of the East" history for C. fungosa, matching the pattern previously inferred for their gallwasp hosts. However, coalescent-based estimates of the ages of population divides are much more recent (coinciding with the Eemian interglacial) than nodal ages of single gene trees for C. fungosa and other species. We also find that increasing the sample size from one haploid sequence per refugial population to three only marginally improves parameter estimates. Our results suggest that there is significant information in the minimal samples currently analyzable with maximum likelihood methods, and that similar methods could be applied to multiple species to test alternative models of assemblage evolution.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, West Mains Road, United Kingdom.
| | | | | |
Collapse
|
39
|
Liao PC, Kuo DC, Lin CC, Ho KC, Lin TP, Hwang SY. Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred from nuclear genes. BMC Evol Biol 2010; 10:124. [PMID: 20433752 PMCID: PMC2880300 DOI: 10.1186/1471-2148-10-124] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 04/30/2010] [Indexed: 11/23/2022] Open
Abstract
Background Species in the varied geographic topology of Taiwan underwent obvious demographic changes during glacial periods. Cinnamomum kanehirae has been exploited for timber and to obtain medicinal fungi for the past 100 years. Understanding anthropogenic factors influencing the demography of this species after the last glacial maximum (LGM) is critically important for the conservation of this species. Results Populations of C. kanehirae were classified into four geographic regions: northwestern (NW), west-central (WC), southwestern (SW), and southeastern (SE). In total, 113 individuals from 19 localities were sampled, and variations in the chalcone synthase gene (Chs) intron and leafy (Lfy) intron-2 sequences of nuclear DNA were examined in order to assess phylogeographic patterns, the timescales of demographic and evolutionary events, and recent anthropogenic effects. In total, 210 Chs and 170 Lfy sequences, which respectively constituted 36 and 35 haplotypes, were used for the analyses. Estimates of the migration rate (M) through time revealed a pattern of frequent gene flow during previous and the present interglacials. The isolation-by-distance test showed that there generally was no significant correlation between genetic and geographic distances. The level of among-region genetic differentiation was significant when comparing eastern to western populations. However, no significant among-region genetic differentiation was found in comparisons among the four geographic regions. Moreover, essentially no genetic structuring was found for the three regions west of the CMR. A fit of spatial range expansion was found for pooled and regional samples according to the non-significant values of the sum of squared deviations. Using the Bayesian skyline plot (BSP) method, a recent bottleneck after the LGM expansion was detected in both regional and pooled samples. Conclusions Common haplotype distributions among geographic regions and the relatively shallow genetic structuring displayed are the result of historical gene flows. Southward dispersals in an earlier time frame from the NW region and in a later time frame from the SE region were inferred. The BSP analysis suggested a postglacial expansion event. Recent trends, however, refer to a bottleneck due to human interventions observed for both pooled and regional C. kanehirae samples.
Collapse
Affiliation(s)
- Pei-Chun Liao
- Department of Life Science, Pingtung University of Science and Technology, Pingtung, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, Shendure J, Drmanac R, Jorde LB, Hood L, Galas DJ. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 2010; 328:636-9. [PMID: 20220176 PMCID: PMC3037280 DOI: 10.1126/science.1186802] [Citation(s) in RCA: 757] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify 70% of the sequencing errors (resulting in > 99.999% accuracy), and identify very rare single-nucleotide polymorphisms. We also directly estimated a human intergeneration mutation rate of approximately 1.1 x 10(-8) per position per haploid genome. Both offspring in this family have two recessive disorders: Miller syndrome, for which the gene was concurrently identified, and primary ciliary dyskinesia, for which causative genes have been previously identified. Family-based genome analysis enabled us to narrow the candidate genes for both of these Mendelian disorders to only four. Our results demonstrate the value of complete genome sequencing in families.
Collapse
Affiliation(s)
| | | | | | - Chad D. Huff
- Institute for Systems Biology, Seattle, WA 98103
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | - Lee Rowen
- Institute for Systems Biology, Seattle, WA 98103
| | | | | | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle WA 98195
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle WA 98195
| | | | - Lynn B. Jorde
- Department of Human Genetics, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98103
| | | |
Collapse
|
41
|
White MA, Ané C, Dewey CN, Larget BR, Payseur BA. Fine-scale phylogenetic discordance across the house mouse genome. PLoS Genet 2009; 5:e1000729. [PMID: 19936022 PMCID: PMC2770633 DOI: 10.1371/journal.pgen.1000729] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 10/19/2009] [Indexed: 11/18/2022] Open
Abstract
Population genetic theory predicts discordance in the true phylogeny of different genomic regions when studying recently diverged species. Despite this expectation, genome-wide discordance in young species groups has rarely been statistically quantified. The house mouse subspecies group provides a model system for examining phylogenetic discordance. House mouse subspecies are recently derived, suggesting that even if there has been a simple tree-like population history, gene trees could disagree with the population history due to incomplete lineage sorting. Subspecies of house mice also hybridize in nature, raising the possibility that recent introgression might lead to additional phylogenetic discordance. Single-locus approaches have revealed support for conflicting topologies, resulting in a subspecies tree often summarized as a polytomy. To analyze phylogenetic histories on a genomic scale, we applied a recently developed method, Bayesian concordance analysis, to dense SNP data from three closely related subspecies of house mice: Mus musculus musculus, M. m. castaneus, and M. m. domesticus. We documented substantial variation in phylogenetic history across the genome. Although each of the three possible topologies was strongly supported by a large number of loci, there was statistical evidence for a primary phylogenetic history in which M. m. musculus and M. m. castaneus are sister subspecies. These results underscore the importance of measuring phylogenetic discordance in other recently diverged groups using methods such as Bayesian concordance analysis, which are designed for this purpose.
Collapse
Affiliation(s)
- Michael A. White
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cécile Ané
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Colin N. Dewey
- Department of Biostatistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bret R. Larget
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
42
|
Abstract
Genome assemblies are now available for nine primate species, and large-scale sequencing projects are underway or approved for six others. An explicitly evolutionary and phylogenetic approach to comparative genomics, called phylogenomics, will be essential in unlocking the valuable information about evolutionary history and genomic function that is contained within these genomes. However, most phylogenomic analyses so far have ignored the effects of variation in ancestral populations on patterns of sequence divergence. These effects can be pronounced in the primates, owing to large ancestral effective population sizes relative to the intervals between speciation events. In particular, local genealogies can vary considerably across loci, which can produce biases and diminished power in many phylogenomic analyses of interest, including phylogeny reconstruction, the identification of functional elements, and the detection of natural selection. At the same time, this variation in genealogies can be exploited to gain insight into the nature of ancestral populations. In this Perspective, I explore this area of intersection between phylogenetics and population genetics, and its implications for primate phylogenomics. I begin by "lifting the hood" on the conventional tree-like representation of the phylogenetic relationships between species, to expose the population-genetic processes that operate along its branches. Next, I briefly review an emerging literature that makes use of the complex relationships among coalescence, recombination, and speciation to produce inferences about evolutionary histories, ancestral populations, and natural selection. Finally, I discuss remaining challenges and future prospects at this nexus of phylogenetics, population genetics, and genomics.
Collapse
Affiliation(s)
- Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
43
|
Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 2009; 24:332-40. [PMID: 19307040 DOI: 10.1016/j.tree.2009.01.009] [Citation(s) in RCA: 1142] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 12/17/2008] [Accepted: 01/05/2009] [Indexed: 01/29/2023]
Affiliation(s)
- James H Degnan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
44
|
Abstract
We summarize the progress in whole-genome sequencing and analyses of primate genomes. These emerging genome datasets have broadened our understanding of primate genome evolution revealing unexpected and complex patterns of evolutionary change. This includes the characterization of genome structural variation, episodic changes in the repeat landscape, differences in gene expression, new models regarding speciation, and the ephemeral nature of the recombination landscape. The functional characterization of genomic differences important in primate speciation and adaptation remains a significant challenge. Limited access to biological materials, the lack of detailed phenotypic data and the endangered status of many critical primate species have significantly attenuated research into the genetic basis of primate evolution. Next-generation sequencing technologies promise to greatly expand the number of available primate genome sequences; however, such draft genome sequences will likely miss critical genetic differences within complex genomic regions unless dedicated efforts are put forward to understand the full spectrum of genetic variation.
Collapse
Affiliation(s)
- Tomas Marques-Bonet
- Department of Genome Sciences, University of Washington and the Howard Hughes Medical Institute, Seattle, Washington 98105, USA.
| | | | | |
Collapse
|
45
|
Schmieder S, Darré-Toulemonde F, Arguel MJ, Delerue-Audegond A, Christen R, Nahon JL. Primate-specific spliced PMCHL RNAs are non-protein coding in human and macaque tissues. BMC Evol Biol 2008; 8:330. [PMID: 19068116 PMCID: PMC2621205 DOI: 10.1186/1471-2148-8-330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/09/2008] [Indexed: 11/24/2022] Open
Abstract
Background Brain-expressed genes that were created in primate lineage represent obvious candidates to investigate molecular mechanisms that contributed to neural reorganization and emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a pro-melanin-concentrating hormone (PMCH) antisense mRNA on the ancestral human chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced PMCHL RNAs were found in human brain and testis. Results Several novel spliced PMCHL transcripts have been characterized in human testis and fetal brain, identifying an additional exon and novel splice sites. Sequencing of PMCHL genes in several non-human primates allowed to carry out phylogenetic analyses revealing that the initial retroposition event took place within an intron of the brain cadherin (CDH12) gene, soon after platyrrhine/catarrhine divergence, i.e. 30–35 Mya, and was concomitant with the insertion of an AluSg element. Sequence analysis of the spliced PMCHL transcripts identified only short ORFs of less than 300 bp, with low (VMCH-p8 and protein variants) or no evolutionary conservation. Western blot analyses of human and macaque tissues expressing PMCHL RNA failed to reveal any protein corresponding to VMCH-p8 and protein variants encoded by spliced transcripts. Conclusion Our present results improve our knowledge of the gene structure and the evolutionary history of the primate-specific chimeric PMCHL genes. These genes produce multiple spliced transcripts, bearing short, non-conserved and apparently non-translated ORFs that may function as mRNA-like non-coding RNAs.
Collapse
Affiliation(s)
- Sandra Schmieder
- Université de Nice-Sophia Antipolis, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.
| | | | | | | | | | | |
Collapse
|
46
|
Kosiol C, Vinař T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A. Patterns of positive selection in six Mammalian genomes. PLoS Genet 2008; 4:e1000144. [PMID: 18670650 PMCID: PMC2483296 DOI: 10.1371/journal.pgen.1000144] [Citation(s) in RCA: 426] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 06/27/2008] [Indexed: 01/28/2023] Open
Abstract
Genome-wide scans for positively selected genes (PSGs) in mammals have provided insight into the dynamics of genome evolution, the genetic basis of differences between species, and the functions of individual genes. However, previous scans have been limited in power and accuracy owing to small numbers of available genomes. Here we present the most comprehensive examination of mammalian PSGs to date, using the six high-coverage genome assemblies now available for eutherian mammals. The increased phylogenetic depth of this dataset results in substantially improved statistical power, and permits several new lineage- and clade-specific tests to be applied. Of approximately 16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection (FDR<0.05), according to a standard likelihood ratio test. An additional 144 genes showed evidence of positive selection on particular lineages or clades. As in previous studies, the identified PSGs were enriched for roles in defense/immunity, chemosensory perception, and reproduction, but enrichments were also evident for more specific functions, such as complement-mediated immunity and taste perception. Several pathways were strongly enriched for PSGs, suggesting possible co-evolution of interacting genes. A novel Bayesian analysis of the possible "selection histories" of each gene indicated that most PSGs have switched multiple times between positive selection and nonselection, suggesting that positive selection is often episodic. A detailed analysis of Affymetrix exon array data indicated that PSGs are expressed at significantly lower levels, and in a more tissue-specific manner, than non-PSGs. Genes that are specifically expressed in the spleen, testes, liver, and breast are significantly enriched for PSGs, but no evidence was found for an enrichment for PSGs among brain-specific genes. This study provides additional evidence for widespread positive selection in mammalian evolution and new genome-wide insights into the functional implications of positive selection.
Collapse
Affiliation(s)
- Carolin Kosiol
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Tomáš Vinař
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | | | - Melissa J. Hubisz
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Carlos D. Bustamante
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Rasmus Nielsen
- Institute of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
47
|
Maureira-Butler IJ, Pfeil BE, Muangprom A, Osborn TC, Doyle JJ. The Reticulate History of Medicago (Fabaceae). Syst Biol 2008; 57:466-82. [DOI: 10.1080/10635150802172168] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Iván J. Maureira-Butler
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
- Agro aquaculture Nutritional Genomic Center (CGNA) Plant Biotechnology Unit INIA-Carillanca P.O. Box 58-D, Temuco, Chile
| | - Bernard E. Pfeil
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
- CSIRO Plant Industry GPO Box 1600, Canberra, ACT 2601, Australia I.J.M.-B. and B.E.P. contributed equally to this work
| | - Amorntip Muangprom
- National Center for Genetic Engineering and Biotechnology Klong Luang, Pathumthani 12120, Thailand
| | - Thomas C. Osborn
- Seminis Vegetable seeds (A Division of Monsanto) State Highway 16, Woodland, CA 95695, USA
| | - Jeff J. Doyle
- Department of Plant Biology, Cornell University Ithaca, NY 14853, USA; E-mail: (J.J.D.)
| |
Collapse
|
48
|
Abstract
The use of molecular sequence data has increased interest in trying to date evolutionary events, with researchers wanting both an estimate of the divergence time and a confidence interval for that estimate. However, two methodological issues have recently been raised with respect to precision of the estimates: (i) the time of the ancestral event is over-estimated; and (ii) the confidence interval is asymmetrical. I argue that if the estimates of divergence time are considered to be samples from a lognormal probability distribution, then this would explain both of these problems. This implies that divergence times should be presented using geometric means rather than arithmetic means, both for estimates and for their confidence intervals. I present analyses based on both computer simulations and empirical data to show that this approach is effective for both single-gene and multiple-gene data sets. Treating divergence time as a lognormal variable thus provides a simple unifying framework for dealing with many of the problems associated with the estimation of divergence (and possibly coalescence) times. Use of this approach (based on geometric means) can, unfortunately, lead to very different biological conclusions compared to the currently used calculation methods (based on arithmetic means).
Collapse
Affiliation(s)
- David A Morrison
- Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
49
|
Janko K, Lecointre G, DeVries A, Couloux A, Cruaud C, Marshall C. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?--Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol Biol 2007; 7:220. [PMID: 17997847 PMCID: PMC2222253 DOI: 10.1186/1471-2148-7-220] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 11/12/2007] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circum-Antarctic waters harbour a rare example of a marine species flock - the Notothenioid fish, most species of which are restricted to the continental shelf. It remains an open question as to how they survived Pleistocene climatic fluctuations characterised by repeated advances of continental glaciers as far as the shelf break that probably resulted in a loss of habitat for benthic organisms. Pelagic ecosystems, on the other hand, might have flourished during glacial maxima due to the northward expansion of Antarctic polar waters. In order to better understand the role of ecological traits in Quaternary climatic fluctuations, we performed demographic analyses of populations of four fish species from the tribe Trematominae, including both fully benthic and pelagic species using the mitochondrial cytochrome b gene and an intron from the nuclear S7 gene. RESULTS Nuclear and cytoplasmic markers showed differences in the rate and time of population expansions as well as the likely population structure. Neutrality tests suggest that such discordance comes from different coalescence dynamics of each marker, rather than from selective pressure. Demographic analyses based on intraspecific DNA diversity suggest a recent population expansion in both benthic species, dated by the cyt b locus to the last glacial cycle, whereas the population structure of pelagic feeders either did not deviate from a constant-size model or indicated that the onset of the major population expansion of these species by far predated those of the benthic species. Similar patterns were apparent even when comparing previously published data on other Southern Ocean organisms, but we observed considerable heterogeneity within both groups with regard to the onset of major demographic events and rates. CONCLUSION Our data suggest benthic and pelagic species reacted differently to the Pleistocene ice-sheet expansions that probably significantly reduced the suitable habitat for benthic species. However, the asynchronous timing of major demographic events observed in different species within both "ecological guilds", imply that the species examined here may have different population and evolutionary histories, and that more species should be analysed in order to more precisely assess the role of life history in the response of organisms to climatic changes.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 27721 Libechov, Czech Republic
| | - Guillaume Lecointre
- UMR CNRS 7138 "Systématique, Adaptation, Evolution", Département "Systématique et Evolution", Muséum National d'Histoire Naturelle, 43 rue Cuvier 75231 Paris cedex 05, France
| | - Arthur DeVries
- Animal Biology, University of Illinois at Urbana-Champaign, 524 BH, 407 S. Goodwin, Urbana, Il 61801, USA
| | - Arnaud Couloux
- Genoscope. Centre National de Sequençage. 2, rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France
| | - Corinne Cruaud
- Genoscope. Centre National de Sequençage. 2, rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France
| | - Craig Marshall
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
50
|
Zhou R, Zeng K, Wu W, Chen X, Yang Z, Shi S, Wu CI. Population genetics of speciation in nonmodel organisms: I. Ancestral polymorphism in mangroves. Mol Biol Evol 2007; 24:2746-54. [PMID: 17906000 DOI: 10.1093/molbev/msm209] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The level of DNA polymorphism in the ancestral species at the time of speciation can be estimated using DNA sequences from many loci sampled from 2 or more extant species. The comparison between ancestral and extant polymorphism can be informative about the population genetics of speciation. In this study, we collected and analyzed DNA sequences of approximately 60 genes from 4 species of Sonneratia, a common genus of mangroves on the Indo-Pacific coasts. We found that the 3 ancestral species were comparable to each other in terms of level of polymorphism. However, the ancestral species at the time of speciation were substantially more polymorphic than the extant geographical populations. This ancestral polymorphism is in fact larger than, or at least equal to, the level of polymorphism of the entire species across extant geographical populations. The observations are not fully compatible with speciation by strict allopatry. We suggest that, at the time of speciation, the ancestral species consisted of interconnected but strongly divided geographical populations. This population structure would give rise to high level of polymorphism across species range. This approach of studying the speciation history by genomic means should be applicable to nonmodel organisms.
Collapse
Affiliation(s)
- Renchao Zhou
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|