1
|
Haria JM, Singh NK, Kumar J, Jain SK, Pamidimarri D. Metabolic and Endocrine Dysfunctions in Traumatic Brain Injury: Implications for Cognitive Recovery and Therapeutic Strategies. Behav Brain Res 2025:115697. [PMID: 40490104 DOI: 10.1016/j.bbr.2025.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 05/22/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Traumatic brain injury (TBI) triggers a chain reaction of intricate metabolic abnormalities, sometimes leading to ongoing cognitive deficits. These abnormalities comprise dysregulation in trace element homeostasis, disrupted neurotransmitter modulation, increased lipid peroxidation, compromised glucose metabolism, and organ-specific metabolic changes. Most recent studies suggest that metabolic abnormalities are the root cause of cognitive decline in post-traumatic stress disorder (TBI). Restoring metabolic balance through therapeutic modalities, such as antioxidant therapy to combat lipid peroxidation, glucose modulators to normalise cerebral energy metabolism, and trace element supplementation, shows promise. Furthermore, increasingly understood as important determinant of long-term neurocognitive outcomes are endocrine dysfunctions, especially post-traumatic hypopituitarism and growth hormone deficiency (GHD). Growth hormone replacement therapy has been shown to improve cognitive function and overall recovery. Biomarkers such as insulin-like growth factor-1 (IGF-1), neuroinflammatory cytokines (IL-6 and TNF-α), and oxidative stress markers (like malondialdehyde) can facilitate early diagnosis, which may allow for targeted and timely intervention. This review supports metabolism-oriented, biomarker-guided therapeutic approaches to improve neurocognitive recovery and patient quality of life, highlighting the critical role that metabolic and endocrine abnormalities play in post-TBI cognitive impairment.
Collapse
Affiliation(s)
- Jigar Manilal Haria
- Department of General Medicine, Teerthanker Mahaveer medical College and Research Centre, Moradabad, UP, India
| | - Naveen Kumar Singh
- Department of General Surgery, Teerthanker Mahaveer medical College and Research Centre, Moradabad, UP, India
| | - Jayballabh Kumar
- Department of Physiology, Teerthanker Mahaveer medical College and Research Centre, Moradabad, UP, India
| | - Sanjeev Kumar Jain
- Department of anesthesia, Teerthanker Mahaveer medical College and Research Centre, Moradabad, UP, India.
| | - DattaSai Pamidimarri
- Department of Physiotherapy, Centurion University of Technology and Management, Jatni, Khurda Road, Odisha, India
| |
Collapse
|
2
|
Li X, Hager M, McPherson M, Lee M, Hagalwadi R, Skinner ME, Lombard D, Miller RA. Recapitulation of anti-aging phenotypes by global, but not by muscle-specific, deletion of PAPP-A in mice. GeroScience 2023; 45:931-948. [PMID: 36542300 PMCID: PMC9886707 DOI: 10.1007/s11357-022-00692-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Deletion of pregnancy-associated plasma protein-A (PAPP-A), a protease that cleaves some but not all IGF1 binding proteins, postpones late-life diseases and extends lifespan in mice, but the mechanism of this effect is unknown. Here we show that PAPP-A knockout (PKO) mice display a set of changes, in multiple tissues, that are characteristic of other varieties of slow-aging mice with alterations in GH production or GH responsiveness, including Ames dwarf, Snell dwarf, and GHRKO mice. PKO mice have elevated UCP1 in brown and white adipose tissues (WAT), and a change in fat-associated macrophage subsets that leads to diminished production of inflammatory cytokines. PKO mice also show increased levels of muscle FNDC5 and its cleavage product, the myokine irisin, thought to cause changes in fat cell differentiation. PKO mice have elevated production of hepatic GPLD1 and plasma GPLD1, consistent with their elevation of hippocampal BDNF and DCX, used as indices of neurogenesis. In contrast, disruption of PAPP-A limited to muscle ("muPKO" mice) produces an unexpectedly complex set of changes, in most cases opposite in direction from those seen in PKO mice. These include declines in WAT UCP1, increases in inflammatory macrophages and cytokines in WAT, and a decline in muscle FNDC5 and plasma irisin. muPKO mice do, however, resemble global PKO mice in their elevation of hippocampal BDNF and DCX. The data for the PKO mice support the idea that these changes in fat, macrophages, liver, muscle, plasma, and brain are consistent and biologically significant features of the slow-aging phenotype in mice. The results on the muPKO mice provide a foundation for further investigation of the complex, local, and global circuits by which PAPP-A modulates signals ordinarily controlled by GH and/or IGF1.
Collapse
Affiliation(s)
- Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- , Ann Arbor, USA.
| | - Mary Hager
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madaline McPherson
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Lee
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Riha Hagalwadi
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary E Skinner
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - David Lombard
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
- Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Li X, McPherson M, Hager M, Fang Y, Bartke A, Miller RA. Transient early life growth hormone exposure permanently alters brain, muscle, liver, macrophage, and adipocyte status in long-lived Ames dwarf mice. FASEB J 2022; 36:e22394. [PMID: 35704312 PMCID: PMC9250136 DOI: 10.1096/fj.202200143r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 01/24/2023]
Abstract
The exceptional longevity of Ames dwarf (DF) mice can be abrogated by a brief course of growth hormone (GH) injections started at 2 weeks of age. This transient GH exposure also prevents the increase in cellular stress resistance and decline in hypothalamic inflammation characteristic of DF mice. Here, we show that transient early-life GH treatment leads to permanent alteration of pertinent changes in adipocytes, fat-associated macrophages, liver, muscle, and brain that are seen in DF mice. Ames DF mice, like Snell dwarf and GHRKO mice, show elevation of glycosylphosphatidylinositol specific phospholipase D1 in liver, neurogenesis in brain as indicated by BDNF and DCX proteins, muscle production of fibronectin type III domain-containing protein 5 (a precursor of irisin), uncoupling protein 1 as an index of thermogenic capacity in brown and white fat, and increase in fat-associated anti-inflammatory macrophages. In each case, transient exposure to GH early in life reverts the DF mice to the levels of each protein seen in littermate control animals, in animals evaluated at 15-18 months of age. Thus, many of the traits seen in long-lived mutant mice, pertinent to age-related changes in inflammation, neurogenesis, and metabolic control, are permanently set by early-life GH levels.
Collapse
Affiliation(s)
- Xinna Li
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Madaline McPherson
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Mary Hager
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Yimin Fang
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Andrzej Bartke
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Richard A. Miller
- Department of PathologyUniversity of Michigan School of MedicineAnn ArborMichiganUSA
- University of Michigan Geriatrics CenterAnn ArborMichiganUSA
| |
Collapse
|
4
|
Gasco V, Cambria V, Bioletto F, Ghigo E, Grottoli S. Traumatic Brain Injury as Frequent Cause of Hypopituitarism and Growth Hormone Deficiency: Epidemiology, Diagnosis, and Treatment. Front Endocrinol (Lausanne) 2021; 12:634415. [PMID: 33790864 PMCID: PMC8005917 DOI: 10.3389/fendo.2021.634415] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI)-related hypopituitarism has been recognized as a clinical entity for more than a century, with the first case being reported in 1918. However, during the 20th century hypopituitarism was considered only a rare sequela of TBI. Since 2000 several studies strongly suggest that TBI-mediated pituitary hormones deficiency may be more frequent than previously thought. Growth hormone deficiency (GHD) is the most common abnormality, followed by hypogonadism, hypothyroidism, hypocortisolism, and diabetes insipidus. The pathophysiological mechanisms underlying pituitary damage in TBI patients include a primary injury that may lead to the direct trauma of the hypothalamus or pituitary gland; on the other hand, secondary injuries are mainly related to an interplay of a complex and ongoing cascade of specific molecular/biochemical events. The available data describe the importance of GHD after TBI and its influence in promoting neurocognitive and behavioral deficits. The poor outcomes that are seen with long standing GHD in post TBI patients could be improved by GH treatment, but to date literature data on the possible beneficial effects of GH replacement therapy in post-TBI GHD patients are currently scarce and fragmented. More studies are needed to further characterize this clinical syndrome with the purpose of establishing appropriate standards of care. The purpose of this review is to summarize the current state of knowledge about post-traumatic GH deficiency.
Collapse
|
5
|
Buffenstein R, Lewis KN, Gibney PA, Narayan V, Grimes KM, Smith M, Lin TD, Brown-Borg HM. Probing Pedomorphy and Prolonged Lifespan in Naked Mole-Rats and Dwarf Mice. Physiology (Bethesda) 2020; 35:96-111. [DOI: 10.1152/physiol.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.
Collapse
Affiliation(s)
| | | | - Patrick A. Gibney
- Calico Life Sciences LLC, South San Francisco, California
- Department of Food Science, College of Agriculture and Life Sciences, Stocking Hall, Cornell University, Ithaca, New York
| | - Vikram Narayan
- Calico Life Sciences LLC, South San Francisco, California
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California
| | - Tzuhua D. Lin
- Calico Life Sciences LLC, South San Francisco, California
| | - Holly M. Brown-Borg
- Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
6
|
Hadem IKH, Sharma R. Differential Regulation of Hippocampal IGF-1-Associated Signaling Proteins by Dietary Restriction in Aging Mouse. Cell Mol Neurobiol 2017; 37:985-993. [PMID: 27718093 PMCID: PMC11482197 DOI: 10.1007/s10571-016-0431-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022]
Abstract
Time-dependent alterations in several biological processes of an organism may be characterized as aging. One of the effects of aging is the decline in cognitive functions. Dietary restriction (DR), an intervention where the consumption of food is lessened but without malnutrition, is a well-established mechanism that has a wide range of important outcomes including improved health span, delayed aging, and extension of lifespan of various species. It also plays a beneficial role in protecting against age-dependent deterioration of cognitive functions, and has neuroprotective properties against neurodegenerative diseases. Insulin-like growth factor (IGF)-1 plays an important role in the regulation of cellular and tissue functions, and relating to the aging process the most important pathway of IGF-1 is the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt/PKB) signaling cascade. Although many have studied the changes in the level of IGF-1 and its effect on neural proliferation, the downstream signaling proteins have not been fully elucidated. Hence in the present investigation, the IGF-1 gene expression and the normal endogenous levels of IGF1R (IGF-1 receptor), PI3K, Akt, pAkt, and pFoxO in the hippocampus of young, adult, and old mice were determined using real-time PCR and Western blot analyses. The effects of DR on these protein levels were also studied. Results showed a decrease in the levels of IGF-1, IGF1R, PI3K, and pAkt, while pFoxO level increased with respect to age. Under DR, these protein levels are maintained in adult mice, but old mice displayed diminished expression levels of these proteins as compared to ad libitum-fed mice. Maintenance of PI3K/Akt pathway results in the phosphorylation of FoxOs, necessary for the enhancement of neural proliferation and survival in adult mice. The down-regulation of IGF-I signaling, as observed in old mice, leads to increasing the activity of FoxO factors that may be important for the neuroprotective effects seen with DR.
Collapse
Affiliation(s)
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793 022, India.
| |
Collapse
|
7
|
Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience 2017; 39:147-160. [PMID: 28233247 DOI: 10.1007/s11357-017-9966-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period during early life determine cellular DNA repair capacity in rodents, presumably by transcriptional control of genes involved in DNA repair. Because lifestyle factors (e.g., nutrition and childhood obesity) cause huge variation in peripubertal GH/IGF-1 levels in children, further studies are warranted to determine their persisting influence on cellular cancer resistance pathways.
Collapse
Affiliation(s)
- Andrej Podlutsky
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Marta Noa Valcarcel-Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Krysta Yancey
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Viktorija Podlutskaya
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Eszter Nagykaldi
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - William E Sonntag
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
8
|
Cantero JL, Iglesias JE, Van Leemput K, Atienza M. Regional Hippocampal Atrophy and Higher Levels of Plasma Amyloid-Beta Are Associated With Subjective Memory Complaints in Nondemented Elderly Subjects. J Gerontol A Biol Sci Med Sci 2016; 71:1210-5. [PMID: 26946100 PMCID: PMC4978360 DOI: 10.1093/gerona/glw022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/29/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Evidence suggests a link between the presence of subjective memory complaints (SMC) and lower volume of the hippocampus, one of the first regions to show neuropathological lesions in Alzheimer's disease. However, it remains unknown whether this pattern of hippocampal atrophy is regionally specific and whether SMC are also paralleled by changes in peripheral levels of amyloid-beta (Aβ). METHODS The volume of hippocampal subregions and plasma Aβ levels were cross-sectionally compared between elderly individuals with (SMC(+); N = 47) and without SMC (SMC(-); N = 48). Significant volume differences in hippocampal subregions were further correlated with plasma Aβ levels and with objective memory performance. RESULTS Individuals with SMC exhibited significantly higher Aβ1-42 concentrations and lower volumes of CA1, CA4, dentate gyrus, and molecular layer compared with SMC(-) participants. Regression analyses further showed significant associations between lower volume of the dentate gyrus and both poorer memory performance and higher plasma Aβ1-42 levels in SMC(+) participants. CONCLUSIONS The presence of SMC, lower volumes of specific hippocampal regions, and higher plasma Aβ1-42 levels could be conditions associated with aging vulnerability. If such associations are confirmed in longitudinal studies, the combination may be markers recommending clinical follow-up in nondemented older adults.
Collapse
Affiliation(s)
- Jose L Cantero
- Laboratory of Functional Neuroscience, CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Pablo de Olavide University, Seville, Spain.
| | - Juan E Iglesias
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston. Basque Center on Cognition, Brain and Language, San Sebastian, Spain
| | - Koen Van Leemput
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston. Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Pablo de Olavide University, Seville, Spain
| |
Collapse
|
9
|
Puig KL, Kulas JA, Franklin W, Rakoczy SG, Taglialatela G, Brown-Borg HM, Combs CK. The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice. Neurobiol Aging 2016; 40:22-40. [PMID: 26973101 DOI: 10.1016/j.neurobiolaging.2015.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
APP/PS1 double transgenic mice expressing human mutant amyloid precursor protein (APP) and presenilin-1 (PS1) demonstrate robust brain amyloid beta (Aβ) peptide containing plaque deposition, increased markers of oxidative stress, behavioral dysfunction, and proinflammatory gliosis. On the other hand, lack of growth hormone, prolactin, and thyroid-stimulating hormone due to a recessive mutation in the Prop 1 gene (Prop1df) in Ames dwarf mice results in a phenotype characterized by potentiated antioxidant mechanisms, improved learning and memory, and significantly increased longevity in homozygous mice. Based on this, we hypothesized that a similar hormone deficiency might attenuate disease changes in the brains of APP/PS1 mice. To test this idea, APP/PS1 mice were crossed to the Ames dwarf mouse line. APP/PS1, wild-type, df/+, df/df, df/+/APP/PS1, and df/df/APP/PS1 mice were compared at 6 months of age through behavioral testing and assessing amyloid burden, reactive gliosis, and brain cytokine levels. df/df mice demonstrated lower brain growth hormone and insulin-like growth factor 1 concentrations. This correlated with decreased astrogliosis and microgliosis in the df/df/APP/PS1 mice and, surprisingly, reduced Aβ plaque deposition and Aβ 1-40 and Aβ 1-42 concentrations. The df/df/APP/PS1 mice also demonstrated significantly elevated brain levels of multiple cytokines in spite of the attenuated gliosis. These data indicate that the df/df/APP/PS1 line is a unique resource in which to study aging and resistance to disease and suggest that the affected pituitary hormones may have a role in regulating disease progression.
Collapse
Affiliation(s)
- Kendra L Puig
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Joshua A Kulas
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Whitney Franklin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sharlene G Rakoczy
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Colin K Combs
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
10
|
Spatial delayed nonmatching-to-sample performances in long-living Ames dwarf mice. Physiol Behav 2014; 123:100-4. [DOI: 10.1016/j.physbeh.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/13/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022]
|
11
|
Arce VM, Devesa P, Devesa J. Role of growth hormone (GH) in the treatment on neural diseases: from neuroprotection to neural repair. Neurosci Res 2013; 76:179-86. [PMID: 23602740 DOI: 10.1016/j.neures.2013.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/26/2013] [Accepted: 03/26/2013] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone that exerts important functions in the control of brain development as well as in the regulation neuronal differentiation and function, together with several behavioral and psychological effects that have been linked to its modulatory actions on brain neurotransmitters. In addition, the possibility that GH may play a role on brain repair after injury has been also envisaged, and a number of reports have shown that GH administration following injury confers neuroprotection and accelerates the recovery of some neural functions. In this review we have analyzed the state of the art of GH administration in several neural diseases. Though more studies are still necessary in order to completely understand the importance of GH in these processes, the promising results obtained so far, together with the absence of untoward effects during GH therapy, encourages the development of clinical assays in order to further support the use GH treatment in neural diseases in which neuroprotection and/or neuroregeneration are involved.
Collapse
Affiliation(s)
- Víctor M Arce
- Departamento de Fisioloxía, Facultade de Medicina, Universidade de Santiago de Compostela, Spain.
| | | | | |
Collapse
|
12
|
Bartke A, Sun LY, Longo V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 2013; 93:571-98. [PMID: 23589828 PMCID: PMC3768106 DOI: 10.1152/physrev.00006.2012] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth hormone (GH) is a key determinant of postnatal growth and plays an important role in the control of metabolism and body composition. Surprisingly, deficiency in GH signaling delays aging and remarkably extends longevity in laboratory mice. In GH-deficient and GH-resistant animals, the "healthspan" is also extended with delays in cognitive decline and in the onset of age-related disease. The role of hormones homologous to insulin-like growth factor (IGF, an important mediator of GH actions) in the control of aging and lifespan is evolutionarily conserved from worms to mammals with some homologies extending to unicellular yeast. The combination of reduced GH, IGF-I, and insulin signaling likely contributes to extended longevity in GH or GH receptor-deficient organisms. Diminutive body size and reduced fecundity of GH-deficient and GH-resistant mice can be viewed as trade-offs for extended longevity. Mechanisms responsible for delayed aging of GH-related mutants include enhanced stress resistance and xenobiotic metabolism, reduced inflammation, improved insulin signaling, and various metabolic adjustments. Pathological excess of GH reduces life expectancy in men as well as in mice, and GH resistance or deficiency provides protection from major age-related diseases, including diabetes and cancer, in both species. However, there is yet no evidence of increased longevity in GH-resistant or GH-deficient humans, possibly due to non-age-related deaths. Results obtained in GH-related mutant mice provide striking examples of mutations of a single gene delaying aging, reducing age-related disease, and extending lifespan in a mammal and providing novel experimental systems for the study of mechanisms of aging.
Collapse
Affiliation(s)
- Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Geriatric Research, Springfield, Illinois 62703, USA.
| | | | | |
Collapse
|
13
|
Devesa J, Reimunde P, Devesa P, Barberá M, Arce V. Growth hormone (GH) and brain trauma. Horm Behav 2013; 63:331-44. [PMID: 22405763 DOI: 10.1016/j.yhbeh.2012.02.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/27/2022]
Abstract
Growth hormone (GH) is a pleiotropic hormone with known neurotrophic effects. We aimed to study whether GH administration might be useful together with rehabilitation in the recovery of TBI patients. 13 TBI patients (8 M, 5 F; age: 6-53 years old) were studied. Time after TBI: 2.5 months to 11 years; 5 patients showed acquired GH-deficiency (GHD). Disabilities observed: cognitive disorders; motor plegias; neurogenic dysphagia (n=5), vegetative coma (n=2) and amaurosis (n=1). All but one TBI patient followed intense rehabilitation for years. Treatment consisted of GH administration (maximal dose 1 mg/day, 5 days/week, resting 15-days every 2-months, until a maximum of 8 months) and clinical rehabilitation according to the individual needs (3-4 h/day, 5 days/week, during 6-12 months). Informed consent was obtained before commencing GH administration. GH significantly increased plasma IGF-1 values (ng.mL(-1)) in both GHD and no GHD patients, being then similar between both groups (GHD: 275.6±35.6 [p<0.01 vs. baseline], no GHD: 270.2±64 [p<0.05 vs. baseline]). In all the cases clear significant improvements were observed during and at the end of the combined treatment. Cognitive improvements appeared earlier and were more important than motor improvements. Swallowing improved significantly in all TBI patients with neurogenic dysphagia (2 of them in a vegetative state). Visual performance was ameliorated in the patient with amaurosis. No undesirable side-effects were observed. Our data indicate that GH can be combined with rehabilitation for improving disabilities in TBI patients, regardless of whether or not they are GHD.
Collapse
Affiliation(s)
- Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
14
|
Sze JA, Goodkind MS, Gyurak A, Levenson RW. Aging and emotion recognition: not just a losing matter. Psychol Aging 2012; 27:940-950. [PMID: 22823183 PMCID: PMC3746016 DOI: 10.1037/a0029367] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Past studies on emotion recognition and aging have found evidence of age-related decline when emotion recognition was assessed by having participants detect single emotions depicted in static images of full or partial (e.g., eye region) faces. These tests afford good experimental control but do not capture the dynamic nature of real-world emotion recognition, which is often characterized by continuous emotional judgments and dynamic multimodal stimuli. Research suggests that older adults often perform better under conditions that better mimic real-world social contexts. We assessed emotion recognition in young, middle-aged, and older adults using two traditional methods (single emotion judgments of static images of faces and eyes) and an additional method in which participants made continuous emotion judgments of dynamic, multimodal stimuli (videotaped interactions between young, middle-aged, and older couples). Results revealed an Age × Test interaction. Largely consistent with prior research, we found some evidence that older adults performed worse than young adults when judging single emotions from images of faces (for sad and disgust faces only) and eyes (for older eyes only), with middle-aged adults falling in between. In contrast, older adults did better than young adults on the test involving continuous emotion judgments of dyadic interactions, with middle-aged adults falling in between. In tests in which target stimuli differed in age, emotion recognition was not facilitated by an age match between participant and target. These findings are discussed in terms of theoretical and methodological implications for the study of aging and emotional processing.
Collapse
Affiliation(s)
| | | | - Anett Gyurak
- Department of Psychology, Stanford University
- Department of Psychiatry and Behavioral Science, Stanford University School of Medicine
| | | |
Collapse
|
15
|
Sharma S, Darland D, Lei S, Rakoczy S, Brown-Borg HM. NMDA and kainate receptor expression, long-term potentiation, and neurogenesis in the hippocampus of long-lived Ames dwarf mice. AGE (DORDRECHT, NETHERLANDS) 2012; 34:609-20. [PMID: 21544578 PMCID: PMC3337943 DOI: 10.1007/s11357-011-9253-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 04/15/2011] [Indexed: 05/08/2023]
Abstract
In the current study, we investigated changes in N-methyl D-aspartate (NMDA) and kainate receptor expression, long-term potentiation (LTP), and neurogenesis in response to neurotoxic stress in long-living Ames dwarf mice. We hypothesized that Ames dwarf mice have enhanced neurogenesis that enables retention of spatial learning and memory with age and promotes neurogenesis in response to injury. Levels of the NMDA receptors (NR)1, NR2A, NR2B, and the kainate receptor (KAR)2 were increased in Ames dwarf mice, relative to wild-type littermates. Quantitative assessment of the excitatory postsynaptic potential in Schaffer collaterals in hippocampal slices from Ames dwarf mice showed an increased response in high-frequency induced LTP over time compared with wild type. Kainic acid (KA) injection was used to promote neurotoxic stress-induced neurogenesis. KA mildly increased the number of doublecortin-positive neurons in wild-type mice, but the response was significantly enhanced in the Ames dwarf mice. Collectively, these data support our hypothesis that the enhanced learning and memory associated with the Ames dwarf mouse may be due to elevated levels of NMDA and KA receptors in hippocampus and their ability to continue producing new neurons in response to neuronal damage.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Diane Darland
- Department of Biology, University of North Dakota, Grand Forks, ND 58202 USA
| | - Saobo Lei
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| | - Holly M. Brown-Borg
- Department of Physiology, Pharmacology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 USA
| |
Collapse
|
16
|
Bartke A. Pleiotropic effects of growth hormone signaling in aging. Trends Endocrinol Metab 2011; 22:437-42. [PMID: 21852148 PMCID: PMC4337825 DOI: 10.1016/j.tem.2011.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/10/2011] [Accepted: 07/11/2011] [Indexed: 01/13/2023]
Abstract
Growth hormone (GH) affects somatic growth, sexual maturation, body composition and metabolism, as well as aging and longevity. Mice lacking GH or GH receptor outlive their normal siblings and exhibit symptoms of delayed aging associated with improved insulin signaling and increased stress resistance. Beneficial effects of eliminating the actions of GH are counterintuitive but conform to the concept of antagonistic pleiotropy. Evolutionary selection for traits promoting early-life fitness and reproductive success could account for post-reproductive deficits. Reciprocal relationships between GH signaling and longevity discovered in mutant mice apply also to normal mice, other mammalian species, and perhaps humans. This review summarizes the present understanding of the multifaceted relationship between somatotropic signaling and mammalian aging.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, 801 North Rutledge, PO Box 19628, Springfield, IL 62794-9628, USA.
| |
Collapse
|
17
|
Derenne A, Brown-Borg H, Feltman K, Corbett G, Lackman S. Acquisition of steady-state operant behavior in long-living Ames Dwarf mice. Physiol Behav 2011; 104:1048-52. [PMID: 21782837 DOI: 10.1016/j.physbeh.2011.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022]
Abstract
Ames dwarf mice have a Prop-1 mutation that has been identified with increased levels of IGF-I in the central nervous system, upregulation of neuroprotective systems, and increased lifespan. To elucidate the behavioral effects of the Prop-1 mutation, 8 Ames dwarf and 7 normal mice (all of whom were 8 months of age or younger) were compared on a differential-reinforcement-of-low-rate-of-responding schedule of reinforcement and a matching-to-sample task. On both tasks, nosepokes were reinforced with access to a saccharin solution. Comparisons were based on several measures of behavioral efficiency: pause durations, intertrial intervals, and numbers of responses. Ames dwarf mice were generally less efficient than normal mice. One possible cause of this outcome is that relatively young Ames dwarf mice show less cognitive development than age-matched normal mice.
Collapse
Affiliation(s)
- Adam Derenne
- Department of Psychology, University of North Dakota, Grand Forks, ND 58202-8380, USA.
| | | | | | | | | |
Collapse
|
18
|
Zhou ZD, Chan CHS, Ma QH, Xu XH, Xiao ZC, Tan EK. The roles of amyloid precursor protein (APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimer disease. Cell Adh Migr 2011; 5:280-92. [PMID: 21785276 DOI: 10.4161/cam.5.4.16986] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The amyloid-beta (Aβ) peptide is the derivative of amyloid precursor protein (APP) generated through sequential proteolytic processing by β- and γ-secretases. Excessive accumulation of Aβ, the main constituent of amyloid plaques, has been implicated in the etiology of Alzheimer's disease (AD). It was found recently that the impairments of neurogenesis in brain were associated with the pathogenesis of AD. Furthermore recent findings implicated that APP could function to influence proliferation of neural progenitor cells (NPC) and might regulate transcriptional activity of various genes. Studies demonstrated that influence of neurogenesis by APP is conferred differently via its two separate domains, soluble secreted APPs (sAPPs, mainly sAPPα) and APP intracellular domain (AICD). The sAPPα was shown to be neuroprotective and important to neurogenesis, whereas AICD was found to negatively modulate neurogenesis. Furthermore, it was demonstrated recently that microRNA could function to regulate APP expression, APP processing, Aβ accumulation and subsequently influence neurotoxicity and neurogenesis related to APP, which was implicated to AD pathogenesis, especially for sporadic AD. Based on data accumulated, secretase balances were proposed. These secretase balances could influence the downstream balance related to regulation of neurogenesis by AICD and sAPPα as well as balance related to influence of neuron viability by Aβ and sAPPα. Disruption of these secretase balances could be culprits to AD onset.
Collapse
|
19
|
Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience 2011; 190:409-27. [PMID: 21664953 DOI: 10.1016/j.neuroscience.2011.05.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
We have previously shown that the growth hormone (GH)/prolactin (PRL) axis has a significant role in regulating neuroprotective and/or neurorestorative mechanisms in the brain and that these effects are mediated, at least partly, via actions on neural stem cells (NSCs). Here, using NSCs with properties of neurogenic radial glia derived from fetal human forebrains, we show that exogenously applied GH and PRL promote the proliferation of NSCs in the absence of epidermal growth factor or basic fibroblast growth factor. When applied to differentiating NSCs, they both induce neuronal progenitor proliferation, but only PRL has proliferative effects on glial progenitors. Both GH and PRL also promote NSC migration, particularly at higher concentrations. Since human GH activates both GH and PRL receptors, we hypothesized that at least some of these effects may be mediated via the latter. Migration studies using receptor-specific antagonists confirmed that GH signals via the PRL receptor promote migration. Mechanisms of receptor signaling in NSC proliferation, however, remain to be elucidated. In summary, GH and PRL have complex stimulatory and modulatory effects on NSC activity and as such may have a role in injury-related recovery processes in the brain.
Collapse
|
20
|
Abstract
Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans.
Collapse
Affiliation(s)
- Colin Selman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Dominic J. Withers
- Metabolic Signalling Group, Medical Research Council Clinical Sciences Centre, Imperial College, London W12 0NN, UK
| |
Collapse
|
21
|
Riquelme R, Cediel R, Contreras J, la Rosa Lourdes RD, Murillo-Cuesta S, Hernandez-Sanchez C, Zubeldia JM, Cerdan S, Varela-Nieto I. A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Front Neuroanat 2010; 4:27. [PMID: 20661454 PMCID: PMC2907134 DOI: 10.3389/fnana.2010.00027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/01/2010] [Indexed: 01/07/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) belongs to the family of insulin-related peptides that fulfils a key role during the late development of the nervous system. Human IGF1 mutations cause profound deafness, poor growth and mental retardation. Accordingly, Igf1−/− null mice are dwarfs that have low survival rates, cochlear alterations and severe sensorineural deafness. Presbycusis (age-related hearing loss) is a common disorder associated with aging that causes social and cognitive problems. Aging is also associated with a decrease in circulating IGF-I levels and this reduction has been related to cognitive and brain alterations, although there is no information as yet regarding the relationship between presbycusis and IGF-I biodisponibility. Here we present a longitudinal study of wild type Igf1+/+ and null Igf1−/− mice from 2 to 12 months of age comparing the temporal progression of several parameters: hearing, brain morphology, cochlear cytoarchitecture, insulin-related factors and IGF gene expression and IGF-I serum levels. Complementary invasive and non-invasive techniques were used, including auditory brainstem-evoked response (ABR) recordings and in vivo MRI brain imaging. Igf1−/− null mice presented profound deafness at all the ages studied, without any obvious worsening of hearing parameters with aging. Igf1+/+ wild type mice suffered significant age-related hearing loss, their auditory thresholds and peak I latencies augmenting as they aged, in parallel with a decrease in the circulating levels of IGF-I. Accordingly, there was an age-related spiral ganglion degeneration in wild type mice that was not evident in the Igf1 null mice. However, the Igf1−/− null mice in turn developed a prematurely aged stria vascularis reminiscent of the diabetic strial phenotype. Our data indicate that IGF-I is required for the correct development and maintenance of hearing, supporting the idea that IGF-I-based therapies could contribute to prevent or ameliorate age-related hearing loss.
Collapse
Affiliation(s)
- Raquel Riquelme
- Instituto de Investigaciones Biomedicas "Alberto Sols", CSIC-UAM Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sharma S, Haselton J, Rakoczy S, Branshaw S, Brown-Borg HM. Spatial memory is enhanced in long-living Ames dwarf mice and maintained following kainic acid induced neurodegeneration. Mech Ageing Dev 2010; 131:422-35. [PMID: 20561541 DOI: 10.1016/j.mad.2010.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/18/2010] [Accepted: 06/05/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Age associated cognitive impairment is associated with low levels of IGF-1, oxidative stress, and neuronal loss in the hippocampus. Ames dwarf mice are long-lived animals that exhibit peripheral IGF-1 deficiency. Hippocampal-based spatial memory (a homolog of cognitive function) has not been evaluated in these long-living mice. MATERIALS AND METHODS We evaluated the hippocampal-based spatial memory in 3-, 12- and 24-month-old Ames dwarf and wild type mice using the Barnes maze and the T-maze. We also examined the effect of a hippocampal-specific toxin, kainic acid (KA), on spatial memory to determine whether Ames mice were resistant to the cognitive impairment induced by this compound. RESULTS We found that Ames dwarf mice exhibit enhanced learning, making fewer errors and using less time to solve both the Barnes and T-mazes. Dwarf mice also have significantly better short-term memory as compared to wild type mice. Both genotypes exhibited neuronal loss in the CA1 and CA3 areas of the hippocampus following KA, but Ames dwarf mice retained their spatial memory. DISCUSSION Our results show that Ames dwarf mice retained their spatial memory despite neurodegeneration when compared to wild type mice at an "equiseizure" dose of KA.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | | | | | | | | |
Collapse
|
23
|
Alpár A, Künzle H, Gärtner U, Popkova Y, Bauer U, Grosche J, Reichenbach A, Härtig W. Slow age-dependent decline of doublecortin expression and BrdU labeling in the forebrain from lesser hedgehog tenrecs. Brain Res 2010; 1330:9-19. [PMID: 20298680 DOI: 10.1016/j.brainres.2010.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/01/2010] [Accepted: 03/08/2010] [Indexed: 12/20/2022]
Abstract
In addition to synaptic remodeling, formation of new neurons is increasingly acknowledged as an important cue for plastic changes in the central nervous system. Whereas all vertebrates retain a moderate neuroproliferative capacity, phylogenetically younger mammals become dramatically impaired in this potential during aging. The present study shows that the lesser hedgehog tenrec, an insectivore with a low encephalization index, preserves its neurogenic potential surprisingly well during aging. This was shown by quantitative analysis of 5-bromo-2'-deoxyuridine (BrdU) immunolabeling in the olfactory bulb, paleo-, archi-, and neocortices from 2- to 7-year-old animals. In addition to these newly born cells, a large number of previously formed immature neurons are present throughout adulthood as shown by doublecortin (DCX) immunostaining in various forebrain regions including archicortex, paleocortex, nucleus accumbens, and amygdala. Several ventricle-associated cells in olfactory bulb and hippocampus were double-labeled by BrdU and DCX immunoreactivity. However, most DCX cells in the paleocortex can be considered as persisting immature neurons that obviously do not enter a differentiation program since double fluorescence labeling does not reveal their co-occurrence with numerous neuronal markers, whereas only a small portion coexpresses the pan-neuronal marker HuC/D. Finally, the present study reveals tenrecs as suitable laboratory animals to study age-dependent brain alterations (e.g., of neurogenesis) or slow degenerative processes, particularly due to the at least doubled longevity of tenrecs in comparison to mice and rats.
Collapse
Affiliation(s)
- Alán Alpár
- Paul Flechsig Institute for Brain Research, Faculty of Medicine, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Parrella E, Longo VD. Insulin/IGF-I and related signaling pathways regulate aging in nondividing cells: from yeast to the mammalian brain. ScientificWorldJournal 2010; 10:161-77. [PMID: 20098959 PMCID: PMC4405166 DOI: 10.1100/tsw.2010.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mutations that reduce glucose or insulin/insulin-like growth factor-I (IGF-I) signaling increase longevity in organisms ranging from yeast to mammals. Over the past 10 years, several studies confirmed this conserved molecular strategy of longevity regulation, and many more have been added to the complex mosaic that links stress resistance and aging. In this review, we will analyze the similarities that have emerged over the last decade between longevity regulatory pathways in organisms ranging from yeast, nematodes, and fruit flies to mice. We will focus on the role of yeast signal transduction proteins Ras, Tor, Sch9, Sir2, their homologs in higher organisms, and their association to oxidative stress and protective systems. We will discuss how the “molecular strategy” responsible for life span extension in response to dietary and genetic manipulations appears to be remarkably conserved in various organisms and cells, including neuronal cells in different organisms. Taken together, these studies indicate that simple model systems will contribute to our comprehension of aging of the mammalian nervous system and will stimulate novel neurotherapeutic strategies in humans.
Collapse
Affiliation(s)
- Edoardo Parrella
- Division of Neurogerontology Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
25
|
Abstract
OBJECTIVES To test the hypothesis that frequent participation in cognitive activities can moderate the effects of limited education on cognitive functioning. DESIGN A national study of adult development and aging, Midlife in the United States, with assessments conducted at the second wave of measurement in 2004-2006. SETTING Assessments were made over the telephone (cognitive measures) and in a mail questionnaire (demographic variables, measures of cognitive and physical activity, and self-rated health). PARTICIPANTS A total of 3,343 men and women between the ages of 32 and 84 with a mean age of 55.99 years. MEASUREMENTS The dependent variables were Episodic Memory (Immediate and Delayed Word List Recall) and Executive Functioning (Category Fluency, Backward Digit Span, Backward Counting Speed, Reasoning, and Attention Switching Speed). The independent variables were years of education and frequency of cognitive activity (reading, writing, doing word games or puzzles, and attending lectures). The covariates were age, sex, self-rated health, income, and frequency of physical activity. RESULTS The two cognitive measures were regressed on education, cognitive activity frequency, and their interaction, while controlling for the covariates. Education and cognitive activity were significantly correlated with both cognitive abilities. The interaction of education and cognitive activity was significant for episodic memory but not for executive functioning. CONCLUSION Those with lower education had lower cognitive functioning, but this was qualified by level of cognitive activity. For those with lower education, engaging frequently in cognitive activities showed significant compensatory benefits for episodic memory, which has promise for reducing social disparities in cognitive aging.
Collapse
|
26
|
Christophidis LJ, Gorba T, Gustavsson M, Williams CE, Werther GA, Russo VC, Scheepens A. Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: a potential role for growth hormone in injury-induced neurogenesis. Growth Horm IGF Res 2009; 19:497-506. [PMID: 19524466 DOI: 10.1016/j.ghir.2009.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Revised: 04/30/2009] [Accepted: 05/14/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND During recovery from an ischemic brain injury, a cerebral growth hormone (GH) axis is activated. Whilst GH has been demonstrated to be neuroprotective both in vitro and in vivo, a role for GH in neuro-restorative processes after brain injury has yet to be studied. OBJECTIVE To explore a role for GH in injury-induced neurogenesis by examining GH receptor (GH-R) immunoreactivity within the subventricular zone (SVZ) of juvenile rats after brain injury and by testing the proliferative capacity of GH on embryonic mouse neural stem cells. DESIGN Twenty-one day old rats were subjected to unilateral hypoxic-ischemia of the brain and sacrificed 1-15days later. Coronal brain sections from these animals and age-matched naïve controls were immunostained for GH-R and cell markers of neurogenesis. The level of GH-R immunoreactivity in the ipsilateral and contralateral SVZ of each animal was semi-quantified both by independent blinded scoring by two examiners and blinded image analysis. To examine the effect of GH on proliferation of embryonic mouse neural stem cells, cells were treated with increasing concentrations of rat pituitary GH for 48h in the presence of 5'-bromo-2'-deoxyuridine. RESULTS The level of GH-R immunoreactivity in the ipsilateral SVZ was significantly increased 5days after injury vs. the contralateral SVZ, coinciding both spatially and temporally with injury-induced neurogenesis. The population of GH-R immunopositive cells in the ipsilateral SVZ at this time was found to include proliferating cells (Ki67 immunopositive), neural progenitor cells (nestin immunopositive) and post-proliferative migratory neuroblasts (doublecortin immunopositive). Stimulation of embryonic mouse NSCs with physiological concentrations of rat pituitary GH elicited a dose-dependent proliferative response. CONCLUSION These results indicate a novel role for GH and its receptor in injury-induced neurogenesis, and suggest that GH treatment may potentiate endogenous neuro-restorative processes after brain injury.
Collapse
|
27
|
Scrable H, Medrano S, Ungewitter E. Running on empty: how p53 controls INS/IGF signaling and affects life span. Exp Gerontol 2009; 44:93-100. [PMID: 18598747 PMCID: PMC2764313 DOI: 10.1016/j.exger.2008.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 05/21/2008] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
In higher organisms dependent on the regenerative ability of tissue stem cells to maintain tissue integrity throughout adulthood, the failure of stem cells to replace worn out, dead, or damaged cells is seen as one mechanism that limits life span. In these organisms, tumor suppressors such as p53 are central participants in the control of longevity because they regulate stem cell proliferation. Several recent reports have identified p53 as a longevity gene in organisms such as Caenorhabditis elegans and Drosophila melanogaster, which lack proliferative stem cells in all but the germline and have relatively short life spans. This has forced us to reevaluate the role of p53 in the control of life span. We discuss how p53 might regulate longevity in both long- and short-lived species by controlling the activity of insulin-like molecules that operate in proliferating and non-proliferating compartments of adult somatic tissues. We also discuss the hierarchical structure of life span regulation where loss of p53 has life span extending effects. Finally, we suggest a molecular mechanism by which p53 might facilitate the response to severe nutrient deprivation that allows metabolically active cells to survive periods of starvation. Paradoxically, loss of p53 function in these cells would compromise life span.
Collapse
Affiliation(s)
- Heidi Scrable
- University of Virginia, Department of Neuroscience, Charlottesville, Virginia, USA.
| | | | | |
Collapse
|
28
|
Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 2008; 18:455-71. [PMID: 18710818 PMCID: PMC2631405 DOI: 10.1016/j.ghir.2008.05.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/02/2008] [Indexed: 12/18/2022]
Abstract
Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the manipulation of the GH/IGF axis influences lifespan, highlight the invertebrate and vertebrate animal models with altered lifespan due to modifications to the GH/IGF-1 signaling cascade or homologous pathways, and discuss the basic phenotypic characteristics and healthspan of these models.
Collapse
Affiliation(s)
- Darlene E. Berryman
- School of Human and Consumer Sciences, College of Health and Human Services, Ohio University, Athens, OH 45701
| | - Jens Sandahl Christiansen
- Jens Sandahl Christiansen, Department of Endocrinology, Aarhus University Hospital, Kommunehospitalet, DK 8000 Aarhus, Denmark
| | - Gudmundur Johannsson
- Gudmundur Johannsson, MD, Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, S-413 45 Göteborg, Sweden
| | - Michael O. Thorner
- Michael O. Thorner, University of Virginia Health System, Endocrinology and Metabolism, Charlottesville, VA 22908
| | - John J. Kopchick
- Edison Biotechnology Institute and Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; Phone: (740)593-4534; Fax: (740)593-4795
| |
Collapse
|
29
|
Schrag M, Sharma S, Brown-Borg H, Ghribi O. Hippocampus of Ames dwarf mice is resistant to beta-amyloid-induced tau hyperphosphorylation and changes in apoptosis-regulatory protein levels. Hippocampus 2008; 18:239-44. [PMID: 18000817 DOI: 10.1002/hipo.20387] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ames dwarf mouse has a long lifespan and is characterized by a marked resistance to cellular stress, an event that is implicated in the pathogenesis of many neurodegenerative disorders that are associated with aging, including Alzheimer's disease. However, very little is known on the extent to which the Ames dwarf mouse is protected against Alzheimer's disease. We have developed an organotypic slice system cultured from hippocampi of adult dwarf mice and examined deleterious effects of beta-amyloid (Abeta) peptide, a key pathogenic event in the course of Alzheimer's disease. We present the first evidence that long living Ames mice resist beta-amyloid toxicity. We demonstrate that organotypic slices from adult dwarf mice, but not their normal phenotype counterparts (wild type), are resistant to Abeta25-35-induced hyperphosphorylation of tau protein, reduction in levels of the antiapoptotic protein Bcl-2, increase in levels of the pro-apoptotic protein Bax, and activation of caspase 3. Moreover, incubation of organotypic sections with the GSK-3beta inhibitor SB216763 prevented tau phosphorylation but not alterations in levels of Bcl-2, Bax, and caspase-3. Because the hippocampus is a brain area that is severely affected in Alzheimer's disease, our study proposes that organotypic slices from hippocampi of adult Ames dwarf mice may constitute a model system for understanding endogenous factors that may confer protection against Abeta.
Collapse
Affiliation(s)
- Matthew Schrag
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | | | | | | |
Collapse
|
30
|
Warner HR. 2006 Kent award lecture: is cell death and replacement a factor in aging? J Gerontol A Biol Sci Med Sci 2007; 62:1228-32. [PMID: 18000142 DOI: 10.1093/gerona/62.11.1228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article briefly summarizes the Kent Award Lecture I gave at the annual meeting of The Gerontological Society of America held in Dallas, Texas, in November 2006. Cell death is a normal response of cells to cytotoxic damage due to both internal and external threats, and this cell loss is normally countered by proliferation of neighboring cells and/or replacement of these cells from progenitor cell pools. Maintaining tissue homeostasis is a critical challenge during aging, and this article describes a few aspects of the dynamic cell turnover that occurs continuously in vivo, with particular reference to the adverse effects of mutations that accelerate cell death through dysfunctional DNA metabolism, and how these events might contribute to aging in general.
Collapse
Affiliation(s)
- Huber R Warner
- College of Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|