1
|
Zhang H, Hu Z, Luo X, Wang Y, Wang Y, Liu T, Zhang Y, Chu L, Wang X, Zhen Y, Zhang J, Yu Y. ZmRop1 participates in maize defense response to the damage of Spodoptera frugiperda larvae through mediating ROS and soluble phenol production. PLANT DIRECT 2022; 6:e468. [PMID: 36540415 PMCID: PMC9751866 DOI: 10.1002/pld3.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
As plant-specific molecular switches, Rho-like GTPases (Rops) are vital for plant survival in response to biotic and abiotic stresses. However, their roles in plant defense response to phytophagous insect's damage are largely unknown. In this study, the expression levels of nine maize RAC family genes were analyzed after fall armyworm (FAW) larvae infestation. Among the analyzed genes, ZmRop1 was specifically and highly expressed, and its role in maize response to FAW larvae damage was studied. The results showed that upon FAW larvae infestation, salicylic acid and methyl jasmonate treatment ZmRop1 gene transcripts were all down-regulated. However, upon mechanical injury, the expression level of ZmRop1 was up-regulated. Overexpression of ZmRop1 gene in maize plants could improve maize plant resistance to FAW larvae damage. Conversely, silencing of ZmRop1 increased maize plant susceptibility to FAW larvae damage. The analysis of the potential anti-herbivore metabolites, showed that ZmRop1 promoted the enzyme activities of catalase, peroxidase and the expression levels of ZmCAT, ZmPOD, ZmRBOHA and ZmRBOHB, thereby enhancing the reactive oxygen species (ROS) production, including the content of O2- and H2O2. In addition, overexpression or silencing of ZmRop1 could have influence on the content of the total soluble phenol through mediating the activity of polyphenol oxidase. In summary, the results illuminated our understanding of how ZmRop1 participate in maize defense response to FAW larvae damage as a positive regulator through mediating ROS production and can be used as a reference for the green prevention and control of FAW larvae.
Collapse
Affiliation(s)
- Haoran Zhang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Zongwei Hu
- College of AgricultureYangtze UniversityJingzhouChina
| | - Xincheng Luo
- College of Life SciencesYangtze UniversityJingzhouChina
| | - Yuxue Wang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yi Wang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Ting Liu
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yi Zhang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Longyan Chu
- College of AgricultureYangtze UniversityJingzhouChina
| | | | - Yangya Zhen
- College of Life SciencesYangtze UniversityJingzhouChina
| | - Jianmin Zhang
- College of AgricultureYangtze UniversityJingzhouChina
| | - Yonghao Yu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningChina
| |
Collapse
|
2
|
Kou X, Cao P, He Q, Wang P, Zhang S, Wu J. PbrROP1/2-elicited imbalance of cellulose deposition is mediated by a CrRLK1L-ROPGEF module in the pollen tube of Pyrus. HORTICULTURE RESEARCH 2022; 9:uhab034. [PMID: 35043175 PMCID: PMC8824538 DOI: 10.1093/hr/uhab034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/11/2021] [Accepted: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Pollen tube growth is critical for the sexual reproduction of flowering plants. Catharanthus roseus receptor-like kinases (CrRLK1L) play an important role in plant sexual reproduction, pollen tube growth, and male and female gametophyte recognition. Here, we identified a CrRLK1L protein in pear (Pyrus bretschneideri), PbrCrRLK1L13, which is necessary for normal tip growth of pollen tube. When PbrCrRLK1L13 was knocked down, the pollen tube grew faster. Interaction analysis showed that the kinase domain of PbrCrRLK1L13 interacted with the C-terminal region of PbrGEF8, and PbrCrRLK1L13 activated the phosphorylation of PbrGEF8 in vitro. Furthermore, PbrROP1 and PbrROP2 were the downstream targets of PbrCrRLK1L13-PbrGEF8. When we knocked down the expression of PbrCrRLK1L13, PbrGEF8 or PbrROP1/2, the balance of cellulose deposition in the pollen tube wall was disrupted. Considering these factors, we proposed a model for a signaling event regulating pear pollen tube growth. During pear pollen tube elongation, PbrCrRLK1L13 acted as a surface regulator of the PbrROP1 and PbrROP2 signaling pathway via PbrGEF8 to affect the balance of cellulose deposition and regulate pear pollen tube growth.
Collapse
Affiliation(s)
- Xiaobing Kou
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Peng Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Qianke He
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Peng Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| | - Juyou Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, No 6. Tongwei Road, Nanjing, 210095, China
| |
Collapse
|
3
|
Warman C, Sullivan CM, Preece J, Buchanan ME, Vejlupkova Z, Jaiswal P, Fowler JE. A cost-effective maize ear phenotyping platform enables rapid categorization and quantification of kernels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:566-579. [PMID: 33476427 DOI: 10.1111/tpj.15166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
High-throughput phenotyping systems are powerful, dramatically changing our ability to document, measure, and detect biological phenomena. Here, we describe a cost-effective combination of a custom-built imaging platform and deep-learning-based computer vision pipeline. A minimal version of the maize (Zea mays) ear scanner was built with low-cost and readily available parts. The scanner rotates a maize ear while a digital camera captures a video of the surface of the ear, which is then digitally flattened into a two-dimensional projection. Segregating GFP and anthocyanin kernel phenotypes are clearly distinguishable in ear projections and can be manually annotated and analyzed using image analysis software. Increased throughput was attained by designing and implementing an automated kernel counting system using transfer learning and a deep learning object detection model. The computer vision model was able to rapidly assess over 390 000 kernels, identifying male-specific transmission defects across a wide range of GFP-marked mutant alleles. This includes a previously undescribed defect putatively associated with mutation of Zm00001d002824, a gene predicted to encode a vacuolar processing enzyme. Thus, by using this system, the quantification of transmission data and other ear and kernel phenotypes can be accelerated and scaled to generate large datasets for robust analyses.
Collapse
Affiliation(s)
- Cedar Warman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Christopher M Sullivan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Justin Preece
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michaela E Buchanan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Zuzana Vejlupkova
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Pankaj Jaiswal
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - John E Fowler
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
4
|
Warman C, Sullivan CM, Preece J, Buchanan ME, Vejlupkova Z, Jaiswal P, Fowler JE. A cost-effective maize ear phenotyping platform enables rapid categorization and quantification of kernels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:566-579. [PMID: 33476427 DOI: 10.1101/2020.07.12.199000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 05/24/2023]
Abstract
High-throughput phenotyping systems are powerful, dramatically changing our ability to document, measure, and detect biological phenomena. Here, we describe a cost-effective combination of a custom-built imaging platform and deep-learning-based computer vision pipeline. A minimal version of the maize (Zea mays) ear scanner was built with low-cost and readily available parts. The scanner rotates a maize ear while a digital camera captures a video of the surface of the ear, which is then digitally flattened into a two-dimensional projection. Segregating GFP and anthocyanin kernel phenotypes are clearly distinguishable in ear projections and can be manually annotated and analyzed using image analysis software. Increased throughput was attained by designing and implementing an automated kernel counting system using transfer learning and a deep learning object detection model. The computer vision model was able to rapidly assess over 390 000 kernels, identifying male-specific transmission defects across a wide range of GFP-marked mutant alleles. This includes a previously undescribed defect putatively associated with mutation of Zm00001d002824, a gene predicted to encode a vacuolar processing enzyme. Thus, by using this system, the quantification of transmission data and other ear and kernel phenotypes can be accelerated and scaled to generate large datasets for robust analyses.
Collapse
Affiliation(s)
- Cedar Warman
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Christopher M Sullivan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Justin Preece
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michaela E Buchanan
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| | - Zuzana Vejlupkova
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Pankaj Jaiswal
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - John E Fowler
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
5
|
Zhou L, Vejlupkova Z, Warman C, Fowler JE. A Maize Male Gametophyte-Specific Gene Encodes ZmLARP6c1, a Potential RNA-Binding Protein Required for Competitive Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:635244. [PMID: 33719310 PMCID: PMC7947365 DOI: 10.3389/fpls.2021.635244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Members of the La-related protein family (LARPs) contain a conserved La module, which has been associated with RNA-binding activity. Expression of the maize gene GRMZM2G323499/Zm00001d018613, a member of the LARP family, is highly specific to pollen, based on both transcriptomic and proteomic assays. This suggests a pollen-specific RNA regulatory function for the protein, designated ZmLARP6c1 based on sequence similarity to the LARP6 subfamily in Arabidopsis. To test this hypothesis, a Ds-GFP transposable element insertion in the ZmLarp6c1 gene (tdsgR82C05) was obtained from the Dooner/Du mutant collection. Sequencing confirmed that the Ds-GFP insertion is in an exon, and thus likely interferes with ZmLARP6c1 function. Tracking inheritance of the insertion via its endosperm-expressed GFP indicated that the mutation was associated with reduced transmission from a heterozygous plant when crossed as a male (ranging from 0.5 to 26.5% transmission), but not as a female. Furthermore, this transmission defect was significantly alleviated when less pollen was applied to the silk, reducing competition between mutant and wild-type pollen. Pollen grain diameter measurements and nuclei counts showed no significant differences between wild-type and mutant pollen. However, in vitro, mutant pollen tubes were significantly shorter than those from sibling wild-type plants, and also displayed altered germination dynamics. These results are consistent with the idea that ZmLARP6c1 provides an important regulatory function during the highly competitive progamic phase of male gametophyte development following arrival of the pollen grain on the silk. The conditional, competitive nature of the Zmlarp6c1::Ds male sterility phenotype (i.e., reduced ability to produce progeny seed) points toward new possibilities for genetic control of parentage in crop production.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Cedar Warman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Castorina G, Persico M, Zilio M, Sangiorgio S, Carabelli L, Consonni G. The maize lilliputian1 (lil1) gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response. ANNALS OF BOTANY 2018; 122:227-238. [PMID: 29771294 PMCID: PMC6070094 DOI: 10.1093/aob/mcy047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Brassinosteroids (BRs) are plant hormones involved in many developmental processes as well as in plant-environment interactions. Their role was investigated in this study through the analysis of lilliputian1-1 (lil1-1), a dwarf mutant impaired in BR biosynthesis in maize (Zea mays). METHODS We isolated lil1-1 through transposon tagging in maize. The action of lil1 was investigated through morphological and genetic analysis. Moreover, by comparing lil1-1 mutant and wild-type individuals grown under drought stress, the effect of BR reduction on the response to drought stress was examined. KEY RESULTS lil1-1 is a novel allele of the brassinosteroid-deficient dwarf1 (brd1) gene, encoding a brassinosteroid C-6 oxidase. We show in this study that lil1 is epistatic to nana plant1 (na1), a BR gene involved in earlier steps of the pathway. The lill-1 mutation causes alteration in the root gravitropic response, leaf epidermal cell density, epicuticular wax deposition and seedling adaptation to water scarcity conditions. CONCLUSIONS Lack of active BR molecules in maize causes a pleiotropic effect on plant development and improves seedling tolerance of drought. BR-deficient maize mutants can thus be instrumental in unravelling novel mechanisms on which plant adaptations to abiotic stress are based.
Collapse
Affiliation(s)
- Giulia Castorina
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Martina Persico
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Massimo Zilio
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Stefano Sangiorgio
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Laura Carabelli
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Gabriella Consonni
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), Università degli Studi di Milano, Via Celoria, Milan, Italy
- For correspondence. E-mail
| |
Collapse
|
7
|
Yu Y, Song J, Tian X, Zhang H, Li L, Zhu H. Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. SCIENCE CHINA. LIFE SCIENCES 2018; 61:100-112. [PMID: 28795376 DOI: 10.1007/s11427-016-9107-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/02/2017] [Indexed: 11/25/2022]
Abstract
The pollen receptor kinases (PRK) are critical regulators of pollen tube growth. The Arabidopsis genome encodes eight PRK genes, of which six are highly expressed in pollen tubes. The potential functions of AtPRK1 through AtPRK5, but not of AtPRK6, in pollen growth were analyzed in tobacco. Herein, AtPRK6 was cloned, and its function was identified. AtPRK6 was expressed specifically in pollen tubes. A yeast two-hybrid screen of AtPRK6 against 14 Arabidopsis Rop guanine nucleotide exchange factors (RopGEFs) showed that AtPRK6 interacted with AtRopGEF8 and AtRopGEF12. These interactions were confirmed in Arabidopsis mesophyll protoplasts. The interactions between AtPRK6 and AtRopGEF8/12 were mediated by the C-termini of AtRopGEF8/12 and by the juxtamembrane and kinase domain of AtPRK6, but were not dependent on the kinase activity. In addition, transient overexpression of AtPRK6::GFP in Arabidopsis protoplasts revealed that AtPRK6 was localized to the plasma membrane. Tobacco pollen tubes overexpressing AtPRK6 exhibited shorter tubes with enlarged tips. This depolarized tube growth required the kinase domain of AtPRK6 and was not dependent on kinase activity. Taken together, the results show that AtPRK6, through its juxtamembrane and kinase domains (KD), interacts with AtRopGEF8/12 and plays crucial roles in polarized growth of pollen tubes.
Collapse
Affiliation(s)
- Yuexuan Yu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Xiaohui Tian
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Haiwen Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Huifen Zhu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
8
|
Competitive Ability of Maize Pollen Grains Requires Paralogous Serine Threonine Protein Kinases STK1 and STK2. Genetics 2017; 207:1361-1370. [PMID: 28986443 DOI: 10.1534/genetics.117.300358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
serine threonine kinase1 (stk1) and serine threonine kinase2 (stk2) are closely related maize paralogous genes predicted to encode serine/threonine protein kinases. Pollen mutated in stk1 or stk2 competes poorly with normal pollen, pointing to a defect in pollen tube germination or growth. Both genes are expressed in pollen, but not in most other tissues. In germination media, STK1 and STK2 fluorescent fusion proteins localize to the plasma membrane of the vegetative cell. RNA-seq experiments identified 534 differentially expressed genes in stk1 mutant pollen relative to wild type. Gene ontology (GO) molecular functional analysis uncovered several differentially expressed genes with putative ribosome initiation and elongation functions, suggesting that stk1 might affect ribosome function. Of the two paralogs, stk1 may play a more important role in pollen development than stk2, as stk2 mutations have a smaller pollen transmission effect. However, stk2 does act as an enhancer of stk1 because the double mutant combination is only infrequently pollen-transmitted in double heterozygotes. We conclude that the stk paralogs play an essential role in pollen development.
Collapse
|
9
|
Sangiorgio S, Carabelli L, Gabotti D, Manzotti PS, Persico M, Consonni G, Gavazzi G. A mutational approach for the detection of genetic factors affecting seed size in maize. PLANT REPRODUCTION 2016; 29:301-310. [PMID: 27858171 DOI: 10.1007/s00497-016-0294-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Genes influencing seed size. The designation emp (empty pericarp) refers to a group of defective kernel mutants that exhibit a drastic reduction in endosperm tissue production. They allow the isolation of genes controlling seed development and affecting seed size. Nine independently isolated emp mutants have been analyzed in this study and in all cases longitudinal sections of mature seeds revealed the absence of morphogenesis in the embryo proper, an observation that correlates with their failure to germinate. Complementation tests with the nine emp mutants, crossed inter se in all pairwise combinations, identified complementing and non-complementing pairs in the F1 progenies. Data were then validated in the F2/F3 generations. Mutant chromosomal location was also established. Overall our study has identified two novel emp genes and a novel allele at the previously identified emp4 gene. The introgression of single emp mutants in a different genetic background revealed the existence of a cryptic genetic variation (CGV) recognizable as a variable increase in the endosperm tissue. The unmasking of CGV by introducing single mutants in different genetic backgrounds is the result of the interaction of the emp mutants with a suppressor that has no obvious phenotype of its own and is present in the genetic background of the inbred lines into which the emp mutants were transferred. On the basis of these results, emp mutants could be used as tools for the detection of genetic factors that enhance the amount of endosperm tissue in the maize kernel and which could thus become valuable targets to exploit in future breeding programs.
Collapse
Affiliation(s)
- Stefano Sangiorgio
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Laura Carabelli
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Damiano Gabotti
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Priscilla Sofia Manzotti
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Martina Persico
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| | - Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy.
| | - Giuseppe Gavazzi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria, 2, 20133, Milan, Italy
| |
Collapse
|
10
|
Chao Q, Gao ZF, Wang YF, Li Z, Huang XH, Wang YC, Mei YC, Zhao BG, Li L, Jiang YB, Wang BC. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins. PLANT MOLECULAR BIOLOGY 2016; 91:287-304. [PMID: 26969016 DOI: 10.1007/s11103-016-0466-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.
Collapse
Affiliation(s)
- Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Yue-Feng Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zhe Li
- The State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xia-He Huang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chun Wang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying-Chang Mei
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Liang Li
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yu-Bo Jiang
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
11
|
McCallum B, Chang SM. Pollen competition in style: Effects of pollen size on siring success in the hermaphroditic common morning glory, Ipomoea purpurea. AMERICAN JOURNAL OF BOTANY 2016; 103:460-70. [PMID: 26905086 DOI: 10.3732/ajb.1500211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/12/2015] [Indexed: 05/16/2023]
Abstract
PREMISE OF THE STUDY Pollen size varies greatly among flowering plant species and has been shown to influence the delivery of sperm cells to the eggs. Relatively little is known, however, about the functional significance of within-species genetic variation in pollen size. This study tests whether pollen size influences the relative siring success of a pollen donor during in vivo pollen competition experiments. METHODS We used two groups of Ipomoea purpurea plants genetically divergent in their pollen sizes and applied equal number of pollen grains from one large-pollen and one small-pollen donor onto the same stigma. Using microsatellite genetic markers, we identified the pollen parent of each of the resulting progeny to determine the relative siring success of the competing donors. Competitions between donors of equal-sized pollen served as a control. KEY RESULTS Differences in pollen size significantly affected the relative siring success of a pollen donor; larger-grained individuals outcompeted smaller-grained competitors but not equal-sized competitors. Relative siring success, however, sometimes varied across different pollen recipients. CONCLUSIONS Pollen size can influence the relative siring success of different individuals competing on the same stigma during postpollination processes. However, other factors, such as pollen-pistil interaction and environmental conditions, are likely to influence these competitions as well.
Collapse
Affiliation(s)
- Britnie McCallum
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA
| | - Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA
| |
Collapse
|
12
|
Feng QN, Kang H, Song SJ, Ge FR, Zhang YL, Li E, Li S, Zhang Y. Arabidopsis RhoGDIs Are Critical for Cellular Homeostasis of Pollen Tubes. PLANT PHYSIOLOGY 2016; 170:841-56. [PMID: 26662604 PMCID: PMC4734571 DOI: 10.1104/pp.15.01600] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 05/19/2023]
Abstract
Rhos of plants (ROPs) play a key role in plant cell morphogenesis, especially in tip-growing pollen tubes and root hairs, by regulating an array of intracellular activities such as dynamic polymerization of actin microfilaments. ROPs are regulated by guanine nucleotide exchange factors (RopGEFs), GTPase activating proteins (RopGAPs), and guanine nucleotide dissociation inhibitors (RhoGDIs). RopGEFs and RopGAPs play evolutionarily conserved function in ROP signaling. By contrast, although plant RhoGDIs regulate the membrane extraction and cytoplasmic sequestration of ROPs, less clear are their positive roles in ROP signaling as do their yeast and metazoan counterparts. We report here that functional loss of all three Arabidopsis (Arabidopsis thaliana) GDIs (tri-gdi) significantly reduced male transmission due to impaired pollen tube growth in vitro and in vivo. We demonstrate that ROPs were ectopically activated at the lateral plasma membrane of the tri-gdi pollen tubes. However, total ROPs were reduced posttranslationally in the tri-gdi mutant, resulting in overall dampened ROP signaling. Indeed, a ROP5 mutant that was unable to interact with GDIs failed to induce growth, indicating the importance of the ROP-GDI interaction for ROP signaling. Functional loss of GDIs impaired cellular homeostasis, resulting in excess apical accumulation of wall components in pollen tubes, similar to that resulting from ectopic phosphatidylinositol 4,5-bisphosphate signaling. GDIs and phosphatidylinositol 4,5-bisphosphate may antagonistically coordinate to maintain cellular homeostasis during pollen tube growth. Our results thus demonstrate a more complex role of GDIs in ROP-mediated pollen tube growth.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Fu-Rong Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu-Ling Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
13
|
Nagawa S, Xu T, Yang Z. RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 2014; 1:78-88. [PMID: 21686259 DOI: 10.4161/sgtp.1.2.14544] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | | | |
Collapse
|
14
|
Chettoor AM, Givan SA, Cole RA, Coker CT, Unger-Wallace E, Vejlupkova Z, Vollbrecht E, Fowler JE, Evans MM. Discovery of novel transcripts and gametophytic functions via RNA-seq analysis of maize gametophytic transcriptomes. Genome Biol 2014; 15:414. [PMID: 25084966 PMCID: PMC4309534 DOI: 10.1186/s13059-014-0414-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Plant gametophytes play central roles in sexual reproduction. A hallmark of the plant life cycle is that gene expression is required in the haploid gametophytes. Consequently, many mutant phenotypes are expressed in this phase. RESULTS We perform a quantitative RNA-seq analysis of embryo sacs, comparator ovules with the embryo sacs removed, mature pollen, and seedlings to assist the identification of gametophyte functions in maize. Expression levels were determined for annotated genes in both gametophytes, and novel transcripts were identified from de novo assembly of RNA-seq reads. Transposon-related transcripts are present in high levels in both gametophytes, suggesting a connection between gamete production and transposon expression in maize not previously identified in any female gametophytes. Two classes of small signaling proteins and several transcription factor gene families are enriched in gametophyte transcriptomes. Expression patterns of maize genes with duplicates in subgenome 1 and subgenome 2 indicate that pollen-expressed genes in subgenome 2 are retained at a higher rate than subgenome 2 genes with other expression patterns. Analysis of available insertion mutant collections shows a statistically significant deficit in insertions in gametophyte-expressed genes. CONCLUSIONS This analysis, the first RNA-seq study to compare both gametophytes in a monocot, identifies maize gametophyte functions, gametophyte expression of transposon-related sequences, and unannotated, novel transcripts. Reduced recovery of mutations in gametophyte-expressed genes is supporting evidence for their function in the gametophytes. Expression patterns of extant, duplicated maize genes reveals that selective pressures based on male gametophytic function have likely had a disproportionate effect on plant genomes.
Collapse
|
15
|
Gabotti D, Caporali E, Manzotti P, Persico M, Vigani G, Consonni G. The maize pentatricopeptide repeat gene empty pericarp4 (emp4) is required for proper cellular development in vegetative tissues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:25-35. [PMID: 24767112 DOI: 10.1016/j.plantsci.2014.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light.
Collapse
Affiliation(s)
- Damiano Gabotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano - Via Celoria 26, 20133 Milano, Italy
| | - Priscilla Manzotti
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Martina Persico
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gianpiero Vigani
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy
| | - Gabriella Consonni
- DISAA - Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia Università degli Studi di Milano - Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
16
|
Cao Y, Shi Y, Li Y, Cheng Y, Zhou T, Fan Z. Possible involvement of maize Rop1 in the defence responses of plants to viral infection. MOLECULAR PLANT PATHOLOGY 2012; 13:732-43. [PMID: 22332840 PMCID: PMC6638897 DOI: 10.1111/j.1364-3703.2011.00782.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The expression of host genes can be altered during the process of viral infection. To investigate the viral infection-induced up-regulated gene expression changes of maize at different time intervals post-inoculation with Sugarcane mosaic virus (SCMV), a suppression subtractive hybridization cDNA library was constructed. A total of 454 cDNA clones were identified to be viral infection-induced up-regulated genes. The influence of Rop1 on the infection of maize by SCMV was investigated. The results showed that transient silencing of the ZmRop1 gene through virus-induced gene silencing enhanced the accumulation and systemic infection of SCMV and another potyvirus (Pennisetum mosaic virus) in maize plants, whereas transient over-expression of ZmRop1 in maize protoplasts reduced SCMV accumulation. Furthermore, it was demonstrated that the heterologous expression of ZmRop1 impaired Potato virus X infection in Nicotiana benthamiana plants. These data suggest that ZmRop1 may play a role in plant defence responses to viral infection.
Collapse
Affiliation(s)
- Yanyong Cao
- State Key Laboratory of Agro-biotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | |
Collapse
|
17
|
Humphries JA, Vejlupkova Z, Luo A, Meeley RB, Sylvester AW, Fowler JE, Smith LG. ROP GTPases act with the receptor-like protein PAN1 to polarize asymmetric cell division in maize. THE PLANT CELL 2011; 23:2273-84. [PMID: 21653193 PMCID: PMC3160025 DOI: 10.1105/tpc.111.085597] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/09/2011] [Accepted: 05/21/2011] [Indexed: 05/18/2023]
Abstract
Plant Rho family GTPases (ROPs) have been investigated primarily for their functions in polarized cell growth. We previously showed that the maize (Zea mays) Leu-rich repeat receptor-like protein PANGLOSS1 (PAN1) promotes the polarization of asymmetric subsidiary mother cell (SMC) divisions during stomatal development. Here, we show that maize Type I ROPs 2 and 9 function together with PAN1 in this process. Partial loss of ROP2/9 function causes a weak SMC division polarity phenotype and strongly enhances this phenotype in pan1 mutants. Like PAN1, ROPs accumulate in an asymmetric manner in SMCs. Overexpression of yellow fluorescent protein-ROP2 is associated with its delocalization in SMCs and with aberrantly oriented SMC divisions. Polarized localization of ROPs depends on PAN1, but PAN1 localization is insensitive to depletion and depolarization of ROP. Membrane-associated Type I ROPs display increased nonionic detergent solubility in pan1 mutants, suggesting a role for PAN1 in membrane partitioning of ROPs. Finally, endogenous PAN1 and ROP proteins are physically associated with each other in maize tissue extracts, as demonstrated by reciprocal coimmunoprecipitation experiments. This study demonstrates that ROPs play a key role in polarization of plant cell division and cell growth and reveals a role for a receptor-like protein in spatial localization of ROPs.
Collapse
Affiliation(s)
- John A Humphries
- University of California-San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Analysis of stunter1, a maize mutant with reduced gametophyte size and maternal effects on seed development. Genetics 2011; 187:1085-97. [PMID: 21270392 DOI: 10.1534/genetics.110.125286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many higher eukaryotes have evolved strategies for the maternal control of growth and development of their offspring. In higher plants this is achieved in part by postmeiotic gene activity controlling the development of the haploid female gametophyte. stunter1 (stt1) is a novel, recessive, maternal effect mutant in maize that displays viable, miniature kernels. Maternal inheritance of stt1 results in seeds with reduced but otherwise normal endosperms and embryos. The stt1 mutation displays reduced transmission through the male and female parents and causes significant changes in the sizes of both male and female gametophytes. stt1 pollen grains are smaller than wild type, have reduced germination efficiency, and reduced pollen tube growth. stt1 embryo sacs have smaller central cells and abnormal antipodal cells that are larger, more vacuolated, and fewer in number than wild type. Embryos and endosperms produced by fertilization of stt1 embryo sacs develop and grow more slowly than wild type. The data suggest that the morphology of mutant embryo sacs influences endosperm development, leading to the production of miniature kernels in stt1. Analysis of seeds carrying a mutant maternal allele of stt1 over a deletion of the paternal allele demonstrates that both parental alleles are active after fertilization in both the endosperm and embryo. This analysis also indicates that embryo development until the globular stage in maize can proceed without endosperm development and is likely supported directly by the diploid mother plant.
Collapse
|
19
|
Zou Y, Aggarwal M, Zheng WG, Wu HM, Cheung AY. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil. AOB PLANTS 2011; 2011:plr017. [PMID: 22476487 PMCID: PMC3158858 DOI: 10.1093/aobpla/plr017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/26/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. SCOPE We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). SIGNIFICANCE The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber.
Collapse
Affiliation(s)
- Yanjiao Zou
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Mini Aggarwal
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Wen-Guang Zheng
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
- Molecular Cell Biology Program, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
- Molecular Cell Biology Program, University of Massachusetts, Lederle Graduate Tower, Amherst, MA 01003, USA
- Corresponding author's e-mail address:
| |
Collapse
|
20
|
|
21
|
Burkhardt A, Internicola A, Bernasconi G. Effects of pollination timing on seed paternity and seed mass in Silene latifolia (Caryophyllaceae). ANNALS OF BOTANY 2009; 104:767-73. [PMID: 19567418 PMCID: PMC2729624 DOI: 10.1093/aob/mcp154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Competition among genetically different pollen donors within one recipient flower may play an important role in plant populations, increasing offspring genetic diversity and vigour. However, under field conditions stochastic pollen arrival times may result in disproportionate fertilization success of the first-arriving pollen, even to the detriment of the recipient plant's and offspring fitness. It is therefore critical to evaluate the relative importance of arrival times of pollen from different donors in determining siring success. METHODS Hand pollinations and genetic markers were used to investigate experimentally the effect of pollination timing on seed paternity, seed mass and stigmatic wilting in the the dioecious plant Silene latifolia. In this species, high prevalence of multiply-sired fruits in natural populations suggests that competition among different donors may often take place (at fertilization or during seed development); however, the role of variation due to pollen arrival times is not known. KEY RESULTS First-arriving pollen sired significantly more seeds than later-arriving pollen. This advantage was expressed already before the first pollen tubes could reach the ovary. Simultaneously with pollen tube growth, the stigmatic papillae wilted visibly. Individual seeds were heavier in fruits where one donor sired most seeds than in fruits where both donors had more even paternity shares. CONCLUSIONS In field populations of S. latifolia, fruits are often multiply-sired. Because later-arriving pollen had decreased chances of fertilizing the ovules, this implies that open-pollinated flowers often benefit from pollen carry-over or pollinator visits within short time intervals, which may contribute to increase offspring genetic diversity and fitness.
Collapse
|
22
|
Berkowitz O, Jost R, Pollmann S, Masle J. Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. THE PLANT CELL 2008; 20:3430-47. [PMID: 19060111 PMCID: PMC2630444 DOI: 10.1105/tpc.108.061010] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/30/2008] [Accepted: 11/12/2008] [Indexed: 05/17/2023]
Abstract
The translationally controlled tumor protein (TCTP) is an important component of the TOR (target of rapamycin) signaling pathway, the major regulator of cell growth in animals and fungi. TCTP acts as the guanine nucleotide exchange factor of the Ras GTPase Rheb that controls TOR activity in Drosophila melanogaster. We therefore examined the role of Arabidopsis thaliana TCTP in planta. Plant TCTPs exhibit distinct sequence differences from nonplant homologs but share the key GTPase binding surface. Green fluorescent protein reporter lines show that Arabidopsis TCTP is expressed throughout plant tissues and developmental stages with increased expression in meristematic and expanding cells. Knockout of TCTP leads to a male gametophytic phenotype with normal pollen formation and germination but impaired pollen tube growth. Silencing of TCTP by RNA interference slows vegetative growth; leaf expansion is reduced because of smaller cell size, lateral root formation is reduced, and root hair development is impaired. Furthermore, these lines show decreased sensitivity to an exogenously applied auxin analog and have elevated levels of endogenous auxin. These results identify TCTP as an important regulator of growth in plants and imply a function of plant TCTP as a mediator of TOR activity similar to that known in nonplant systems.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Environmental Biology Group, Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
23
|
Yuksel B, Memon AR. Comparative phylogenetic analysis of small GTP-binding genes of model legume plants and assessment of their roles in root nodules. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3831-44. [PMID: 18849296 PMCID: PMC2576638 DOI: 10.1093/jxb/ern223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/17/2008] [Accepted: 08/06/2008] [Indexed: 05/03/2023]
Abstract
Small GTP-binding genes play an essential regulatory role in a multitude of cellular processes such as vesicle-mediated intracellular trafficking, signal transduction, cytoskeletal organization, and cell division in plants and animals. Medicago truncatula and Lotus japonicus are important model plants for studying legume-specific biological processes such as nodulation. The publicly available online resources for these plants from websites such as http://www.ncbi.nih.gov, http://www.medicago.org, http://www.tigr.org, and related sites were searched to collect nucleotide sequences that encode GTP-binding protein homologues. A total of 460 small GTPase sequences from several legume species including Medicago and Lotus, Arabidopsis, human, and yeast were phyletically analysed to shed light on the evolution and functional characteristics of legume-specific homologues. One of the main emphases of this study was the elucidation of the possible involvement of some members of small GTPase homologues in the establishment and maintenance of symbiotic associations in root nodules of legumes. A high frequency of vesicle-mediated trafficking in nodules led to the idea of a probable subfunctionalization of some members of this family in legumes. As a result of the analyses, a group of 10 small GTPases that are likely to be mainly expressed in nodules was determined. The sequences determined as a result of this study could be used in more detailed molecular genetic analyses such as creation of RNA interference silencing mutants for further clarification of the role of GTPases in nodulation. This study will also assist in furthering our understanding of the evolutionary history of small GTPases in legume species.
Collapse
Affiliation(s)
- Bayram Yuksel
- Plant Molecular Biology Laboratory, Genetic Engineering and Biotechnology Institute, Marmara Research Center, TUBITAK, PO Box 21, 41400, Gebze, Kocaeli, Turkey.
| | | |
Collapse
|
24
|
Teixeira S, Burkhardt A, Bernasconi G. Genetic variation among females affects paternity in a dioecious plant. OIKOS 2008. [DOI: 10.1111/j.0030-1299.2008.16450.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Lee YJ, Szumlanski A, Nielsen E, Yang Z. Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 2008; 181:1155-68. [PMID: 18591430 PMCID: PMC2442199 DOI: 10.1083/jcb.200801086] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 06/02/2008] [Indexed: 01/09/2023] Open
Abstract
The dynamic activity of tip-localized filamentous actin (F-actin) in pollen tubes is controlled by counteracting RIC4 and RIC3 pathways downstream of the ROP1 guanosine triphosphatase promoting actin assembly and disassembly, respectively. We show here that ROP1 activation is required for both the polar accumulation and the exocytosis of vesicles at the plasma membrane apex. The apical accumulation of exocytic vesicles oscillated in phase with, but slightly behind, apical actin assembly and was enhanced by overexpression of RIC4. However, RIC4 overexpression inhibited exocytosis, and this inhibition could be suppressed by latrunculin B treatment or RIC3 overexpression. We conclude that RIC4-dependent actin assembly is required for polar vesicle accumulation, whereas RIC3-mediated actin disassembly is required for exocytosis. Thus ROP1-dependent F-actin dynamics control tip growth through spatiotemporal coordination of vesicle targeting and exocytosis.
Collapse
Affiliation(s)
- Yong Jik Lee
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
26
|
Cheung AY, Wu HM. Structural and signaling networks for the polar cell growth machinery in pollen tubes. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:547-72. [PMID: 18444907 DOI: 10.1146/annurev.arplant.59.032607.092921] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pollen tubes elongate within the pistil to transport sperms to the female gametophytes for fertilization. Pollen tubes grow at their tips through a rapid and polarized cell growth process. This tip growth process is supported by an elaborate and dynamic actin cytoskeleton and a highly active membrane trafficking system that together provide the driving force and secretory activities needed for growth. A polarized cytoplasm with an abundance of vesicles and tip-focused Ca(2+) and H(+) concentration gradients are important for the polar cell growth process. Apical membrane-located Rho GTPases regulate Ca(2+) concentration and actin dynamics in the cytoplasm and are crucial for maintaining pollen tube polarity. Pollen tube growth is marked by periods of rapid and slow growth phases. Activities that regulate and support this tip growth process also show oscillatory fluctuations. How these activities correlate with the rapid, polar, and oscillatory pollen tube growth process is discussed.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | |
Collapse
|
27
|
Pla M, La Paz JL, Peñas G, García N, Palaudelmàs M, Esteve T, Messeguer J, Melé E. Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study. Transgenic Res 2007; 15:219-28. [PMID: 16604462 DOI: 10.1007/s11248-005-4945-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 11/08/2005] [Indexed: 10/24/2022]
Abstract
Maize is one of the main crops worldwide and an increasing number of genetically modified (GM) maize varieties are cultivated and commercialized in many countries in parallel to conventional crops. Given the labeling rules established e.g. in the European Union and the necessary coexistence between GM and non-GM crops, it is important to determine the extent of pollen dissemination from transgenic maize to other cultivars under field conditions. The most widely used methods for quantitative detection of GMO are based on real-time PCR, which implies the results are expressed in genome percentages (in contrast to seed or grain percentages). Our objective was to assess the accuracy of real-time PCR based assays to accurately quantify the contents of transgenic grains in non-GM fields in comparison with the real cross-fertilization rate as determined by phenotypical analysis. We performed this study in a region where both GM and conventional maize are normally cultivated and used the predominant transgenic maize Mon810 in combination with a conventional maize variety which displays the characteristic of white grains (therefore allowing cross-pollination quantification as percentage of yellow grains). Our results indicated an excellent correlation between real-time PCR results and number of cross-fertilized grains at Mon810 levels of 0.1-10%. In contrast, Mon810 percentage estimated by weight of grains produced less accurate results. Finally, we present and discuss the pattern of pollen-mediated gene flow from GM to conventional maize in an example case under field conditions.
Collapse
Affiliation(s)
- Maria Pla
- Institut de Tecnologia Agroalimentària (INTEA), Universitat de Girona, Campus Montilivi, Escola Politècnica Superior (edif.1), Girona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jolivet C, Bernasconi G. Within/between population crosses reveal genetic basis for siring success in Silene latifolia (Caryophyllaceae). J Evol Biol 2007; 20:1361-74. [PMID: 17584231 DOI: 10.1111/j.1420-9101.2007.01344.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Divergence at reproductive traits can generate barriers among populations, and may result from several mechanisms, including drift, local selection and co-adaptation between the sexes. Intersexual co-adaptation can arise through sexually antagonistic co-evolution, a timely hypothesis addressed in animals but, to our knowledge, not yet in flowering plants. We investigated whether male and female population of origin affected pollen competition success, offspring fitness and sex ratio in crosses within/between six genetically differentiated populations of the white campion, Silene latifolia. Each female was crossed with pollen from one focus male from the same population, and pollen from two focus males from two distinct populations, both as single-donor and two-donor crosses against a fixed tester male with a 2-h interpollination interval (n = 288 crosses). We analysed paternity with microsatellite DNA. Male populations of origin significantly differed for siring success and in vitro pollen germination rates. In vitro pollen germination rate was heritable. Siring success also depended on sex ratio in the female family of origin, but only in between-population crosses. In some female populations, two-donor crosses produced less female-biased sex ratios compared with single-donor crosses, yet in other female populations the reverse was true. Offspring sex ratio varied with donor number, depending on the female population. Within/between population crosses did not differ significantly in seed set or offspring fitness, nor were siring success and offspring fitness significantly correlated. Altogether this suggests reproductive divergence for traits affecting pollen competition in S. latifolia.
Collapse
Affiliation(s)
- C Jolivet
- Institute of Environmental Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
29
|
Chung T, Kim CS, Nguyen HN, Meeley RB, Larkins BA. The maize zmsmu2 gene encodes a putative RNA-splicing factor that affects protein synthesis and RNA processing during endosperm development. PLANT PHYSIOLOGY 2007; 144:821-35. [PMID: 17384163 PMCID: PMC1914153 DOI: 10.1104/pp.107.096214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We characterized two maize (Zea mays) mutants, zmsmu2-1 and zmsmu2-3, that result from insertion of a Mutator (Mu) transposable element in the first exon of a gene homologous to the nematode gene, smu-2, which is involved in RNA splicing. In addition to having a starchy endosperm with reduced levels of zein storage proteins, homozygous zmsmu2-1 mutants manifest a number of phenotypes, including defective meristem development. The zmsmu2 mutants have poor seedling viability and surviving plants are sterile. The gene encoding ZmSMU2 is expressed in the endosperm, embryo, and shoot apex, which explains the pleiotropic nature of the mutation. We found that proper expression of Zmsmu2 is required for efficient ribosomal RNA processing, ribosome biogenesis, and protein synthesis in developing endosperm. Based on the pleiotropic nature of the mutations and the known function of animal Zmsmu2 homologs, we propose a possible role for ZmSMU2 in the development of maize endosperm, as well as a mechanism by which misregulation of zmsmu2 causes the mutant phenotypes.
Collapse
Affiliation(s)
- Taijoon Chung
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
30
|
Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 2007; 17:249-63. [PMID: 17339883 DOI: 10.1038/cr.2007.7] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pollen germination on the surface of compatible stigmatic tissues is an essential step for plant fertilization. Here we report that the Arabidopsis mutant bcl1 is male sterile as a result of the failure of pollen germination. We show that the bcl1 mutant allele cannot be transmitted by male gametophytes and no homozygous bcl1 mutants were obtained. Analysis of pollen developmental stages indicates that the bcl1 mutation affects pollen germination but not pollen maturation. Molecular analysis demonstrates that the failure of pollen germination was caused by the disruption of AtBECLIN 1. AtBECLIN 1 is expressed predominantly in mature pollen and encodes a protein with significant homology to Beclin1/Atg6/Vps30 required for the processes of autophagy and vacuolar protein sorting (VPS) in yeast. We also show that AtBECLIN 1 is required for normal plant development, and that genes related to autophagy, VPS and the glycosylphosphatidylinositol anchor system, were affected by the deficiency of AtBECLIN 1.
Collapse
Affiliation(s)
- Genji Qin
- National Laboratory for Protein Engineering and Plant Genetic Engineering, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Valdivia ER, Wu Y, Li LC, Cosgrove DJ, Stephenson AG. A group-1 grass pollen allergen influences the outcome of pollen competition in maize. PLoS One 2007; 2:e154. [PMID: 17225858 PMCID: PMC1764715 DOI: 10.1371/journal.pone.0000154] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 12/19/2006] [Indexed: 11/17/2022] Open
Abstract
Worldwide, 400 million people suffer from hay fever and seasonal asthma. The major causative agents of these allergies are pollen specific proteins called the group-1 grass pollen allergens. Although details of their antigenicity have been studied for 40 years with an eye towards immunotherapy, their function in the plant has drawn scant attention. Zea m 1 constitutes a class of abundant grass pollen allergens coded for by several genes that loosen the walls of grass cells, including the maize stigma and style. We have examined the impact of a transposon insertion into one of these genes (EXPB1, the most abundant isoform of Zea m 1) on the production of Zea m 1 protein, pollen viability, and pollen tube growth, both in vitro and in vivo. We also examined the effect of the insertional mutation on the competitive ability of the pollen by experimentally varying the sizes of the pollen load deposited onto stigmas using pollen from heterozygous plants and then screening the progeny for the presence of the transposon using PCR. We found that the insertional mutation reduced the levels of Zea m 1 in maize pollen, but had no effect on pollen viability, in vitro pollen tube growth or the proportion of progeny sired when small pollen loads are deposited onto stigmas. However, when large pollen loads are deposited onto the stigmas, the transposon mutation is vastly underrepresented in the progeny, indicating that this major pollen allergen has a large effect on pollen tube growth rates in vivo, and plays an important role in determining the outcome of the pollen-pollen competition for access to the ovules. We propose that the extraordinary abundance (4% of the extractable protein in maize pollen) of this major pollen allergen is the result of selection for a trait that functions primarily in providing differential access to ovules.
Collapse
Affiliation(s)
- Elene R. Valdivia
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yajun Wu
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lian-Chao Li
- Proteomics and Mass Spectrometry Core Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel J. Cosgrove
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew G. Stephenson
- Department of Biology and The Plant Physiology Graduate Program, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Cole RA, Fowler JE. Polarized growth: maintaining focus on the tip. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:579-88. [PMID: 17010659 DOI: 10.1016/j.pbi.2006.09.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 09/19/2006] [Indexed: 05/04/2023]
Abstract
Tip growth, a spatially focused cell expansion, has been best characterized in two plant cell types: pollen tubes and root hairs. It has long been established that both cell types require three intracellular components for this process: a tip-high calcium gradient, a polarized actin cytoskeleton, and tip-directed vesicle trafficking. More recently, additional mechanistic parallels have been observed between the two cell types, including roles for ROP and Rab GTPase signaling, phosphoinositides, calcium-dependent protein kinases, and the exocyst. Uncovering pathways that control the three components is beginning to reveal a highly interconnected network, which we call the tip growth LENS (for localization enhancing network, self-sustaining), that coordinates the required cellular activities to allow regulated tip growth, and to maintain itself as the tip advances.
Collapse
Affiliation(s)
- Rex A Cole
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
33
|
Han MJ, Jung KH, Yi G, Lee DY, An G. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development. PLANT & CELL PHYSIOLOGY 2006; 47:1457-72. [PMID: 16990291 DOI: 10.1093/pcp/pcl013] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We isolated a pollen-preferential gene, RICE IMMATURE POLLEN 1 (RIP1), from a T-DNA insertional population of japonica rice that was trapped by a promoterless beta-glucuronidase (GUS) gene. Semi-quantitative reverse transcription-PCR (RT-PCR) analyses confirmed that the RIP1 transcript was abundant at the late stages of pollen development. Transgenic plants carrying a T-DNA insertion in the RIP1 gene displayed the phenotype of segregation distortion of the mutated rip1 gene. Moreover, rip1/rip1 homozygous progeny were not present. Reciprocal crosses between Rip1/rip1 heterozygous plants and the wild type showed that the rip1 allele could not be transmitted through the male. Microscopic analysis demonstrated that development in the rip1 pollen was delayed, starting at the early vacuolated stage. Close examination of that pollen by transmission electron microscopy also showed delayed formation of starch granules and the intine layer. In addition, development of the mitochondria, Golgi apparatus, lipid bodies, plastids and endoplasmic reticulum was deferred in the mutant pollen. Under in vitro conditions, germination of this mutant pollen did not occur, whereas the rate for wild-type pollen was >90%. These results indicate that RIP1 is necessary for pollen maturation and germination. This gene encodes a protein that shares significant homology with a group of proteins containing five WD40 repeat sequences. The green fluorescent protein (GFP)-RIP1 fusion protein is localized to the nucleus. Therefore, RIP1 is probably a nuclear protein that may form a functional complex with other proteins and carry out essential cellular and developmental roles during the late stage of pollen formation.
Collapse
Affiliation(s)
- Min-Jung Han
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Herrmann MM, Pinto S, Kluth J, Wienand U, Lorbiecke R. The PTI1-like kinase ZmPti1a from maize (Zea mays L.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC PLANT BIOLOGY 2006; 6:22. [PMID: 17022830 PMCID: PMC1609167 DOI: 10.1186/1471-2229-6-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 10/06/2006] [Indexed: 05/04/2023]
Abstract
BACKGROUND The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. RESULTS Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-beta-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. CONCLUSION ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen-sporophyte interactions and pathogen induced HR show certain similarities. For example, HR has been shown to be associated with cell wall reinforcement through callose deposition. Hence, it is hypothesized that Pti1 kinases from maize act as general components in evolutionary conserved signalling processes associated with callose, however during different developmental programs and in different tissue types.
Collapse
Affiliation(s)
- Markus M Herrmann
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sheena Pinto
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Jantjeline Kluth
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Udo Wienand
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - René Lorbiecke
- Biozentrum Klein-Flottbek und Botanischer Garten, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| |
Collapse
|
35
|
Gutiérrez-Marcos JF, Costa LM, Evans MMS. Maternal gametophytic baseless1 is required for development of the central cell and early endosperm patterning in maize (Zea mays). Genetics 2006; 174:317-29. [PMID: 16849604 PMCID: PMC1569813 DOI: 10.1534/genetics.106.059709] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In angiosperms, double fertilization of an egg cell and a central cell with two sperm cells results in the formation of a seed containing a diploid embryo and a triploid endosperm. The extent to which the embryo sac controls postfertilization events in the seed is unknown. The novel gametophytic maternal-effect maize mutation, baseless1 (bsl1) affects central cell development within the embryo sac, frequently by altering the position of the two polar nuclei. Despite this irregularity, fertilization is as efficient as in wild type. The spatial expression of basal endosperm-specific transcripts is altered in free-nuclear and cellular mutant endosperms. At later stages of seed development, bsl1 predominantly affects development of the basal endosperm transfer layer (BETL). When bsl1/+ diploid plants were pollinated by wild-type tetraploid plants, the BETL abnormalities observed in bsl1/bsl1/+/+ tetraploid endosperms were diverse and of variable severity. Moreover, the frequency of kernels with severely perturbed BETL development correlated with the percentage of severely affected bsl1 central cells. Therefore, BSL1 is likely required in the central cell before fertilization for correct BETL patterning to occur. These findings provide new genetic evidence that a maternal gametophytic component is necessary for correct endosperm patterning.
Collapse
|
36
|
Song XF, Yang CY, Liu J, Yang WC. RPA, a class II ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:966-76. [PMID: 16731582 PMCID: PMC1489917 DOI: 10.1104/pp.106.077818] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/12/2006] [Accepted: 05/12/2006] [Indexed: 05/09/2023]
Abstract
The polar growth of plant cells depends on the secretion of a large amount of membrane and cell wall materials at the growing tip to sustain rapid growth. Small GTP-binding proteins, such as Rho-related GTPases from plants and ADP-ribosylation factors (ARFs), have been shown to play important roles in polar growth via regulating intracellular membrane trafficking. To investigate the role of membrane trafficking in plant development, a Dissociation insertion line that disrupted a putative ARF GTPase-activating protein (ARFGAP) gene, AT2G35210, was identified in Arabidopsis (Arabidopsis thaliana). Phenotypic analysis showed that the mutant seedlings developed isotropically expanded, short, and branched root hairs. Pollen germination in vitro indicated that the pollen tube growth rate was slightly affected in the mutant. AT2G35210 is specifically expressed in roots, pollen grains, and pollen tubes; therefore, it is designated as ROOT AND POLLEN ARFGAP (RPA). RPA encodes a protein with an N-terminal ARFGAP domain. Subcellular localization experiments showed that RPA is localized at the Golgi complexes via its 79 C-terminal amino acids. We further showed that RPA possesses ARF GTPase-activating activity and specifically activates Arabidopsis ARF1 and ARF1-like protein U5 in vitro. Furthermore, RPA complemented Saccharomyces cerevisiae glo3Delta gcs1Delta double mutant, which suggested that RPA functions as an ARFGAP during vesicle transport between the Golgi and the endoplasmic reticulum. Together, we demonstrated that RPA plays a role in root hair and pollen tube growth, most likely through the regulation of Arabidopsis ARF1 and ARF1-like protein U5 activity.
Collapse
Affiliation(s)
- Xiu-Fen Song
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
37
|
Xu Z, Dooner HK. The maize aberrant pollen transmission 1 gene is a SABRE/KIP homolog required for pollen tube growth. Genetics 2006; 172:1251-61. [PMID: 16299389 PMCID: PMC1456223 DOI: 10.1534/genetics.105.050237] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 11/02/2005] [Indexed: 01/21/2023] Open
Abstract
Maize (Zea mays) pollen tubes grow in the styles at a rate of >1 microm/sec. We describe here a gene required to attain that striking rate. The aberrant pollen transmission 1 (apt1) gene of maize was identified by an Ac-tagged mutation that displayed a severe pollen transmission deficit in heterozygotes. Rare apt1 homozygotes can be recovered, aided by phenotypic selection for Ac homozygotes. Half of the pollen in heterozygotes and most of the pollen in homozygotes germinate short and twisted pollen tubes. The apt1 gene is 26 kb long, makes an 8.6-kb pollen-specific transcript spliced from 22 exons, and encodes a protein of 2607 amino acids. The APT1 protein is homologous to SABRE and KIP, Arabidopsis proteins of unknown function involved in the elongation of root cortex cells and pollen tubes, respectively. Subcellular localization analysis demonstrates that APT1 colocalizes with a Golgi protein marker in growing tobacco pollen tubes. We hypothesize that the APT1 protein is involved in membrane trafficking and is required for the high secretory demands of tip growth in pollen tubes. The apt1-m1(Ac) mutable allele is an excellent tool for selecting Ac transpositions because of the strong negative selection pressure operating against the parental Ac site.
Collapse
Affiliation(s)
- Zhennan Xu
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08855, USA
| | | |
Collapse
|
38
|
Schultheiss H, Hensel G, Imani J, Broeders S, Sonnewald U, Kogel KH, Kumlehn J, Hückelhoven R. Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. PLANT PHYSIOLOGY 2005; 139:353-62. [PMID: 16126850 PMCID: PMC1203384 DOI: 10.1104/pp.105.066613] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small RAC/ROP-family G proteins regulate development and stress responses in plants. Transient overexpression and RNA interference experiments suggested that the barley (Hordeum vulgare) RAC/ROP protein RACB is involved in susceptibility to the powdery mildew fungus Blumeria graminis f. sp. hordei. We created transgenic barley plants expressing the constitutively activated RACB mutant racb-G15V under control of the maize (Zea mays) ubiquitin 1 promoter. Individuals of the T1 generation expressing racb-G15V were significantly more susceptible to B. graminis when compared to segregating individuals that did not express racb-G15V. Additionally, racb-G15V-expressing plants showed delayed shoot development from the third leaf stage on, downward rolled leaves, and stunted roots. Expression of racb-G15V decreased photosynthetic CO(2)-assimilation rates and transpiration of nonstressed leaves. In contrast, racb-G15V-expressing barley leaves, when detached from water supply, showed increased water loss and enhanced transpiration. Water loss was associated with reduced responsiveness to abscisic acid in regard to transpiration when compared to segregants not expressing racb-G15V. Hence, RACB might be a common signaling element in response to both biotic and abiotic stress.
Collapse
Affiliation(s)
- Holger Schultheiss
- Institute of Phytopathology and Applied Zoology, University of Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tao LZ, Cheung AY, Nibau C, Wu HM. RAC GTPases in tobacco and Arabidopsis mediate auxin-induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins. THE PLANT CELL 2005; 17:2369-83. [PMID: 15994909 PMCID: PMC1182495 DOI: 10.1105/tpc.105.032987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Auxin signaling relies on ubiquitin ligase SCF(TIR1)-mediated 26S proteasome-dependent proteolysis of a large family of short-lived transcription regulators, auxin/indole acetic acid (Aux/IAA), resulting in the derepression of auxin-responsive genes. We have shown previously that a subset of Rac GTPases is activated by auxin, and they in turn stimulate auxin-responsive gene expression. We show here that increasing Rac signaling activity promotes Aux/IAA degradation, whereas downregulating that activity results in the reduction of auxin-accelerated Aux/IAA proteolysis. Observations reported here reveal a novel function for these Rac GTPases as regulators for ubiquitin/26S proteasome-mediated proteolysis and further consolidate their role in auxin signaling. Moreover, our study reveals a cellular process whereby auxin induces and Rac GTPases mediate the recruitment of nucleoplasmic Aux/IAAs into proteolytically active nuclear protein bodies, into which components of the SCF(TIR1), COP9 signalosome, and 26S proteasome are also recruited.
Collapse
Affiliation(s)
- Li-zhen Tao
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
- To whom correspondence should be addressed. E-mail ; fax 413-545-3291
| | - Candida Nibau
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
- Plant Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003
| | - Hen-ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
40
|
Cole RA, Synek L, Zarsky V, Fowler JE. SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. PLANT PHYSIOLOGY 2005; 138:2005-18. [PMID: 16040664 PMCID: PMC1183391 DOI: 10.1104/pp.105.062273] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The exocyst, a complex of eight proteins, contributes to the morphogenesis of polarized cells in a broad range of eukaryotes. In these organisms, the exocyst appears to facilitate vesicle docking at the plasma membrane during exocytosis. Although we had identified orthologs for each of the eight exocyst components in Arabidopsis (Arabidopsis thaliana), no function has been demonstrated for any of them in plants. The gene encoding one exocyst component ortholog, AtSEC8, is expressed in pollen and vegetative tissues of Arabidopsis. Genetic studies utilizing an allelic series of six independent T-DNA mutations reveal a role for SEC8 in male gametophyte function. Three T-DNA insertions in SEC8 cause an absolute, male-specific transmission defect that can be complemented by expression of SEC8 from the LAT52 pollen promoter. Microscopic analysis shows no obvious abnormalities in the microgametogenesis of the SEC8 mutants, and the mutant pollen grains appear to respond to the signals that initiate germination. However, in vivo assays indicate that these mutant pollen grains are unable to germinate a pollen tube. The other three T-DNA insertions are associated with a partial transmission defect, such that the mutant allele is transmitted through the pollen at a reduced frequency. The partial transmission defect is only evident when mutant gametophytes must compete with wild-type gametophytes, and arises in part from a reduced pollen tube growth rate. These data support the hypothesis that one function of the putative plant exocyst is to facilitate the initiation and maintenance of the polarized growth of pollen tubes.
Collapse
Affiliation(s)
- Rex A Cole
- Department of Botany and Plant Pathology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
41
|
Gass N, Glagotskaia T, Mellema S, Stuurman J, Barone M, Mandel T, Roessner-Tunali U, Kuhlemeier C. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia. THE PLANT CELL 2005; 17:2355-68. [PMID: 15994907 PMCID: PMC1182494 DOI: 10.1105/tpc.105.033290] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.
Collapse
Affiliation(s)
- Nathalie Gass
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Tatiana Glagotskaia
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Stefan Mellema
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Jeroen Stuurman
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Mario Barone
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
| | - Ute Roessner-Tunali
- Max Planck Institute for Molecular Plant Physiology, D-14424 Potsdam, Germany
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Berne, CH-3013 Berne, Switzerland
- To whom correspondence should be addressed. E-mail ; fax 41-31-631-49-42
| |
Collapse
|
42
|
Effects of Nutrient Level on Maternal Choice and Siring Success in Cucumis sativus (Cucurbitaceae). Evol Ecol 2005. [DOI: 10.1007/s10682-005-1669-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Gu Y, Wang Z, Yang Z. ROP/RAC GTPase: an old new master regulator for plant signaling. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:527-36. [PMID: 15337095 DOI: 10.1016/j.pbi.2004.07.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ROP family of small GTPases has emerged as a versatile and pivotal regulator in plant signal transduction. Recent studies have implicated ROP signaling in diverse processes ranging from cytoskeletal organization to hormone and stress responses. Acting as a switch early in signaling cascades, ROPs are also capable of orchestrating several downstream pathways to amplify a specific signal.
Collapse
Affiliation(s)
- Ying Gu
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, USA
| | | | | |
Collapse
|
44
|
Johnson-Brousseau SA, McCormick S. A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:761-75. [PMID: 15315637 DOI: 10.1111/j.1365-313x.2004.02147.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This article provides detailed protocols for collecting pollen and outlines genetic crosses and phenotypic assays that are useful for characterizing mutants that affect pollen development.
Collapse
Affiliation(s)
- Sheila A Johnson-Brousseau
- Plant Gene Expression Center and Plant and Microbial Biology, USDA/ARS and UC-Berkeley, 800 Buchanan St., Albany, CA 94710, USA.
| | | |
Collapse
|
45
|
Bernasconi G, Ashman TL, Birkhead TR, Bishop JDD, Grossniklaus U, Kubli E, Marshall DL, Schmid B, Skogsmyr I, Snook RR, Taylor D, Till-Bottraud I, Ward PI, Zeh DW, Hellriegel B. Evolutionary ecology of the prezygotic stage. Science 2004; 303:971-5. [PMID: 14963320 DOI: 10.1126/science.1092180] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The life cycles of sexually reproducing animals and flowering plants begin with male and female gametes and their fusion to form a zygote. Selection at this earliest stage is crucial for offspring quality and raises similar evolutionary issues, yet zoology and botany use dissimilar approaches. There are striking parallels in the role of prezygotic competition for sexual selection on males, cryptic female choice, sexual conflict, and against selfish genetic elements and genetic incompatibility. In both groups, understanding the evolution of sex-specific and reproductive traits will require an appreciation of the effects of prezygotic competition on fitness.
Collapse
Affiliation(s)
- G Bernasconi
- Institute of Environmental Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Sheila McCormick
- Plant Gene Expression Center, United States Department of Agriculture, Agricultural Research Service, and University of California Berkeley, Albany, California 94710, USA.
| |
Collapse
|