1
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
2
|
Mantel SJ, Sweigart AL. Postzygotic barriers persist despite ongoing introgression in hybridizing Mimulus species. Mol Ecol 2024; 33:e17261. [PMID: 38174628 PMCID: PMC10922885 DOI: 10.1111/mec.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in naturally hybridizing species are not well understood. Here, we explore these issues using genetic mapping in three independent populations of recombinant inbred lines between naturally hybridizing monkeyflowers, Mimulus guttatus and Mimulus nasutus, from the sympatric Catherine Creek population. We discover that the three M. guttatus founders differ dramatically in admixture history, with nearly a quarter of one founder's genome introgressed from M. nasutus. Comparative genetic mapping in the three RIL populations reveals three new putative inversions, each one segregating among the M. guttatus founders, two due to admixture. We find strong, genome-wide transmission ratio distortion in all RILs, but patterns are highly variable among the three populations. At least some of this distortion appears to be explained by epistatic selection favouring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid pollen viability, including two interacting pairs that coincide with peaks of distortion. Remarkably, even with this limited sample of three M. guttatus lines, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbours diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
Collapse
Affiliation(s)
- Samuel J. Mantel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
3
|
Mantel SJ, Sweigart AL. Postzygotic barriers persist despite ongoing introgression in hybridizing Mimulus species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.05.552095. [PMID: 37577468 PMCID: PMC10418264 DOI: 10.1101/2023.08.05.552095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in sympatric species are not well understood.Here, we explore these issues using genetic mapping in three populations of recombinant inbred lines between naturally hybridizing monkeyflowers Mimulus guttatus and M. nasutus from the sympatric Catherine Creek population.The three M. guttatus founders differ dramatically in admixture history. Comparative genetic mapping also reveals three putative inversions segregating among the M. guttatus founders, two due to admixture. We observe strong, genome-wide transmission ratio distortion, but patterns are highly variable among populations. Some distortion is explained by epistatic selection favoring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid fertility, including two interacting pairs coinciding with peaks of distortion.Remarkably, in this limited sample of M. guttatus, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbors diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.
Collapse
Affiliation(s)
- Samuel J. Mantel
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | | |
Collapse
|
4
|
Xia Q, Chen C, Dopman EB, Hahn DA. Divergence in cell cycle progression is associated with shifted phenology in a multivoltine moth: the European corn borer, Ostrinia nubilalis. J Exp Biol 2023; 226:jeb245244. [PMID: 37293992 PMCID: PMC10281267 DOI: 10.1242/jeb.245244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Evolutionary change in diapause timing can be an adaptive response to changing seasonality, and even result in ecological speciation. However, the molecular and cellular mechanisms regulating shifts in diapause timing remain poorly understood. One of the hallmarks of diapause is a massive slowdown in the cell cycle of target organs such as the brain and primordial imaginal structures, and resumption of cell cycle proliferation is an indication of diapause termination and resumption of development. Characterizing cell cycle parameters between lineages differing in diapause life history timing may help identify molecular mechanisms associated with alterations of diapause timing. We tested the extent to which progression of the cell cycle differs across diapause between two genetically distinct European corn borer strains that differ in their seasonal diapause timing. We show the cell cycle slows down during larval diapause with a significant decrease in the proportion of cells in S phase. Brain-subesophageal complex cells slow primarily in G0/G1 phase whereas most wing disc cells are in G2 phase. Diapausing larvae of the earlier emerging, bivoltine E-strain (BE) suppressed cell cycle progression less than the later emerging, univoltine Z-strain (UZ) individuals, with a greater proportion of cells in S phase across both tissues during diapause. Additionally, resumption of cell cycle proliferation occurred earlier in the BE strain than in the UZ strain after exposure to diapause-terminating conditions. We propose that regulation of cell cycle progression rates ultimately drives differences in larval diapause termination, and adult emergence timing, between early- and late-emerging European corn borer strains.
Collapse
Affiliation(s)
- Qinwen Xia
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Chao Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Daniel A. Hahn
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Sun N, Yang L, Tian F, Zeng H, He Z, Zhao K, Wang C, Meng M, Feng C, Fang C, Lv W, Bo J, Tang Y, Gan X, Peng Z, Chen Y, He S. Sympatric or micro-allopatric speciation in a glacial lake? Genomic islands support neither. Natl Sci Rev 2022; 9:nwac291. [PMID: 36778108 PMCID: PMC9905650 DOI: 10.1093/nsr/nwac291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Apparent cases of sympatric speciation may actually be due to micro-allopatric or micro-parapatric speciation. One way to distinguish between these models is to examine the existence and nature of genomic islands of divergence, wherein divergent DNA segments are interspersed with low-divergence segments. Such islands should be rare or absent under micro-allopatric speciation but common in cases of speciation with gene flow. Sympatric divergence of endemic fishes is known from isolated saline, crater, postglacial, and ancient lakes. Two morphologically distinct cyprinid fishes, Gymnocypris eckloni scoliostomus (GS) and G. eckloni eckloni (GE), in a small glacial lake on the Qinghai-Tibet Plateau, Lake Sunmcuo, match the biogeographic criteria of sympatric speciation. In this study, we examined genome-wide variation in 46 individuals from these two groups. The divergence time between the GS and GE lineages was estimated to be 20-60 Kya. We identified 54 large genomic islands (≥100 kb) of speciation, which accounted for 89.4% of the total length of all genomic islands. These islands harboured divergent genes related to olfactory receptors and olfaction signals that may play important roles in food selection and assortative mating in fishes. Although the genomic islands clearly indicated speciation with gene flow and rejected micro-allopatric speciation, they were too large to support the hypothesis of sympatric speciation. Theoretical and recent empirical studies suggested that continual gene flow in sympatry should give rise to many small genomic islands (as small as a few kilobases in size). Thus, the observed pattern is consistent with the extensive evidence on parapatric speciation, in which adjacent habitats facilitate divergent selection but also permit gene flow during speciation. We suggest that many, if not most, of the reported cases of sympatric speciation are likely to be micro-parapatric speciation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenguang Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710129, China
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Bo
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongtao Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400700, China
| | | | | |
Collapse
|
6
|
Hager ER, Harringmeyer OS, Wooldridge TB, Theingi S, Gable JT, McFadden S, Neugeboren B, Turner KM, Jensen JD, Hoekstra HE. A chromosomal inversion contributes to divergence in multiple traits between deer mouse ecotypes. Science 2022; 377:399-405. [PMID: 35862520 PMCID: PMC9571565 DOI: 10.1126/science.abg0718] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
How locally adapted ecotypes are established and maintained within a species is a long-standing question in evolutionary biology. Using forest and prairie ecotypes of deer mice (Peromyscus maniculatus), we characterized the genetic basis of variation in two defining traits-tail length and coat color-and discovered a 41-megabase chromosomal inversion linked to both. The inversion frequency is 90% in the dark, long-tailed forest ecotype; decreases across a habitat transition; and is absent from the light, short-tailed prairie ecotype. We implicate divergent selection in maintaining the inversion at frequencies observed in the wild, despite high levels of gene flow, and explore fitness benefits that arise from suppressed recombination within the inversion. We uncover a key role for a large, previously uncharacterized inversion in the evolution and maintenance of classic mammalian ecotypes.
Collapse
Affiliation(s)
- Emily R Hager
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Olivia S Harringmeyer
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - T Brock Wooldridge
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shunn Theingi
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jacob T Gable
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sade McFadden
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beverly Neugeboren
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kyle M Turner
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hopi E Hoekstra
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Foe VE. Does the Pachytene Checkpoint, a Feature of Meiosis, Filter Out Mistakes in Double-Strand DNA Break Repair and as a side-Effect Strongly Promote Adaptive Speciation? Integr Org Biol 2022; 4:obac008. [PMID: 36827645 PMCID: PMC8998493 DOI: 10.1093/iob/obac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This essay aims to explain two biological puzzles: why eukaryotic transcription units are composed of short segments of coding DNA interspersed with long stretches of non-coding (intron) DNA, and the near ubiquity of sexual reproduction. As is well known, alternative splicing of its coding sequences enables one transcription unit to produce multiple variants of each encoded protein. Additionally, padding transcription units with non-coding DNA (often many thousands of base pairs long) provides a readily evolvable way to set how soon in a cell cycle the various mRNAs will begin being expressed and the total amount of mRNA that each transcription unit can make during a cell cycle. This regulation complements control via the transcriptional promoter and facilitates the creation of complex eukaryotic cell types, tissues, and organisms. However, it also makes eukaryotes exceedingly vulnerable to double-strand DNA breaks, which end-joining break repair pathways can repair incorrectly. Transcription units cover such a large fraction of the genome that any mis-repair producing a reorganized chromosome has a high probability of destroying a gene. During meiosis, the synaptonemal complex aligns homologous chromosome pairs and the pachytene checkpoint detects, selectively arrests, and in many organisms actively destroys gamete-producing cells with chromosomes that cannot adequately synapse; this creates a filter favoring transmission to the next generation of chromosomes that retain the parental organization, while selectively culling those with interrupted transcription units. This same meiotic checkpoint, reacting to accidental chromosomal reorganizations inflicted by error-prone break repair, can, as a side effect, provide a mechanism for the formation of new species in sympatry. It has been a long-standing puzzle how something as seemingly maladaptive as hybrid sterility between such new species can arise. I suggest that this paradox is resolved by understanding the adaptive importance of the pachytene checkpoint, as outlined above.
Collapse
|
8
|
Bayat S, Lysak MA, Mandáková T. Genome structure and evolution in the cruciferous tribe Thlaspideae (Brassicaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1768-1785. [PMID: 34661331 DOI: 10.1111/tpj.15542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Whole-genome duplications (WGDs) and chromosome rearrangements (CRs) play the key role in driving the diversification and evolution of plant lineages. Although the direct link between WGDs and plant diversification is well documented, relatively few studies focus on the evolutionary significance of CRs. The cruciferous tribe Thlaspideae represents an ideal model system to address the role of large-scale chromosome alterations in genome evolution, as most Thlaspideae species share the same diploid chromosome number (2n = 2x = 14). Here we constructed the genome structure in 12 Thlaspideae species, including field pennycress (Thlaspi arvense) and garlic mustard (Alliaria petiolata). We detected and precisely characterized genus- and species-specific CRs, mostly pericentric inversions, as the main genome-diversifying drivers in the tribe. We reconstructed the structure of seven chromosomes of an ancestral Thlaspideae genome, identified evolutionary stable chromosomes versus chromosomes prone to CRs, estimated the rate of CRs, and uncovered an allohexaploid origin of garlic mustard from diploid taxa closely related to A. petiolata and Parlatoria cakiloidea. Furthermore, we performed detailed bioinformatic analysis of the Thlaspideae repeatomes, and identified repetitive elements applicable as unique species- and genus-specific barcodes and chromosome landmarks. This study deepens our general understanding of the evolutionary role of CRs, particularly pericentric inversions, in plant genome diversification, and provides a robust base for follow-up whole-genome sequencing efforts.
Collapse
Affiliation(s)
- Soheila Bayat
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Martin A Lysak
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, Brno, 62500, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
9
|
Calvert MB, Doellman MM, Feder JL, Hood GR, Meyers P, Egan SP, Powell THQ, Glover MM, Tait C, Schuler H, Berlocher SH, Smith JJ, Nosil P, Hahn DA, Ragland GJ. Genomically correlated trait combinations and antagonistic selection contributing to counterintuitive genetic patterns of adaptive diapause divergence in Rhagoletis flies. J Evol Biol 2021; 35:146-163. [PMID: 34670006 DOI: 10.1111/jeb.13952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022]
Abstract
Adaptation to novel environments can result in unanticipated genomic responses to selection. Here, we illustrate how multifarious, correlational selection helps explain a counterintuitive pattern of genetic divergence between the recently derived apple- and ancestral hawthorn-infesting host races of Rhagoletis pomonella (Diptera: Tephritidae). The apple host race terminates diapause and emerges as adults earlier in the season than the hawthorn host race, to coincide with the earlier fruiting phenology of their apple hosts. However, alleles at many loci associated with later emergence paradoxically occur at higher frequencies in sympatric populations of the apple compared to the hawthorn race. We present genomic evidence that historical selection over geographically varying environmental gradients across North America generated genetic correlations between two life history traits, diapause intensity and diapause termination, in the hawthorn host race. Moreover, the loci associated with these life history traits are concentrated in genomic regions in high linkage disequilibrium (LD). These genetic correlations are antagonistic to contemporary selection on local apple host race populations that favours increased initial diapause depth and earlier, not later, diapause termination. Thus, the paradox of apple flies appears due, in part, to pleiotropy or linkage of alleles associated with later adult emergence and increased initial diapause intensity, the latter trait strongly selected for by the earlier phenology of apples. Our results demonstrate how understanding of multivariate trait combinations and the correlative nature of selective forces acting on them can improve predictions concerning adaptive evolution and help explain seemingly counterintuitive patterns of genetic diversity in nature.
Collapse
Affiliation(s)
- McCall B Calvert
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Peter Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Scott P Egan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Department of Biological Sciences, Binghamton University (State University of New York), Binghamton, New York, USA
| | - Mary M Glover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Cheyenne Tait
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Hannes Schuler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen, Italy
| | - Stewart H Berlocher
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James J Smith
- Department of Entomology, Lyman Briggs College, Michigan State University, East Lansing, Michigan, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
10
|
How Important Are Structural Variants for Speciation? Genes (Basel) 2021; 12:genes12071084. [PMID: 34356100 PMCID: PMC8305853 DOI: 10.3390/genes12071084] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribution of structural variants to reproductive isolation between species—and the underlying mechanism by which structural variants most often contribute to speciation—remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation.
Collapse
|
11
|
Meier JI, Salazar PA, Kučka M, Davies RW, Dréau A, Aldás I, Box Power O, Nadeau NJ, Bridle JR, Rolian C, Barton NH, McMillan WO, Jiggins CD, Chan YF. Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. Proc Natl Acad Sci U S A 2021; 118:e2015005118. [PMID: 34155138 PMCID: PMC8237668 DOI: 10.1073/pnas.2015005118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic variation segregates as linked sets of variants or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. Yet, genomic data often omit haplotype information due to constraints in sequencing technologies. Here, we present "haplotagging," a simple, low-cost linked-read sequencing technique that allows sequencing of hundreds of individuals while retaining linkage information. We apply haplotagging to construct megabase-size haplotypes for over 600 individual butterflies (Heliconius erato and H. melpomene), which form overlapping hybrid zones across an elevational gradient in Ecuador. Haplotagging identifies loci controlling distinctive high- and lowland wing color patterns. Divergent haplotypes are found at the same major loci in both species, while chromosome rearrangements show no parallelism. Remarkably, in both species, the geographic clines for the major wing-pattern loci are displaced by 18 km, leading to the rise of a novel hybrid morph in the center of the hybrid zone. We propose that shared warning signaling (Müllerian mimicry) may couple the cline shifts seen in both species and facilitate the parallel coemergence of a novel hybrid morph in both comimetic species. Our results show the power of efficient haplotyping methods when combined with large-scale sequencing data from natural populations.
Collapse
Affiliation(s)
- Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- St. John's College, University of Cambridge, Cambridge CB2 1TP, United Kingdom
| | - Patricio A Salazar
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Marek Kučka
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | | | - Andreea Dréau
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | | | - Olivia Box Power
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jon R Bridle
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Campbell Rolian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nicholas H Barton
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panamá, Apartado Postal 0843-00153, República de Panamá
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom;
- Smithsonian Tropical Research Institute, Panamá, Apartado Postal 0843-00153, República de Panamá
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany;
| |
Collapse
|
12
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
13
|
Yee WL, Goughnour RB, Feder JL. Distinct Adult Eclosion Traits of Sibling Species Rhagoletis pomonella and Rhagoletis zephyria (Diptera: Tephritidae) Under Laboratory Conditions. ENVIRONMENTAL ENTOMOLOGY 2021; 50:173-182. [PMID: 33247295 DOI: 10.1093/ee/nvaa148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 06/12/2023]
Abstract
Closely related phytophagous insects that specialize on different host plants may have divergent responses to environmental factors. Rhagoletis pomonella (Walsh) and Rhagoletis zephyria Snow (Diptera: Tephritidae) are sibling, sympatric fly species found in western North America that attack and mate on plants of Rosaceae (~60 taxa) and Caprifoliaceae (three taxa), respectively, likely contributing to partial reproductive isolation. Rhagoletis zephyria evolved from R. pomonella and is native to western North America, whereas R. pomonella was introduced there. Given that key features of the flies' ecology, breeding compatibility, and evolution differ, we predicted that adult eclosion patterns of the two flies from Washington State, USA are also distinct. When puparia were chilled, eclosion of apple- and black hawthorn-origin R. pomonella was significantly more dispersed, with less pronounced peaks, than of snowberry-origin R. zephyria within sympatric and nonsympatric site comparisons. Percentages of chilled puparia that produced adults were ≥67% for both species. However, when puparia were not chilled, from 13.5 to 21.9% of apple-origin R. pomonella versus only 1.2% to 1.9% of R. zephyria eclosed. The distinct differences in eclosion traits of R. pomonella and R. zephyria could be due to greater genetic variation in R. pomonella, associated with its use of a wider range of host plants than R. zephyria.
Collapse
Affiliation(s)
- Wee L Yee
- United States Department of Agriculture-Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA
| | | | - Jeffrey L Feder
- Department of Biological Sciences, Galvin Life Sciences Bldg., University of Notre Dame, Notre Dame, IN
| |
Collapse
|
14
|
Jia TZ, Caudan M, Mamajanov I. Origin of Species before Origin of Life: The Role of Speciation in Chemical Evolution. Life (Basel) 2021; 11:154. [PMID: 33671365 PMCID: PMC7922636 DOI: 10.3390/life11020154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
Speciation, an evolutionary process by which new species form, is ultimately responsible for the incredible biodiversity that we observe on Earth every day. Such biodiversity is one of the critical features which contributes to the survivability of biospheres and modern life. While speciation and biodiversity have been amply studied in organismic evolution and modern life, it has not yet been applied to a great extent to understanding the evolutionary dynamics of primitive life. In particular, one unanswered question is at what point in the history of life did speciation as a phenomenon emerge in the first place. Here, we discuss the mechanisms by which speciation could have occurred before the origins of life in the context of chemical evolution. Specifically, we discuss that primitive compartments formed before the emergence of the last universal common ancestor (LUCA) could have provided a mechanism by which primitive chemical systems underwent speciation. In particular, we introduce a variety of primitive compartment structures, and associated functions, that may have plausibly been present on early Earth, followed by examples of both discriminate and indiscriminate speciation affected by primitive modes of compartmentalization. Finally, we discuss modern technologies, in particular, droplet microfluidics, that can be applied to studying speciation phenomena in the laboratory over short timescales. We hope that this discussion highlights the current areas of need in further studies on primitive speciation phenomena while simultaneously proposing directions as important areas of study to the origins of life.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, WA 98154, USA
| | - Melina Caudan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan;
| |
Collapse
|
15
|
Smolinský R, Baláž V, Nürnberger B. Tadpoles of hybridising fire-bellied toads (B. bombina and B. variegata) differ in their susceptibility to predation. PLoS One 2020; 15:e0231804. [PMID: 33285552 PMCID: PMC7721483 DOI: 10.1371/journal.pone.0231804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
The role of adaptive divergence in the formation of new species has been the subject of much recent debate. The most direct evidence comes from traits that can be shown to have diverged under natural selection and that now contribute to reproductive isolation. Here, we investigate differential adaptation of two fire-bellied toads (Anura, Bombinatoridae) to two types of aquatic habitat. Bombina bombina and B. variegata are two anciently diverged taxa that now reproduce in predator-rich ponds and ephemeral aquatic sites, respectively. Nevertheless, they hybridise extensively wherever their distribution ranges adjoin. We show in laboratory experiments that, as expected, B. variegata tadpoles are at relatively greater risk of predation from dragonfly larvae, even when they display a predator-induced phenotype. These tadpoles spent relatively more time swimming and so prompted more attacks from the visually hunting predators. We argue in the discussion that genomic regions linked to high activity in B. variegata should be barred from introgression into the B. bombina gene pool and thus contribute to gene flow barriers that keep the two taxa from merging into one.
Collapse
Affiliation(s)
- Radovan Smolinský
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Vojtech Baláž
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Beate Nürnberger
- Research Facility Studenec, Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
16
|
Reznick D. The tree and the table: Darwin, Mendeleev and the meaning of 'theory'. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190309. [PMID: 32811366 DOI: 10.1098/rsta.2019.0309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Darwin and Mendeleev revolutionized their respective disciplines by organizing diverse facts into simple, pictorial representations-a tree and a table. Each representation provides a foundation for a scientific theory for two reasons. First, a successful theory unites diverse phenomena under a single explanatory framework. Second, it does so in a way that defines paths for future inquiry that extends its reach and tests its limits. For Mendeleev, this meant creating a table that accommodated the current understanding of the elements but also contained blanks that predicted the discovery of previously unknown elements. More importantly, the structure of the table helped shape future research to define the structure of matter. For Darwin, envisioning life as a tree meant defining the rules that govern the origin of adaptations, species and shape the constantly shifting diversity of life. At the same time, his theory inspired research into the laws of inheritance and created diverse new areas of research, like behaviour, sexual selection and biogeography. The shared property of Darwin and Mendeleev's contributions was to provide a unifying rational explanation for natural phenomena. This article is part of the theme issue 'Mendeleev and the periodic table'.
Collapse
Affiliation(s)
- David Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
17
|
Rosser N, Queste LM, Cama B, Edelman NB, Mann F, Mori Pezo R, Morris J, Segami C, Velado P, Schulz S, Mallet JLB, Dasmahapatra KK. Geographic contrasts between pre- and postzygotic barriers are consistent with reinforcement in Heliconius butterflies. Evolution 2020; 73:1821-1838. [PMID: 31334832 PMCID: PMC6771877 DOI: 10.1111/evo.13804] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022]
Abstract
Identifying the traits causing reproductive isolation and the order in which they evolve is fundamental to understanding speciation. Here, we quantify prezygotic and intrinsic postzygotic isolation among allopatric, parapatric, and sympatric populations of the butterflies Heliconius elevatus and Heliconius pardalinus. Sympatric populations from the Amazon (H. elevatus and H. p. butleri) exhibit strong prezygotic isolation and rarely mate in captivity; however, hybrids are fertile. Allopatric populations from the Amazon (H. p. butleri) and Andes (H. p. sergestus) mate freely when brought together in captivity, but the female F1 hybrids are sterile. Parapatric populations (H. elevatus and H. p. sergestus) exhibit both assortative mating and sterility of female F1s. Assortative mating in sympatric populations is consistent with reinforcement in the face of gene flow, where the driving force, selection against hybrids, is due to disruption of mimicry and other ecological traits rather than hybrid sterility. In contrast, the lack of assortative mating and hybrid sterility observed in allopatric populations suggests that geographic isolation enables the evolution of intrinsic postzygotic reproductive isolation. Our results show how the types of reproductive barriers that evolve between species may depend on geography.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Lucie M Queste
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| | - Bruna Cama
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| | - Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Florian Mann
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Ronald Mori Pezo
- URKU Estudios Amazónicos, Jr. Saposoa 181, Tarapoto, San Martín, Perú
| | - Jake Morris
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| | - Carolina Segami
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18d, 75236, Uppsala, Sweden
| | - Patricia Velado
- Department for Quality Assurance Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354, Freising, Germany
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - James L B Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Kanchon K Dasmahapatra
- Department of Biology, University of York, Wentworth Way, Heslington, YO10 5DD, United Kingdom
| |
Collapse
|
18
|
Meyers PJ, Doellman MM, Ragland GJ, Hood GR, Egan SP, Powell THQ, Nosil P, Feder JL. Can the genomics of ecological speciation be predicted across the divergence continuum from host races to species? A case study in Rhagoletis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190534. [PMID: 32654640 DOI: 10.1098/rstb.2019.0534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Studies assessing the predictability of evolution typically focus on short-term adaptation within populations or the repeatability of change among lineages. A missing consideration in speciation research is to determine whether natural selection predictably transforms standing genetic variation within populations into differences between species. Here, we test whether and how host-related selection on diapause timing associates with genome-wide differentiation during ecological speciation by comparing ancestral hawthorn and newly formed apple-infesting host races of Rhagoletis pomonella to their sibling species Rhagoletis mendax that attacks blueberries. The associations of 57 857 single nucleotide polymorphisms in a diapause genome-wide-association study (GWAS) on the hawthorn race strongly predicted the direction and magnitude of genomic divergence among the three fly populations at a field site in Fennville, MI, USA. The apple race and R. mendax show parallel changes in the frequencies of putative inversions on three chromosomes associated with the earlier fruiting times of apples and blueberries compared to hawthorns. A diapause GWAS on R. mendax revealed compensatory changes throughout the genome accounting for the earlier eclosion of blueberry, but not apple flies. Thus, a degree of predictability, although not complete, exists in the genomics of diapause across the ecological speciation continuum in Rhagoletis. The generality of this result is placed in the context of other similar systems. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Peter J Meyers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gregory J Ragland
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Scott P Egan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Department Biological Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.,Centre d'Ecologie Fonctionnelle and Evolutive, Centre National de la Recherche Scientifique, Montpellier 34293, France
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN 46556, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
19
|
Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol Ecol 2020; 29:2535-2549. [PMID: 32246540 DOI: 10.1111/mec.15428] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Both models and case studies suggest that chromosomal inversions can facilitate adaptation and speciation in the presence of gene flow by suppressing recombination between locally adapted alleles. Until recently, however, it has been laborious and time-consuming to identify and genotype inversions in natural populations. Here we apply RAD sequencing data and newly developed population genomic approaches to identify putative inversions that differentiate a sand dune ecotype of the prairie sunflower (Helianthus petiolaris) from populations found on the adjacent sand sheet. We detected seven large genomic regions that exhibit a different population structure than the rest of the genome and that vary in frequency between dune and nondune populations. These regions also show high linkage disequilibrium and high heterozygosity between, but not within, arrangements, consistent with the behaviour of large inversions, an inference subsequently validated in part by comparative genetic mapping. Genome-environment association analyses show that key environmental variables, including vegetation cover and soil nitrogen, are significantly associated with inversions. The inversions colocate with previously described "islands of differentiation," and appear to play an important role in adaptive divergence and incipient speciation within H. petiolaris.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Rose L Andrew
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, Duke University, Durham, NC, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Huang K, Rieseberg LH. Frequency, Origins, and Evolutionary Role of Chromosomal Inversions in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:296. [PMID: 32256515 DOI: 10.3389/fpls.2020.00296/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 05/24/2023]
Abstract
Chromosomal inversions have the potential to play an important role in evolution by reducing recombination between favorable combinations of alleles. Until recently, however, most evidence for their likely importance derived from dipteran flies, whose giant larval salivary chromosomes aided early cytogenetic studies. The widespread application of new genomic technologies has revealed that inversions are ubiquitous across much of the plant and animal kingdoms. Here we review the rapidly accumulating literature on inversions in the plant kingdom and discuss what we have learned about their establishment and likely evolutionary role. We show that inversions are prevalent across a wide range of plant groups. We find that inversions are often associated with locally favored traits, as well as with traits that contribute to assortative mating, suggesting that they may be key to adaptation and speciation in the face of gene flow. We also discuss the role of inversions in sex chromosome formation, and explore possible parallels with inversion establishment on autosomes. The identification of inversion origins, as well as the causal variants within them, will advance our understanding of chromosomal evolution in plants.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Huang K, Rieseberg LH. Frequency, Origins, and Evolutionary Role of Chromosomal Inversions in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:296. [PMID: 32256515 PMCID: PMC7093584 DOI: 10.3389/fpls.2020.00296] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/27/2020] [Indexed: 05/11/2023]
Abstract
Chromosomal inversions have the potential to play an important role in evolution by reducing recombination between favorable combinations of alleles. Until recently, however, most evidence for their likely importance derived from dipteran flies, whose giant larval salivary chromosomes aided early cytogenetic studies. The widespread application of new genomic technologies has revealed that inversions are ubiquitous across much of the plant and animal kingdoms. Here we review the rapidly accumulating literature on inversions in the plant kingdom and discuss what we have learned about their establishment and likely evolutionary role. We show that inversions are prevalent across a wide range of plant groups. We find that inversions are often associated with locally favored traits, as well as with traits that contribute to assortative mating, suggesting that they may be key to adaptation and speciation in the face of gene flow. We also discuss the role of inversions in sex chromosome formation, and explore possible parallels with inversion establishment on autosomes. The identification of inversion origins, as well as the causal variants within them, will advance our understanding of chromosomal evolution in plants.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Figgener C, Bernardo J, Plotkin PT. Beyond trophic morphology: stable isotopes reveal ubiquitous versatility in marine turtle trophic ecology. Biol Rev Camb Philos Soc 2019; 94:1947-1973. [PMID: 31338959 PMCID: PMC6899600 DOI: 10.1111/brv.12543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/30/2022]
Abstract
The idea that interspecific variation in trophic morphology among closely related species effectively permits resource partitioning has driven research on ecological radiation since Darwin first described variation in beak morphology among Geospiza. Marine turtles comprise an ecological radiation in which interspecific differences in trophic morphology have similarly been implicated as a pathway to ecopartition the marine realm, in both extant and extinct species. Because marine turtles are charismatic flagship species of conservation concern, their trophic ecology has been studied intensively using stable isotope analyses to gain insights into habitat use and diet, principally to inform conservation management. This legion of studies provides an unparalleled opportunity to examine ecological partitioning across numerous hierarchical levels that heretofore has not been applied to any other ecological radiation. Our contribution aims to provide a quantitative analysis of interspecific variation and a comprehensive review of intraspecific variation in trophic ecology across different hierarchical levels marshalling insights about realised trophic ecology derived from stable isotopes. We reviewed 113 stable isotope studies, mostly involving single species, and conducted a meta-analysis of data from adults to elucidate differences in trophic ecology among species. Our study reveals a more intricate hierarchy of ecopartitioning by marine turtles than previously recognised based on trophic morphology and dietary analyses. We found strong statistical support for interspecific partitioning, as well as a continuum of intraspecific trophic sub-specialisation in most species across several hierarchical levels. This ubiquity of trophic specialisation across many hierarchical levels exposes a far more complex view of trophic ecology and resource-axis exploitation than suggested by species diversity alone. Not only do species segregate along many widely understood axes such as body size, macrohabitat, and trophic morphology but the general pattern revealed by isotopic studies is one of microhabitat segregation and variation in foraging behaviour within species, within populations, and among individuals. These findings are highly relevant to conservation management because they imply ecological non-exchangeability, which introduces a new dimension beyond that of genetic stocks which drives current conservation planning. Perhaps the most remarkable finding from our data synthesis is that four of six marine turtle species forage across several trophic levels. This pattern is unlike that seen in other large marine predators, which forage at a single trophic level according to stable isotopes. This finding affirms suggestions that marine turtles are robust sentinels of ocean health and likely stabilise marine food webs. This insight has broader significance for studies of marine food webs and trophic ecology of large marine predators. Beyond insights concerning marine turtle ecology and conservation, our findings also have broader implications for the study of ecological radiations. Particularly, the unrecognised complexity of ecopartitioning beyond that predicted by trophic morphology suggests that this dominant approach in adaptive radiation research likely underestimates the degree of resource overlap and that interspecific disparities in trophic morphology may often over-predict the degree of realised ecopartitioning. Hence, our findings suggest that stable isotopes can profitably be applied to study other ecological radiations and may reveal trophic variation beyond that reflected by trophic morphology.
Collapse
Affiliation(s)
- Christine Figgener
- Marine Biology Interdisciplinary ProgramTexas A&M University3258 TAMU, College StationTX77843U.S.A.
- Department of BiologyTexas A&M University3258 TAMU, College StationTX77843U.S.A.
- Department of OceanographyTexas A&M University3146 TAMU, College StationTX77843U.S.A.
| | - Joseph Bernardo
- Marine Biology Interdisciplinary ProgramTexas A&M University3258 TAMU, College StationTX77843U.S.A.
- Department of BiologyTexas A&M University3258 TAMU, College StationTX77843U.S.A.
- Program in Ecology and Evolutionary BiologyTexas A&M University2475 TAMU, College StationTX77843U.S.A.
| | - Pamela T. Plotkin
- Marine Biology Interdisciplinary ProgramTexas A&M University3258 TAMU, College StationTX77843U.S.A.
- Department of OceanographyTexas A&M University3146 TAMU, College StationTX77843U.S.A.
- Texas Sea Grant, Texas A&M University4115 TAMU, College StationTX77843U.S.A.
| |
Collapse
|
23
|
Hood GR, Powell THQ, Doellman MM, Sim SB, Glover M, Yee WL, Goughnour RB, Mattsson M, Schwarz D, Feder JL. Rapid and repeatable host plant shifts drive reproductive isolation following a recent human-mediated introduction of the apple maggot fly, Rhagoletis pomonella. Evolution 2019; 74:156-168. [PMID: 31729753 DOI: 10.1111/evo.13882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 01/26/2023]
Abstract
Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this "natural experiment" to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.
Collapse
Affiliation(s)
- Glen R Hood
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, 48202
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University, Binghamton, New York, 13902
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii, 96720
| | - Mary Glover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556
| | - Wee L Yee
- USDA-ARS Yakima Agricultural Research Laboratory, Wapato, Washington, 98951
| | | | - Monte Mattsson
- Environmental Services, City of Portland, Portland, Oregon, 97204
| | - Dietmar Schwarz
- Department of Biology, Western Washington University, Bellingham, Washington, 98225
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, 46556.,Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, Indiana, 46556.,Environmental Change Initiative, University of Notre Dame, Notre Dame, Indiana, 46556
| |
Collapse
|
24
|
Bakovic V, Schuler H, Schebeck M, Feder JL, Stauffer C, Ragland GJ. Host plant-related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi. Mol Ecol 2019; 28:4648-4666. [PMID: 31495015 PMCID: PMC6899720 DOI: 10.1111/mec.15239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Elucidating the mechanisms and conditions facilitating the formation of biodiversity are central topics in evolutionary biology. A growing number of studies imply that divergent ecological selection may often play a critical role in speciation by counteracting the homogenising effects of gene flow. Several examples involve phytophagous insects, where divergent selection pressures associated with host plant shifts may generate reproductive isolation, promoting speciation. Here, we use ddRADseq to assess the population structure and to test for host‐related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi (L., 1758) (Diptera: Tephritidae). This tephritid is distributed throughout Europe and western Asia, and has adapted to two different genera of host plants, Prunus spp. (cherries) and Lonicera spp. (honeysuckle). Our data imply that geographic distance and geomorphic barriers serve as the primary factors shaping genetic population structure across the species range. Locally, however, flies genetically cluster according to host plant, with consistent allele frequency differences displayed by a subset of loci between Prunus and Lonicera flies across four sites surveyed in Germany and Norway. These 17 loci display significantly higher FST values between host plants than others. They also showed high levels of linkage disequilibrium within and between Prunus and Lonicera flies, supporting host‐related selection and reduced gene flow. Our findings support the existence of sympatric host races in R. cerasi embedded within broader patterns of geographic variation in the fly, similar to the related apple maggot, Rhagoletis pomonella, in North America.
Collapse
Affiliation(s)
- Vid Bakovic
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Department of Biology, IFM, University of Linköping, Linköping, Sweden
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Martin Schebeck
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Christian Stauffer
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO, USA
| |
Collapse
|
25
|
Hora KH, Marec F, Roessingh P, Menken SBJ. Limited intrinsic postzygotic reproductive isolation despite chromosomal rearrangements between closely related sympatric species of small ermine moths (Lepidoptera: Yponomeutidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
In evolutionarily young species and sympatric host races of phytophagous insects, postzygotic incompatibility is often not yet fully developed, but reduced fitness of hybrids is thought to facilitate further divergence. However, empirical evidence supporting this hypothesis is limited. To assess the role of reduced hybrid fitness, we studied meiosis and fertility in hybrids of two closely related small ermine moths, Yponomeuta padella and Yponomeuta cagnagella, and determined the extent of intrinsic postzygotic reproductive isolation. We found extensive rearrangements between the karyotypes of the two species and irregularities in meiotic chromosome pairing in their hybrids. The fertility of reciprocal F1 and, surprisingly, also of backcrosses with both parental species was not significantly decreased compared with intraspecific offspring. The results indicate that intrinsic postzygotic reproductive isolation between these closely related species is limited. We conclude that the observed chromosomal rearrangements are probably not the result of an accumulation of postzygotic incompatibilities preventing hybridization. Alternative explanations, such as adaptation to new host plants, are discussed.
Collapse
Affiliation(s)
- Katerina H Hora
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Peter Roessingh
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Steph B J Menken
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Doellman MM, Egan SP, Ragland GJ, Meyers PJ, Hood GR, Powell THQ, Lazorchak P, Hahn DA, Berlocher SH, Nosil P, Feder JL. Standing geographic variation in eclosion time and the genomics of host race formation in Rhagoletis pomonella fruit flies. Ecol Evol 2019; 9:393-409. [PMID: 30680122 PMCID: PMC6342182 DOI: 10.1002/ece3.4758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host-related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)-infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430-km transect, where the host races co-occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion-associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.
Collapse
Affiliation(s)
| | - Scott P. Egan
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Advanced Diagnostics and Therapeutics InitiativeUniversity of Notre DameNotre DameIndiana
- Department of BiosciencesRice UniversityHoustonTexas
| | - Gregory J. Ragland
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Environmental Change InitiativeUniversity of Notre DameNotre DameIndiana
- Department of Integrative BiologyUniversity of Colorado–DenverDenverColorado
| | - Peter J. Meyers
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
| | - Glen R. Hood
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Biological SciencesWayne State UniversityDetroitMichigan
| | - Thomas H. Q. Powell
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Biological SciencesState University of New York–BinghamtonBinghamtonNew York
| | - Peter Lazorchak
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Department of Computer ScienceJohns Hopkins UniversityBaltimoreMaryland
| | - Daniel A. Hahn
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFlorida
| | - Stewart H. Berlocher
- Department of EntomologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Patrik Nosil
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Jeffrey L. Feder
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana
- Advanced Diagnostics and Therapeutics InitiativeUniversity of Notre DameNotre DameIndiana
- Environmental Change InitiativeUniversity of Notre DameNotre DameIndiana
| |
Collapse
|
27
|
Reznick DN, Losos J, Travis J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett 2018; 22:233-244. [PMID: 30478871 DOI: 10.1111/ele.13189] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Experimental studies of evolution performed in nature and the associated demonstration of rapid evolution, observable on a time scale of months to years, were an acclaimed novelty in the 1980-1990s. Contemporary evolution is now considered ordinary and is an integrated feature of many areas of research. This shift from extraordinary to ordinary reflects a change in the perception of evolution. It was formerly thought of as a historical process, perceived through the footprints left in the fossil record or living organisms. It is now seen as a contemporary process that acts in real time. Here we review how this shift occurred and its consequences for fields as diverse as wildlife management, conservation biology, and ecosystems ecology. Incorporating contemporary evolution in these fields has caused old questions to be recast, changed the answers, caused new and previously inconceivable questions to be addressed, and inspired the development of new subdisciplines. We argue further that the potential of contemporary evolution has yet to be fulfilled. Incorporating evolutionary dynamics in any research program can provide a better assessment of how and why organisms and communities came to be as they are than is attainable without an explicit treatment of these dynamics.
Collapse
Affiliation(s)
- David N Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521
| | - Jonathan Losos
- Department of Biology, Washington University, St. Louis, MO, 63130
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4340
| |
Collapse
|
28
|
Cardoso DC, Heinze J, Moura MN, Cristiano MP. Chromosomal variation among populations of a fungus-farming ant: implications for karyotype evolution and potential restriction to gene flow. BMC Evol Biol 2018; 18:146. [PMID: 30241462 PMCID: PMC6150965 DOI: 10.1186/s12862-018-1247-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2023] Open
Abstract
Background Intraspecific variation in chromosome structure may cause genetic incompatibilities and thus provides the first step in the formation of species. In ants, chromosome number varies tremendously from 2n = 2 to 2n = 120, and several studies have revealed considerable variation in karyotype within species. However, most previous studies were limited to the description of chromosome number and morphology, and more detailed karyomorphometric analyses may reveal additional, substantial variation. Here, we studied karyotype length, genome size, and phylogeography of five populations of the fungus-farming ant Trachymyrmex holmgreni in order to detect potential barriers to gene flow. Results Chromosome number and morphology did not vary among the five populations, but karyotype length and genome size were significantly higher in the southernmost populations than in the northern populations of this ant. Individuals or colonies with different karyotype lengths were not observed. Karyotype length variation appears to result from variation in centromere length. Conclusion T. holmgreni shows considerable variation in karyotype length and might provide a second example of centromere drive in ants, similar to what has previously been observed in Solenopsis fire ants. Whether this variation leads to genetic incompatibilities between the different populations remains to be studied. Electronic supplementary material The online version of this article (10.1186/s12862-018-1247-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danon Clemes Cardoso
- Departamento de Biodiversidade, Evolução e Meio Ambiente/ICEB, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, Universität Regensburg, Universitätstrasse 31, D-93040, Regensburg, Germany.
| | - Mariana Neves Moura
- Programa de Pós-graduação em Ecologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Maykon Passos Cristiano
- Departamento de Biodiversidade, Evolução e Meio Ambiente/ICEB, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
29
|
Nosil P, Soria-Carrasco V, Feder JL, Flaxman SM, Gompert Z. Local and system-wide adaptation is influenced by population connectivity. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Coughlan JM, Willis JH. Dissecting the role of a large chromosomal inversion in life history divergence throughout the Mimulus guttatus species complex. Mol Ecol 2018; 28:1343-1357. [PMID: 30028906 DOI: 10.1111/mec.14804] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Chromosomal inversions can play an important role in adaptation, but the mechanism of their action in many natural populations remains unclear. An inversion could suppress recombination between locally beneficial alleles, thereby preventing maladaptive reshuffling with less-fit, migrant alleles. The recombination suppression hypothesis has gained much theoretical support but empirical tests are lacking. Here, we evaluated the evolutionary history and phenotypic effects of a chromosomal inversion which differentiates annual and perennial forms of Mimulus guttatus. We found that perennials likely possess the derived orientation of the inversion. In addition, this perennial orientation occurs in a second perennial species, M. decorus, where it is strongly associated with life history differences between co-occurring M. decorus and annual M. guttatus. One prediction of the recombination suppression hypothesis is that loci contributing to local adaptation will predate the inversion. To test whether the loci influencing perenniality pre-date this inversion, we mapped QTLs for life history traits that differ between annual M. guttatus and a more distantly related, collinear perennial species, M. tilingii. Consistent with the recombination suppression hypothesis, we found that this region is associated with life history in the absence of the inversion, and this association can be broken into at least two QTLs. However, the absolute phenotypic effect of the LG8 inversion region on life history is weaker in M. tilingii than in perennials which possess the inversion. Thus, while we find support for the recombination suppression hypothesis, the contribution of this inversion to life history divergence in this group is likely complex.
Collapse
Affiliation(s)
| | - John H Willis
- Biology Department, Duke University, Durham, North Carolina
| |
Collapse
|
31
|
Genomic Differentiation during Speciation-with-Gene-Flow: Comparing Geographic and Host-Related Variation in Divergent Life History Adaptation in Rhagoletis pomonella. Genes (Basel) 2018; 9:genes9050262. [PMID: 29783692 PMCID: PMC5977202 DOI: 10.3390/genes9050262] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
A major goal of evolutionary biology is to understand how variation within populations gets partitioned into differences between reproductively isolated species. Here, we examine the degree to which diapause life history timing, a critical adaptation promoting population divergence, explains geographic and host-related genetic variation in ancestral hawthorn and recently derived apple-infesting races of Rhagoletis pomonella. Our strategy involved combining experiments on two different aspects of diapause (initial diapause intensity and adult eclosion time) with a geographic survey of genomic variation across four sites where apple and hawthorn flies co-occur from north to south in the Midwestern USA. The results demonstrated that the majority of the genome showing significant geographic and host-related variation can be accounted for by initial diapause intensity and eclosion time. Local genomic differences between sympatric apple and hawthorn flies were subsumed within broader geographic clines; allele frequency differences within the races across the Midwest were two to three-fold greater than those between the races in sympatry. As a result, sympatric apple and hawthorn populations displayed more limited genomic clustering compared to geographic populations within the races. The findings suggest that with reduced gene flow and increased selection on diapause equivalent to that seen between geographic sites, the host races may be recognized as different genotypic entities in sympatry, and perhaps species, a hypothesis requiring future genomic analysis of related sibling species to R. pomonella to test. Our findings concerning the way selection and geography interplay could be of broad significance for many cases of earlier stages of divergence-with-gene flow, including (1) where only modest increases in geographic isolation and the strength of selection may greatly impact genetic coupling and (2) the dynamics of how spatial and temporal standing variation is extracted by selection to generate differences between new and discrete units of biodiversity.
Collapse
|
32
|
Sharbrough J, Havird JC, Noe GR, Warren JM, Sloan DB. The Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes. Genome Biol Evol 2018; 9:1567-1581. [PMID: 28854627 PMCID: PMC5509035 DOI: 10.1093/gbe/evx114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Some human populations interbred with Neanderthals and Denisovans, resulting in substantial contributions to modern-human genomes. Therefore, it is now possible to use genomic data to investigate mechanisms that shaped historical gene flow between humans and our closest hominin relatives. More generally, in eukaryotes, mitonuclear interactions have been argued to play a disproportionate role in generating reproductive isolation. There is no evidence of mtDNA introgression into modern human populations, which means that all introgressed nuclear alleles from archaic hominins must function on a modern-human mitochondrial background. Therefore, mitonuclear interactions are also potentially relevant to hominin evolution. We performed a detailed accounting of mtDNA divergence among hominin lineages and used population-genomic data to test the hypothesis that mitonuclear incompatibilities have preferentially restricted the introgression of nuclear genes with mitochondrial functions. We found a small but significant underrepresentation of introgressed Neanderthal alleles at such nuclear loci. Structural analyses of mitochondrial enzyme complexes revealed that these effects are unlikely to be mediated by physically interacting sites in mitochondrial and nuclear gene products. We did not detect any underrepresentation of introgressed Denisovan alleles at mitochondrial-targeted loci, but this may reflect reduced power because locus-specific estimates of Denisovan introgression are more conservative. Overall, we conclude that genes involved in mitochondrial function may have been subject to distinct selection pressures during the history of introgression from archaic hominins but that mitonuclear incompatibilities have had, at most, a small role in shaping genome-wide introgression patterns, perhaps because of limited functional divergence in mtDNA and interacting nuclear genes.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Gregory R Noe
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
33
|
Nadeau NJ, Kawakami T. Population Genomics of Speciation and Admixture. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Ragland GJ, Doellman MM, Meyers PJ, Hood GR, Egan SP, Powell THQ, Hahn DA, Nosil P, Feder JL. A test of genomic modularity among life-history adaptations promoting speciation with gene flow. Mol Ecol 2017; 26:3926-3942. [DOI: 10.1111/mec.14178] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Gregory J. Ragland
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Environmental Change Initiative; University of Notre Dame; Notre Dame IN USA
- Department of Integrative Biology; University of Colorado - Denver; Denver CO USA
| | | | - Peter J. Meyers
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
| | - Glen R. Hood
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Department of Biosciences; Rice University; Houston TX USA
| | - Scott P. Egan
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Department of Biosciences; Rice University; Houston TX USA
- Advanced Diagnostics and Therapeutics Initiative; University of Notre Dame; Notre Dame IN USA
| | - Thomas H. Q. Powell
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Department of Entomology and Nematology; University of Florida; Gainesville FL USA
- Department of Biological Sciences; State University of New York - Binghamton; Binghamton NY USA
| | - Daniel A. Hahn
- Department of Entomology and Nematology; University of Florida; Gainesville FL USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - Jeffrey L. Feder
- Department of Biological Sciences; University of Notre Dame; Notre Dame IN USA
- Environmental Change Initiative; University of Notre Dame; Notre Dame IN USA
- Advanced Diagnostics and Therapeutics Initiative; University of Notre Dame; Notre Dame IN USA
| |
Collapse
|
35
|
Wellenreuther M, Rosenquist H, Jaksons P, Larson KW. Local adaptation along an environmental cline in a species with an inversion polymorphism. J Evol Biol 2017; 30:1068-1077. [DOI: 10.1111/jeb.13064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/28/2022]
Affiliation(s)
- M. Wellenreuther
- Molecular Ecology; Microbial Ecology and Evolutionary Genetics; Biology Department; Lund University; Lund Sweden
- The New Zealand Institute for Plant & Food Research Ltd; Auckland New Zealand
| | - H. Rosenquist
- Molecular Ecology; Microbial Ecology and Evolutionary Genetics; Biology Department; Lund University; Lund Sweden
| | - P. Jaksons
- The New Zealand Institute for Plant & Food Research Ltd; Auckland New Zealand
| | - K. W. Larson
- Department of Ecology and Environmental Sciences; Climate Impacts Research Centre; Umeå University; Umeå Sweden
| |
Collapse
|
36
|
Taylor RS, Friesen VL. The role of allochrony in speciation. Mol Ecol 2017; 26:3330-3342. [DOI: 10.1111/mec.14126] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022]
|
37
|
Holliday JA, Aitken SN, Cooke JEK, Fady B, González-Martínez SC, Heuertz M, Jaramillo-Correa JP, Lexer C, Staton M, Whetten RW, Plomion C. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding. Mol Ecol 2017; 26:706-717. [PMID: 27997049 DOI: 10.1111/mec.13963] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022]
Abstract
Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.
Collapse
Affiliation(s)
- Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Tech, 304 Cheatham Hall, Blacksburg, VA 24061, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, 5-108 Centennial Centre for Interdisciplinary Science, Edmonton, AB T6G2E9, Canada
| | - Bruno Fady
- Mediterranean Forest Ecology (URFM), Institut National de la Recherche Agronomique (INRA), Domaine St Paul, Site Agroparc, 84914 Avignon, France
| | | | - Myriam Heuertz
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Juan-Pablo Jaramillo-Correa
- Institute of Ecology, Universidad Nacional Autonoma de Mexico (UNAM) Circuito Exterior s/n, Apartado Postal 70-275, 04510 Ciudad de México, Mexico City, Mexico
| | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna Faculty of Life SciencesRennweg 14, Room 217, A-1030, Vienna, Austria
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 EJ Chapman Drive, Knoxville, TN 37996, USA
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University Jordan Hall Addition 5231, Raleigh, NC 27695, USA
| | - Christophe Plomion
- BIOGECO, INRA, Universite de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| |
Collapse
|
38
|
Puzey JR, Willis JH, Kelly JK. Population structure and local selection yield high genomic variation in Mimulus guttatus. Mol Ecol 2017; 26:519-535. [PMID: 27859786 PMCID: PMC5274581 DOI: 10.1111/mec.13922] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Abstract
Across western North America, Mimulus guttatus exists as many local populations adapted to site-specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole-genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree-based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.
Collapse
Affiliation(s)
- Joshua R. Puzey
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23187
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - John H. Willis
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - John K. Kelly
- Department of Ecology and Evolution, University of Kansas, Lawrence, Kansas, 27708
| |
Collapse
|
39
|
Rull J, Tadeo E, Lasa R, Aluja M. The effect of winter length on survival and duration of dormancy of four sympatric species of Rhagoletis exploiting plants with different fruiting phenology. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:818-826. [PMID: 27650278 DOI: 10.1017/s0007485316000717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dormancy has been thoroughly studied for several species of economic importance in the genus Rhagoletis in temperate areas of North America and Europe. Much less is known on life history regulation for species inhabiting high-elevation areas in the subtropics at the southern extreme of their geographical range. Host plant phenology has been found to play a key role in generating allochronic isolation among sibling species and host races of Rhagoletis in the course of sympatric speciation, and has important implications for pest management. We compare the effect of winter length on survival to adult eclosion and dormancy duration among four species of Rhagoletis (three of them sympatric) exploiting hosts with different fruiting phenology in subtropical isolated highlands. Survival and duration of dormancy was found to be different among the four species. At 24°C, a very small proportion (<1%) of R. pomonella, R. turpiniae and R. zoqui completed development without becoming dormant, while in the case of R. solanophaga the majority of the population emerged after development within 40 days of pupation. Also, a large proportion of braconid parasitoids infesting Rhagoletis eggs and larvae emerged as adults without becoming dormant. Greatest survival after artificial winter was obtained for R. pomonella (50-60%) and R. zoqui (30%) after only four weeks at 5°C (a third of the time reported for studies on northern R. pomonella), while R. turpiniae, under identical environmental conditions experienced low adult emergence, and highest survival (11%) was recorded for flies exposed to 5°C during 10 and 12 weeks. For R. pomonella, there was a strong positive relationship between winter length and time to post-winter adult eclosion that was not observed for R. zoqui. In sum, for R. pomonella, mild winters in highland subtropical areas appear to select for flies better able to withstand longer periods of warm temperature before winter than flies exploiting late fruiting hosts and inhabiting northern latitudes. In the case of R. turpiniae and R. zoqui environmental cues such as fluctuations in humidity and/or different temperature thresholds (5°C) may play a more important role than winter length in life history regulation. Continuous host availability for R. solanophaga appears to have selected for non-diapausing flies. From an applied perspective our results are useful for handling flies in the laboratory to conduct research and suggest that non-diapausing strains of flies and parasitoids may be selected for SIT and innundative biological control programs.
Collapse
Affiliation(s)
- J Rull
- PROIMI Biotecnología-CONICET, LIEMEN-División Control Biológico de Plagas,Av. Belgrano y Pje. Caseros, T4001MVB San Miguel de Tucumán, Tucumán,Argentina
| | - E Tadeo
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología,A.C., Xalapa, Veracruz 91070,México
| | - R Lasa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología,A.C., Xalapa, Veracruz 91070,México
| | - M Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología,A.C., Xalapa, Veracruz 91070,México
| |
Collapse
|
40
|
Gompert Z, Egan SP, Barrett RDH, Feder JL, Nosil P. Multilocus approaches for the measurement of selection on correlated genetic loci. Mol Ecol 2016; 26:365-382. [DOI: 10.1111/mec.13867] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023]
Affiliation(s)
| | - Scott P. Egan
- Department of BioSciences Rice University Houston TX 77005 USA
| | | | - Jeffrey L. Feder
- Department of Biological Science University of Notre Dame South Bend IN 46556 USA
| | - Patrik Nosil
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN UK
| |
Collapse
|
41
|
Hernández-Roldán JL, Dapporto L, Dincă V, Vicente JC, Hornett EA, Šíchová J, Lukhtanov VA, Talavera G, Vila R. Integrative analyses unveil speciation linked to host plant shift inSpialiabutterflies. Mol Ecol 2016; 25:4267-84. [DOI: 10.1111/mec.13756] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 06/25/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Juan L. Hernández-Roldán
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Departamento de Biología (Zoología); Facultad de Ciencias de la Universidad Autónoma de Madrid; C/ Darwin 2 E-28049 Madrid Spain
| | - Leonardo Dapporto
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Biology; University of Florence; Via Madonna del Piano 6 50019 Sesto Fiorentino FI Italy
| | - Vlad Dincă
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Biodiversity Institute of Ontario; University of Guelph; Guelph Ontario Canada N1G 2W1
| | | | - Emily A. Hornett
- Department of Zoology; University of Cambridge; Cambridge CB2 3EJ UK
| | - Jindra Šíchová
- Institute of Entomology; Biology Centre ASCR; 370 05 České Budějovice Czech Republic
| | - Vladimir A. Lukhtanov
- Department of Karyosystematics; Zoological Institute of Russian Academy of Sciences; Universitetskaya nab. 1 199034 St. Petersburg Russia
- Department of Entomology; St. Petersburg State University; Universitetskaya nab. 7/9 199034 St. Petersburg Russia
| | - Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology; Harvard University; Cambridge MA 02138 USA
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra); Passeig Marítim de la Barceloneta 37 E-08003 Barcelona Spain
| |
Collapse
|
42
|
Brennan AC, Hiscock SJ, Abbott RJ. Genomic architecture of phenotypic divergence between two hybridizing plant species along an elevational gradient. AOB PLANTS 2016; 8:plw022. [PMID: 27083198 PMCID: PMC4887755 DOI: 10.1093/aobpla/plw022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/19/2016] [Indexed: 05/03/2023]
Abstract
Knowledge of the genetic basis of phenotypic divergence between species and how such divergence is caused and maintained is crucial to an understanding of speciation and the generation of biodiversity. The hybrid zone between Senecio aethnensis and S. chrysanthemifolius on Mount Etna, Sicily, provides a well-studied example of species divergence in response to conditions at different elevations, despite hybridization and gene flow. Here, we investigate the genetic architecture of divergence between these two species using a combination of quantitative trait locus (QTL) mapping and genetic differentiation measures based on genetic marker analysis. A QTL architecture characterized by physical QTL clustering, epistatic interactions between QTLs, and pleiotropy was identified, and is consistent with the presence of divergent QTL complexes resistant to gene flow. A role for divergent selection between species was indicated by significant negative associations between levels of interspecific genetic differentiation at mapped marker gene loci and map distance from QTLs and hybrid incompatibility loci. Within-species selection contributing to interspecific differentiation was evidenced by negative associations between interspecific genetic differentiation and genetic diversity within species. These results show that the two Senecio species, while subject to gene flow, maintain divergent genomic regions consistent with local selection within species and selection against hybrids between species which, in turn, contribute to the maintenance of their distinct phenotypic differences.
Collapse
Affiliation(s)
- Adrian C Brennan
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio s/n, 41092 Sevilla, Spain Present address: School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, Harold Mitchell Building, St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
43
|
Dagilis AJ, Kirkpatrick M. Prezygotic isolation, mating preferences, and the evolution of chromosomal inversions. Evolution 2016; 70:1465-72. [PMID: 27174252 DOI: 10.1111/evo.12954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
Chromosomal inversions are frequently implicated in isolating species. Models have shown how inversions can evolve in the context of postmating isolation. Inversions are also frequently associated with mating preferences, a topic that has not been studied theoretically. Here, we show how inversions can spread by capturing a mating preference locus and one or more loci involved with epistatic incompatibilities. Inversions can be established under broad conditions ranging from near panmixis to nearly complete speciation. These results provide a hypothesis to explain the growing number of examples of inversions associated with premating isolating mechanisms.
Collapse
Affiliation(s)
- Andrius J Dagilis
- Department of Integrative Biology, University of Texas, Austin, Texas, 78712.
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, Texas, 78712
| |
Collapse
|
44
|
Lee YW, Fishman L, Kelly JK, Willis JH. A Segregating Inversion Generates Fitness Variation in Yellow Monkeyflower (Mimulus guttatus). Genetics 2016; 202:1473-84. [PMID: 26868767 PMCID: PMC4905537 DOI: 10.1534/genetics.115.183566] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Polymorphic chromosomal rearrangements can bind hundreds of genes into single genetic loci with diverse effects. Rearrangements are often associated with local adaptation and speciation and may also be an important component of genetic variation within populations. We genetically and phenotypically characterize a segregating inversion (inv6) in the Iron Mountain (IM) population of Mimulus guttatus (yellow monkeyflower). We initially mapped inv6 as a region of recombination suppression in three F2 populations resulting from crosses among IM plants. In each case, the F1 parent was heterozygous for a derived haplotype, homogenous across markers spanning over 5 Mb of chromsome 6. In the three F2 populations, inv6 reduced male and female fitness components. In addition,i nv6 carriers suffered an ∼30% loss of pollen viability in the field. Despite these costs, inv6 exists at moderate frequency (∼8%) in the natural population, suggesting counterbalancing fitness benefits that maintain the polymorphism. Across 4 years of monitoring in the field, inv6 had an overall significant positive effect on seed production (lifetime female fitness) of carriers. This benefit was particularly strong in harsh years and may be mediated (in part) by strong positive effects on flower production. These data suggest that opposing fitness effects maintain an intermediate frequency, and as a consequence, inv6 generates inbreeding depression and high genetic variance. We discuss these findings in relation to the theory of inbreeding depression and the maintenance of fitness variation.
Collapse
Affiliation(s)
- Young Wha Lee
- Biology Department, Duke University, Durham, North Carolina 27708
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - John K Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - John H Willis
- Biology Department, Duke University, Durham, North Carolina 27708
| |
Collapse
|
45
|
Naseeb S, Carter Z, Minnis D, Donaldson I, Zeef L, Delneri D. Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering. Mol Biol Evol 2016; 33:1679-96. [PMID: 26929245 PMCID: PMC4915352 DOI: 10.1093/molbev/msw045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
Collapse
Affiliation(s)
- Samina Naseeb
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Zorana Carter
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David Minnis
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ian Donaldson
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Leo Zeef
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Computational and Evolutionary Biology Research Theme, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Arcella T, Hood GR, Powell THQ, Sim SB, Yee WL, Schwarz D, Egan SP, Goughnour RB, Smith JJ, Feder JL. Hybridization and the spread of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae), in the northwestern United States. Evol Appl 2015; 8:834-46. [PMID: 26366200 PMCID: PMC4561572 DOI: 10.1111/eva.12298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Hybridization may be an important process interjecting variation into insect populations enabling host plant shifts and the origin of new economic pests. Here, we examine whether hybridization between the native snowberry-infesting fruit fly Rhagoletis zephyria (Snow) and the introduced quarantine pest R. pomonella (Walsh) is occurring and may aid the spread of the latter into more arid commercial apple-growing regions of central Washington state, USA. Results for 19 microsatellites implied hybridization occurring at a rate of 1.44% per generation between the species. However, there was no evidence for increased hybridization in central Washington. Allele frequencies for seven microsatellites in R. pomonella were more 'R. zephyria-like' in central Washington, suggesting that genes conferring resistance to desiccation may be adaptively introgressing from R. zephyria. However, in only one case was the putatively introgressing allele from R. zephyria not found in R. pomonella in the eastern USA. Thus, many of the alleles changing in frequency may have been prestanding in the introduced R. pomonella population. The dynamics of hybridization are therefore complex and nuanced for R. pomonella, with various causes and factors, including introgression for a portion, but not all of the genome, potentially contributing to the pest insect's spread.
Collapse
Affiliation(s)
- Tracy Arcella
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Sheina B Sim
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Wee L Yee
- USDA-ARS, Yakima Agricultural Research Laboratory Wapato, WA, USA
| | - Dietmar Schwarz
- Department of Biology, Western Washington University Bellingham, WA, USA
| | - Scott P Egan
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA ; Advanced Diagnostics and Therapeutics, University of Notre Dame Notre Dame, IN, USA
| | | | - James J Smith
- Departments of Entomology & Lyman Briggs College, Michigan State University E. Lansing, MI, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA ; Advanced Diagnostics and Therapeutics, University of Notre Dame Notre Dame, IN, USA ; Environmental Change Initiative, University of Notre Dame Notre Dame, IN, USA
| |
Collapse
|
47
|
Egan SP, Ragland GJ, Assour L, Powell THQ, Hood GR, Emrich S, Nosil P, Feder JL. Experimental evidence of genome-wide impact of ecological selection during early stages of speciation-with-gene-flow. Ecol Lett 2015; 18:817-825. [PMID: 26077935 PMCID: PMC4744793 DOI: 10.1111/ele.12460] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022]
Abstract
Theory predicts that speciation‐with‐gene‐flow is more likely when the consequences of selection for population divergence transitions from mainly direct effects of selection acting on individual genes to a collective property of all selected genes in the genome. Thus, understanding the direct impacts of ecologically based selection, as well as the indirect effects due to correlations among loci, is critical to understanding speciation. Here, we measure the genome‐wide impacts of host‐associated selection between hawthorn and apple host races of Rhagoletis pomonella (Diptera: Tephritidae), a model for contemporary speciation‐with‐gene‐flow. Allele frequency shifts of 32 455 SNPs induced in a selection experiment based on host phenology were genome wide and highly concordant with genetic divergence between co‐occurring apple and hawthorn flies in nature. This striking genome‐wide similarity between experimental and natural populations of R. pomonella underscores the importance of ecological selection at early stages of divergence and calls for further integration of studies of eco‐evolutionary dynamics and genome divergence.
Collapse
Affiliation(s)
- Scott P Egan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Gregory J Ragland
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Entomology, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Lauren Assour
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, USA
| | - Glen R Hood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Scott Emrich
- Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Patrik Nosil
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA.,Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
48
|
Lohse K, Clarke M, Ritchie MG, Etges WJ. Genome-wide tests for introgression between cactophilic Drosophila implicate a role of inversions during speciation. Evolution 2015; 69:1178-90. [PMID: 25824653 PMCID: PMC5029762 DOI: 10.1111/evo.12650] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/17/2015] [Indexed: 12/25/2022]
Abstract
Models of speciation‐with‐gene‐flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Magnus Clarke
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Michael G Ritchie
- School of Biology, University of St. Andrews, St. Andrews KY16 9TH, United Kingdom
| | - William J Etges
- Program in Ecology and Evolutionary Biology, Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701
| |
Collapse
|
49
|
Wadsworth CB, Li X, Dopman EB. A recombination suppressor contributes to ecological speciation in OSTRINIA moths. Heredity (Edinb) 2015; 114:593-600. [PMID: 25626887 DOI: 10.1038/hdy.2014.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023] Open
Abstract
Despite unparalleled access to species' genomes in our post-genomic age, we often lack adequate biological explanations for a major hallmark of the speciation process-genetic divergence. In the presence of gene flow, chromosomal rearrangements such as inversions are thought to promote divergence and facilitate speciation by suppressing recombination. Using a combination of genetic crosses, phenotyping of a trait underlying ecological isolation, and population genetic analysis of wild populations, we set out to determine whether evidence supports a role for recombination suppressors during speciation between the Z and E strains of European corn borer moth (Ostrinia nubilalis). Our results are consistent with the presence of an inversion that has contributed to accumulation of ecologically adaptive alleles and genetic differentiation across roughly 20% of the Ostrinia sex chromosome (~4 Mb). Patterns in Ostrinia suggest that chromosomal divergence may involve two separate phases-one driving its transient origin through local adaptation and one determining its stable persistence through differential introgression. As the evolutionary rate of rearrangements in lepidopteran genomes appears to be one of the fastest among eukaryotes, structural mutations may have had a disproportionate role during adaptive divergence and speciation in Ostrinia and in other moths and butterflies.
Collapse
Affiliation(s)
- C B Wadsworth
- Department of Biology, Tufts University, Medford, MA, USA
| | - X Li
- Department of Biology, Tufts University, Medford, MA, USA
| | - E B Dopman
- Department of Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
50
|
Wadsworth CB, Dopman EB. Transcriptome profiling reveals mechanisms for the evolution of insect seasonality. J Exp Biol 2015; 218:3611-22. [DOI: 10.1242/jeb.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022]
Abstract
Rapid evolutionary change in seasonal timing can facilitate ecological speciation and resilience to climate warming. However, the molecular mechanisms behind shifts in animal seasonality are still unclear. Evolved differences in seasonality occur in the European corn borer moth (Ostrinia nubilalis), in which early summer emergence in E-strain adults and later summer emergence in Z-strain adults is explained by a shift in the length of the termination phase of larval diapause. Here, we sample from the developmental time course of diapause in both strains and use transcriptome sequencing to profile regulatory and amino acid changes associated with timing divergence. Within a previously defined QTL, we nominate 48 candidate genes including several in the insulin signaling and circadian rhythm pathways. Genome-wide transcriptional activity is negligible during the extended Z-strain termination, whereas shorter E-strain termination is characterized by a rapid burst of regulatory changes involved in resumption of the cell cycle, hormone production, and stress response. Although gene expression during diapause termination in Ostrinia is similar to that found previously in flies, nominated genes for shifts in timing are species-specific. Hence, across distant relatives the evolution of insect seasonality appears to involve unique genetic switches that direct organisms into distinct phases of the diapause pathway through wholesale restructuring of conserved gene regulatory networks
Collapse
Affiliation(s)
- Crista B. Wadsworth
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| |
Collapse
|