1
|
Xiao J, Kang X, Li N, Hu J, Wang Y, Si J, Pan Y, Zhang S. The role of the poly(A) binding protein-binding protein MoPbp1 as a regulator of the TOR signaling pathway in growth, autophagy, and pathogenicity of the rice blast fungus. Int J Biol Macromol 2025; 306:141730. [PMID: 40043978 DOI: 10.1016/j.ijbiomac.2025.141730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 05/11/2025]
Abstract
The target of the rapamycin (TOR) signaling pathway is crucial for biological function in plant pathogenic fungi, yet its regulatory mechanisms remain limited. In this study, the biological functions of MoPbp1 were identified and characterized, and the findings indicate that MoPbp1 contributes to hyphal growth, conidiation, appressoria formation, metabolism of glycogen and lipid droplets, responses to stress, and pathogenicity in Magnaporthe oryzae. Further investigation revealed that MoPBP1 acts as a negative regulator of TOR activity and influences autophagy. In addition, transcriptome data revealed that MoPBP1 mainly regulates amino acid metabolism pathways, components of membrane, and oxidation-reduction process. Our results suggest that MoPbp1 is required for autophagy and pathogenicity in M. oryzae. Overall, we first revealed the relationship between Pbp1 and TOR activity in plant pathogenic fungi.
Collapse
Affiliation(s)
- Junlian Xiao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoru Kang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Na Li
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Hu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jianyu Si
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Shulin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
McNamara JT, Zhu J, Wang Y, Li R. Gene dosage adaptations to mtDNA depletion and mitochondrial protein stress in budding yeast. G3 (BETHESDA, MD.) 2024; 14:jkad272. [PMID: 38126114 PMCID: PMC10849340 DOI: 10.1093/g3journal/jkad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Mitochondria contain a local genome (mtDNA) comprising a small number of genes necessary for respiration, mitochondrial transcription and translation, and other vital functions. Various stressors can destabilize mtDNA leading to mtDNA loss. While some cells can survive mtDNA loss, they exhibit various deficiencies. Here, we investigated the impact of proteotoxicity on mitochondrial function by inducing mitochondrial unfolded protein stress in budding yeast. This led to rapid mtDNA loss, but aerobic conditioning imparted transient resistance to mitochondrial protein stress. We present a quantitative model of mtDNA loss in a growing cell population and measure its parameters. To identify genetic adaptations to mtDNA depletion, we performed a genome-wide screen for gene dosage increases that affect the growth of cells lacking mtDNA. The screen revealed a set of dosage suppressors that alleviate the growth impairment in mtDNA-deficient cells. Additionally, we show that these suppressors of mtDNA stress both bolster cell proliferation and prevent mtDNA loss during mitochondrial protein stress.
Collapse
Affiliation(s)
- Joshua T McNamara
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
3
|
van de Poll F, Sutter BM, Acoba MG, Caballero D, Jahangiri S, Yang YS, Lee CD, Tu BP. Pbp1 associates with Puf3 and promotes translation of its target mRNAs involved in mitochondrial biogenesis. PLoS Genet 2023; 19:e1010774. [PMID: 37216416 PMCID: PMC10237644 DOI: 10.1371/journal.pgen.1010774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.
Collapse
Affiliation(s)
- Floortje van de Poll
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle Grace Acoba
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel Caballero
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Samira Jahangiri
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yu-San Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chien-Der Lee
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
4
|
Kumar A, Waingankar TP, D'Silva P. Functional crosstalk between the TIM22 complex and YME1 machinery maintains mitochondrial proteostasis and integrity. J Cell Sci 2023; 136:286750. [PMID: 36601773 DOI: 10.1242/jcs.260060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
TIM22 pathway cargos are essential for sustaining mitochondrial homeostasis as an excess of these proteins leads to proteostatic stress and cell death. Yme1 is an inner membrane metalloprotease that regulates protein quality control with chaperone-like and proteolytic activities. Although the mitochondrial translocase and protease machinery are critical for organelle health, their functional association remains unexplored. The present study unravels a novel genetic connection between the TIM22 complex and YME1 machinery in Saccharomyces cerevisiae that is required for maintaining mitochondrial health. Our genetic analyses indicate that impairment in the TIM22 complex rescues the respiratory growth defects of cells without Yme1. Furthermore, Yme1 is essential for the stability of the TIM22 complex and regulates the proteostasis of TIM22 pathway substrates. Moreover, impairment in the TIM22 complex suppressed the mitochondrial structural and functional defects of Yme1-devoid cells. In summary, excessive levels of TIM22 pathway substrates could be one of the reasons for respiratory growth defects of cells lacking Yme1, and compromising the TIM22 complex can compensate for the imbalance in mitochondrial proteostasis caused by the loss of Yme1.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| | - Tejashree Pradip Waingankar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore 560012, India
| |
Collapse
|
5
|
Park SK, Park S, Liebman SW. TDP-43 Toxicity in Yeast Is Associated with a Reduction in Autophagy, and Deletions of TIP41 and PBP1 Counteract These Effects. Viruses 2022; 14:2264. [PMID: 36298819 PMCID: PMC9607128 DOI: 10.3390/v14102264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
When human TDP-43 is overexpressed in yeast it is toxic and forms cytoplasmic aggregates. The mechanism of this toxicity is unknown. Genetic screens for TDP-43 toxicity modifiers in the yeast system previously identified proteins, including PBP1, that enhance TDP-43 toxicity. The determination in yeast that deletion of PBP1 reduces TDP-43 toxicity while overexpression enhances toxicity, led to the discovery that its human homolog, ATXN2, is associated with ALS risk. Thus, the yeast system has relevance to human disease. We now show that deletion of a new yeast gene, tip41Δ, likewise suppresses TDP-43 toxicity. We also found that TDP-43 overexpression and toxicity is associated with reduced autophagy. This is consistent with findings in other systems that increasing autophagy reduces TDP-43 toxicity and is in contrast to a report of enhanced autophagy when TDP-43 was overexpressed in yeast. Interestingly, we found that deletions of PBP1 and TIP41, which reduced TDP-43 toxicity, eliminated TDP-43's inhibition of autophagy. This suggests that toxicity of TDP-43 expressed in yeast is in part due to its inhibition of autophagy and that deletions of PBP1 and TIP41 may reduce TDP-43 toxicity by preventing TDP-43 from inhibiting autophagy.
Collapse
Affiliation(s)
| | | | - Susan W. Liebman
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
6
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
7
|
Vowinckel J, Hartl J, Marx H, Kerick M, Runggatscher K, Keller MA, Mülleder M, Day J, Weber M, Rinnerthaler M, Yu JSL, Aulakh SK, Lehmann A, Mattanovich D, Timmermann B, Zhang N, Dunn CD, MacRae JI, Breitenbach M, Ralser M. The metabolic growth limitations of petite cells lacking the mitochondrial genome. Nat Metab 2021; 3:1521-1535. [PMID: 34799698 PMCID: PMC7612105 DOI: 10.1038/s42255-021-00477-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2021] [Indexed: 12/25/2022]
Abstract
Eukaryotic cells can survive the loss of their mitochondrial genome, but consequently suffer from severe growth defects. 'Petite yeasts', characterized by mitochondrial genome loss, are instrumental for studying mitochondrial function and physiology. However, the molecular cause of their reduced growth rate remains an open question. Here we show that petite cells suffer from an insufficient capacity to synthesize glutamate, glutamine, leucine and arginine, negatively impacting their growth. Using a combination of molecular genetics and omics approaches, we demonstrate the evolution of fast growth overcomes these amino acid deficiencies, by alleviating a perturbation in mitochondrial iron metabolism and by restoring a defect in the mitochondrial tricarboxylic acid cycle, caused by aconitase inhibition. Our results hence explain the slow growth of mitochondrial genome-deficient cells with a partial auxotrophy in four amino acids that results from distorted iron metabolism and an inhibited tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Biognosys AG, Schlieren, Switzerland
| | - Johannes Hartl
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Hans Marx
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Martin Kerick
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute of Parasitology and Biomedicine 'López-Neyra' (IPBLN, CSIC), Granada, Spain
| | - Kathrin Runggatscher
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Markus A Keller
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Mülleder
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Manuela Weber
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Andrea Lehmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics and Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Nianshu Zhang
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Cory D Dunn
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Molecular Biology and Genetics, Koç University, İstanbul, Turkey
| | - James I MacRae
- Metabolomics Laboratory, The Francis Crick Institute, London, UK
| | | | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Biochemistry, Berlin, Germany.
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Koch C, Schuldiner M, Herrmann JM. ER-SURF: Riding the Endoplasmic Reticulum Surface to Mitochondria. Int J Mol Sci 2021; 22:9655. [PMID: 34502567 PMCID: PMC8432098 DOI: 10.3390/ijms22179655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
Most mitochondrial proteins are synthesized in the cytosol and targeted to the mitochondrial surface in a post-translational manner. The surface of the endoplasmic reticulum (ER) plays an active role in this targeting reaction. ER-associated chaperones interact with certain mitochondrial membrane protein precursors and transfer them onto receptor proteins of the mitochondrial surface in a process termed ER-SURF. ATP-driven proteins in the membranes of mitochondria (Msp1, ATAD1) and the ER (Spf1, P5A-ATPase) serve as extractors for the removal of mislocalized proteins. If the re-routing to mitochondria fails, precursors can be degraded by ER or mitochondria-associated degradation (ERAD or MAD respectively) in a proteasome-mediated reaction. This review summarizes the current knowledge about the cooperation of the ER and mitochondria in the targeting and quality control of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | | |
Collapse
|
9
|
Zhang D, Dailey OR, Simon DJ, Roca-Datzer K, Jami-Alahmadi Y, Hennen MS, Wohlschlegel JA, Koehler CM, Dabir DV. Aim32 is a dual-localized 2Fe-2S mitochondrial protein that functions in redox quality control. J Biol Chem 2021; 297:101135. [PMID: 34461091 PMCID: PMC8482512 DOI: 10.1016/j.jbc.2021.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
Collapse
Affiliation(s)
- Danyun Zhang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Owen R Dailey
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Daniel J Simon
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Kamilah Roca-Datzer
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Mikayla S Hennen
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA.
| |
Collapse
|
10
|
Simmons RH, Rogers CM, Bochman ML. A deep dive into the RecQ interactome: something old and something new. Curr Genet 2021; 67:761-767. [PMID: 33961099 DOI: 10.1007/s00294-021-01190-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
RecQ family helicases are found in all domains of life and play roles in multiple processes that underpin genomic integrity. As such, they are often referred to as guardians or caretakers of the genome. Despite their importance, however, there is still much we do not know about their basic functions in vivo, nor do we fully understand how they interact in organisms that encode more than one RecQ family member. We recently took a multi-omics approach to better understand the Saccharomyces cerevisiae Hrq1 helicase and its interaction with Sgs1, with these enzymes being the functional homologs of the disease-linked RECQL4 and BLM helicases, respectively. Using synthetic genetic array analyses, immuno-precipitation coupled to mass spectrometry, and RNA-seq, we found that Hrq1 and Sgs1 likely participate in many pathways outside of the canonical DNA recombination and repair functions for which they are already known. For instance, connections to transcription, ribosome biogenesis, and chromatin/chromosome organization were uncovered. These recent results are briefly detailed with respect to current knowledge in the field, and possible follow-up experiments are suggested. In this way, we hope to gain a wholistic understanding of these RecQ helicases and how their mutation leads to genomic instability.
Collapse
Affiliation(s)
- Robert H Simmons
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
11
|
Rogers CM, Sanders E, Nguyen PA, Smith-Kinnaman W, Mosley AL, Bochman ML. The Genetic and Physical Interactomes of the Saccharomyces cerevisiae Hrq1 Helicase. G3 (BETHESDA, MD.) 2020; 10:4347-4357. [PMID: 33115721 PMCID: PMC7718736 DOI: 10.1534/g3.120.401864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/23/2020] [Indexed: 01/03/2023]
Abstract
The human genome encodes five RecQ helicases (RECQL1, BLM, WRN, RECQL4, and RECQL5) that participate in various processes underpinning genomic stability. Of these enzymes, the disease-associated RECQL4 is comparatively understudied due to a variety of technical challenges. However, Saccharomyces cerevisiae encodes a functional homolog of RECQL4 called Hrq1, which is more amenable to experimentation and has recently been shown to be involved in DNA inter-strand crosslink (ICL) repair and telomere maintenance. To expand our understanding of Hrq1 and the RecQ4 subfamily of helicases in general, we took a multi-omics approach to define the Hrq1 interactome in yeast. Using synthetic genetic array analysis, we found that mutations of genes involved in processes such as DNA repair, chromosome segregation, and transcription synthetically interact with deletion of HRQ1 and the catalytically inactive hrq1-K318A allele. Pull-down of tagged Hrq1 and mass spectrometry identification of interacting partners similarly underscored links to these processes and others. Focusing on transcription, we found that hrq1 mutant cells are sensitive to caffeine and that mutation of HRQ1 alters the expression levels of hundreds of genes. In the case of hrq1-K318A, several of the most highly upregulated genes encode proteins of unknown function whose expression levels are also increased by DNA ICL damage. Together, our results suggest a heretofore unrecognized role for Hrq1 in transcription, as well as novel members of the Hrq1 ICL repair pathway. These data expand our understanding of RecQ4 subfamily helicase biology and help to explain why mutations in human RECQL4 cause diseases of genomic instability.
Collapse
Affiliation(s)
- Cody M Rogers
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Elsbeth Sanders
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Phoebe A Nguyen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Whitney Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
12
|
Kumar A, Matta SK, D'Silva P. Role of conserved regions of Tim22 in the structural organization of the carrier translocase. J Cell Sci 2020; 133:jcs.244632. [DOI: 10.1242/jcs.244632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial biogenesis requires efficient sorting of various proteins into different mitochondrial sub-compartments mediated by dedicated protein machinery present in the outer and inner membrane. Among them, the TIM22 complex enables the integration of complex membrane proteins with internal targeting signals into the inner membrane. Although the Tim22 forms the core of the complex, the dynamic recruitment of subunits to the channel is still enigmatic. The present study first-time highlights that IMS and TM4 regions of Tim22 are critically required for the interaction of the membrane-embedded subunits including, Tim54, Tim18, and Sdh3, thereby maintain the functional architecture of TIM22 translocase. On the other hand, TM1 and TM2 regions of Tim22 are important for the Tim18 association, while TM3 is exclusively required for the Sdh3 interaction. Moreover, the impairment in TIM22 complex assembly influences its translocase activity, mitochondrial network, and the viability of cells lacking mitochondrial DNA. Overall our findings provide compelling evidence to highlight the significance of conserved regions of Tim22 that are important for the maintenance of the TIM22 complex and mitochondrial integrity.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Srujan Kumar Matta
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| |
Collapse
|
13
|
Garcia EJ, de Jonge JJ, Liao PC, Stivison E, Sing CN, Higuchi-Sanabria R, Boldogh IR, Pon LA. Reciprocal interactions between mtDNA and lifespan control in budding yeast. Mol Biol Cell 2019; 30:2943-2952. [PMID: 31599702 PMCID: PMC6857569 DOI: 10.1091/mbc.e18-06-0356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
Loss of mitochondrial DNA (mtDNA) results in loss of mitochondrial respiratory activity, checkpoint-regulated inhibition of cell cycle progression, defects in growth, and nuclear genome instability. However, after several generations, yeast cells can adapt to the loss of mtDNA. During this adaptation, rho0 cells, which have no mtDNA, exhibit increased growth rates and nuclear genome stabilization. Here, we report that an immediate response to loss of mtDNA is a decrease in replicative lifespan (RLS). Moreover, we find that adapted rho0 cells bypass the mtDNA inheritance checkpoint, exhibit increased mitochondrial function, and undergo an increase in RLS as they adapt to the loss of mtDNA. Transcriptome analysis reveals that metabolic reprogramming to compensate for defects in mitochondrial function is an early event during adaptation and that up-regulation of stress response genes occurs later in the adaptation process. We also find that specific subtelomeric genes are silenced during adaptation to loss of mtDNA. Moreover, we find that deletion of SIR3, a subtelomeric gene silencing protein, inhibits silencing of subtelomeric genes associated with adaptation to loss of mtDNA, as well as adaptation-associated increases in mitochondrial function and RLS extension.
Collapse
Affiliation(s)
- Enrique J. Garcia
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Janeska J. de Jonge
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Pin-Chao Liao
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Elizabeth Stivison
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Cierra N. Sing
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Ryo Higuchi-Sanabria
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Istvan R. Boldogh
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Liza A. Pon
- Department of Pathology and Cell Biology and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
14
|
Coyne LP, Chen XJ. Consequences of inner mitochondrial membrane protein misfolding. Mitochondrion 2019; 49:46-55. [PMID: 31195097 DOI: 10.1016/j.mito.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
Proteins embedded in the inner mitochondrial membrane (IMM) perform essential cellular functions. Maintaining the folding state of these proteins is therefore of the utmost importance, and this is ensured by IMM chaperones and proteases that refold and degrade unassembled and misfolded proteins. However, the physiological consequences specific to IMM protein misfolding remain obscure because deletion of these chaperones/proteases (the typical experimental strategy) often affects many mitochondrial processes other than protein folding and turnover. Thus, novel experimental systems are needed to evaluate the direct effects of misfolded protein on the membrane. Such a system has been developed in recent years. Studies suggest that numerous pathogenic mutations in isoform 1 of adenine nucleotide translocase (Ant1) cause its misfolding on the IMM. In this review, we first discuss potential mechanisms by which dominant Ant1 mutations may cause disease, highlighting IMM protein misfolding, per se, as a likely pathological factor. Then we discuss the intramitochondrial effects of Ant1 misfolding such as IMM proteostatic stress, respiratory chain dysfunction, and mtDNA instability. Finally, we summarize the mounting evidence that IMM proteostatic stress can perturb mitochondrial protein import to cause the toxic accumulation of mitochondrial proteins in the cytosol: a cell stress mechanism termed mitochondrial Precursor Overaccumulation Stress (mPOS).
Collapse
Affiliation(s)
- Liam P Coyne
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Xin Jie Chen
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
15
|
Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5066171. [PMID: 30165482 DOI: 10.1093/femsyr/foy088] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are key cell organelles with a prominent role in both energetic metabolism and the maintenance of cellular homeostasis. Since mitochondria harbor their own genome, which encodes a limited number of proteins critical for oxidative phosphorylation and protein translation, their function and biogenesis strictly depend upon nuclear control. The yeast Saccharomyces cerevisiae has been a unique model for understanding mitochondrial DNA organization and inheritance as well as for deciphering the process of assembly of mitochondrial components. In the last three decades, yeast also provided a powerful tool for unveiling the communication network that coordinates the functions of the nucleus, the cytosol and mitochondria. This crosstalk regulates how cells respond to extra- and intracellular changes either to maintain cellular homeostasis or to activate cell death. This review is focused on the key pathways that mediate nucleus-cytosol-mitochondria communications through both transcriptional regulation and proteostatic signaling. We aim to highlight yeast that likely continues to serve as a productive model organism for mitochondrial research in the years to come.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
16
|
Coyne LP, Chen XJ. mPOS is a novel mitochondrial trigger of cell death - implications for neurodegeneration. FEBS Lett 2017; 592:759-775. [PMID: 29090463 DOI: 10.1002/1873-3468.12894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/14/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022]
Abstract
In addition to its central role in energy metabolism, the mitochondrion has many other functions essential for cell survival. When stressed, the multifunctional mitochondria are expected to engender multifaceted cell stress with complex physiological consequences. Potential extra-mitochondrial proteostatic burdens imposed by inefficient protein import have been largely overlooked. Accumulating evidence suggests that a diverse range of pathogenic mitochondrial stressors, which do not directly target the core protein import machinery, can reduce cell fitness by disrupting the proteostatic network in the cytosol. The resulting stress, named mitochondrial precursor overaccumulation stress (mPOS), is characterized by the toxic accumulation of unimported mitochondrial proteins in the cytosol. Here, we review our current understanding of how mitochondrial dysfunction can impact the cytosolic proteome and proteostatic signaling. We also discuss the intriguing possibility that the mPOS model may help untangle the cause-effect relationship between mitochondrial dysfunction and cytosolic protein aggregation, which are probably the two most prominent molecular hallmarks of neurodegenerative disease.
Collapse
Affiliation(s)
- Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.,Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
17
|
Auburger G, Sen NE, Meierhofer D, Başak AN, Gitler AD. Efficient Prevention of Neurodegenerative Diseases by Depletion of Starvation Response Factor Ataxin-2. Trends Neurosci 2017; 40:507-516. [DOI: 10.1016/j.tins.2017.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/09/2017] [Indexed: 12/13/2022]
|
18
|
Mitochondrial Cochaperone Mge1 Is Involved in Regulating Susceptibility to Fluconazole in Saccharomyces cerevisiae and Candida Species. mBio 2017; 8:mBio.00201-17. [PMID: 28720726 PMCID: PMC5516249 DOI: 10.1128/mbio.00201-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MGE1 encodes a yeast chaperone involved in Fe-S cluster metabolism and protein import into the mitochondria. In this study, we identified MGE1 as a multicopy suppressor of susceptibility to the antifungal fluconazole in the model yeast Saccharomyces cerevisiae. We demonstrate that this phenomenon is not exclusively dependent on the integrity of the mitochondrial DNA or on the presence of the drug efflux pump Pdr5. Instead, we show that the increased dosage of Mge1 plays a protective role by retaining increased amounts of ergosterol upon fluconazole treatment. Iron metabolism and, more particularly, Fe-S cluster formation are involved in regulating this process, since the responsible Hsp70 chaperone, Ssq1, is required. Additionally, we show the necessity but, by itself, insufficiency of activating the iron regulon in establishing the Mge1-related effect on drug susceptibility. Finally, we confirm a similar role for Mge1 in fluconazole susceptibility in the pathogenic fungi Candida glabrata and Candida albicans. Although they are mostly neglected compared to bacterial infections, fungal infections pose a serious threat to the human population. While some of them remain relatively harmless, infections that reach the bloodstream often become lethal. Only a few therapies are available, and resistance of the pathogen to these drugs is a frequently encountered problem. It is thus essential that more research is performed on how these pathogens cope with the treatment and cause recurrent infections. Baker’s yeast is often used as a model to study pathogenic fungi. We show here, by using this model, that iron metabolism and the formation of the important iron-sulfur clusters are involved in regulating susceptibility to fluconazole, the most commonly used antifungal drug. We show that the same process likely also occurs in two of the most regularly isolated pathogenic fungi, Candida glabrata and Candida albicans.
Collapse
|
19
|
van Leeuwen J, Pons C, Mellor JC, Yamaguchi TN, Friesen H, Koschwanez J, Ušaj MM, Pechlaner M, Takar M, Ušaj M, VanderSluis B, Andrusiak K, Bansal P, Baryshnikova A, Boone CE, Cao J, Cote A, Gebbia M, Horecka G, Horecka I, Kuzmin E, Legro N, Liang W, van Lieshout N, McNee M, San Luis BJ, Shaeri F, Shuteriqi E, Sun S, Yang L, Youn JY, Yuen M, Costanzo M, Gingras AC, Aloy P, Oostenbrink C, Murray A, Graham TR, Myers CL, Andrews BJ, Roth FP, Boone C. Exploring genetic suppression interactions on a global scale. Science 2017; 354:354/6312/aag0839. [PMID: 27811238 DOI: 10.1126/science.aag0839] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insights into the functional wiring diagram of the cell. In addition to suppressor mutations, we identified frequent secondary mutations,in a subset of genes, that likely cause a delay in the onset of stationary phase, which appears to promote their enrichment within a propagating population. These findings allow us to formulate and quantify general mechanisms of genetic suppression.
Collapse
Affiliation(s)
- Jolanda van Leeuwen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Joseph C Mellor
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Takafumi N Yamaguchi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Helena Friesen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - John Koschwanez
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Mojca Mattiazzi Ušaj
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Maria Pechlaner
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Mehmet Takar
- Department of Biological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Matej Ušaj
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Kerry Andrusiak
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Pritpal Bansal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Claire E Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Jessica Cao
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Atina Cote
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Marinella Gebbia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Gene Horecka
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ira Horecka
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Elena Kuzmin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Nicole Legro
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Wendy Liang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Natascha van Lieshout
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Margaret McNee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Bryan-Joseph San Luis
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Fatemeh Shaeri
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Song Sun
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Lu Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Michael Yuen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Patrick Aloy
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrew Murray
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. .,Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario M5G 1Z8, Canada
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. .,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario M5G 1Z8, Canada.,Department of Computer Science, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada. .,Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.,Canadian Institute for Advanced Research, 180 Dundas Street West, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
20
|
Soukup AA, Fischer GJ, Luo J, Keller NP. The Aspergillus nidulans Pbp1 homolog is required for normal sexual development and secondary metabolism. Fungal Genet Biol 2017; 100:13-21. [PMID: 28089630 PMCID: PMC5337145 DOI: 10.1016/j.fgb.2017.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 01/08/2017] [Indexed: 01/18/2023]
Abstract
P bodies and stress granules are RNA-containing structures governing mRNA degradation and translational arrest, respectively. Saccharomyces cerevisiae Pbp1 protein localizes to stress granules and promotes their formation and is involved in proper polyadenylation, suppression of RNA-DNA hybrids, and preventing aberrant rDNA recombination. A genetic screen for Aspergillus nidulans mutants aberrant in secondary metabolism identified the Pbp1 homolog, PbpA. Using Dcp1 (mRNA decapping) as a marker for P-body formation and FabM (Pab1, poly-A binding protein) to track stress granule accumulation, we examine the dynamics of RNA granule formation in A. nidulans cells lacking pub1, edc3, and pbpA. Although PbpA acts as a functional homolog of yeast PBP1, PbpA had little impact on either P-body or stress granule formation in A. nidulans in contrast to Pub1 and Edc3. However, we find that PbpA is critical for sexual development and its loss increases the production of some secondary metabolites including the carcinogen sterigmatocystin.
Collapse
Affiliation(s)
- Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, WI, United States
| | - Jerry Luo
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, WI, United States.
| |
Collapse
|
21
|
Seidel G, Meierhofer D, Şen NE, Guenther A, Krobitsch S, Auburger G. Quantitative Global Proteomics of Yeast PBP1 Deletion Mutants and Their Stress Responses Identifies Glucose Metabolism, Mitochondrial, and Stress Granule Changes. J Proteome Res 2016; 16:504-515. [PMID: 27966978 DOI: 10.1021/acs.jproteome.6b00647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast protein PBP1 is implicated in very diverse pathways. Intriguingly, its deletion mitigates the toxicity of human neurodegeneration factors. Here, we performed label-free quantitative global proteomics to identify crucial downstream factors, either without stress or under cell stress conditions (heat and NaN3). Compared to the wildtype BY4741 strain, PBP1 deletion always triggered downregulation of the key bioenergetics enzyme KGD2 and the prion protein RNQ1 as well as upregulation of the leucine biosynthesis enzyme LEU1. Without stress, enrichment of stress response factors was consistently detected for both deletion mutants; upon stress, these factors were more pronounced. The selective analysis of components of stress granules and P-bodies revealed a prominent downregulation of GIS2. Our yeast data are in good agreement with a global proteomics and metabolomics publication that the PBP1 ortholog ATAXIN-2 (ATXN2) knockout (KO) in mouse results in mitochondrial deficits in leucine/fatty acid catabolism and bioenergetics, with an obesity phenotype. Furthermore, our data provide the completely novel insight that PBP1 mutations in stress periods involve GIS2, a plausible scenario in view of previous data that both PBP1 and GIS2 relocalize from ribosomes to stress granules, interact with poly(A)-binding protein in translation regulation and prevent mitochondrial precursor overaccumulation stress (mPOS). This may be relevant for human diseases like spinocerebellar ataxias, amyotrophic lateral sclerosis, and the metabolic syndrome.
Collapse
Affiliation(s)
- Gunnar Seidel
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Nesli-Ece Şen
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Anika Guenther
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Sylvia Krobitsch
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School , Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Akdoğan E, Tardu M, Garipler G, Baytek G, Kavakli İH, Dunn CD. Reduced Glucose Sensation Can Increase the Fitness of Saccharomyces cerevisiae Lacking Mitochondrial DNA. PLoS One 2016; 11:e0146511. [PMID: 26751567 PMCID: PMC4709096 DOI: 10.1371/journal.pone.0146511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022] Open
Abstract
Damage to the mitochondrial genome (mtDNA) can lead to diseases for which there are no clearly effective treatments. Since mitochondrial function and biogenesis are controlled by the nutrient environment of the cell, it is possible that perturbation of conserved, nutrient-sensing pathways may successfully treat mitochondrial disease. We found that restricting glucose or otherwise reducing the activity of the protein kinase A (PKA) pathway can lead to improved proliferation of Saccharomyces cerevisiae cells lacking mtDNA and that the transcriptional response to mtDNA loss is reduced in cells with diminished PKA activity. We have excluded many pathways and proteins from being individually responsible for the benefits provided to cells lacking mtDNA by PKA inhibition, and we found that robust import of mitochondrial polytopic membrane proteins may be required in order for cells without mtDNA to receive the full benefits of PKA reduction. Finally, we have discovered that the transcription of genes involved in arginine biosynthesis and aromatic amino acid catabolism is altered after mtDNA damage. Our results highlight the potential importance of nutrient detection and availability on the outcome of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Emel Akdoğan
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Mehmet Tardu
- Department of Chemical and Biological Engineering, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Görkem Garipler
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Gülkız Baytek
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - İ. Halil Kavakli
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
- Department of Chemical and Biological Engineering, Koç University, Sarıyer, İstanbul, 34450, Turkey
| | - Cory D. Dunn
- Department of Molecular Biology and Genetics, Koç University, Sarıyer, İstanbul, 34450, Turkey
| |
Collapse
|
23
|
Chen L, Zhang YH, Huang T, Cai YD. Identifying novel protein phenotype annotations by hybridizing protein-protein interactions and protein sequence similarities. Mol Genet Genomics 2016; 291:913-34. [PMID: 26728152 DOI: 10.1007/s00438-015-1157-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/08/2015] [Indexed: 01/18/2023]
Abstract
Studies of protein phenotypes represent a central challenge of modern genetics in the post-genome era because effective and accurate investigation of protein phenotypes is one of the most critical procedures to identify functional biological processes in microscale, which involves the analysis of multifactorial traits and has greatly contributed to the development of modern biology in the post genome era. Therefore, we have developed a novel computational method that identifies novel proteins associated with certain phenotypes in yeast based on the protein-protein interaction network. Unlike some existing network-based computational methods that identify the phenotype of a query protein based on its direct neighbors in the local network, the proposed method identifies novel candidate proteins for a certain phenotype by considering all annotated proteins with this phenotype on the global network using a shortest path (SP) algorithm. The identified proteins are further filtered using both a permutation test and their interactions and sequence similarities to annotated proteins. We compared our method with another widely used method called random walk with restart (RWR). The biological functions of proteins for each phenotype identified by our SP method and the RWR method were analyzed and compared. The results confirmed a large proportion of our novel protein phenotype annotation, and the RWR method showed a higher false positive rate than the SP method. Our method is equally effective for the prediction of proteins involving in all the eleven clustered yeast phenotypes with a quite low false positive rate. Considering the universality and generalizability of our supporting materials and computing strategies, our method can further be applied to study other organisms and the new functions we predicted can provide pertinent instructions for the further experimental verifications.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China. .,College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
24
|
Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 2015; 100:969-85. [DOI: 10.1007/s00253-015-7038-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
|
25
|
Wang X, Chen XJ. A cytosolic network suppressing mitochondria-mediated proteostatic stress and cell death. Nature 2015; 524:481-4. [PMID: 26192197 PMCID: PMC4582408 DOI: 10.1038/nature14859] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 06/29/2015] [Indexed: 12/23/2022]
Abstract
Mitochondria are multifunctional organelles whose dysfunction leads to neuromuscular degeneration and ageing. The multi-functionality poses a great challenge for understanding the mechanisms by which mitochondrial dysfunction causes specific pathologies. Among the leading mitochondrial mediators of cell death are energy depletion, free radical production, defects in iron-sulfur cluster biosynthesis, the release of pro-apoptotic and non-cell-autonomous signalling molecules, and altered stress signalling. Here we identify a new pathway of mitochondria-mediated cell death in yeast. This pathway was named mitochondrial precursor over-accumulation stress (mPOS), and is characterized by aberrant accumulation of mitochondrial precursors in the cytosol. mPOS can be triggered by clinically relevant mitochondrial damage that is not limited to the core machineries of protein import. We also discover a large network of genes that suppress mPOS, by modulating ribosomal biogenesis, messenger RNA decapping, transcript-specific translation, protein chaperoning and turnover. In response to mPOS, several ribosome-associated proteins were upregulated, including Gis2 and Nog2, which promote cap-independent translation and inhibit the nuclear export of the 60S ribosomal subunit, respectively. Gis2 and Nog2 upregulation promotes cell survival, which may be part of a feedback loop that attenuates mPOS. Our data indicate that mitochondrial dysfunction contributes directly to cytosolic proteostatic stress, and provide an explanation for the association between these two hallmarks of degenerative diseases and ageing. The results are relevant to understanding diseases (for example, spinocerebellar ataxia, amyotrophic lateral sclerosis and myotonic dystrophy) that involve mutations within the anti-degenerative network.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
26
|
Martínez C, Contreras A, Aguilera O, Ganga A, García V. The ICY1 gene from Saccharomyces cerevisiae affects nitrogen consumption during alcoholic fermentation. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Spincemaille P, Matmati N, Hannun YA, Cammue BPA, Thevissen K. Sphingolipids and mitochondrial function in budding yeast. Biochim Biophys Acta Gen Subj 2014; 1840:3131-7. [PMID: 24973565 DOI: 10.1016/j.bbagen.2014.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Nabil Matmati
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
28
|
Fukuoh A, Cannino G, Gerards M, Buckley S, Kazancioglu S, Scialo F, Lihavainen E, Ribeiro A, Dufour E, Jacobs HT. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase. Mol Syst Biol 2014; 10:734. [PMID: 24952591 PMCID: PMC4265055 DOI: 10.15252/msb.20145117] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.
Collapse
Affiliation(s)
- Atsushi Fukuoh
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate school of Medical Sciences, Fukuoka, Japan Department of Medical Laboratory Science, Junshin Gakuen University, Fukuoka, Japan
| | - Giuseppe Cannino
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mike Gerards
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Suzanne Buckley
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Selena Kazancioglu
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Filippo Scialo
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Eero Lihavainen
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre Ribeiro
- Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Eric Dufour
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- BioMediTech and Tampere University Hospital, University of Tampere, Tampere, Finland Research Program of Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2014; 111:1473-8. [PMID: 24474773 DOI: 10.1073/pnas.1312399111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.
Collapse
|
30
|
Defects associated with mitochondrial DNA damage can be mitigated by increased vacuolar pH in Saccharomyces cerevisiae. Genetics 2013; 194:285-90. [PMID: 23502676 DOI: 10.1534/genetics.113.149708] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While searching for mutations that alleviate detrimental effects of mitochondrial DNA (mtDNA) damage, we found that disrupting vacuolar biogenesis permitted survival of a sensitized yeast background after mitochondrial genome loss. Furthermore, elevating vacuolar pH increases proliferation after mtDNA deletion and reverses the protein import defect of mitochondria lacking DNA.
Collapse
|
31
|
Abstract
Ataxia is a neurological disorder characterized by loss of control of body movements. Spinocerebellar ataxia (SCA), previously known as autosomal dominant cerebellar ataxia, is a biologically robust group of close to 30 progressive neurodegenerative diseases. Six SCAs, including the more prevalent SCA1, SCA2, SCA3, and SCA6 along with SCA7 and SCA17 are caused by expansion of a CAG repeat that encodes a polyglutamine tract in the affected protein. How the mutated proteins in these polyglutamine SCAs cause disease is highly debated. Recent work suggests that the mutated protein contributes to pathogenesis within the context of its “normal” cellular function. Thus, understanding the cellular function of these proteins could aid in the development of therapeutics.
Collapse
Affiliation(s)
- Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Gebert N, Gebert M, Oeljeklaus S, von der Malsburg K, Stroud D, Kulawiak B, Wirth C, Zahedi R, Dolezal P, Wiese S, Simon O, Schulze-Specking A, Truscott K, Sickmann A, Rehling P, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N. Dual Function of Sdh3 in the Respiratory Chain and TIM22 Protein Translocase of the Mitochondrial Inner Membrane. Mol Cell 2011; 44:811-8. [DOI: 10.1016/j.molcel.2011.09.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/18/2011] [Accepted: 09/20/2011] [Indexed: 10/14/2022]
|
33
|
Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae. World J Microbiol Biotechnol 2011; 28:1107-13. [PMID: 22805832 DOI: 10.1007/s11274-011-0911-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/26/2011] [Indexed: 01/25/2023]
Abstract
The yeast Saccharomyces cerevisiae is the main microorganism responsible for wine fermentation and its development influences the quality of wine. A problem affecting these types of fermentations, generating important losses in this industry, are the slow or stuck fermentations which may result from low nitrogen availability in the must. Therefore, several studies have been directed towards identifying genes involved in nitrogen metabolism using high throughput strategies which include subjecting the yeast to changes in the type or concentration of the available nitrogen source. However, this type of approach can also generate responses in the yeast that do not necessarily alter the expression of genes related to nitrogen metabolism. In this work, by using intraspecific hybridisation of wild wine yeast strains we obtained genetically and oenologically similar strains with differences in the consumption of nitrogen sources. Using the same must, the global expression patterns of these yeasts were compared by microarrays, the analysis of which identified 276 genes that varied in their expression between the strains analysed. The functional analysis of the genes with a known function indicates that some participate in nitrogen metabolism, alcoholic fermentation, ion transport and transcriptional regulation. Furthermore, differences were observed in the expression of genes which have been partially associated to nitrogen, as in the case of ZRT1 and ATO2. Interestingly, many of the genes identified have no known function or have not been previously associated to this phenotype.
Collapse
|
34
|
Dunn CD. Running on empty: does mitochondrial DNA mutation limit replicative lifespan in yeast?: Mutations that increase the division rate of cells lacking mitochondrial DNA also extend replicative lifespan in Saccharomyces cerevisiae. Bioessays 2011; 33:742-8. [PMID: 21826691 DOI: 10.1002/bies.201100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
| |
Collapse
|
35
|
Peisker K, Chiabudini M, Rospert S. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:662-72. [PMID: 20226819 DOI: 10.1016/j.bbamcr.2010.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
Abstract
The Hsp70 homolog Ssb directly binds to the ribosome and contacts a variety of newly synthesized polypeptide chains as soon as they emerge from the ribosomal exit tunnel. For this reason a general role of Ssb in the de novo folding of newly synthesized proteins is highly suggestive. However, for more than a decade client proteins which require Ssb for proper folding have remained elusive. It was therefore speculated that Ssb, despite its ability to interact with a large variety of nascent polypeptides, may assist the folding of only a small and specific subset. Alternatively, it has been suggested that Ssb's function may be limited to the protection of nascent polypeptides from aggregation until downstream chaperones take over and actively fold their substrates. There is also evidence that Ssb, in parallel to a classical chaperone function, is involved in the regulation of cellular signaling processes. Here we aim to summarize what is currently known about Ssb's multiple functions and what remains to be ascertained by future research.
Collapse
Affiliation(s)
- Kristin Peisker
- Department of Cell and Molecular Biology, Biomedicinskt Centrum BMC, Uppsala, Sweden
| | | | | |
Collapse
|
36
|
Veatch JR, McMurray MA, Nelson ZW, Gottschling DE. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009; 137:1247-58. [PMID: 19563757 DOI: 10.1016/j.cell.2009.04.014] [Citation(s) in RCA: 326] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 01/30/2009] [Accepted: 04/01/2009] [Indexed: 11/19/2022]
Abstract
Mutations and deletions in the mitochondrial genome (mtDNA), as well as instability of the nuclear genome, are involved in multiple human diseases. Here, we report that in Saccharomyces cerevisiae, loss of mtDNA leads to nuclear genome instability, through a process of cell-cycle arrest and selection we define as a cellular crisis. This crisis is not mediated by the absence of respiration, but instead correlates with a reduction in the mitochondrial membrane potential. Analysis of cells undergoing this crisis identified a defect in iron-sulfur cluster (ISC) biogenesis, which requires normal mitochondrial function. We found that downregulation of nonmitochondrial ISC protein biogenesis was sufficient to cause increased genomic instability in cells with intact mitochondrial function. These results suggest mitochondrial dysfunction stimulates nuclear genome instability by inhibiting the production of ISC-containing protein(s), which are required for maintenance of nuclear genome integrity. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.
Collapse
Affiliation(s)
- Joshua R Veatch
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
37
|
Dunn CD, Tamura Y, Sesaki H, Jensen RE. Mgr3p and Mgr1p are adaptors for the mitochondrial i-AAA protease complex. Mol Biol Cell 2008; 19:5387-97. [PMID: 18843051 DOI: 10.1091/mbc.e08-01-0103] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By screening yeast knockouts for their dependence upon the mitochondrial genome, we identified Mgr3p, a protein that associates with the i-AAA protease complex in the mitochondrial inner membrane. Mgr3p and Mgr1p, another i-AAA-interacting protein, form a subcomplex that bind to the i-AAA subunit Yme1p. We find that loss of Mgr3p, like the lack of Mgr1p, reduces proteolysis by Yme1p. Mgr3p and Mgr1p can bind substrate even in the absence of Yme1p, and both proteins are needed for maximal binding of an unfolded substrate by the i-AAA complex. We speculate that Mgr3p and Mgr1p function in an adaptor complex that targets substrates to the i-AAA protease for degradation.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
38
|
Guan Y, Myers CL, Hess DC, Barutcuoglu Z, Caudy AA, Troyanskaya OG. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol 2008; 9 Suppl 1:S3. [PMID: 18613947 PMCID: PMC2447537 DOI: 10.1186/gb-2008-9-s1-s3] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The wide availability of genome-scale data for several organisms has stimulated interest in computational approaches to gene function prediction. Diverse machine learning methods have been applied to unicellular organisms with some success, but few have been extensively tested on higher level, multicellular organisms. A recent mouse function prediction project (MouseFunc) brought together nine bioinformatics teams applying a diverse array of methodologies to mount the first large-scale effort to predict gene function in the laboratory mouse. Results: In this paper, we describe our contribution to this project, an ensemble framework based on the support vector machine that integrates diverse datasets in the context of the Gene Ontology hierarchy. We carry out a detailed analysis of the performance of our ensemble and provide insights into which methods work best under a variety of prediction scenarios. In addition, we applied our method to Saccharomyces cerevisiae and have experimentally confirmed functions for a novel mitochondrial protein. Conclusion: Our method consistently performs among the top methods in the MouseFunc evaluation. Furthermore, it exhibits good classification performance across a variety of cellular processes and functions in both a multicellular organism and a unicellular organism, indicating its ability to discover novel biology in diverse settings.
Collapse
Affiliation(s)
- Yuanfang Guan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
39
|
Al-Ramahi I, Pérez AM, Lim J, Zhang M, Sorensen R, de Haro M, Branco J, Pulst SM, Zoghbi HY, Botas J. dAtaxin-2 mediates expanded Ataxin-1-induced neurodegeneration in a Drosophila model of SCA1. PLoS Genet 2007; 3:e234. [PMID: 18166084 PMCID: PMC2323314 DOI: 10.1371/journal.pgen.0030234] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 11/15/2007] [Indexed: 02/02/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders sharing atrophy of the cerebellum as a common feature. SCA1 and SCA2 are two ataxias caused by expansion of polyglutamine tracts in Ataxin-1 (ATXN1) and Ataxin-2 (ATXN2), respectively, two proteins that are otherwise unrelated. Here, we use a Drosophila model of SCA1 to unveil molecular mechanisms linking Ataxin-1 with Ataxin-2 during SCA1 pathogenesis. We show that wild-type Drosophila Ataxin-2 (dAtx2) is a major genetic modifier of human expanded Ataxin-1 (Ataxin-1[82Q]) toxicity. Increased dAtx2 levels enhance, and more importantly, decreased dAtx2 levels suppress Ataxin-1[82Q]-induced neurodegeneration, thereby ruling out a pathogenic mechanism by depletion of dAtx2. Although Ataxin-2 is normally cytoplasmic and Ataxin-1 nuclear, we show that both dAtx2 and hAtaxin-2 physically interact with Ataxin-1. Furthermore, we show that expanded Ataxin-1 induces intranuclear accumulation of dAtx2/hAtaxin-2 in both Drosophila and SCA1 postmortem neurons. These observations suggest that nuclear accumulation of Ataxin-2 contributes to expanded Ataxin-1-induced toxicity. We tested this hypothesis engineering dAtx2 transgenes with nuclear localization signal (NLS) and nuclear export signal (NES). We find that NLS-dAtx2, but not NES-dAtx2, mimics the neurodegenerative phenotypes caused by Ataxin-1[82Q], including repression of the proneural factor Senseless. Altogether, these findings reveal a previously unknown functional link between neurodegenerative disorders with common clinical features but different etiology.
Collapse
Affiliation(s)
- Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Departamento de Biología, Facultad de Ciencias-University Autonoma de Madrid, Madrid, Spain
| | - Alma M Pérez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janghoo Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Minghang Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rie Sorensen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joana Branco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Stefan M Pulst
- Division of Neurology, Cedars-Sinai Medical Center; Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Hwang DK, Claypool SM, Leuenberger D, Tienson HL, Koehler CM. Tim54p connects inner membrane assembly and proteolytic pathways in the mitochondrion. ACTA ACUST UNITED AC 2007; 178:1161-75. [PMID: 17893242 PMCID: PMC2064651 DOI: 10.1083/jcb.200706195] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tim54p, a component of the inner membrane TIM22 complex, does not directly mediate the import of inner membrane substrates but is required for assembly/stability of the 300-kD TIM22 complex. In addition, Δtim54 yeast exhibit a petite-negative phenotype (also observed in yeast harboring mutations in the F1Fo ATPase, the ADP/ATP carrier, mitochondrial morphology components, or the i–AAA protease, Yme1p). Interestingly, other import mutants in our strain background are not petite-negative. We report that Tim54p is not involved in maintenance of mitochondrial DNA or mitochondrial morphology. Rather, Tim54p mediates assembly of an active Yme1p complex, after Yme1p is imported via the TIM23 pathway. Defective Yme1p assembly is likely the major contributing factor for the petite-negativity in strains lacking functional Tim54p. Thus, Tim54p has two independent functions: scaffolding/stability for the TIM22 membrane complex and assembly of Yme1p into a proteolytically active complex. As such, Tim54p links protein import, assembly, and turnover pathways in the mitochondrion.
Collapse
Affiliation(s)
- David K Hwang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
41
|
Williams S, Saha L, Singha UK, Chaudhuri M. Trypanosoma brucei: differential requirement of membrane potential for import of proteins into mitochondria in two developmental stages. Exp Parasitol 2007; 118:420-33. [PMID: 18021773 DOI: 10.1016/j.exppara.2007.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/12/2007] [Accepted: 10/02/2007] [Indexed: 11/19/2022]
Abstract
Trypanosome alternative oxidase (TAO) and the cytochrome oxidase (COX) are two developmentally regulated terminal oxidases of the mitochondrial electron transport chain in Trypanosoma brucei. Here, we have compared the import of TAO and cytochrome oxidase subunit IV (COIV), two stage-specific nuclear encoded mitochondrial proteins, into the bloodstream and procyclic form mitochondria of T. brucei to understand the import processes in two different developmental stages. Under in vitro conditions TAO and COIV were imported and processed into isolated mitochondria from both the bloodstream and procyclic forms. With mitochondria isolated from the procyclic form, the import of TAO and COIV was dependent on the mitochondrial inner membrane potential (delta psi) and required protein(s) on the outer membrane. Import of these proteins also depended on the presence of both internal and external ATP. However, import of TAO and COIV into isolated mitochondria from the bloodstream form was not inhibited after the mitochondrial delta psi was dissipated by valinomycin, CCCP, or valinomycin and oligomycin in combination. In contrast, import of these proteins into bloodstream mitochondria was abolished after the hydrolysis of ATP by apyrase or removal of the ATP and ATP-generating system, suggesting that import is dependent on the presence of external ATP. Together, these data suggest that nuclear encoded proteins such as TAO and COIV are imported in the mitochondria of the bloodstream and the procyclic forms via different mechanism. Differential import conditions of nuclear encoded mitochondrial proteins of T. brucei possibly help it to adapt to different life forms.
Collapse
Affiliation(s)
- Shuntae Williams
- Department of Microbial Pathogenesis and Immune Response, School of Medicine, Meharry Medical College, 1005 D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
42
|
Abstract
The discovery that expansion of unstable repeats can cause a variety of neurological disorders has changed the landscape of disease-oriented research for several forms of mental retardation, Huntington disease, inherited ataxias, and muscular dystrophy. The dynamic nature of these mutations provided an explanation for the variable phenotype expressivity within a family. Beyond diagnosis and genetic counseling, the benefits from studying these disorders have been noted in both neurobiology and cell biology. Examples include insight about the role of translational control in synaptic plasticity, the role of RNA processing in the integrity of muscle and neuronal function, the importance of Fe-S-containing enzymes for cellular energy, and the dramatic effects of altering protein conformations on neuronal function and survival. It is exciting that within a span of 15 years, pathogenesis studies of this class of disorders are beginning to reveal pathways that are potential therapeutic targets.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Human Genetics, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
43
|
Kitagaki H, Cowart LA, Matmati N, de Avalos SV, Novgorodov SA, Zeidan YH, Bielawski J, Obeid LM, Hannun YA. Isc1 regulates sphingolipid metabolism in yeast mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2849-61. [PMID: 17880915 PMCID: PMC2121593 DOI: 10.1016/j.bbamem.2007.07.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/27/2007] [Accepted: 07/27/2007] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae inositol sphingolipid phospholipase C (Isc1p), a homolog of mammalian neutral sphingomyelinases, hydrolyzes complex sphingolipids to produce ceramide in vitro. Epitope-tagged Isc1p associates with the mitochondria in the post-diauxic phase of yeast growth. In this report, the mitochondrial localization of Isc1p and its role in regulating sphingolipid metabolism were investigated. First, endogenous Isc1p activity was enriched in highly purified mitochondria, and western blots using highly purified mitochondrial membrane fractions demonstrated that epitope-tagged Isc1p localized to the outer mitochondrial membrane as an integral membrane protein. Next, LC/MS was employed to determine the sphingolipid composition of highly purified mitochondria which were found to be significantly enriched in alpha-hydroxylated phytoceramides (21.7 fold) relative to the whole cell. Mitochondria, on the other hand, were significantly depleted in sphingoid bases. Compared to the parental strain, mitochondria from isc1Delta in the post-diauxic phase showed drastic reduction in the levels of alpha-hydroxylated phytoceramide (93.1% loss compared to WT mitochondria with only 2.58 fold enrichment in mitochondria compared to whole cell). Functionally, isc1Delta showed a higher rate of respiratory-deficient cells after incubation at high temperature and was more sensitive to hydrogen peroxide and ethidium bromide, indicating that isc1Delta exhibits defects related to mitochondrial function. These results suggest that Isc1p generates ceramide in mitochondria, and the generated ceramide contributes to the normal function of mitochondria. This study provides a first insight into the specific composition of ceramides in mitochondria.
Collapse
Affiliation(s)
- Hiroshi Kitagaki
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
- Ministry of Education, Culture, Sports, Science and Technology, Chiyoda-ku, Toyko, Japan
- National Research Institute of Brewing, Higashihiroshima city, Hiroshima, Japan
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Nabil Matmati
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Silvia Vaena de Avalos
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sergei A. Novgorodov
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Youssef H. Zeidan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Yusuf A. Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
44
|
Wang Y, Singh U, Mueller DM. Mitochondrial genome integrity mutations uncouple the yeast Saccharomyces cerevisiae ATP synthase. J Biol Chem 2007; 282:8228-36. [PMID: 17244612 PMCID: PMC3670140 DOI: 10.1074/jbc.m609635200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mitochondrial ATP synthase is a molecular motor, which couples the flow of protons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the alpha-, beta-, and gamma-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the gamma-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk.
Collapse
Affiliation(s)
| | | | - David M. Mueller
- To whom correspondence should be addressed: 3333 Greenbay Rd., North Chicago, IL. Tel.: 847-578-8606; Fax: 847-578-3240;
| |
Collapse
|
45
|
Satterfield TF, Pallanck LJ. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet 2006; 15:2523-32. [PMID: 16835262 DOI: 10.1093/hmg/ddl173] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations resulting in the expansion of a polyglutamine tract in the protein ataxin-2 give rise to the neurodegenerative disorders spinocerebellar ataxia type 2 and Parkinson's disease. The normal cellular function of ataxin-2 and the mechanism by which polyglutamine expansion of ataxin-2 causes neurodegeneration are unknown. Here, we demonstrate that ataxin-2 and its Drosophila homolog, ATX2, assemble with polyribosomes and poly(A)-binding protein (PABP), a key regulator of mRNA translation. The assembly of ATX2 with polyribosomes is mediated independently by two distinct evolutionarily conserved regions of ATX2: an N-terminal Lsm/Lsm-associated domain (LsmAD), found in proteins that function in nuclear RNA processing and mRNA decay, and a PAM2 motif, found in proteins that interact physically with PABP. We further show that the PAM2 motif mediates a physical interaction of ATX2 with PABP in addition to promoting ATX2 assembly with polyribosomes. Our results suggest a model in which ATX2 binds mRNA directly through its Lsm/LsmAD domain and indirectly via binding PABP that is itself directly bound to mRNA. These findings, coupled with work on other ataxin-2 family members, suggest that ATX2 plays a direct role in translational regulation. Our results raise the possibility that polyglutamine expansions within ataxin-2 cause neurodegeneration by interfering with the translational regulation of particular mRNAs.
Collapse
Affiliation(s)
- Terrence F Satterfield
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195-7730, USA
| | | |
Collapse
|
46
|
Gallas MR, Dienhart MK, Stuart RA, Long RM. Characterization of Mmp37p, a Saccharomyces cerevisiae mitochondrial matrix protein with a role in mitochondrial protein import. Mol Biol Cell 2006; 17:4051-62. [PMID: 16790493 PMCID: PMC1556384 DOI: 10.1091/mbc.e06-04-0366] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many mitochondrial proteins are encoded by nuclear genes and after translation in the cytoplasm are imported via translocases in the outer and inner membranes, the TOM and TIM complexes, respectively. Here, we report the characterization of the mitochondrial protein, Mmp37p (YGR046w) and demonstrate its involvement in the process of protein import into mitochondria. Haploid cells deleted of MMP37 are viable but display a temperature-sensitive growth phenotype and are inviable in the absence of mitochondrial DNA. Mmp37p is located in the mitochondrial matrix where it is peripherally associated with the inner membrane. We show that Mmp37p has a role in the translocation of proteins across the mitochondrial inner membrane via the TIM23-PAM complex and further demonstrate that substrates containing a tightly folded domain in close proximity to their mitochondrial targeting sequences display a particular dependency on Mmp37p for mitochondrial import. Prior unfolding of the preprotein, or extension of the region between the targeting signal and the tightly folded domain, relieves their dependency for Mmp37p. Furthermore, evidence is presented to show that Mmp37 may affect the assembly state of the TIM23 complex. On the basis of these findings, we hypothesize that the presence of Mmp37p enhances the early stages of the TIM23 matrix import pathway to ensure engagement of incoming preproteins with the mtHsp70p/PAM complex, a step that is necessary to drive the unfolding and complete translocation of the preprotein into the matrix.
Collapse
Affiliation(s)
- Michelle R. Gallas
- *Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Mary K. Dienhart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201
| | - Rosemary A. Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201
| | - Roy M. Long
- *Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| |
Collapse
|
47
|
Smith CP, Thorsness PE. Formation of an energized inner membrane in mitochondria with a gamma-deficient F1-ATPase. EUKARYOTIC CELL 2006; 4:2078-86. [PMID: 16339725 PMCID: PMC1317497 DOI: 10.1128/ec.4.12.2078-2086.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Eukaryotic cells require mitochondrial compartments for viability. However, the budding yeast Saccharomyces cerevisiae is able to survive when mitochondrial DNA suffers substantial deletions or is completely absent, so long as a sufficient mitochondrial inner membrane potential is generated. In the absence of functional mitochondrial DNA, and consequently a functional electron transport chain and F(1)F(o)-ATPase, the essential electrical potential is maintained by the electrogenic exchange of ATP(4-) for ADP(3-) through the adenine nucleotide translocator. An essential aspect of this electrogenic process is the conversion of ATP(4-) to ADP(3-) in the mitochondrial matrix, and the nuclear-encoded subunits of F(1)-ATPase are hypothesized to be required for this process in vivo. Deletion of ATP3, the structural gene for the gamma subunit of the F(1)-ATPase, causes yeast to quantitatively lose mitochondrial DNA and grow extremely slowly, presumably by interfering with the generation of an energized inner membrane. A spontaneous suppressor of this slow-growth phenotype was found to convert a conserved glycine to serine in the beta subunit of F(1)-ATPase (atp2-227). This mutation allowed substantial ATP hydrolysis by the F(1)-ATPase even in the absence of the gamma subunit, enabling yeast to generate a twofold greater inner membrane potential in response to ATP compared to mitochondria isolated from yeast lacking the gamma subunit and containing wild-type beta subunits. Analysis of the suppressing mutation by blue native polyacrylamide gel electrophoresis also revealed that the alpha(3)beta(3) heterohexamer can form in the absence of the gamma subunit.
Collapse
Affiliation(s)
- Christopher P Smith
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
48
|
Dunn CD, Lee MS, Spencer FA, Jensen RE. A genomewide screen for petite-negative yeast strains yields a new subunit of the i-AAA protease complex. Mol Biol Cell 2005; 17:213-26. [PMID: 16267274 PMCID: PMC1345660 DOI: 10.1091/mbc.e05-06-0585] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Unlike many other organisms, the yeast Saccharomyces cerevisiae can tolerate the loss of mitochondrial DNA (mtDNA). Although a few proteins have been identified that are required for yeast cell viability without mtDNA, the mechanism of mtDNA-independent growth is not completely understood. To probe the relationship between the mitochondrial genome and cell viability, we conducted a microarray-based, genomewide screen for mitochondrial DNA-dependent yeast mutants. Among the several genes that we discovered is MGR1, which encodes a novel subunit of the i-AAA protease complex located in the mitochondrial inner membrane. mgr1Delta mutants retain some i-AAA protease activity, yet mitochondria lacking Mgr1p contain a misassembled i-AAA protease and are defective for turnover of mitochondrial inner membrane proteins. Our results highlight the importance of the i-AAA complex and proteolysis at the inner membrane in cells lacking mitochondrial DNA.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
49
|
Stribinskis V, Heyman HC, Ellis SR, Steffen MC, Martin NC. Rpm2p, a component of yeast mitochondrial RNase P, acts as a transcriptional activator in the nucleus. Mol Cell Biol 2005; 25:6546-58. [PMID: 16024791 PMCID: PMC1190346 DOI: 10.1128/mcb.25.15.6546-6558.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rpm2p, a protein subunit of yeast mitochondrial RNase P, has another function that is essential in cells lacking the wild-type mitochondrial genome. This function does not require the mitochondrial leader sequence and appears to affect transcription of nuclear genes. Rpm2p expressed as a fusion protein with green fluorescent protein localizes to the nucleus and activates transcription from promoters containing lexA-binding sites when fused to a heterologous DNA binding domain, lexA. The transcriptional activation region of Rpm2p contains two leucine zippers that are required for transcriptional activation and are conserved in the distantly related yeast Candida glabrata. The presence of a mitochondrial leader sequence does not prevent a portion of Rpm2p from locating to the nucleus, and several observations suggest that the nuclear location and transcriptional activation ability of Rpm2p are physiologically significant. The ability of RPM2 alleles to suppress tom40-3, a temperature-sensitive mutant of a component of the mitochondrial import apparatus, correlates with their ability to transactivate the reporter genes with lexA-binding sites. In cells lacking mitochondrial DNA, Rpm2p influences the levels of TOM40, TOM6, TOM20, TOM22, and TOM37 mRNAs, which encode components of the mitochondrial import apparatus, but not that of TOM70 mRNA. It also affects HSP60 and HSP10 mRNAs that encode essential mitochondrial chaperones. Rpm2p also increases the level of Tom40p, as well as Hsp60p, but not Atp2p, suggesting that some, but not all, nucleus-encoded mitochondrial components are affected.
Collapse
Affiliation(s)
- Vilius Stribinskis
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
50
|
Kabir MA, Kaminska J, Segel GB, Bethlendy G, Lin P, Della Seta F, Blegen C, Swiderek KM, Zoładek T, Arndt KT, Sherman F. Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae. Yeast 2005; 22:219-39. [PMID: 15704212 DOI: 10.1002/yea.1210] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic chaperonins, the Cct complexes, are assembled into two rings, each of which is composed of a stoichiometric array of eight different subunits, which are denoted Cct1p-Cct8p. Overexpression of a single CCT gene in Saccharomyces cerevisiae causes an increase of the corresponding Cct subunit, but not of the Cct complex. Nevertheless, overexpression of certain Cct subunits, especially CCT6, suppresses a wide range of abnormal phenotypes, including those caused by the diverse types of conditional mutations tor2-21, lst8-2 and rsp5-9 and those caused by the concomitant overexpression of Sit4p and Sap155p. The examination of 73 altered forms of Cct6p revealed that the cct6-24 mutation, containing GDGTT --> AAAAA replacements of the conserved ATP-binding motif, was unable to suppress any of these traits, although the cct6-24 allele was completely functional for growth. These results provide evidence for functional differences among Cct subunits and for physiological properties of unassembled subunits. We suggest that the suppression is due to the competition of specific Cct subunits for activities that normally modify various cellular components. Furthermore, we also suggest that the Cct subunits can act as suppressors only in certain states, such as when associated with ATP.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|